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1Grupo de Pesquisa em Antozoários (GPA), Departamento de Biologia, Universidade Federal Rural de Pernambuco, R. Don Manoel
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Phymactis papillosa is a rocky shore sea anemone that is commonly found in the Pacific Ocean, from the Gulf of California to
Tierra del Fuego, and in the Mar del Plata region, Argentina. The genus Phymactis is closely related to Bunodosoma and, due
to character plasticity, a number of misidentifications have occurred. Therefore, the presence of P. papillosa in Argentina has
been doubted but the matter had not been investigated in detail. Here we analyse P. papillosa specimens from Argentina and
compare them, using molecular and morphological markers, to specimens from the species’ type locality. In a phylogenetic
analysis using 19 allozyme markers and ribosomal internal transcribed spacers sequences of different sea anemone genera,
including all West Atlantic Bunodosoma species, we have found that the specimens from Argentina were genetically divergent
from P. papillosa from Chile and closely related to West Atlantic Bunodosoma species. The genetic and morphological ana-
lyses indicate that those specimens belong to a new species of the genus Bunodosoma, described here as B. zamponii sp. nov.
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I N T R O D U C T I O N

Members of the Actiniidae family, one of the largest in the
order Actiniaria, are among the best-known sea anemones.
Nevertheless, distinguishing genera and species in Actiniidae
is often very difficult due to great character variability (Daly,
2003, 2004) and because species are often defined by the
absence of characteristics (Daly et al., 2008). Two genera in
this family, Bunodosoma Verrill, 1899 and Phymactis
Milne-Edwards, 1857, are closely related and clearly differ
from other actinids by the presence of typical non-adhesive ves-
icles on the column and acrorhagi with holotrichs in the fosse
(Carlgren, 1899, 1924, 1949; Belém, 1988; Haussermänn, 2004).

The genus Bunodosoma has 13 described species, mostly in
tropical and subtropical waters, occurring on both coasts of
the Atlantic Ocean and on the Pacific coast of the Americas.
On the Atlantic coast of South America, only three
Bunodosoma species are found: B. cangicum Corrêa, 1973,
occurs along the Brazilian coast (Belém & Monteiro, 1981;
Gomes et al., 1998) and in Uruguay (Zamponi et al., 1998a);
B. caissarum Corrêa in Belém, 1988, is an endemic Brazilian
species that occurs in the south-east and south Brazil and
some oceanic islands (Zamponi et al., 1998a); B. granuliferum

(Le Sueur, 1817), has been recorded in the Caribbean and
Brazilian north-east (Paranhos et al., 1999) and south-east
(Grohmann, 1998) regions.

In a recent revision of the genus Phymactis Haussermänn
(2004) recognized two valid species: P. papillosa (Lesson,
1830) and P. sanctahelenae (Lesson, 1830). Other species of
the genus were considered with unknown status and P. poly-
dactyla (Hutton, 1879), recorded only from New Zealand
(Fautin, 2011), was mentioned as belonging to the genus
Bunodosoma. Phymactis sanctaehelenae has only been
recorded in St Helena Island and it does not seem to be
found in the Pacific Ocean (Carlgren, 1949). Phymactis papil-
losa (¼P. clematis), the genus type species, was originally
described from the Chilean coast (Valparaı́so region). Later,
the species was recorded on other localities in the Pacific
Ocean, from the Gulf of California to Tierra del Fuego
(Patagonia), including Juan Fernandez Archipelago, Pascua
Island and the Galapagos Islands (Carlgren, 1922, 1951,
1959; Carter-Verdeilhan, 1965; Sebens & Paine, 1978;
Brattstrom & Johanssen, 1983; Rivadeneira & Oliva, 2001;
Haussermänn, 2004; Fautin et al., 2007; Garese et al., 2009).

Phymactis papillosa has also been recorded in Argentina (as
P. clematis), where it is a very common sea anemone species
distributed along the coast of Mar del Plata (Zamponi, 1977;
Acuña & Zamponi, 1996; Zamponi & Perez, 1996; Oliveira
et al., 2009). However, the specific status of these populations
has been questioned (Haussermänn, 2004).
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Molecular markers have been widely used to investigate
taxonomic problems in the Actiniaria because of their inde-
pendence from morphological characters (Carter & Thorpe,
1981; Bucklin & Hedgecock, 1982; Solé-Cava et al., 1985,
1994; Billingham & Ayre, 1996; McFadden et al., 1997;
McManus et al., 1997; Monteiro et al., 1997; Manchenko
et al., 2000; Schama et al., 2005; Stoletzki & Schierwater,
2005; Acuña et al., 2007; Gusmão, 2010). Therefore, they are
particularly interesting when trying to resolve disputes regard-
ing species limits. In many marine invertebrates it has been
demonstrated that much of the assumed intraspecific mor-
phological variability in fact represents differences between
species (Knowlton, 2000).

The aim of the present work is to analyse the relationship
among the different Bunodosoma species occurring in South
America and to determine the specific status of P. papillosa
from Argentina. We used molecular (allozyme electrophoresis
and DNA sequencing of the ribosomal internal transcribed
spacers (ITS)) and morphological data to compare P. papillosa
(identified as P. clematis) from Argentina with P. papillosa
from Chile and with other South American Bunodosoma
species. Actiniid species Anthopleura cascaia Corrêa in
Dube, 1977 and Actinia bermudensis (McMurrich, 1889)
were used as outgroups.

M A T E R I A L S A N D M E T H O D S

Sample collection
Bunodosoma cangicum, B. caissarum and Anthopleura cascaia
specimens were collected in Búzios (south-east Brazil, 22857′S

43810′W). Bunodosoma cangicum specimens were also col-
lected in Tamandaré (north-east Brazil, 03845′S 38836′W).
Bunodosoma granuliferum, the genus type species, was col-
lected in Curaçao (Boca Sami, 12806′N 68855′W). Phymactis
papillosa specimens from Argentina were collected at Santa
Clara del Mar (37850′S 57829′W) and Mar del Plata
(38805′S 57832′W) in three localities (Punta Cantera Beach,
Acantilados and Escollera Norte). Samples of P. papillosa
var. rubra-viridis Haussermänn, 2004 from the Chilean
coast were collected at Coquimbo (29857′S 71819′W).
Actinia bermudensis samples were collected in Florianopolis
(27826′S 48834′W), south of Brazil and in Bermuda
(32818′N 64844′W). To minimize the possible collection of
clone mates, all individuals were sampled at least 1 m apart.
The anemones were wrapped in damp paper towels and trans-
ported to the laboratory, where they were processed for each
analysis. For the molecular work (both allozymes and DNA
extraction) samples were stored in liquid nitrogen until
required for analysis. Figure 1 shows the collecting sites.

