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Abstract The purpose of this paper is to provide a large class of initial data which generates global

smooth solution of the 3D inhomogeneous incompressible Navier–Stokes system in the whole space R3.
This class of data is based on functions which vary slowly in one direction. The idea is that 2D
inhomogeneous Navier–Stokes system with large data is globally well-posed and we construct the 3D

approximate solutions by the 2D solutions with a parameter. One of the key point of this study is the

investigation of the time decay properties of the solutions to the 2D inhomogeneous Navier–Stokes system.
We obtained the same optimal decay estimates as the solutions of 2D homogeneous Navier–Stokes system.
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1. Introduction

In this paper, we investigate the global well-posedness of three-dimensional (3D)

incompressible inhomogeneous Navier–Stokes system with large initial data slowly

varying in one space variable. In general, inhomogeneous Navier–Stokes system in Rd

reads

(INSdD)


∂tρ+ u · ∇ρ = 0,

ρ∂t u+ ρu · ∇u−1u+∇5 = 0,
divu = 0,

(ρ, u)|t=0 = (ρ0, u0).

Here the unknown ρ is a function from [0, T ]×Rd into the interval ]0,∞[ which

represents the density of fluid at time t and point x ,1 the unknown u = (u1, . . . , ud)

1We do want to avoid vacuum.
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is a time dependent vector field on Rd which represents the velocity of fluid locating at

position x and time t and 5 is a function from [0, T ]×Rd to R which represents the

pressure at point x and time t , which ensures the incompressibility of the fluid. The choice

of Rd as a domain is a real simplification because as we shall see later on the pressure is

uniquely determined by the divergence free condition on the vector field u (the case of

periodic boundary condition i.e., the flat torus Td as a domain also works).

Let us notice that in the case when ρ0 ≡ 1, the system (INSdD) turns out to be the

homogeneous incompressible Navier–Stokes system. We have to keep in mind that the

system of (INSdD) is more complex than this one.

This system (INSdD) can be used as a model to describe a fluid that is incompressible

but has non-constant density. Basic examples are mixture of incompressible and

non-reactant flows, flows with complex structure (e.g. blood flow or model of rivers),

fluids containing a melted substance, etc.

First of all, this equation satisfies some a priori estimates. Let us first study the a priori

estimate on the density. It is classical to consider the density ρ as a perturbation of the

homogeneous density arbitrarily chosen to be equal to 1. Let us introduce the notation

%
def
= ρ− 1

which will be used all along this text.

This system has three major basic features. First of all, the incompressibility expressed

by the fact that the vector field u is divergence free gives

∀p ∈ [1,∞], ‖%(t)‖L p = ‖%0‖L p and ‖ρ(t)‖L∞ = ‖ρ0‖L∞ . (1.1)

Moreover, the second equation of (INSdD), called the momentum equation, implies a

control of the total kinetic energy which is formally expressed by

1
2

∫
Rd
ρ(t, x)|u(t, x)|2 dx +

∫ t

0
‖∇u(t ′)‖2L2 dt ′ =

1
2

∫
Rd
ρ0(x)|u0(x)|2 dx . (1.2)

This third basic feature is the scaling invariance. Indeed, if (ρ, u,5) is a solution of

(INSdD) on [0, T ]×Rd , then (ρ, u,5)λ defined by

(ρ, u,5)λ(t, x) def=
(
ρ(λ2t, λx), λu(λ2t, λx), λ25(λ2t, λx)

)
(1.3)

is also a solution of (INSdD) on [0, T/λ2
]×Rd . This leads to the notion of critical

regularity.

Based on the energy estimate (1.2), Simon (see also Kazhikov [22]) constructed in [32]

global weak solutions of (INSdD) with finite energy (see the book by Lions [24] for the

variable viscosity case).

In the case of smooth data with no vacuum, Ladyvzenskaja and Solonnikov first

addressed in [23] the question of unique solvability of (INSdD). More precisely, they

considered the system (INSdD) in a bounded domain � with homogeneous Dirichlet

boundary condition for u. Under the assumptions that u0 ∈ W 2− 2
p ,p(�) (p > d) is

divergence free and vanishes on ∂� and that ρ0 ∈ C1(�) is bounded away from zero,

then they proved in [23] that
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• the system (INS2D) is globally well-posed;

• the system (INS3D) is Local well-posed. If in addition u0 is small in W 2− 2
p ,p(�), then

global well-posedness holds true.

More recently, Paicu, Zhang and the second author proved in [28] the following

well-posedness result for (INS3D) with small data.

Theorem 1.1. Let us consider an initial data (ρ0, u0) in L∞(R3)× H1(R3). Let us assume

that for some positive constant C0,

C−1
0 6 ρ0(x) 6 C0.

Then there exists a constant ε0 > 0 depending only on C0 such that if ‖u0‖L2‖∇u0‖L2 6
ε0, then the system (INS3D) has a unique global solution (ρ, u).

Let us notice that the smallness condition in Theorem 1.1 is scaling invariant. Moreover,

the fact that in dimension two, the system (INS2D) is globally well-posed is related to

the fact that in dimension two, the quantity

1
2

∫
R2
ρ(t, x)|u(t, x)|2 dx +

∫
∞

0
‖∇u(t ′)‖2L2 dt ′

is scaling invariant under the transformation (1.3).

In this text, we shall consider slowly varying initial data i.e., a family of initial data of

the form

(ρ0,ε,η, u0,ε,η)
def
=
(
1+ η[ς0]ε, ([v

h
0]ε, 0)

)
, (1.4)

where ε and η are two positive real parameters, ς0 is a smooth function, and vh
0 is a smooth

divergence free two-dimensional (2D) vector field which depends on a real parameter z.

All along this text, we use the notation, for a function f on R3,

[ f ]ε(xh, x3)
def
= f (xh, εx3).

