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We present a Monte Carlo collisional scheme that models single Compton scattering
between leptons and photons in particle-in-cell codes. The numerical implementation
of Compton scattering can deal with macro-particles of different weights and conserves
momentum and energy in each collision. Our scheme is validated through two benchmarks
for which exact analytical solutions exist: the inverse Compton spectra produced by an
electron scattering with an isotropic photon gas and the photon–electron gas equilibrium
described by the Kompaneets equation. It provides new opportunities for numerical
investigation of plasma phenomena where a significant population of high-energy photons
is present in the system.
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1. Introduction

Computer simulations for kinetic plasma processes are of core interest for a variety of
scenarios, ranging from astrophysics to laboratory experiments. The particle-in-cell (PIC)
methodology (Evans & Harlow 1957; Dawson 1983; Hockney & Eastwood 1988; Bird
1989; Birdsall & Langdon 1991) is one of the most popular and widely used techniques,
which pioneered the study of collisionless plasmas. The standard PIC loop can be enriched
with various quantum electrodynamics (QED) cross sections to investigate astrophysical
environments and model laboratory experiments where quantum processes affect the
plasma dynamics. These modules rely on Monte Carlo techniques by taking advantage of
the inherent stochasticity of QED processes. The coupling of QED Monte Carlo modules
to the PIC loop represents a unique numerical tool that allows such scenarios to be
studied from first principles. For example, the inclusion of nonlinear Compton scattering
(QED synchrotron) is essential to simulate the interaction of matter with ultra-intense
electromagnetic fields (Nerush et al. 2011; Ridgers et al. 2012; Blackburn et al. 2014;
Vranic et al. 2014; Gonoskov et al. 2015; Grismayer et al. 2016; Jirka et al. 2016; Lobet
et al. 2016; Vranic et al. 2016a,b; Grismayer et al. 2017). Several other radiative energy
loss channels can participate in the production of high-energy photons, such as curvature
radiation, inverse Compton emission, and Bremsstrahlung. These photons are produced in
astronomical sources such as active galactic nuclei, X-ray binaries, supernova remnants,
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pulsars and gamma-ray bursts can further interact with matter and, in particular, with the
surrounding plasma. The wavelengths of high-energy photons are typically smaller than
the average inter-particle distance of any tenuous plasma, implying only binary interaction
between single photons and electrons. The leading photon–electron (positron) interaction
mechanism is single Compton scattering (Compton 1923).

The collision of high-energy photons with the plasma electrons is at the core of
some fundamental scenarios: explains the saturation properties of cyclotron radiation
masers (Dreicer 1964), the relaxation to the thermal equilibrium of a photon–electron
gas (Kompaneets 1957; Peyraud 1968a,b,c), or the Comptonisation of the microwave
background (Sunyaev & Zel’dovich 1980). These seminal studies approximate the plasma
as a gas of free electrons and, thus, neglect its collective behaviour. Frederiksen, Haugbølle
& Nordlund (2008) and, more recently, the present authors (Del Gaudio et al. 2020)
have shown that bursts of hard X-rays can couple to the collective plasma dynamics
via incoherent Compton scattering events and drive plasma wakes. Such phenomena can
be studied numerically by coupling a Monte Carlo Compton module to the PIC loop
(Haugbølle 2005; Haugbølle, Frederiksen & Nordlund 2013), in a binary collision module.

The implementation of binary collisions in PIC codes is discussed extensively in the
literature, with the main focus on Coulomb collisions (Takizuka & Abe 1977; Wilson,
Horwitz & Lin 1992; Miller & Combi 1994; Vahedi & Surendra 1995; Nanbu 1997;
Larson 2003; Kawamura & Birdsall 2005; Sentoku & Kemp 2008; Sherlock 2008; Peano
et al. 2009; Turrell, Sherlock & Rose 2015; Higginson 2017). The usual implementation
relies on the approximation of small cumulative scattering angles (Takizuka & Abe
1977; Miller & Combi 1994; Nanbu 1997), which allows the simulation time step that
is not bound to resolve the collision frequency to be relaxed. Recently, Turrell et al.
(2015) and Higginson (2017) included the effect of large angle deflections in Coulomb
collision algorithms. The definition of a cut-off angle allows the occurrence of small-angle
collisions or large-angle collisions to be identified, based on the impact parameter of the
colliding particles. Coulomb collisions differ from Compton collisions in kinematics. In
electron–ion collisions, the recoil on the massive ion can usually be neglected. Instead, in
photon–electron collisions the electron recoil cannot be neglected unless in the Thomson
limit. Notably, Goudsmit & Saunderson (1940) have developed a electron multiple
scattering theory in the case of elastic collisions, which can be applied to the Thomson
regime. To the best of the authors’ knowledge, a multiple scattering theory for Compton
scattering has not yet been developed. Thus, we employ a single scattering procedure
where the collision frequency has to be properly resolved by the time discretisation. In
general, the smallness of the cross section would result in single scattering events per
simulation time step. For particularly high photon densities, the time resolution must be
imposed by the collision routine rather than the usual Courant condition for the field
solver.