Morphological analysis
Specimens of P. papillosa, B. cangicum and B. caissarum were
observed in situ and also in aquaria. Collected specimens were
anaesthetized in a 7% magnesium chloride solution and then
fixed and preserved in 4% formaldehyde. For the new species
described, type and voucher specimens have been deposited at
the Museo Argentino de Ciencias Naturales ‘Bernardino
Rivadavia’ (MACN), in the Actiniarian Collection of
Universidad Nacional de Mar del Plata (UNMdP),
Argentina and in the Museu Nacional do Rio de Janeiro
(MNRJ), Brazil. Some specimens were also deposited at the

Fig. 1. Collection sites for all species analysed in the study.
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Cnidarian Collection of Anthozoan Research Group (GPA) at
the Universidade Federal Rural de Pernambuco (UFRPE),
Brazil. For purposes of comparison, several specimens col-
lected and identified by Zamponi and deposited in the
Cnidaria Collection of UNMdP were also examined.

Measurements of pedal disc width and column height were
made on preserved material. Longitudinal and transverse sec-
tions, 8–10 mm thick, were made from paraffin embedded
specimens. Sections were stained with haematoxylin–eosin
and Mallory triple stain methods (Kiernan, 1990). Cnidae
measurements were taken from undischarged capsules in
squash preparations mounted with fresh water and without
stain at 1000X magnification. Relative frequencies of nemato-
cyst types are subjective estimates based on all the cnidae
observed on slides. The nomenclature of cnidae follows that
of Schmidt (1969, 1972, 1974).

Allozyme analysis
Frozen tissue samples were homogenized with 100 ml of distilled
water and analysed by horizontal 12.5% starch gel electrophor-
esis, using a Tris Citrate pH 8.0 buffer (Ward & Beardmore,
1977). A total of 15 enzymes, coding for 19 loci were used:
acid phosphatase (ACP, # E.C. 3.1.3.2); catalase (CAT, # E.C.
1.11.1.6); a-esterase (a-EST, # E.C. 3.1.1.1); glucose-6-phosphate
isomerase (GPI, # E.C. 5.3.1.9); glutamate dehydrogenase (GDH,
# E.C. 1.4.1.3); glutamate-oxaloacetate transaminase (GOT, #
E.C. 2.6.1.1); hexokinase (HK, # E.C. 2.7.1.1); isocitrate dehydro-
genase (IDH, # E.C. 1.1.1.42); malate dehydrogenase (MDH, #
E.C. 1.1.1.37); malate dehydrogenase NADP (ME, # E.C.
1.1.1.40); mannose-6-phosphate isomerase (MPI, # E.C.
5.3.1.8); octopine dehydrogenase (ONDH, # E.C. 1.5.1.11);
a-prolyl-phenylalanine peptidase (PEP, # E.C. 3.4.11); phopho-
glucomutase (PGM, # E.C. 5.4.2.2); and phosphogluconate dehy-
drogenase (PGD, # E.C. 1.1.1.4.4). Enzymes were stained
according to Manchenko (1994).

DNA extraction and amplification
For the DNA extractions, 10 mg of frozen tissue was hom-
ogenized in a microcentrifuge tube in 500 ml of CTAB extrac-
tion buffer (CTAB 2%, EDTA 20 mM, 2-mercaptoethanol
0.2% v/v, Tris 100 mM, NaCl 1.4M, proteinase K 30 mg) fol-
lowing the protocol of Damato & Corach (1996) modified
with a precipitation with 3M sodium acetate and 100%
ethanol at –20oC. The pellet was re-suspended in ultrapure
water. The two ribosomal internal transcribed spacers (ITS1
and ITS2), together with the 5.8S rDNA were directly ampli-
fied using the polymerase chain reaction (PCR). Each 20 ml
PCR reaction consisted of 20 ng of DNA template, 1 unit of
Taq DNA polymerase, 0.8 mM of each primer, 0.2 mM
dNTPs, 2 mM MgCl2 and 1 mg/ml BSA, in 1X PCR buffer.
The primers used were the 18SF (5′TCA TTT AGA GGA
AGT AAA AGT CG 3′) and 28SR (5′GTT AGT TTC TTT
TCC TCC GCT T 3′) designed by Lôbo-Hajdu et al. (2004).
Cycling conditions were 4 minutes at 94oC, followed by 35
cycles of 1 minute at 92oC, 1 minute at 42oC and 1 minute
at 72oC, with a final extension step of 5 minutes at 72oC.
PCR products were treated with 0.5 units of exonuclease
and 2 units of shrimp alkaline phosphatase and sequenced
by the dideoxy termination method on an ABI3500 automatic
sequencer. Although multiple copies of the ribosomal genes
are usually present in the genome, it has been shown that

concerted evolution is a major force maintaining the uniform-
ity of paralogues and therefore direct sequencing of PCR pro-
ducts usually does not interfere with phylogenetic analyses
(Hillis et al., 1991).

Data analyses
Allozyme data were analysed using the program BIOSYS–2
(Swofford & Selander, 1981). Allele frequencies were calcu-
lated and all loci were tested for Hardy–Weinberg equili-
brium with an exact test (Haldane, 1954) with Bonferroni
correction for multiple tests (Lessios, 1992). Unbiased esti-
mates of heterozygosity and pairwise genetic identity and dis-
tance (Nei, 1978) were estimated for all populations analysed.
The genetic distances were then used to build an Unweighted
Pair Group Method with Arithmetic Mean dendrogram
(Sneath & Sokal, 1973) with 2000 bootstrap replicates
using the program TFPGA v1.3 (Miller, 1997; http://www.
marksgeneticsoftware.net/tfpga.htm). An exact test for popu-
lation differentiation as described in Raymond & Rousset
(1995) was performed also using TFPGA v1.3. A factorial cor-
respondence analysis (FCA) was performed with the program
GENETIX 4.05 (Belkhir et al., 2002). This type of analysis is
especially useful for estimating associations between multiple
independent qualitative variables, where no a priori hypoth-
esis is present (Valentin, 2000).