Here we are interested in the size of the initial data. We do not intent to solve (INS3D)

for rough initial data, instead we want to exhibit a large class of initial data which

are ‘large’ in the sense that they do not satisfy any previous smallness hypothesis

which ensures global existence of regular solutions. The main theorem of this text is

the following.

Theorem 1.2. Let us consider initial profiles ς0 and vh
0 which are functions and vector

fields in S(R3) such that divhv
h
0 = 0 and such that for any z in R and any j in {1, 2}∫

R2
ς0(xh, z)vh

0(xh, z) dxh = 0 and

∫
R2

x jς0(xh, z)vh
0(xh, z) dxh = 0. (1.5)

Then there exists two positive constants η0 and ε0 which depend on norms of ς0 and vh
0

such that if η 6 η0 and ε 6 ε0, the initial date defined by (1.4) generate a unique global

smooth solution of (INS3D).
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Let us make some comments about this theorem. Slowly varying data has been

introduced by Gallagher and the first author in [7] in the case of homogeneous

incompressible Navier–Stokes equations, i.e., the case when ρ ≡ 1. The above theorem

is proved in [7] in this case. The motivation of this work was to provide a large

class of examples of initial data which are large (in the homogeneous incompressible

Navier–Stokes, it means essentially that the Ḃ−1
∞,∞ norm of the initial data defined by

‖a‖Ḃ−1
∞,∞

def
= sup

t>0
t

1
2 ‖et1a‖L∞ (1.6)

is large), which is the case here, because ‖[vh
0]ε‖Ḃ−1

∞,∞
has the same size as ‖vh

0‖Ḃ−1
∞,∞

. The

idea of the proof in [7] was to use that homogeneous 2D incompressible Navier–Stokes

equation with initial data vh
0(·, z) is globally well-posed and then to prove the real solution

was close (in some appropriated way) to [vh
]ε.

Slowly varying turns out to be a useful tool to study the set G of initial data in

the space Ḣ
1
2 (R3) which generates unique global smooth solutions to 3D homogeneous

Navier–Stokes system. Since the work in [21] by Gallagher, Iftimie and Planchon, it is

known that this set is open and connected. In [9], Gallagher and the two authors used

slowing varying initial data to prove that through each point of G passes an uncountable

number of arbitrarily long segments which are included in G.

The study of initial data in the homogeneous case as presented above can be qualified

as ‘well-prepared’ using the language of singular perturbation theory. The ‘ill-prepared’

case has been studied by Gallagher, Paicu and the first author in [8]; they proved that

the initial data (
[wh

0]ε,
1
ε
[w3

0]ε

)
generates a unique global smooth solution of the homogeneous incompressible

Navier–Stokes equation when the profile w is a divergence free vector field and which

is small in a Banach space of analytic function with respect to the vertical variable.

Let us see why the result of Theorem 1.2 is in some sense a ‘ill-prepared’ result. In

order to explain this, we recall the precise definition of the Besov norms from [5] for

instance.

Definition 1.1. Let us consider a smooth function ϕ on R, the support of which is included

in [3/4, 8/3] such that

∀τ > 0,
∑
j∈Z

ϕ(2− jτ) = 1 and χ(τ)
def
= 1−

∑
j>0

ϕ(2− jτ) ∈ D([0, 4/3]).

Let us define

1 j a = F−1(ϕ(2− j
|ξ |)̂a), and S j a = F−1(χ(2− j

|ξ |)̂a).

Let (p, r) be in [1,+∞]2 and s in R. We define the Besov norm by

‖a‖Ḃs
p,r

def
= ‖(2 js

‖1 j a‖L p ) j‖`r (Z).
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We remark that in the particular case when p = r = 2, the Besov spaces Ḃs
p,r coincides

with the classical homogeneous Sobolev spaces Ḣ s .

All the well-posedness results of (INS3D) for small data requires that for p ∈ ]1, 6[

‖[v0]ε‖
Ḃ
−1+ 3

p
p,1 (R3)

� 1 with or without η‖[ς0]ε‖
Ḃ

3
p

p,1

� 1.

One may check the references [1–4, 15–18, 20, 27–29] for details.

Let us also mention that Paicu and the two authors proved this theorem in [10] in the

case when η 6 εσ with σ > 1
4 .

Note that a divergence free vector field with the components of which are integrable is

mean free. Thus, Hypothesis (1.5) implies in particular that

∀z ∈ R,
∫
R2
(1+ ης0(xh, z))vh

0(xh, z) dxh = 0. (1.7)

Let us notice that the hypothesis about the momentum of ς0v
h
0 ensures in particular

that ς0v
h
0 belongs to the anisotropic space B−1, 3

2
2 (see forthcoming Definition 2.1).

Following observations of the first author and Gallagher in [7], it is easy to prove that

‖[ς0]ε‖
Ḃ

3
p

p,1(R3)
& ε
−

1
p and ‖[v0]ε‖

Ḃ
−1+ 3

p
p,1 (R3)

& ε
−

1
p . (1.8)

Therefore, the result of Theorem 1.2 is of ‘ill-prepared’ type because of inequality

(1.8), where the norm coincides with the one given by (1.6) in the case when (s, p, r) =
(−1,∞,∞). Yet we do not require any analytic assumption on the initial data.

Let us complete this section by the notations of the paper:

For a . b, we mean that there is a uniform constant C, which may be different on

different lines, such that a 6 Cb. We denote by (a|b)L2 the L2(Rd) inner product of a
and b. For X, X1 Banach spaces, T a positive real number and q in [1,+∞], we denote

the norm ‖ · ‖X∩X1
def
= ‖ · ‖X +‖ · ‖X1 and Lq

T (X) for the set of measurable functions on

[0, T ] with values in X, such that t 7−→ ‖ f (t)‖X belongs to Lq([0, T ]). We denote

L p
T (L

q
h(L

r
v)) = L p([0, T ]; Lq(Rxh; L

r (Rz)))

with xh = (x1, x2), and ∇h = (∂x1 , ∂x2), 1h = ∂
2
x1
+ ∂2

x2
. Finally 1ε stands for 1h+ ε

2∂2
z ,

∇ε for (∇h, ε∂z), and ‖ f ‖Xh for the X norm of f in the horizontal variable xh.