In this article, we describe the implementation of a single Compton scattering collision
module for PIC codes. It relies on first principles that the Klein–Nishina (Klein & Nishina
1923) cross section is employed with no approximations and allows a self-consistent
treatment of the high-frequency radiation coupling with the plasma dynamics. In § 2, we
review the basic theory for Compton scattering with particular attention paid to the Lorentz
invariant quantities that the model must enforce for reproducing the correct scattering
rates in the collision at relativistic energies (Peano et al. 2009). Section 3 is devoted to
the implementation of our collision procedure. In § 4, we benchmark our code against
problems for which exact analytical solution or formulation exist, namely the scattering
photon spectrum of a relativistic charge (Blumenthal & Gould 1970), and the Kompaneets
equation (Kompaneets 1957). Finally, in § 5, we comment on the computational cost that
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our module brings as compared with a standard PIC loop. Summary and conclusions are
presented in § 6.

2. Compton scattering

Single Compton scattering is the inelastic collision between a photon and an electron
(Compton 1923). It is the generalisation of Thomson scattering (Thomson 1906), for any
value of the incident photon of energy �ω in the electron proper frame of reference. By
applying energy and momentum conservation in the electron rest frame, later denoted
reference frame (O),

�ω + mc2 = �ω′ + γ ′mc2, (2.1)

�k = �k′ + p′, (2.2)

where γ ′ = √
1 + p′2/m2c2 and ω = ck, the photon frequency shift over one collision is

ω′

ω
= mc2

mc2 + �ω(1 − cos θ)
, (2.3)

where ω (ω′) is the absorbed (emitted) frequency, and θ is the scattering angle. For
�ω � mc2, the Thomson limit ω′ � ω is recovered. However, when the incident photon
energy approaches and exceeds the electron rest mass energy �ω � mc2, the energy
transfer becomes relevant. For �ω � mc2, at θ � −π, the photon transfers up to half
its energy �(ω − ω′) � �ω/2 to the electron. The classical theory of radiation explains
Thomson scattering in terms of plane wave absorption and consequent dipole radiation
from the oscillating charge (Landau & Lifshitz 1975; Jackson 1999), but does not predict
Compton scattering, which is intrinsically a quantum process.

2.1. Klein–Nishina cross section
In the rest frame of an electron, the single Compton scattering probability is determined
by the Klein–Nishina differential (in solid angle Ω) cross section (Klein & Nishina 1923),
which, for unpolarised photons, reads

dσ

dΩ
= r2

e

2

(
ω′

ω

)2 (
ω′

ω
+ ω

ω′ − sin2 θ

)
, (2.4)

where re = e2/mc2 is the classical electron radius. By combining (2.3) and (2.4), and
integrating over the solid angle dΩ = sin θ dθ dφ (φ is the symmetry angle around the
direction of the incoming photon) the total cross section reads

σ(ε) = πr2
e

ε

[(
1 − 2

ε
− 2

ε2

)
log(1 + 2ε) + 1

2
+ 4

ε
− 1

2(1 + 2ε)2

]
, (2.5)

where ε = �ω/mc2. In the limit for low photon energies

lim
ε→0

σ(ε) = σT (2.6)

the Thomson cross section is recovered. For high photon energies ε � 1, the cross section
has the limiting expression

lim
ε�1

σ(ε) = 3
8
σT

log(2ε)

ε
(2.7)

and decreases with respect to the incident photon energy.
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(a) (b)

FIGURE 1. Schematic of the Compton scattering relativistic kinematics.