Sequences of the two internal transcribed spacers (ITS1
and ITS2) were aligned using Clustal W (Thompson et al.,
1994), followed by eye inspection. Neighbour-joining (NJ)
and maximum likelihood (ML) methods were used for recon-
structing the group’s phylogeny (Felsenstein, 1981; Saitou &
Nei, 1987). In this analysis only the species Actinia bermuden-
sis was used as outgroup.

The model of evolution was estimated using the
log-likelihood score as implemented in the programs
Modeltest version 3.5 (Posada & Crandall, 1998). The
program PAUP∗ 4.0b10 (Swofford, 2000) was used for the
ML analysis and the program MEGA 3 (Kumar et al., 2004)
was used for the NJ analysis.

For the ML approach a full heuristic search with tree bisec-
tion reconnection (TBR) and starting tree obtained via NJ was
used. For the NJ analyses the Jukes –Cantor distance (Jukes &
Cantor, 1969) was used. Bootstrap analyses were carried out
for both NJ and ML methods, using 1000 replicates. The
resulting trees were drawn using the program Figtree v1.3.1
(Rambaut, 2006–2009; http://tree.bio.ed.ac.uk/).

R E S U L T S

Allozymes
Gene frequencies and sample sizes for all studied loci are given
in Table 1. Significant deviations from Hardy–Weinberg
expectations (heterozygote deficiencies) were only found for
the PGD locus in the Punta Cantera population.
Heterozygote deficiencies are common in marine invert-
ebrates and could be due to a variety of different factors
such as gel scoring errors, null alleles, aneuploidy, effects of
selection or the Wahlund effect (Zouros & Foltz, 1984; Hare
et al., 1996). Heterozygosity levels (H) were high in most
populations (Table 1) but were well within the range of
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Table 1. Bunodosoma spp., Phymactis papillosa and Anthopleura cascaia. Gene frequencies of the populations studied. N, number of individuals ana-
lysed; Hobs and Hexp, direct count and Hardy–Weinberg expected mean heterozygosities per locus, respectively; PC, Punta Cantera Beach; SC, Santa

Clara del Mar; Tam, Tamandaré.

P. papillosa B. zamponii B. cangicum B. granuliferum B. caissarum A. cascaia

Loci Chile PC SC Tam Búzios Curaçao Búzios Búzios

PGI-2
N 13 18 17 14 16 16 5 5
A 0 0 0 0 0 0.37 0 0
B 0 0 0 0 0 0.63 1.00 0
C 0 0.08 0.21 0 0 0 0 0
D 0 0 0 0.93 1.00 0 0 0
E 1.00 0.86 0.79 0.07 0 0 0 1.00
F 0 0.06 0 0 0 0 0 0
PGD
N 13 18 18 14 16 16 7 5
A 0 0 0 0 0 0.28 0 0
B 1.00 0 0 0.14 0.38 0.69 0 0.10
C 0 0 0 0 0 0 0 0.90
D 0 0.17 0.06 0.79 0.59 0.03 0.79 0
E 0 0 0 0.07 0.03 0 0.21 0
F 0 0.83 0.94 0 0 0 0 0
MPI
N 16 15 11 11 14 14 6 5
A 0 0.07 0.04 0.04 0 0 0 0
B 0 0.63 0.64 0.46 0.61 0 0 0.50
C 0 0.30 0.32 0.50 0.39 0.46 0.75 0.50
D 1.00 0 0 0 0 0.54 0.25 0
GOT
N 2 18 18 13 14 16 5 5
A 1.00 0 0 0 0 0 0 0
B 0 0.19 0.08 0 0 0 0.30 0
C 0 0.72 0.81 0.62 0.54 0 0 0
D 0 0 0 0 0 0 0.70 0
E 0 0.08 0.11 0.38 0.46 0 0 0.90
F 0 0 0 0 0 1.00 0 0.10
ACP
N 5 18 18 14 13 15 7 5
A 0 0.06 0.06 0.04 0.04 0 0 0
B 0 0.88 0.94 0.92 0.96 0 0 0
C 0 0.06 0 0.04 0 0 1.00 0
D 1.00 0 0 0 0 1.00 0 1.00
CAT
N 13 18 15 14 16 16 7 5
A 0.12 0 0 0 0 0 0 0
B 0.88 0.50 0.17 0.07 0 0 0 0
C 0 0.31 0.60 0.29 0.22 0 0 0.10
D 0 0.19 0.23 0.64 0.78 0 1.00 0.90
E 0 0 0 0 0 1.00 0 0
EST
N 6 18 17 13 13 14 7 5
A 0 0 0.03 0.08 0 0.18 0 0
B 0 0.34 0.41 0.08 0.19 0.32 0 0.20
C 0 0.58 0.53 0.73 0.64 0.33 0.50 0.80
D 1.00 0 0 0 0 0 0 0
E 0 0.08 0.03 0.11 0.15 0.07 0.50 0
GDH
N 12 18 18 14 16 15 7 5
A 0 0.03 0.08 0 0 0 0 0
B 0 0.72 0.81 1.00 0.97 0 0 0
C 0 0.25 0.11 0 0.03 0.03 0 0
D 0 0 0 0 0 0 1.00 0.10
E 0 0 0 0 0 0.97 0 0.90
F 1.00 0 0 0 0 0 0 0
HK
N 13 18 16 14 13 16 7 4

Continued
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Table 1. Continued