2. Structure and main ideas of the proof

Because we shall seemingly consider the density functions as perturbations of the

reference density 1, it is natural to set

a def
=

1
ρ
− 1 = −

%

1+ %
so that System (INSdD) translates into

(INSdD)


∂t a+ u · ∇a = 0,

∂t u+ u · ∇u− (1+ a)(1u−∇5) = 0,
divu = 0,

(a, u)|t=0 = (a0, u0).
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Even if our main motivation comes from dimension 3, we shall consider this system in

both R2 and R3. In dimension 3, we use systematically the notation x = (xh, x3) and x =
(xh, z) in the case when z represents εx3.

For proving Theorem 1.2, we follow the idea of [7], namely, using the fact that the

2D incompressible inhomogeneous Navier–Stokes system is globally well-posed. We shall

construct the approximate solutions of (INS3D) with initial data slowly varying in one

space variable in the following way. Let us denote by (ah, vh,5h) the (global) solution of

INS2D with initial data (a0(·, z), vh
0(·, z)), that is
∂t ah
+ vh
· ∇hah

= 0,

∂tv
h
+ vh
· ∇hv

h
− (1+ ah)(1hv

h
−∇h5

h)
= 0,

divh v
h
= 0,

ah
|t=0 = a0(xh, z), vh

|t=0 = v
h
0(xh, z),

(2.1)

which can also be equivalently written as
∂tρ

h
+ vh
· ∇hρ

h
= 0,

∂t (ρ
hvh)+ divh(ρ

hvh
⊗ vh)−1hv

h
+∇h5

h
= 0,

divh v
h
= 0,

ρh
|t=0 = 1+ ης0(xh, z), vh

|t=0 = v
h
0(xh, z),

(2.2)

where ρh def
=

1
1+ah and a0 = −

ς0
1+ης0

η. As in [7], we consider ([ah
]ε, [v

h
]ε, [5

h
]ε) as the first

order approximation of the solution to (INS3D) and let us write the solution (aε, uε, 5̃ε)
as

(aε, uε, 5̃ε) = ([ah
]ε, ([v

h
]ε, 0), [5h

]ε)+ ε(bε, Rε,5ε). (2.3)

It is easy to observe that

∂t Rε + [vh
]ε · ∇h Rε + Rε · ∇([vh

]ε, 0)+ εRε · ∇Rε − (1+ aε)
(
1Rε −∇5ε) = −Eε,

where the error term Eε is given by

Eε
def
=

1
ε
([∂tv

h
+ vh
· ∇hv

h
− (1+ ah)(1hv

h
−∇h5

h)]ε, 0)

− ε(1+ aε)([∂2
z v

h
]ε, 0)− (1+ aε)(0, [∂z5

h
]ε)− bε

(
[1hv

h
−∇h5

h
]ε, 0). (2.4)

At this stage, we need to define precisely the norms we shall use to measure the size of

all the terms above. As already commented in the introduction, this point is crucial. Let

us define the anisotropic Besov norms.

Definition 2.1. Let us consider two functions ϕ and χ given by Definition 1.1 and let us

define the operators of localization in horizontal and vertical frequencies by

1h
ka = F−1(ϕ(2−k

|ξh|)̂a), 1v
`a = F−1(ϕ(2−`|ζ |)̂a),

Sh
k a = F−1(χ(2−k

|ξh|)̂a), Sv
`a = F−1(χ(2−`|ζ |)̂a).
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Now let us define the norm we are going to use in this text. For p in [1,∞], and (s, s′)
in R2, we define

‖a‖Bs,s′
p

def
=

∑
(k,`)∈Z2

2ks+`s′
‖1h

k1
v
`a‖L p .

We shall also use the following norm on force f which involves the action of the heat

flow. Let p be in ]3, 4[, and T a positive time, we define

‖ f ‖Fp(T )
def
=

∥∥∥∥∫ t

0
e(t−t ′)1 f (t ′) dt ′

∥∥∥∥
X (T )

with

‖ f ‖X (T )
def
= ‖ f ‖

L4
T (B

−
1
2+

2
p ,

1
p

p )

+‖ f ‖
L2

T (B
2
p ,

1
p

p )

+‖∂3 f ‖
L

4
3
T (B

−
1
2+

2
p ,

1
p )

p

+‖∇ f ‖
L1

T (B
2
p ,

1
p

p )

+‖∂2
3 f ‖

L1
T (B

−1+δ+ 3
p ,−δ

p )

for δ ∈ ]0, 1− 3/p[.

Let us make some comments about this definition. We first point out that the norms

of Bs,s′
p are homogeneous with respect to the vertical variable. More precisely, we have

‖[a]ε‖Bs,s′
p
∼ ε

s′− 1
p ‖a‖Bs,s′

p
. (2.5)

In particular, the norm ‖ · ‖
B

s, 1
p

p

is invariant under the vertical dilation.

We now investigate the relation between L1 norm in time with value in some anisotropic

Besov spaces and the norm Fp(T ). For any p in [1,∞], and for any (α, β) in R2 such

that

α+β = −1+
3
p
, α 6 −1+ δ+

3
p

and β 6
1
p
,

then we have

‖ f ‖Fp(T ) 6 Cα,β‖ f ‖L1([0,T ];Bα,βp )
. (2.6)

We postpone its proof in the Appendix A.

We also use frequently some law of product in particular (see [10, Lemma 2.3])

‖ab‖
B

s1+s′1−
2
p ,s2+s′2−

1
p

p

. ‖a‖Bs1,s2
p
‖b‖

B
s′1,s
′
2

p
(2.7)

where the two sums s1+ s′1 and s2+ s′2 are positive and s1 and s′1 (respectively s2 and s′2)

are less than or equal to 2/p (respectively 1/p).