2.2. Relativistic kinematics and Lorentz invariants
We consider a relativistic electron which propagates along the z coordinate at velocity βc
and scatters with a photon at an incident angle φ in the laboratory frame, see figure 1.
In the electron proper frame of reference O, the incident angle is modified by relativistic
effects. In the frame O the incident photon is confined within a small cone (Blumenthal &
Gould 1970)

tan φO = sin φ

γ (cos φ − β)
(2.8)

of aperture 1/γ . The photon energy in the frame O reads

εO = γ ε(1 − β cos φ). (2.9)

It varies in the range εO ∈ [ε/2γ, 2γ ε] according to the incident angle φ. In the O frame,
the photon energy after scattering obeys (2.3) and in the laboratory frame reads

ε ′ = γ ε ′
O[1 + β cos(π − θO − φO)] � γ ε ′

O(1 − cos θO), (2.10)

owing to the Lorentz transformation, where β � 1 and φO ∼ 1/γ . In the Thomson regime,
ω′

O � ωO and the maximum energy achieved over one collision is ε ′ � 4γ 2ε, for φ � π
and θO � π. In the extreme Klein–Nishina limit, the maximum energy achieved over one
collision can be obtained by combining (2.3), (2.9), and (2.10), and reads ε ′ � γ .

We now consider the scattering between photons, with distribution function fω, and
electrons, with distribution function fe. Within a portion of space-time dx dt, the number
of collisions is a Lorentz invariant quantity (Groot, Leeuwen & van Weert 1980) that is
given by

N = σ(p, k)cfω dkfe dp dxdt. (2.11)

In general, the cross section σ(p, k) depends on the electron momentum p, and on the
photon wavevector k. As the space-time element dx dt, the distribution functions fω and
fe, and the speed of light c are Lorentz invariant, therefore σ(p, k) dk dp is also Lorentz
invariant (Landau & Lifshitz 1975). This invariance allows us to obtain the cross section
in any inertial frame (γ = √

1 + p2/m2c4, ε = �|k|/mc). Knowing the cross section in the
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electron proper frame of reference (γO = 1, εO = γ ε − �p · k/m2c2)

σ(p, k) dk dp = σ(ωO) dkO dpO, (2.12)

we finally obtain

σ(p, k) = σ(εO)
εO

γ ε
, (2.13)

because dk/ε and dp/γ are Lorentz invariants (Landau & Lifshitz 1975).

3. Single Compton scattering algorithm

The implementation of single Compton scattering in a PIC code must not only
recover the correct microphysics of the process (frequency shift, angle, momentum recoil)
but must preserve the invariant number of collisions to obtain the correct scattering
rates (Peano et al. 2009). The implementation follows naturally as each macro-particle
represents an ensemble of real particles that are close neighbours in phase space. Each
macro-particle has a weight q that relates to the number of real particles it represents and,
thus, samples a portion of the distribution function of real particles. Figure 2 outlines our
implementation that follows three steps: (i) binning of the macro-particles into collision
cells 
x, a volume in configuration space, (ii) pairing of the colliding macro-particles
according to their probability Pi,j of interaction within 
x
t, (iii) update of the momenta
of the scattering macro-particles.

3.1. Macro-particles binning
The binning of macro-particles in collision cells naturally uses the single PIC cell as the
smallest binning volume. The size of a PIC cell is also the smallest scale over which the
self-consistent plasma collective fields are computed. For this reason, the collision cells
are usually set equal to the PIC cells. Macro-photons and macro-electrons are binned in
the collision cells and sorted such that we identify the indexes of macro-electrons and
macro-photons within each collision cell.

3.2. Pairing
For each collision cell, we pair the scattering couples and add them to a scattering list using
the no-time-counter (NTC) method (Bird 1989; Abe 1993). The NTC method is a popular
Monte Carlo scheme for collision procedures involving single scattering events (not for
cumulative scattering). The standard pairing routines for cumulative Coulomb collisions
allow for a time step larger than the collision frequency, thus all macro-particles are
involved in the scattering process each time step. Instead, the NTC method applies when
the time step resolves the collision frequency such that the maximum possible number
of macro-scatterings within a time step involves only a subset of all the macro-particles.
Developed three decades ago (Bird 1989), NTC provides a cost reduction for the sampling
of a discrete probability distribution function. We detail now the NTC algorithm applied
to single Compton scattering.