P. papillosa B. zamponii B. cangicum B. granuliferum B. caissarum A. cascaia

Loci Chile PC SC Tam Búzios Curaçao Búzios Búzios

A 1.00 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 1.00
C 0 0.64 0.28 0.29 0.15 0 0 0
D 0 0.36 0.53 0.57 0.57 0 0.50 0
E 0 0 0.19 0.14 0.26 0.06 0.50 0
F 0 0 0 0 0 0.69 0 0
G 0 0 0 0 0 0.25 0 0
IDH-1
N 6 7 10 10 6 3 5 2
A 0 0 0.15 0.15 0 0.17 0.40 0
B 1.00 1.00 0.85 0.85 0.83 0.83 0.60 1.00
C 0 0 0 0 0.17 0 0 0
IDH-2
N 8 15 15 14 11 7 5 5
A 1.00 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 1.00
C 0 0.07 0 0.18 0 0.21 0 0
D 0 0.63 0.80 0.057 0.86 0.79 0.90 0
E 0 0.27 0.20 0.25 0.14 0 0.10 0
F 0 0.03 0 0 0 0 0 0
MDH-1
N 1 18 18 14 11 16 7 5
A 0 1.00 1.00 1.00 1.00 1.00 0 0.40
B 0 0 0 0 0 0 1.00 0.60
C 1.00 0 0 0 0 0 0 0
MDH-2
N 1 16 18 14 14 16 7 5
A 1.00 0 0 0 0 0 0 1.00
B 0 0 0 0 0 0.59 0.57 0
C 0 0 0 0 0 0.41 0 0
D 0 0.47 0.72 0.10 0 0 0.36 0
E 0 0 0 0.04 0.15 0 0.07 0
F 0 0.53 0.28 0 0 0 0 0
G 0 0 0 0.32 0.36 0 0 0
H 0 0 0 0.54 0.39 0 0 0
ME-1
N 6 15 17 14 9 7 5 5
A 0 0 0 0 0 0 0 0.70
B 1.00 0 0 0 0 0 0 0.30
C 0 1.00 1.00 1.00 1.00 0 0 0
D 0 0 0 0 0 1.00 1.00 0
ME-2
N 6 18 17 14 14 16 5 5
A 0 0 0 0 0 0 0 1.00
B 0 0.92 0.97 0.93 1.00 0 0 0
C 0 0 0 0 0 0 1.00 0
D 0 0.08 0.03 0.07 0 0 0 0
E 1.00 0 0 0 0 1.00 0 0
ODH
N 3 13 13 11 14 9 5 5
A 1.00 0 0 0 0 0 0 1.00
B 0 0 0.15 0 0 0 0.20 0
C 0 0 0 0.95 0.93 0 0 0
D 0 0 0 0.05 0.07 0.28 0 0
E 0 0 0 0 0 0.72 0 0
F 0 1.00 0.85 0 0 0 0.80 0
PEP-1
N 3 13 7 9 11 16 4 5
A 1.00 0.12 0.14 0.22 0.27 0 0 0.10
B 0 0.73 0.57 0.44 0.68 0 0.37 0.90
C 0 0 0 0 0 0.03 0.26 0
D 0 0.15 0.29 0.34 0.05 0 0.37 0

Continued
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those usually observed in sea anemone species (Solé-Cava &
Thorpe, 1989; Russo et al., 1994).

Genetic distance found between Phymactis papillosa from
Chile and the putative P. papillosa from Argentina was very
large, at a level typically found between different genera
(Thorpe & Solé-Cava, 1994; Vianna et al., 2003). The smallest
gene divergence was found between the two Bunodosoma can-
gicum populations (D ¼ 0.009; Table 2). The Santa Clara and
Punta Cantera P. cf. papillosa populations also presented little
gene divergence (D¼ 0.017). Within the Bunodosoma genus,
B. granuliferum was found to be the most divergent species
(D ranges from 1.024 to 1.363). The samples of the putative
P. papillosa from Argentina clustered with the Bunodosoma
species analysed clearly indicating that P. cf. papillosa from
Argentina is not conspecific with P. papillosa from Chile
(Figures 2 & 3). The FCA graphically shows the differentiation
found among the species studied, indicating a close relation-
ship between B. cangicum and P. cf. papillosa from
Argentina (Figure 3). However, the genetic distance values
between those two species (D ranging from 0.345 to 0.399)
were within the range usually found between different
species of the same genus (Thorpe & Solé-Cava, 1994;
Vianna et al., 2003). Furthermore, those two species showed
a high degree of gene frequency differentiation across loci

(Fisher’s exact test; P , 0.0001), confirming their genetic
distinctiveness.

DNA sequencing analysis
The ITS1/5.8S/ITS2 region was amplified in all samples and
ranged in length from 665 to 740 base pairs. The alignment
was made with the three regions together. The two ITS
regions were used as different data sets in order to avoid het-
erogeneity among sites, although the results of a preliminary
NJ combined analysis were exactly the same (i.e. same tree
topology and bootstrap confidence, results not shown).
Average nucleotide composition was 20.4% T, 29.2% C,
24.0% A and 26.5% G. Base composition did not vary signifi-
cantly between species. The complete ITS1, 5.8S and ITS2
sequences were deposited in GenBank with accession
numbers JN118557–JN118569.

A partition homogeneity test (Farris et al., 1995) as
implemented in PAUP∗ was performed to verify if the two
ITS regions would give significantly different results. The
test result indicates no evidence that the two regions were
incongruent, so the analyses were subsequently done with
the combined data sets. The evolutionary model chosen by

Table 1. Continued

P. papillosa B. zamponii B. cangicum B. granuliferum B. caissarum A. cascaia

Loci Chile PC SC Tam Búzios Curaçao Búzios Búzios

E 0 0 0 0 0 0.81 0 0
F 0 0 0 0 0 0.16 0 0
PGI-1
N 13 18 18 14 16 16 7 5
A 0 0 0.14 0.04 0 0.44 0 0
B 0 0 0 0 0 0.28 0 0
C 0 1.00 0.86 0 0 0.28 0 0
D 1.00 0 0 0.96 1.00 0 0.93 0.60
E 0 0 0 0 0 0 0.07 0.40
PGM
N 4 18 18 14 14 16 7 5
A 1.00 0 0 0 0 0 0 0
B 0 0 0 0 0 0 1.00 0
C 0 0.12 0.14 0.11 0.07 0 0 0
D 0 0.44 0.44 0.50 0.68 0.12 0 0.80
E 0 0.44 0.42 0.39 0.25 0 0 0.20
F 0 0 0 0 0 0.82 0 0
G 0 0 0 0 0 0.06 0 0
Ho 0.01 0.33 0.30 0.28 0.28 0.30 0.22 0.20
He 0.01 0.32 0.33 0.33 0.30 0.30 0.26 0.20

Table 2. Bunodosoma spp., Anthopleura cascaia and Phymactis papillosa unbiased genetic identities (above diagonal) and distances (below diagonal)
between pairwise populations (Nei, 1978). PC, Punta Cantera Beach; SC, Santa Clara del Mar; Tam, Tamandaré.