Now let us analyze the constraints we have for the choice of norms for the different

terms in the external force given by (2.4). For those which are purely of the form [ f ]ε,
there is in fact no choice. Indeed, since no positive power of ε appears, the choice of norm

to the space B
σ, 1

p
p is mandatory. This space must be L1 in time because we want Rε to

be in L1
t (Lip) due to the control of the transport equation. Then the parabolic scaling

determines the index σ of the horizontal regularity. The space must be

L1
t (B
−1+ 2

p ,
1
p

p ).

Let us see whether the term [∂z5
h
]ε which appears in (2.4) belongs to this space or

not. Let us compute this horizontal pressure. Applying the horizontal divergence to the
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momentum equation of (2.2), we write that

−1h5
h
= divh(∂t (ρ

hvh))+ divh divh(ρ
hvh
⊗ vh).

Using the fact that vh is divergence free, we infer that for %h def
= ρh

− 1,

5h
= 5h

L +5
h
Q with

5h
L

def
= −1−1

h divh(∂t (%
hvh)) and 5h

Q
def
= −1−1

h divh divh(ρ
hvh
⊗ vh).

(2.8)

It will be possible to prove that the term [∂z5
h
Q]ε belongs to L1(R+;B0, 1

2
2 ); this will be a

consequence of Theorem 4.1 concerning the large time decay estimates of vh. On the other

hand, it is not possible to prove that ∂z5L belongs to the Besov space Ḃ0
2,1 horizontally.

Indeed, it is equivalent to the fact that a homogeneous Fourier multiplier of order −1
applied to a product belongs to Ḃ0

2,1 in the horizontal variable. The lowest possible

regularity of a product is L1. But the space L1 is included in Ḃ−1
2,∞ in dimension two and

even not in the homogeneous Sobolev space Ḣ−
1
2 . In order to bypass this difficulty, we

introduce a correction term. In order to define it, let us consider the vector field wε(t, xh, z)
the solution of 

∂tw
h
ε −1εw

h
ε = −∇h5

1
ε,

∂tw
3
ε −1εw

3
ε = −ε

2∂z5
1
ε + ∂z5

h
L ,

divwε = 0 and wε |t=0 = 0.

(2.9)

Let us introduce the following Ansatz. We search the solution (aε, uε, 5̃ε) of (INS3D) of

the form

(aε, uε, 5̃ε) = ([ah
]ε, uε,app,5ε,app)+ ε(bε, Rε,5ε) with

(uε,app,5ε,app)
def
=
(
([vh
]ε, 0), [5h

]ε)+ ε((ε[w
h
ε ]ε, [w

3
ε ]ε), ε[5

1
ε]ε).

(2.10)

Then (Rε,∇5ε) solves the system

(INS3D)ε

{
∂t Rε + uε,app · ∇Rε + Rε · ∇uε,app+ εRε · ∇Rε − (1+ aε)(1Rε −∇5ε) = −Eε,

divRε = 0 and Rε|t=0 = 0.

where the error term Eε is given by

Eε
def
=

1
ε
(∂t uε,app+ uε,app · ∇uε,app− (1+ aε)(1uε,app−∇5ε,app)). (2.11)

Of course the key point then is the estimate of the error term. Let us analyze it. First

we write that

Eε =
1
ε
([∂tv

h
+ vh
· ∇

hvh
− (1+ ah)(1hv

h
−∇h5

h)]ε, 0)

+ [vh
· ∇h(εw

h
ε , w

3
ε )+ εwε · ∇(v

h, 0)+ ε2wε · ∇(εw
h
ε , w

3
ε )]ε

− ε(1+ aε)([∂2
z v

h
]ε, 0)− bε([1hv

h
−∇h5

h
]ε, 0)

+ [∂t (εw
h
ε , w

3
ε )−1ε(εw

h
ε , w

3
ε )− ε∇ε5

1
ε − (0, ∂z5

h
L)]ε

− aε[1ε(εwh
ε , w

3
ε )− (0, ∂z5

h)− ε∇ε5
1
ε]ε − (0, [∂z5

h
Q]ε).
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By definition of (ah, vh,5h) and (wε,5
1
ε), we can write

Eε =
4∑
`=1

E`ε with

E1
ε
def
= [vh

· ∇h(εw
h
ε , w

3
ε )− (0, ∂z5

h
Q)+ εwε · ∇(v

h, 0)+ ε2wε · ∇(εw
h
ε , w

3
ε )]ε,

E2
ε
def
= −ε(1+ aε)([∂2

z v
h
]ε, 0),

E3
ε
def
= −aε[1ε(εwh

ε , w
3
ε )− (0, ∂z5

h)− ε∇ε5
1
ε]ε and

E4
ε
def
= −bε([1hv

h
−∇h5

h
]ε, 0).

(2.12)

Let us remark that the term vh is ubiquitous in the error term Eε, even in wε
because 5h

L depends on this vector field vh. Thus the property of vh are crucial for

the understanding of the error term Eε.
Section 3 is devoted to the systematic study of the time decay of vh. This section is

devoted to the 2D case and can be of independent interest. We generalize the decay in

time estimates obtained in the case of homogeneous Navier–Stokes equation by Wiegner

in [33] (see also the works [6, 19, 30, 31] and see [13] for the application of this method to

a singular perturbed 2D Navier–Stokes system). We remark that to obtain this optimal

time decay estimate for vh, we need to use a completely new formulation (see (3.22)

below) of the inhomogeneous Navier–Stokes system.

As it can be observed in the term E2
ε , we need L1 in time estimate of term that involves

second derivative of vh with respect to the vertical variable z. This is the purpose of

Theorem 4.1. A first consequence of this study is the following proposition, the proof of

which will be presented in § 4.