We consider a collision cell containing Nω macro-photons and Ne macro-electrons. A
conservative upper-bound to the maximum probability of any macro-particle to collide
within 
t is

Pmax = 2σTc
t max[qi
e, q j

ω], (3.1)

where max[qi
e, q j

ω] is the largest weight with units of a density among all macro-particles in
the collision cell (i ∈ [1, Ne] macro-electrons and j ∈ [1, Nω] macro-photons). The factor
2 appears conservatively as the upper bound in the relativistic transformation of the cross
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FIGURE 2. Schematic of the Compton scattering algorithm. It follows three steps: (i) the
macro-particles are binned into collision cells 
x, (ii) the probability Pi,j of interaction within

x
t is computed and scattering macro-particles are chosen using the no-time-counter method,
(iii) the momenta of the scattering macro-particles are updated.

section σ = σT,OεO/γ ε, where max(εO) = 2γ ε. The maximum number of macro-particles
that can scatter Nmax is given by the maximum probability Pmax times the number of all the
possible unsorted pairing combinations NeNω (potential scatterings) of the macro-photons
with the macro-electrons. It reads

Nmax = PmaxNeNω. (3.2)

The number Nmax is usually not an integer and is rounded to the next or previous integer
by a Monte Carlo sampling of the residue. This procedure preserves statistically the
correct number of collisions within 
x
t. We randomly pair Nmax macro-photons and
Nmax macro-electrons. This follows two steps: (i) the random sorting of the macro-photons
and the macro-electrons, (ii) the selection of the first Nmax indexes. At this point, we
have a shortlist of Nmax randomly paired macro-particles, which contains the maximum
possible scatterings in the collision cell. For each pair in the short list, a random number
rnd ∈ [0, 1] is rolled and compared with the joint probability

Pi,j = σ(pi, k j)c
t max[qi
e, q j

ω]/Pmax (3.3)

of scattering after having being selected within the Nmax pairs.
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To compute the cross section σ(pi, k j) we proceed as follows. The energy of the photon
k j is Lorentz boosted in the rest frame of the electron pi

ε
j

O = γ iε j − �pi · k j/m2c2. (3.4)

Then, the cross section σC(ε
j

O) is computed in this frame and boosted back into the
simulation frame using (2.13). A macro-electron/macro-photon pair from the shortlist is
admitted to the scattering list based on a rejection method (accepted if rnd < Pi,j).

3.3. Momentum update
For each pair in the scattering list, the momenta are updated according to the
Compton frequency shift and momentum recoil. The macro-photon four-wavevector K =
(ε, �k/mc) is Lorentz boosted in the rest frame of the electron, of momentum p in the
simulation frame, as KO = L(p)K, where the boost matrix is

L(p) =
⎡
⎣ γ −p/mc

−pT/mc I + pTp/m2c2(1 + γ )

⎤
⎦ , (3.5)

and I the 3 × 3 identity matrix. In the frame O, we identify the unit vector along the photon
propagation direction k̂0, which defines the symmetry axis for the scattering. We define
an orthonormal unit vector base ê1 = k̂0, ê2 ⊥ ê1, ê3 = ê1 × ê2. The two scattering angles
θ and φ are then sampled, θ is the angle with respect to ê1 and φ is the angle on the plane
ê2, ê3. This latter parameter, being the angle of rotational symmetry, is chosen randomly
between 0 and 2π. The angle θ , or rather the parameter μ = cos θ , is obtained by the
inverse transform sampling method of the cumulative probability function given by the
differential cross section of the process (see appendix A). We preferred this method rather
than a rejection method, whose efficiency decreases for εO � 1 owing to the steepening of
the probability density function close to μ � −1. The scattered photon energy is ε ′

O given
by (2.3)

ε ′
O = εO

1 + εO(1 − μ)
(3.6)

and the scattered wavevector is

�k′
O

mc
= ε ′

O

(
μê1 +

√
1 − μ2 cos φê2 +

√
1 − μ2 sin φê3

)
. (3.7)

We transform back to the simulation frame K′
O = (ε ′

O, �k′
O/mc) simply as K′ = L(−p)K′

O,
and by conservation of momentum the scattered electron has a new momentum p′ = p +
�(k − k′).