Species Population 1 2 3 4 5 6 7 8

1 B. zamponii PC – 0.686 0.671 0.983 0.243 0.272 0.332 0.155
2 B. cangicum Tam 0.377 – 0.991 0.708 0.232 0.359 0.349 0.150
3 B. cangicum Búzios 0.399 0.009 – 0.697 0.245 0.354 0.370 0.156
4 B. zamponii SC 0.017 0.345 0.360 – 0.250 0.283 0.315 0.125
5 B. granuliferum Curaçao 1.415 1.462 1.406 1.387 – 0.293 0.280 0.256
6 B. caissarum Búzios 1.302 1.023 1.039 1.264 1.229 – 0.266 0.109
7 A. cascaia Búzios 1.102 1.051 0.993 1.156 1.272 1.324 – 0.361
8 P. papillosa Chile 1.863 1.896 1.860 2.076 1.362 2.215 1.019 –
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Modeltest was the Jukes –Cantor model with a gamma distri-
bution of among site variation (JC + G).

Both phylogenetic methods gave similar results (same tree
topology) and the relationships found between the studied
species were the same as those found in the analyses of allo-
zyme loci. Once again, the putative Phymactis papillosa
samples from Argentina were genetically more similar to
Bunodosoma than to P. papillosa from Chile (Figure 4).
High divergence levels (16–20%) were observed among the
genera studied further emphasizing the separation of the
two closely related genera Bunodosoma and Phymactis (18%
mean Jukes–Cantor distance). The mean intraspecific varia-
bility levels observed for Bunodosoma ITS sequences
(0.25%), although expected for Anthozoans (Forsman et al.,
2005, 2009; Fukami et al., 2008), were smaller than those
observed in other Actiniaria populations (Stoletzki &
Schierwater, 2005; Acuña et al., 2007; Gusmão, 2010). This
lower evolutionary rate may explain the lack of significant
differences between B. cangicum and the putative P. papillosa
from Argentina, which could be clearly separated by allozyme
data.

The joint results of the allozyme and DNA sequence data
clearly show that the common intertidal anemone from
Argentina identified as P. clematis by Zamponi (1977) does
not belong to that species but, instead, is a species of the
genus Bunodosoma. The high differentiation observed in the
allozyme analyses, together with the morphological diagnostic
characteristics observed lead us to conclude that the anemones

formerly named P. clematis in Argentina belong to a new
species of Bunodosoma, that we describe below.

SYSTEMATICS
Order ACTINIARIA

Family ACTINIIDAE Rafinesque, 1815
Genus Bunodosoma Verrill, 1899
Bunodosoma zamponii sp. nov.

(Figures 5–8)

Phymactis clematis; Zamponi, 1977: 139,141 (Argentina);
Pollero, 1983; Patronelli et al., 1987; Zamponi, 1989, 1993,
2000, 2005; Excoffon & Zamponi, 1991; Acuña & Zamponi,
1995, 1996, 1997; Acuña et al., 1996; Zamponi & Perez,
1996, Genzano et al., 1996; Acuña, 1997; Zamponi et al.,
1998a, b; Gomes et al., 1998; Excoffon et al., 1999; Patronelli
et al., 2005, 2008; Olivera et al., 2009; not Phymactis clematis
(Drayton in Dana, 1846: 130).

type material

Holotype: MACN (In-35365), Atlantic Ocean, Mar del Plata
(38805′S 57832′W), Punta Cantera, intertidal, Coll. P.B.
Gomes, 16 September 1999, preserved in formalin.

Paratypes: UNMdP (C.A. 27), three specimens, MNRJ
(6274), one specimen, both samples collected at the same
time and place as the holotype.

Fig. 3. Three-dimensional representation of a factorial correspondence analysis based on 19 allozyme loci.

Fig. 2. Unweighted Pair Group Method with Arithmetic Mean dendrogram of allozyme unbiased genetic distances (Nei, 1978) between the populations studied.
Bootstrap values for 2000 replicates on branches.
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additional material

UFPE (GPA 092), two specimens, MNRJ (6275), one speci-
men, Atlantic Ocean, Mar del Plata (38805′S 57832′W),
Acantilados, intertidal, Coll. P.B. Gomes, 24 November

1999, preserved in formalin; UFPE (GPA 093), one specimen,
Atlantic Ocean, Mar del Plata (38805′S 57832′W), Escollera
Norte, intertidal, Coll. A.C. Excoffon, 14 November 1999, pre-
served in formalin.

Fig. 5. External morphology of Bunodosoma zamponii sp. nov. on the intertidal zone of Mar del Plata. Photograph by Gabriel Genzano.