Proposition 2.1. Under the hypothesis of Theorem 1.2, we have

‖vh
‖

L2(R+;B
1, 1

2
2 )

+‖∂zv
h
‖

L2(R+;B
1, 1

2
2 )

+‖∇vh
‖

L1(R+;B
1, 1

2
2 )

+‖∂zv
h
‖

L1(R+;B
3
4 ,

3
4

2 )

+‖∂z5
h
‖

L1(R+;B
1
2 ,

1
2

2 )

6 C0.

Here and in all that follows, we always denote C0 to be a positive constant which depends

on norms of the profile ς0 and vh
0 of the initial data and which may be changed from line

to line.

The decay estimates of vh obtained in Theorem 4.1 allow to prove the following

proposition.

Proposition 2.2. Let (wε,5
1
ε) be the solution of the System (2.9), then we have

ε‖(εwh
ε , w

3
ε )‖

L4(R+;B
1
2 ,

1
2

2 )

+‖(εwh
ε , w

3
ε )‖

L2(R+;B
1, 1

2
2 )

+‖∇ε(εw
h
ε , w

3
ε )‖

L2(R+;B
0, 1

2
2 )

+‖∇ε(εw
h
ε , w

3
ε )‖

L1(R+;B
1, 1

2
2 )

6 C0.

Moreover, for any α in ]0, 1[, we have

‖1ε(εw
h
ε , w

3
ε )− ε∇ε5

1
ε‖

L1(R+;B
α, 1

2
2 )

6 CαC0.
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The proof of this proposition is the purpose of Section 5.

Using law of product (2.7), the above two propositions imply that

‖E1
ε‖

L1(R+;B
0, 1

2
2 )

6 C0, (2.13)

which is the content of Corollary 5.1.

The two terms E2
ε and E3

ε are of a different nature. They contain of course terms which

are rescaled functions of (ah, vh,5h) and wε multiplied by the function aε. Their control

demands estimates on the function aε. This requires the following induction hypothesis.

Let p be in ]3, 4[ and R0 be a positive real number which will be chosen large enough

later on, we define T ε as

T ε
def
= sup

{
t < T ?ε /‖Rε‖

L4
t (B
−

1
2+

2
p ,

1
p

p )

+‖∇Rε‖
L1

t (B
2
p ,

1
p

p )

6 R0

}
(2.14)

where T ?ε denotes the life span of the regular solution of (INS3D) associated with the

initial data (1+ η[ς0]ε, ([v
h
0]ε, 0)). Under the above induction hypothesis, the regularity

of aε is controlled thanks to the following proposition.

Proposition 2.3. Let (uε)ε be a family of divergence free vector fields and a0 a function

in L p with derivatives also in L p. Let us consider the family (aε)ε of the solutions to{
∂t aε + uε · ∇aε = 0,

aε |t=0 = [a0]ε.
(2.15)

Then for any s in ]0, 1− 1/p[, we have

‖aε(t)‖
B

s, 1
p

p

. ‖a0‖
1−s− 1

p
L p ‖∇a0‖

s+ 1
p

L p exp
(

C
∫ t

0
Uε(t ′) dt ′

)
with

Uε(t ′)
def
= ‖∇huh

ε(t
′)‖L∞ +

1
ε
‖∂3uh

ε(t
′)‖L∞ + ε‖∇hu3

ε(t
′)‖L∞ .

Proof. Let us change the variable by defining

ãε(t, xh, z) def= a
(

t, xh,
z
ε

)
and ũε(t, xh, z) def=

(
uh
ε

(
t, xh,

z
ε

)
, εu3

ε

(
t, xh,

z
ε

))
.

The transport equation (2.15) becomes{
∂t ãε + ũε · ∇ãε = 0,

ã|t=0 = a0.

Let us remark that, because uε is divergence free, we have ‖∇ũε‖L∞ ∼ Uε(t). It is well

known that isotropic Besov norms with regularity index less than 1 are propagated by the

Lipschitz norm of the convection velocity. More precisely (see for instance Theorem 3.14

of [5]), we have for s in ]0, 1− 1/p[,

‖̃aε(t)‖
Ḃ

s+ 1
p

p,1 (R3)
6 ‖a0‖

Ḃ
s+ 1

p
p,1 (R3)

exp
(

C
∫ t

0
‖∇ũε(t ′)‖L∞ dt ′

)
6 ‖a0‖

Ḃ
s+ 1

p
p,1 (R3)

exp
(

C
∫ t

0
Uε(t ′) dt ′

)
.

https://doi.org/10.1017/S1474748016000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748016000323


Inhomogeneous incompressible viscous flows with slowly variable 1131

As we have (see [12, Lemma 4.3] for instance)

‖a‖
B

s, 1
p

p

. ‖a‖
Ḃ

s+ 1
p

p,1 (R3)
and ‖a0‖

Ḃ
s+ 1

p
p,1 (R3)

. ‖a0‖
1−s− 1

p
L p ‖∇a0‖

s+ 1
p

L p ,

the proposition is proved because ‖a(t)‖
B

s, 1
p

p

∼ ‖̃a(t)‖
B

s, 1
p

p

.

Under the induction hypothesis (2.14), we have the following corollary.

Corollary 2.1. Let (aε, uε, 5̃ε) be a smooth enough solution of (INS3D) on [0, T ε[. Then

for any s in ]0, 1− 1/p[, a constant C exists such that, for any time t less than T ε,
we have

‖aε(t)‖
B

s, 1
p

p

6 C0η exp(CR0).

Proof. In view of (2.10), we have∫ t

0
Uε(t ′) dt ′ .

∫ t

0
(‖∇vh(t ′)‖L∞ + ε

2
‖∇wε(t ′)‖L∞ +‖∇Rε(t ′)‖L∞) dt ′,

which together with Propositions 2.1 and 2.2 ensures that∫ t

0
Uε(t ′) dt ′ . C0+R0.

Then applying Proposition 2.3, we conclude the proof of the corollary.