3.4. Macro-particles with difference in weight
In PIC codes, it is unlikely that two scattering particles possess the same weight. Two
main techniques to approach the problem have been discussed in Sentoku & Kemp
(2008). The first approach is based on a rejection method for which the scattering
occurs with a probability based on the weights of the two-scattering macro-particles.
This method does not reproduce the energy and momentum transfer of each collision but
only on average, for a sufficiently high number of macro-particles in the collision cell. To
preserve the energy and momentum transfer per collision, an alternative is first to spilt the
scattering macro-particle of weight q into a scattering fraction qs (ps) and a non-scattering
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fraction qns (p). After the collision takes place, the two fractions are merged again into
the macro-particle q, which has the average energy and momentum of qs and qns. This last
method becomes inaccurate when ps differs significantly from p such that the two fractions
qs and qns refer to two well-distinct portions of the phase space. This issue has already been
addressed by Haugbølle (2005) and relies on splitting and merging at two different steps.
Here, we address this problem similarly but only the largest weight macro-particle is split
before scattering. We briefly recall the main steps of the splitting procedure:

(i) identify the two scattering macro-particles of weight qi
e and q j

ω, and select the largest
weight between the two max[qi

e, q j
ω];

(ii) create a new particle of weight equal to min[qi
e, q j

ω];
(iii) the two macro-particles of equal weight min[qi

e, q j
ω] are now paired and can be

Compton scattered as described previously; and
(iv) reassign to the split macro-particle the weight max[qi

e, q j
ω] − min[qi

e, q j
ω].

The splitting is performed within the scattering routine and can lead to a significant
increase of macro-particles in the simulation. Merging algorithms (Vranic et al. 2015) can
be used at a different step of the PIC loop to preserve the number of macro-particles in
the simulation within a reasonable maximum, thus avoiding their exponential increase.
The advantage of merging at a later stage is that only macro-particles close in phase space
merge. Details can be found in Vranic et al. (2015). Here we have not used the merging
algorithm, but it can be straightforwardly combined with the algorithm described here.

4. Benchmarks

To benchmark our algorithm, we choose two problems that possess an exact analytical
solution:

(i) the inverse Compton spectra produced by an electron scattering with an isotropic
photon gas (Blumenthal & Gould 1970); and

(ii) the relaxation to the thermal equilibrium of a photon gas by Compton collisions
with a thermal electron gas of fixed non-relativistic temperature described by the
Kompaneets equation (Kompaneets 1957).

4.1. Inverse Compton spectra
Blumenthal & Gould (1970) derived the inverse Compton spectra produced by the
collision of a relativistic electron, γ � 1, with an isotropic gas of photons (see
appendix B). The scattered photon distribution function reads

f (Γ, E ′) = 2q log q + (1 + 2q)(1 − q) + 1
2

Γ 2q2

1 + Γ q
(1 − q), (4.1)

where q = E ′/[1 + Γ (1 − E ′)], E ′ = ε ′/ε ′
max is the scattered photon energy normalised to

its maximum ε ′
max = γΓ/(1 + Γ ). The parameter Γ = 4εγ relates to the energy of the

scattering photons in the electron rest frame and distinguishes two regimes: (i) Thomson
limit Γ � 1 and (ii) extreme Klein–Nishina limit Γ � 1.

Figure 3 shows the excellent agreement between our simulations (dashed lines) and
theory (4.1) (solid lines) for Γ = 0.1, 10, 100. The scattered photon distribution function
f (Γ, E ′) is normalised

∫
dE ′f (Γ, E ′) = 1. In our simulations, the photon gas is initialised

with 1.5 × 107 macro-photons, which mimic an emission line. All macro-photons have
the same energy and are propagating in random directions, distributed uniformly on the
surface of a sphere in momentum space. We considered the interaction at different photon
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FIGURE 3. Scattered photon distribution function f (Γ, E ′) for Γ = 0.1, 10, 100. The simulation
results are shown by dashed lines and the theory (4.1) by solid lines (Blumenthal & Gould 1970).

energies ε = 0.00025, 0.025, 0.25. An equal number of macro-electrons is initialised
at a Lorentz factor of γ = 100, all collimated in one direction. To avoid that, each
macro-photon scatters more than once the simulation runs for only a single time step where
about 1 × 106 macro-scatterings occur. The only constraint on 
t is to be low enough such
that Pmax < 1, to prevent multiple collisions of the photons to occur within a single time
step.