Fig. 4. Phylogenetic tree constructed by the neighbour-joining (NJ) method with Jukes–Cantor distances and pairwise deletion. Numbers on branch are: 1000
bootstrap replicates NJ/1000 bootstrap replicates maximum likelihood.
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diagnosis

Actiniidae with rows of non-adhesive vesicles on the column
from margin to limbus. Margin with marginal projections
each one with a single holotrichous acrorhagus on the oral
surface and simple or compound vesicles on the adoral
surface. Projections arranged in two alternate crowns of
slightly different size. Fosse present. Column orange to
cream with dark grey vesicles, or dark orange with olive
green vesicles. Tentacles arranged in five cycles, approximately
96 total, brownish or crimson red. Size and coloration dis-
tinguish live specimens of B. zamponii from other
Bunodosoma species, except B. cangicum from which it only
differs on the arrangement of the mesenteries.

description

Column
Cylindrical with a great capacity of elongation. Live specimens
vary from 3 to 6 cm long, width of the base between 1.4 and
3.8 cm. Contracted specimens often dome-shaped. Fosse
deep. Margin denticulate, with vesicle-covered marginal pro-
jections arranged in two alternate crowns of slightly different
size; each projection bears a single holotrichous acrorhagus on
the oral surface. Acrorhagi simple, rounded, of cream or
opaque white colour, arranged in two alternate cycles with
48 acrorhagi each (Figure 5). External cycle endocoelic and
large (diameter 1.1 cm), internal cycle exocoelic and small
(0.75 cm of diameter). In some specimens, the second cycle
may be absent or incomplete. Column covered from margin
to just above the limbus with endocoelic and exocoelic non-
adhesive vesicles, mostly with no clear arrangement due to
the state of contraction of the specimens, but in some speci-
mens, especially near the margin, a clear arrangement can
be observed forming approximately 96 longitudinal rows.
Vesicles rounded, sometimes compound only near the
margin and on marginal projections, without nematocyst bat-
teries. Column orange to cream with dark grey vesicles or dark
orange with olive green vesicles. Adherent base roughly circu-
lar, bigger in diameter than the column, cream with orange or
pale brown radial lines.

Oral disc and tentacles
Number of tentacles from 96 to about 102, in 5 cycles. The
outermost cycle, exocoelic, alternating with the largest row
of acrorhagi. Tentacles of the outermost cycle are the same
length as innermost tentacles (from 1.5 to 2.5 cm long).
Tentacles pale or dark brownish or crimson red typically
without marks. Oral disc brownish or pale cream, mesentery
insertions visible as orange or cream lines. Oral disc diameter
from 2 to 5 cm, central mouth, rounded, atop an oral cone.
Actinopharynx creamy white.

Internal anatomy
Actinopharynx extends half to three-quarters of the length
of the column, with folds. Two siphonoglyphs, extending
below the end of the actinopharynx, each one attached to
a pair of directive mesenteries. Equal number of mesenteries
distally and proximally (46 to 52 pairs, usually 48).
Mesenteries hexamerously arranged in four cycles, all

Fig. 7. Internal anatomy, cross-section showing mesenteries with retractor muscles (R), gonads (G) and ectoderm (Ec). (A) Bunodosoma zamponii sp. nov.; (B)
B. cangicum. Scale bar: 200 mm.

Fig. 6. Internal anatomy of Bunodosoma zamponii sp. nov.: (A) marginal
sphincter muscle circumscribed, palmated (Sph), acrorhagus (Ac) and
ectoderm (Ec); (B) cross-section through tentacles; (C) cross-section through
a vesicle. Scale bars: A, 700 mm; B, 1.1 mm; C, 0.8 mm.
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perfect. The last cycle is only attached to the actinopharynx
just below the oral disc. Near the aboral end, all mesenteries
join together, forming a basal node. Gonochoric. All mesen-
teries, except the directives, are fertile. Gametogenic tissue
may be poorly developed or absent in mesenteries of the
last cycle. In younger mesenteries, the gametogenic tissue
is positioned more distally. The male gametogenic tissue
appears rounded and pale white or yellow in fixed speci-
mens. The female tissue, when poorly developed, is similar
to that of the male. Well-developed, female gametogenic
tissue is grey and not as round.

Marginal sphincter strong, circumscribed, palmate
(Figure 6A), rounded or oval. Endodermal circular muscula-
ture well developed at mid-column. Vesicles in the column
show no histological differentiation (Figure 6C).
Parietobasilar muscles diffuse, with a short pennon
(Figure 7A). Retractor muscles circumscribed to diffuse
strong (Figure 7A). Tentacles and oral disc with ectodermal
longitudinal musculature (Figure 6B). As in other species of
the genus, tissues without zooxanthellae.

Cnidom
Spirocysts, b-rhabdoids, p-rhabdoids A, p-rhabdoids B1a,
holotrichs (Figure 8). See Table 3 for sizes and distribution.

Distribution and natural history
Atlantic Ocean, Argentina, from Santa Clara del Mar (37850′S
57832′W) to Mar del Plata (38805′S 57832′W). The species
inhabits crevices, clefts and tide pools in the intertidal and
subtidal zones. Bunodosoma zamponii sp. nov. is the most
abundant species where it occurs (Zamponi et al., 1998b).
Much work has been done on the species (all still considering
the species as Phymactis clematis) about its autoecology
(Acuña & Zamponi, 1995; Acuña, 1997) and morphological
variation (Zamponi & Perez, 1996; Acuña & Zamponi,
1997). The species is polyphagous opportunistic (Acuña &
Zamponi, 1996). It is gonochoric, with an oviparous–
pelagic–planktotrophic pattern (Excoffon & Zamponi,
1991). No fission scars or anatomical irregularities have
been reported for the species. Many studies have been con-
ducted about the morphological, functional and biochemical

Fig. 8. Cnidae of Bunodosoma zamponii sp. nov.: (A) spirocyst; (B) b-rhabdoid; (C) holotrich; (D) spirocyst; (E) b-rhabdoid; (F) b-rhabdoid; (G) spirocyst; (H)
holotrich; (I) holotrich; (J) spirocyst; (K) b-rhabdoid; (L) p-rhabdoid; (M) b-rhabdoid 1; (N) b-rhabdoid 2; (O) b-rhabdoid 3; (P) p-rhabdoid A; (Q) p-rhabdoid
B1a. Scale bar: 10 mm.
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characterization of the sphincter of B. zamponii sp. nov.
(Patronelli et al., 2005, 2008; Olivera et al., 2009).

etymology

Bunodosoma zamponii is named after Dr Mauricio O. Zamponi,
in recognition of his numerous contributions to the study of
cnidarians, especially in Argentina.

taxonomic remarks

This species has a circumscribed sphincter, typical non-
adhesive vesicles and old, strong fertile mesenteries typical
of the genus Bunodosoma. The specimens of P. papillosa col-
lected in Chile and used in the present study presented a
diffuse sphincter and no reproductive tissue in the first and
second mesentery cycles, which is similar to previous descrip-
tions of the species (McMurrich, 1904; Carlgren, 1899, 1920,
1945, 1959; Stotz, 1979; Haussermänn, 2004). The fact that
the new species is the most common on the intertidal zone
of Mar del Plata and that there are no other species that
resemble the genus Phymactis in the area nor in the
Cnidarian Collection of UNMdP lead us to believe that the
records of P. papillosa (¼ P. clematis) from Argentina were
misidentifications. Phymactis papillosa probably does not
occur on the Atlantic coast of South America, as already
suggested by Carlgren (1939).