With Corollary 2.1, we can establish the estimates of the terms E2
ε and E3

ε . Indeed for

any p in ]3, 4[, q ∈ ]p/(p− 2), 2p/(p− 1)[ and δ in ]1/q − 1/p, 1− 3/p[, so that −1+
δ+ 1/p+ 2/q, 1+ 1/q − 1/p− δ ∈ ]0, 1[. Then it follows from (2.5) and Lemma 4.1 that

ε‖[∂2
z v

h
]ε‖

L1
T (B

−1+δ+ 3
p ,−δ

p )

6 Cε1−δ− 1
p ‖∂zv

h
‖

L1
T (B

−1+δ+ 3
p ,1−δ

p )

6 Cε1−δ− 1
p ‖∂zv

h
‖

L1
T (B

−1+δ+ 1
p+

2
q ,1+

1
q −

1
p−δ

q )

.

Applying the law of product (2.7), gives

ε‖aε[∂2
z v

h
]ε‖

L1
T (B

−1+δ+ 3
p ,−δ

p )

6 Cε1−δ− 1
p ‖aε‖

L∞T (B
2
p ,

1
p

p )

‖∂zv
h
‖

L1
T (B

−1+δ+ 1
p+

2
q ,1+

1
q −

1
p−δ

q )

.

Therefore, thanks to (4.14) of Lemma 4.3 and Corollary 2.1, we conclude

‖E2
ε‖

L1
T (B

−1+δ+ 3
p ,−δ

p )

6 C0ε
1−δ− 1

p exp(CR0). (2.16)

Similarly we deduce from the law of product (2.7) that

‖aε[1ε(εwh
ε , w

3
ε )− (0, ∂z5

h)− ε∇ε5
1
ε]ε‖

L1
T (B

−1+ 2
p ,

1
p

p )

6 ‖aε‖
L∞T (B

1
p ,

1
p

p )

(
‖1ε(εw

h
ε , w

3
ε )− ε∇ε5

1
ε‖

L1
T (B

−1+ 3
p ,

1
p

p )

+‖∂z5
h
‖

L1
T (B

−1+ 3
p ,

1
p

p )

)
,
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which together with Propositions 2.2 and 2.1, and (4.8) ensures that

‖E3
ε‖

L1
T (B

−1+ 2
p ,

1
p

p )

6 C0η exp(CR0). (2.17)

The term E4
ε given by (2.12) is much more difficult to be treated. It is indeed here

that we encounter the difficulty of our method (which originates from the framework of

parabolic system) due to the transport equation. Let us investigate the equation on bε,
which is given by (2.3),

∂t bε + uε · ∇bε + Rε · ∇[ah
]ε + ε[wε · ∇ah

]ε = 0 with bε |t=0 = 0. (2.18)

The control of bε is given by the following proposition.

Proposition 2.4. Under the induction hypothesis (2.14), we can decompose bε = bε + b̃ε
such that, for any p in ]3, 4[, there holds, for any t less than T ε,

‖bε(t)‖
B

2
p ,

1
p

p

6 C0η(1+R0)〈t〉
1
2 and (2.19)

‖b̃ε(t)‖L p 6 C0ε
1− 1

p (1+R0)
2
〈t〉. (2.20)

Let us notice that the norms of bε grows in time. As we need L1 in time control on the

remainder term Rε, it seems a disaster. In fact, it is compensated by the time decay of vh

established in Theorem 4.1 below. The proof of this proposition is the purpose of § 6.

Then we can obtain the following estimates for E4
ε = E4,1

ε + E4,2
ε ,

‖E4,1
ε ‖

L1
T (B

−1+ 2
p ,

1
p

p )

6 C0η(1+R0) and ‖E4,2
ε ‖

L1
T (B

−1+δ+ 3
p ,−δ

p )

6 C0ε
1− 1

p (1+R0)
2,

(2.21)

which is the content of Corollary 6.1.

Now we are in position to solve globally the coupled system (INS3D)ε with (2.18).

Let us think this system as a perturbation of a semi-linear parabolic system. We first

compute ∇5ε. The point is that the resolution operator of the elliptic system

div((1+ a)∇5− f ) = 0

can be written as

15+ div(a∇5) = div f

and then

(Id−Ma)∇5 = ∇1
−1 div f with Mag def

= −∇1−1 div(ag) (2.22)

It is obvious that if a is a bounded function, the operator Ma is a bounded linear operator

from (L2(Rd))d into itself and that

‖Mag‖L2 6 ‖a‖L∞‖g‖L2 .

Thus, if ‖a‖L∞ is less than 1, the operator Id−Ma is invertible on (L2(Rd))d , and

∇5 = (Id−Ma)
−1
∇1−1 div f. (2.23)

This leads to the following definition of the modified Leray projection operator on

divergence free vector field.
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Definition 2.2. Let a be a bounded function with the L∞ norm of which is less than 1.

We can define the modified Leray projection operator on divergence free vector fields

associated with a (denoted Pa) by

Pa f def
= f − (1+ a)(Id−Ma)

−1(∇1−1 div f ).

Let us remark that it is a bounded operator on (L2(Rd))d and that if the function a
is identically equal to 0, then the operator Pa is the classical Leray projection operator

on divergence free vector fields.

Moreover, in the case when the L∞ norm of aε is less than 1, the system (INS3D)ε can

be equivalently reformulated as{
∂t Rε −1Rε = Paε (aε1Rε − div(uε,app⊗ Rε + Rε⊗ uε,app+ εRε⊗ Rε)− Eε),

divRε = 0 and Rε|t=0 = 0.
(2.24)

We shall conclude the proof of Theorem 1.2 in § 7 by proving that the solution of the

coupled system of equations (2.18) and (2.24) is global provided that η and ε are small

enough.

3. Decay estimates for 2D flows

In this section, we investigate the decay properties of the global regular solution

(ρ, u,∇5) of 2D incompressible inhomogeneous Navier–Stokes system (INS2D).