4.2. Photon–electron gas equilibrium (Kompaneets equation)
Kompaneets addressed the thermodynamic equilibrium established between photons
and free electrons if their interaction is only mediated by Compton scattering events
(Kompaneets 1957). Kompaneets derived the partial differential equation that describes
the temporal evolution of the photon occupation number n resulting from the interaction
with an electron gas of fixed non-relativistic temperature kBT � mc2, where kB is the
Boltzmann constant. The full collision operator reads

∂n
∂t

= c
∫

dp
dσ

dΩ

[
f ′
en′(1 + n) − fen(1 + n′)

]
, (4.2)

where fe = fe(γ ) and f ′
e = fe(γ

′) refer to the electron energy distribution function evaluated
at a Compton transition γ mc2 + �ω � γ ′mc2 + �ω′. The evaluation of the photon
occupation numbers n = n(ω) and n′ = n(ω′) follow the same definition. The n2 terms
account for the photon Bose–Einstein statistics when phenomena such as stimulated
scattering and superposition of states are considered. The full Boltzmann operator can be
reduced to a Fokker–Planck form within the Thomson limit �ω � mc2 (see appendix C).
In regimes where the photon occupation number is small, n � 1, the photon electron gas
interaction is mediated by single Compton scattering events and the linear Kompaneets
equation in terms of the photon energy distribution function f = ξ 2n reads

∂f
∂y

= ∂

∂ξ

[
ξ 2 ∂f

∂ξ
+ (

ξ 2 − 2ξ
)

f
]

, (4.3)

where y = t/tC, tC = mc/σTnekBT is the characteristic relaxation time and ξ = �ω/kBT is
the photon energy normalised to the electron temperature.

Figure 4 shows the excellent agreement between our algorithm and the numerical
solution of the linear Kompaneets equation (4.3) obtained with a finite-difference
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FIGURE 4. Time evolution of the photon distribution function f (ξ) by the interaction with an
electron gas of density 1018 cm−3 at 5 keV temperature for times t = 0, 0.5, 1, 3 tC. After t = 3 tC
the photon distribution function resembles the Wien spectrum and does not evolve significantly.
Simulations in dashed lines and solution of the linear Kompaneets equation (4.3) in solid lines
(Kompaneets 1957).

centred scheme. In our simulation, more than 105 macro-photons are initialised to mimic
an emission line at an average energy of ξ̄ = 〈ξ〉 = 0.2. The emission line has a small
energy spread of σ 2

ξ = 〈ξ 2 − ξ̄ 2〉 = 0.1, and the initial distribution

f (ξ, y = 0) ∝ exp

[
−

(
ξ − ξ̄

)2

2σ 2
ξ

]
(4.4)

is Maxwellian. The same number of macro-electrons is sampled according to a
Maxwellian distribution at a temperature of kBT = 5 keV. To enforce a constant electron
temperature during the simulation for a rigorous comparison with theory, we turn off the
Lorentz force, which will arise from fluctuations in the electron density. We also omit the
momentum, and energy ceded by the electron to the photons at each collision such that
the electron population does not cool down. At t � 3 tC, the photon energy distribution
reaches equilibrium and converges towards the Wien’s spectrum f ∝ ξ 2 exp(−ξ), the
correct equilibrium for the linear Kompaneets equation, as expected from the underlying
hypothesis.

5. Considerations on the algorithm performance

In this section, we compare the computational cost of our Compton scattering algorithm
with the standard PIC loop. The computational performance of our algorithm is usually
dependent on the physical parameters of the particular simulated system. A thorough
benchmark of its performance should then cover a variety of physical parameters of
relevant case scenarios. In collisional plasmas, a typical benchmark of the performance
of a collisional algorithm relies on the simulation of thermal plasma with and without
collisions. Our choice for the comparison follows a similar criterion. We simulate in one
dimension a thermal plasma in equilibrium with a photon gas, both at a temperature
of 5 keV. The plasma density is np = 1018 cm−3 and the photon density is nω =
3 × 1027 cm−3, chosen such that the electron Compton collision frequency is a tenth
of the plasma frequency cσTnω = ωp/10. The electrons follow a Maxwell–Boltzmann
distribution f ∝ √