Bunodosoma zamponii sp. nov. differs from other species
of the genus by a combination of characters such as retractor
muscle type, number of mesenteries and tentacles, reproduc-
tive tissue distribution and cnidom. From the species of
Bunodosoma that occur in the South Atlantic Ocean, B. zam-
ponii sp. nov. resembles B. granuliferum and B. biscayense
(Fischer, 1874) by having 96 mesenteries disposed in 4
cycles. However, these two species have the column marked

with alternating dark and white longitudinal bands (Watzl,
1922; Pax, 1924; den Hartog, 1987), which are not present
in B. zamponii sp. nov. (Figure 5). Furthermore, B. zamponii
sp. nov. can be distinguished from those two species by cnidae
differences and gonad distribution.

The cnidae distribution of the new species is very similar
to that of other Bunodosoma species. Nevertheless, the
presence of spirocysts in the filaments and column observed
in B. zamponii sp. nov. differentiate this species from
B. caissarum and B. cangicum.

Bunodosoma zamponii sp. nov. is very similar to B. cangi-
cum, a species present along the coasts of Brazil and Uruguay.
Their major morphological differences are the mesentery cycle
number (four in Bunodosoma zamponii sp. nov., against three
in B. cangicum) and retractor muscle type (strong and circum-
scribed in B. cangicum; Figure 7). Table 4 summarizes the
major differences among the different species.

Den Hartog (1987) proposed modifications to the diagno-
sis of the genus Bunodosoma establishing that the number of
mesentery cycles should be four or five and that the retractor
muscle of the mesenteries should be diffuse (den Hartog, 1987:
555–556). This diagnosis is not compatible with the species of
Bunodosoma from South America. Bunodosoma zamponii sp.
nov., B. caissarum and B. cangicum present a circumscribed or
circumscribed–diffuse retractor muscle and the last species
has only three mesentery cycles.

In Mar del Plata and Santa Clara del Mar B. zamponii sp.
nov. shares the hard substrate with Aulactinia marplatensis
Zamponi, 1977 and Oulactis muscosa (Drayton in Dana,
1846). The new species differs from all others in the field by
the coloration and the presence of non-adhesive vesicles on
the column. The presence of acrorhagi also distinguishes
B. zamponii sp. nov. from Aulactinia marplatensis.

Table 3. Size and distribution of Bunodosoma zamponii sp. nov. cnidae. All measurements are in mm; range: length × width; mean + standard devi-
ation; N, total number of capsules measured; F, frequency; VC, very common; C, common; S, scarce; R, rare; ratio, ratio of number of specimens in which

each cnidae was found to number of specimens examined.

Tissue/cnidae type Range Length Width N F Ratio

TENTACLES
Hpirocysts (10.0–25.4) × (2.0–2.4) 17.12 + 3.82 2.31 + 1.57 40 VC 10/10
b-rhabdoids (13.0–31.8) × (2.0–3.0) 21.75 + 4.77 2.42 + 0.48 40 C 10/10

ACRORHAGI
Holotrichs (29.9–55.1) × (3.0–6.4) 41.32 + 8.26 4.74 + 0.90 40 C 10/10
Spirocysts (19.1–39.6) × (2.0–4.2) 26.26 + 4.36 3.47+ 4.36 40 C 10/10
b-rhabdoids (14.0–23.3) × (2.0–4.2) 16.83 + 2.98 2.66 + 0.69 25 S 10/10

COLUMN
b-rhabdoids (10.6–24.0) × (2.0–3.0) 16.59 + 2.96 2.30 + 0.44 67 C 10/10
Spirocysts (14.8–30.0) × (2.0–3.0) 23.08 + 4.04 2.31 + 0.39 25 R 5/10
Holotrichsa (17.0–25.0) × (2.0–5.0) 21.89 + 1.86 4.11 + 0.39 35 C 10/10
Holotrichs (30.0–46.0) × (3.0–6.0) 36.50 + 4.95 4.50 + 0.85 20 R 4/10

ACTINOPHARYNX
Spirocysts (17.0–22.8) × (2.1–2.4) 20.69 + 2.62 2.29 + 0.14 20 R 10/10
b-rhabdoids (18.0–32.4) × (2.4–4.24) 24.43 + 4.22 3.23 + 0.90 35 C 10/10
p-rhabdoids (23.3–27.6) × (4.0–5.0) 25.2 + 1.84 4.8 + 0.14 25 C 10/10

MESENTERIAL FILAMENTS
b-rhabdoids 1 (37.0–53.0) × (4.0–6.0) 43.31 + 4.54 5.19 + 0.54 25 C 9/10
b-rhabdoids 2 (21.0–27.0) × (2.0–3.0) 22.4 + 2.13 2.87 + 0.35 25 S 8/10
b-rhabdoids 3 (8.4–19.0) × 2.0 14.47 + 2.47 2.0 + 0.0 30 C 9/10
p-rhabdoids A (19.0–27.0) × (4.0–6.0) 22.2 + 2.18 4.72 + 0.59 25 C 8/10
p-rhabdoids B1a (15.0–20.0) × (5.0–6.0) 17.67 + 1.42 5.2 + 0.14 20 R 3/10

a, very common in the middle column, absent or sporadic near the oral and pedal disc.
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D I S C U S S I O N

Both genetic and morphological data clearly show that
Phymactis papillosa (formerly cited as Phymactis clematis)
specimens from Argentina are not only very distinct from P.
papillosa from Chile, the species’ type locality, but, more
importantly, belong to a different genus (Bunodosoma).