In this section, we use the following notations:

E0(t)
def
= ‖
√
ρu(t)‖2L2 , E1(t)

def
= ‖∇u(t)‖2L2 , E2(t)

def
= ‖
√
ρ∂t u(t)‖2L2 +‖∇u(t)‖4L2 ,

E3(t)
def
= ‖∇∂t u(t)‖2L2 + E

3
2
2 (t)+ E2(t)‖∇ρ(t)‖2L∞ , Ei

def
= Ei (0), i = 0, 1, 2, 3,

C(E0) is an increasing function of E0,

a . b H⇒ a 6 C(E0)b.

Moreover, in this section, we denote by x a generic point of R2. The main result of this

section is the following theorem.

Theorem 3.1. Let us consider the smooth solution (ρ, u,∇5) of (INS2D) associated with

the initial data (ρ0, u0). In addition we assume that

U0
def
=

∫
R2
|x | |u0(x)| dx <∞,

∫
R2
ρ0u0(x) dx = 0, and

3
4
6 ρ0(x) 6

5
4
. (3.1)

For any T greater than or equal T0(ρ0, u0) with

T0(ρ0, u0)
def
= max

{
U0

E0
, ‖%0‖

2
L2

}
,

we have the following decay property for the total kinetic energy

‖u(t)‖2L2 . E0〈t〉−2
T . (3.2)

https://doi.org/10.1017/S1474748016000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748016000323


1134 J.-Y. Chemin and P. Zhang

For higher order derivatives of u, we get for T large enough,

‖∇u(t)‖L2 +‖u(t)‖L∞ . E
1
2
1 〈t〉

−( 3
2 )

T , (3.3)

‖∂t u(t)‖L2 +‖∇
2u(t)‖L2 +‖∇5(t)‖L2 . E

1
2
2 〈t〉

−2
T , (3.4)

‖∇∂t u(t)‖L2 . E
1
2
3 〈t〉

−( 5
2 )

T and ‖∇
3u(t)‖L2 +‖∇

25(t)‖L2 . E
1
2
3 〈t〉

−( 5
2 )

T log〈t〉T , (3.5)

‖∇u(t)‖L∞ . E
1
4
1 E

1
4
3 〈t〉

−2
T log

1
2 〈t〉T . (3.6)

Here and in the rest of this section, we always denote 〈τ 〉
def
= (e+ τ) and hT (t)

def
= h(t/T ).

We remark that the decay rate of ‖u(t)‖L2 given by (3.2) is optimal even in the case

of classical Navier–Stokes system (see [25, Theorem A]).

3.1. Global energy estimates for the linearized system

Let (ρ, u,∇5) be a global classical solution of (INS2D). We first consider some

basic energy estimate for linearized equations of 2D inhomogeneous incompressible

Navier–Stokes system

(LINS2D)


∂tρ+ u · ∇ρ = 0,

ρ∂tv+ ρu · ∇v−1v+∇5v = f + L(t)v,
div u = div v = 0,

ρ|t=0 = ρ0, v|t=0 = v0.

• L2 energy estimate

If the operator L is such that ‖L(t)‖L(L2) belongs to L1(R+), then by multiplying

(LINS2D) by the quantity

exp
(
−

∫ t

0
‖L(t ′)‖L(L2) dt ′

)
reduces to the case when L(t) is a non-positive operator in the sense that (L(t)v|v)L2 is

non-positive. Then the operator L can be ignored in the energy estimates. We assume

this from now on.

We shall assume that all the vector fields and functions are smooth in time with value

in any Sobolev space.

First of all, let us notice that the energy estimate, obtained by taking into account the

fact that the vector field u is divergence free, writes

1
2

d
dt
‖
√
ρv(t)‖2L2 +‖∇v(t)‖2L2 6 ( f |v)L2 . (3.7)

By integration this gives

1
2
‖
√
ρv(t)‖2L2 +

∫ t

t0
‖∇v(t ′)‖2L2 dt ′ 6

1
2
‖
√
ρv(t0)‖2L2 +

∫ t

t0
( f (t ′)|v(t ′))L2

6
1
2
‖
√
ρv(t0)‖2L2 +

∫ t

t0

∥∥∥∥ f
√
ρ
(t ′)
∥∥∥∥

L2
‖
√
ρv(t ′)‖L2 dt ′.
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From this, we deduce that for any non-negative t0 and any t greater than t0

1
2
‖
√
ρv‖2L∞([t0,t];L2)

+

∫ t

t0
‖∇v(t ′)‖2L2 dt ′ 6 ‖

√
ρv(t0)‖2L2 + 2

(∫ t

t0

∥∥∥∥ f
√
ρ
(t ′)
∥∥∥∥

L2
dt ′
)2

.

(3.8)

In particular, since (ρ, u,∇5) is a classical solution of (INS2D), the above argument

leads to

1
2
‖
√
ρu(t)‖2L2 +

∫ t

t0
‖∇u(t ′)‖2L2 dt ′ =

1
2
‖
√
ρu(t0)‖2L2 for 0 6 t0 6 t, (3.9)

which implies in particular that∫ t

t0
‖u(t ′)‖4L4 dt ′ . ‖u‖2L∞([t0,t];L2)

‖∇u‖2L2([t0,t];L2)
. ‖u(t0)‖4L2 . (3.10)

Moreover, the fact that the vector field u is divergence free implies that

min
x∈R2

ρ(t, x) = min
x∈R2

ρ0(x) and ∀p ∈ [1,∞], ‖%(t)‖L p = ‖%0‖L p . (3.11)

• The estimates for the first order derivatives

The basic result is the following lemma.