Wk exp(−Wk/kBT), and the photons follow a Wien distribution f ∝
W2

k exp(−Wk/kBT). The computational domain is divided into 240 cells. The time step
is 
t = 0.099 ω−1

p . Periodic boundary conditions are used. Figure 5 shows the time of
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FIGURE 5. Time of a PIC loop per simulation particle with (×) and without (◦) Compton
collisions as a function of the number of particles per cell (ppc). For a low number of ppc,
the loop time is determined by the particle sorting routine (dependent also on the number of grid
cells) used by the Compton module. For a sufficiently high number of ppc, the scaling of our
collision algorithm is proportional to the amount of simulated particles.

a PIC loop per simulation particle with (×) and without (◦) Compton collisions as a
function of the initial number of particles per cell (ppc). In this comparison macro-particle
splitting occurs, but not particle merging. For a low number of ppc, the loop time is
determined by the particle sorting routine (dependent also on the number of grid cells)
used by the Compton module. For a high number of ppc, the scaling of our collision
algorithm is proportional to the number of simulated particles. The computational cost
of the sorting routine scales with both the number of simulated macro-particles and the
number of cells in which they are sorted. Therefore, there is a trade-off, which for the set
of parameters of these simulations occurs around 64 ppc and is highlighted by the dashed
line in figure 5. Beyond the region delimited by the dashed line (which changed depending
on the grid size and the number of ppc), the inclusion of the Compton algorithm does not
affect significantly the standard PIC loop performance. This trade-off must be assessed for
the different numerical parameters/configurations to determine the optimal performance
conditions.

6. Summary

We have presented a collision algorithm that incorporates the effect of single Compton
scattering from high-frequency photons in PIC codes. This allows a self-consistent
treatment of the high-frequency radiation coupling with the plasma dynamics from first
principles. The algorithm shows excellent agreement with respect to the benchmarks:
scattering photon spectrum from the collision with relativistic electrons (Blumenthal &
Gould 1970) and the relaxation to thermal equilibrium of a photon population with an
electron gas (Kompaneets 1957). This framework is at the forefront for the numerical
modelling of photon–plasma interaction and opens new and exciting opportunities in
the numerical investigation of plasma phenomena where a significant population of hard
photons is present in the system.
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Appendix A. Scattering angle by the Inverse Transform Sampling method

The probability distribution function (pdf ) of the scattered macro-photon over the
scattering angle μ = cos θ ∈ [1,−1] reads

pdf(μ, εO) = 1
σ(εO)

dσ

dμ
, and

∫ −1

1
dμ

dσ

dμ
= σ(εO) (A 1a,b)

with

dσ

dμ
= −πr2

e

(
1

1 + εO(1 − μ)

)2 (
1

1 + εO(1 − μ)
+ εO(1 − μ) + μ2

)
. (A 2)

The cumulative distribution function (cdf ) is

cdf(μ, εO) = 1
σ(εO)

∫ μ

1
dμ′ dσ

dμ′ (A 3)

with ∫ μ

1
dμ′ dσ

dμ′ = πr2
e

εO

{(
1 − 2

ε0
− 2

ε2
0

)
log [1 + εO(1 − μ)]

+1 − μ

εO

[
1 + 1 + 2εO

1 + εO(1 − μ)

]
+ 1

2
− 1

[1 + εO(1 − μ)]2

}
(A 4)

In the inverse transform sampling method a random number is generated in the range
rnd ∈ [0, 1], then μ = cdf−1(rnd, εO). Given the nonlinear dependence of the cdf on μ,
we use the bisection method to solve cdf(μ, εO) − rnd = 0.

Appendix B. Photon spectrum: single scattering with a relativistic electron

We briefly recall the main steps in the derivation of (4.1), see Blumenthal & Gould
(1970). If the photon gas is isotropic in the laboratory frame, it appears beamed at a small
angle ∼ 1/γ in the proper frame O of reference of an incident relativistic electron γ � 1,
as shown by (2.8). The Compton scattering differential rate in the laboratory frame reads

dNω

dt dε ′ =
∫

dεO

∫
dΩO

dN
dtO dεO dΩO dε ′

O

dtO

dt
dε ′

O

dε ′ . (B 1)

The time interval in the frame O is dtO = dt/γ , and the energy transforms according to
(2.10) as dε ′ � γ (1 − cos θO) dε ′

O. The Compton scattering differential rate in the frame O
is

dN
dtO dεO dΩO dε ′

O
= c

dσ(εO)

dΩO
δ(ε ′

O − εO)
dnO

dεO
. (B 2)