Only Carlgren (1949) reported P. papillosa along the whole
Chilean coast as far south as Tierra del Fuego. No other study
to date has found this species south of the Golfo de Penas
(488S) (Haussermänn, 2004), indicating that a phylogeogra-
phical break might occur in that region. Surface ocean cur-
rents are recognized as one of the most important factors
for the dispersal of benthic marine animals, since many
larvae are planktonic and expected to have great dispersal
potential. Nevertheless, how much dispersal really occurs is
not always well known and studies describing species with
long-lived larvae that have low dispersal and species with no
planktonic development with high dispersal capability have
been reported (Miller & Ayre, 2008). Phylogeographical
breaks, where there is a discontinuity in the distribution of a
species that coincides with a geographical feature, seem to
play an important role for benthic marine animals
(Hellberg, 2009). Golfo de Penas has already been reported
as a dispersal barrier for some marine animals (Lancellotti
& Vásquez, 1999). It is possible that the cold and low salinity
waters in that area (Försterra & Haussermänn, 2003) could be
responsible for the southward restriction in P. papillosa
distribution.

The external features of the genera Phymactis and
Bunodosoma are very similar, increasing the difficulty in
making a distinction between them, nevertheless other, more
subtle, morphological features differentiate the two genera
(den Hartog, 1987; Haussermänn, 2004). Species of Phymactis
have the first and second mesentery cycles sterile, a diffuse
sphincter and few holotrichs in the acrorhagi, with abundant
long b-rhabdoids instead (Carlgren, 1934, 1949, 1959; Stotz,
1979; Haussermänn, 2004). Bunodosoma members have a
variety of degrees of circumscribed sphincter (den Hartog,
1987; Haussermänn, 2004; Fautin et al., 2007). Morphological
analyses carried out in this study confirm all these differences,
since all Bunodosoma species studied differ from P. papillosa
on these characters. The specimens from Argentina presented
the same type of sphincter and cnidae distribution of other
Bunodosoma species and also all strong mesenteries, except
the directives, were fertile (see description above).

The low genetic differentiation found between the Santa
Clara del Mar and Punta Cantera B. zamponii sp. nov. popu-
lations (D ¼ 0.02; 50 km distance) and between the
Tamandaré and Búzios B. cangicum populations (D ¼ 0.01;
3500 km distance) are similar to those found between other
species of the genus. Russo & Solé-Cava (1991) found a low
divergence (D ¼ 0.05) between B. caissarum populations
that were 180 km distant. The same was observed for B. caver-
nata (Bosc, 1802) (D ¼ 0.11; 2000 km) and B. granuliferum
(D ¼ 0.16; 1600 km) populations from the Gulf of Mexico
and the Caribbean, respectively (McCommas & Lester, 1980;
McCommas, 1982). These values indicate that Bunodosoma
species have a high potential for long distance dispersal.
Studies on the reproductive biology of B. caissarum showed
that they bear long-lived planktotrophic larvae (Belém,
1987). Although there are no studies on B. cangicum
reproduction patterns or larval biology, the Argentinean
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B. zamponii sp. nov. and B. caissarum have the same kind of
larvae which can live for five days in the plankton (Belém,
1987; Excoffon & Zamponi, 1991), enabling them for long dis-
tance dispersal.

Bunodosoma cangicum and Bunodosoma zamponii sp. nov.
are genetically, morphologically and ecologically more similar
to each other than either of them is to B. caissarum or B. gran-
uliferum. This indicates that B. cangicum and Bunodosoma
zamponii sp. nov. have probably diverged very recently. It is
possible that, due to its hydrographical characteristics and
the high sedimentation rate, the La Plata River might have
played an important role in the isolation of these two
species. In some cases habitat specificity can be more impor-
tant than larval dispersion when it comes to gene flow among
populations (Miller & Ayre, 2008; Ayre et al., 2009). In fact,
large estuaries such as the Amazon River delta are an impor-
tant source of phylogeographical breaks for costal marine
species (Rocha et al., 2002; Lima et al., 2005; Currie &
Small, 2006). Although the Amazon River estuary did not
seem to be an important barrier to gene flow (Vianna et al.,
2003) for the sea anemone species Actinia bermudensis, that
species is known to withstand large salinity variations, inhab-
iting estuaries (Stephenson, 1935; Corrêa, 1964; Douek et al.,
2002) where Bunodosoma species are never found (Gomes,
2002). So far few papers have analysed the role of the La
Plata River as a gene flow barrier for marine animals but
Zamponi et al. (1998a) have already called attention to this
estuary as a potential barrier to cnidarian dispersal, since
the Brazilian and Argentinean coasts only share three
species of sea anemones out of more than 50 presently recog-
nized species in the two areas.
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Sahlgren. Stockholm: P.A. Norstedt and Söners, pp. 19–25.
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Solé-Cava A.M., Thorpe J.P. and Kaye J.G. (1985) Reproductive isolation
with little genetic divergence between Urticina (¼ Tealia) felina and U.
eques (Anthozoa: Actiniaria). Marine Biology 85, 279–284.

Stephenson T.A. (1935) The British sea anemones. Volume 2. London:
The Ray Society.

a new bunodosoma species from south america 909

https://doi.org/10.1017/S0025315411002049 Published online by Cambridge University Press

https://doi.org/10.1017/S0025315411002049


Stoletzki N. and Schierwater B. (2005) Genetic and color morphs differ-
entiations in the Caribbean sea anemone Condylactis gigantea. Marine
Biology 147, 747–754.

Stotz W.B. (1979) Functional morphology and zonation of three species
of sea anemones from rocky shores in Southern Chile. Marine
Biology 50, 181–188.

Swofford D.L. (2000) PAUP∗: phylogenetic analysis using parsimony
(∗and other methods). Sunderland, MA: Sinauer Associates.

Swofford D.L. and Selander R.B. (1981) BIOSYS-1, a FORTRAN pro-
gramme for the comprehensive analysis of electrophoretic data in
population genetics and systematics. Journal of Heredity 72, 281–283.

Thompson J.D., Higgins D.G. and Gibson T.J. (1994) CLUSTAL W:
improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and
weight matrix choice. Nucleic Acids Research 22, 4673–4680.
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