Here dσ(εO)/dΩO is the Klein–Nishina cross section. The photon density spectrum
dnO/dεO in the O frame can be related with the isotropic differential photon density in
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the laboratory frame by the Lorentz invariance of the ratio dn/ε:

1
εO

dnO

dεO
= 1

ε

dn
dε

. (B 3)

The isotropic differential photon density in the laboratory frame reads dn = n(ε)dcosφ/2,
where n(ε) is the density of photons of a given energy ε. According to (2.9), the incident
angle in the laboratory frame results in a change in the photon energy in the O frame as
|dεO/dcosφ| � γ ε. One thus obtain from (B 3)

dnO

dεO
= εO

2γ ε2
n(ε). (B 4)

By combining (B 4) and (B 2) with (B 1), the Compton scattering differential rate reads
(Blumenthal & Gould 1970)

dN
dt dE ′ = 3σTc

4γ

n(ε)

ε
f (Γ, E ′), (B 5)

whereE ′ = ε ′/ε ′
max is the scattered photon energy normalised to its maximum ε ′

max =
γΓ/(1 + Γ ). The parameter Γ = 4εγ relates to the energy of the scattering photons in
the electron rest frame and distinguishes two regimes: (i) Thomson limit Γ � 1 and (ii)
extreme Klein–Nishina limit Γ � 1. The scattered photon distribution function reads

f (Γ, E ′) = 2q log q + (1 + 2q)(1 − q) + 1
2

Γ 2q2

1 + Γ q
(1 − q), (B 6)

where q = E ′/[1 + Γ (1 − E ′)].

Appendix C. Relaxation to thermal equilibrium of a photon gas:
Kompaneets equation

We recall the main steps in the derivation of (4.3), see Kompaneets (1957). In the
Thomson limit �ω � mc2, the energy exchange of one transition is small compared with
the energy of the photon δω = |ω′ − ω| � ω. The energy exchange over one Compton
event is

�δω = �ω
cp ·

(
k̂

′ − k̂
)

− �ω
(

1 − k̂
′ · k̂

)
γ mc2 + �ω

(
1 − k̂

′ · k̂
)

− cp · k̂
(C 1)

� �ω

[
p

mc
·
(

k̂
′ − k̂

)
− �ω

mc2

(
1 − k̂

′ · k̂
)]

, (C 2)

where k̂ = k/k and k̂
′ = k′/k′ are the unit vectors that identify the photon propagation

direction before and after scattering. In such regime, the functions f ′
e and n′ can be

expanded to second order in the small parameter δω allowing the reduction of the full
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collision operator (4.2) to a Fokker–Planck equation

∂n
c∂t

�
[

∂n
∂ξ

+ n(1 + n)

] ∫
dp

dσ

dΩ
fe

�δω

kBT

+
[

∂2n
∂ξ 2

+ (1 + n)

(
2
∂n
∂ξ

+ n
)] ∫

dp
dσ

dΩ
fe

(
�δω

kBT

)2

, (C 3)

where the electron distribution function is assumed to be Maxwellian, and ξ = �ω/kBT is
the energy of the photon normalised to the electron temperature. The expansion parameter
δω is small in the laboratory frame only if it is also small in the proper frame of
each electron. This holds for non-relativistic electron temperatures kBT � mc2. The two
integrals in δω and in δω2 can be evaluated assuming the differential cross section in the
Thomson limit

dσ

dΩ
= r2

e

2

(
1 + cos2 θ

)
. (C 4)

Then, the time evolution of the average occupation photon number n reads

ξ 2 ∂n
∂y

= ∂

∂ξ

[
ξ 4

(
∂n
∂ξ

+ n + n2

)]
, (C 5)

where y = t/tC is the time normalised to tC = mc/σTnekBT and ne is the electron gas
density. The time tC is the characteristic relaxation time of the process and the thermal
equilibrium is reached when y > 1.

In regimes where the photon occupation number is small, n � 1, the photon electron
gas interaction is mediated by single Compton scattering events and the equation reduces
to its linear form

ξ 2 ∂n
∂y

= ∂

∂ξ

[
ξ 4

(
∂n
∂ξ

+ n
)]

. (C 6)

In terms of the photon energy distribution function f = ξ 2n, the linear Kompaneets
equation reads

∂f
∂y

= ∂

∂ξ

[
ξ 2 ∂f

∂ξ
+ (

ξ 2 − 2ξ
)

f
]

. (C 7)
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