Lemma 3.1. Let ρ, u, v and f satisfy (LINS2D). Then for any non-negative t0 and t
with t greater than or equal to t0, we have,

‖∇v(t)‖2L2 +

∫ t

t0
(‖
√
ρ∂tv(t ′)‖2L2 +‖∇

2v(t ′)‖2L2 +‖∇5v(t ′)‖2L2) dt ′

6 C
(
‖∇v(t0)‖2L2 +

∫ t

t0
‖ f (t ′)‖2L2 dt ′

)
exp(C‖u(t0)‖4L2). (3.12)

Moreover, some decay on ∇v can be obtained through the following inequalities. If s is a

positive real number, we have.

〈t〉sT ‖∇v(t)‖
2
L2 +

∫ t

t0
〈t ′〉sT (‖

√
ρ∂tv(t ′)‖2L2 +‖∇

2v(t ′)‖2L2 +‖∇5v(t ′)‖2L2) dt ′

6 C
(
〈t0〉sT ‖∇v(t0)‖

2
L2 +

∫ t

t0
〈t ′〉s−1

T ‖∇v(t
′)‖2L2

dt ′

T
+

∫ t

t0
〈t ′〉sT ‖ f (t ′)‖2L2 dt ′

)
× exp(C‖u(t0)‖4L2), (3.13)

and

t‖∇v(t)‖2L2 6 C
(
‖v(t/2)‖2L2 + t

∫ t

t/2
‖ f (t ′)‖2L2 dt ′

)
exp(C‖u(t/2)‖4L2). (3.14)

Proof. Multiplying the momentum part of (LINS2D) by ∂tv and integrating the resulting

equation over R2, we obtain

‖
√
ρ∂tv‖

2
L2 +

1
2

d
dt
‖∇v(t)‖2L2 = −(ρu · ∇v|∂tv)L2 + ( f |∂tv)L2 .
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As ρ lies between 1/2 and 2, we get

3
4
‖
√
ρ∂tv‖

2
L2 +

1
2

d
dt
‖∇v(t)‖2L2 6 4‖(u · ∇v)(t)‖2L2 + 4‖ f (t)‖2L2 .

It is important now to make precise the idea in the framework of the time evolutionary

Stokes problem, one time derivative of v is equivalent to two space derivatives of v. In

the case of the system (LINS2D), this equivalent inequality is described by the following

lemma.

Lemma 3.2. Let (ρ, v,∇5v) be a solution of (LINS2D). Then we have, for any p in the

interval ]1,∞[,

‖∇
2v‖L p +‖∇5v‖L p 6 C(‖

√
ρ∂tv‖L p +‖u‖2L2p‖∇v‖L2 +‖ f ‖L p ).

In the case when p equals to 2, we have the opposite inequality

‖
√
ρ∂tv‖

2
L2 6 C(‖∇2v‖2L2 +‖u‖4L4‖∇v‖

2
L2 +‖ f ‖2L2).

Proof. Observing that

(SSE)

{
−1v+∇5v = f − ρ∂tv− ρu · ∇v,

div v = 0,

we deduce from the classical estimate on Stokes operator that for any p in ]1,∞[

‖∇
2v‖L p +‖∇5v‖L p 6 C(‖ f ‖L p +‖ρ∂tv‖L p +‖ρu · ∇v‖L p )

6 C
(
‖ f ‖L p +‖

√
ρ∂tv‖L p +‖u‖L2p‖∇v‖L2p

)
. (3.15)

By using the 2D interpolation inequality that

‖a‖L2p(R2) 6 C p‖a‖
1
2
L2(R2)

‖∇a‖
1
2
L p(R2)

, (3.16)

we get

‖∇
2v‖L p +‖∇5v‖L p 6 1

2‖∇
2v‖L p +C(‖ f ‖L p +‖

√
ρ∂tv‖L p +‖u‖2L2p‖∇v‖L2).

This proves the first inequality. Because vt is divergence free, we get, by taking the L2

scalar product of ∂tv with (SSE), that

‖
√
ρ∂tv‖

2
L2 = ( f |∂tv)L2 + (1v|∂tv)L2 − (

√
ρu · ∇v|

√
ρ∂tv)L2

6

(
√

2(‖ f ‖L2 +‖1v‖L2)+C‖u‖L4‖∇v‖
1
2
L2‖∇

2v‖
1
2
L2

)
‖
√
ρ∂tv‖L2 .

Hölder inequalities imply that

‖
√
ρvt‖

2
L2 6

1
2
‖
√
ρ∂tv‖

2
L2 +C(‖ f ‖2L2 +‖∇

2v‖2L2 +C‖u‖2L4‖∇v‖L2‖∇
2v‖L2).

This leads to the second inequality and the lemma is proved.
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Continuation of the proof of Lemma 3.1. Applying the above lemma in the case when p
equals to 2, we obtain that

d
dt
‖∇v(t)‖2L2 +‖

√
ρ∂tv‖

2
L2 +

1
C
(‖∇2v‖2L2 +‖∇5v‖

2
L2) 6 C(‖ f ‖2L2 +‖u‖4L4‖∇v‖

2
L2).

(3.17)

Gronwall lemma implies that, for any non-negative t0 and t such that t is greater than

or equal to t0,

‖∇v(t)‖2L2 +

∫ t

t0

(
‖
√
ρ∂tv(t ′)‖2L2 +

1
C
‖∇

2v(t ′)‖2L2 +
1
C
‖∇5v(t ′)‖2L2

)
dt ′

6 C
(
‖∇v(t0)‖2L2 +

∫ t

t0
‖ f (t ′)‖2L2 dt ′

)
exp

(
C
∫ t

t0
‖u(t ′)‖4L4 dt ′

)
which together with (3.10) implies (3.12).

Let us prove (3.13). For any s > 0, by multiplying 〈t〉sT to (3.17), we get

d
dt
(〈t〉sT ‖∇v(t)‖

2
L2)+〈t〉sT (‖

√
ρ∂tv‖

2
L2 +‖∇

2v‖2L2 +‖∇5v‖
2
L2)

6 C(〈t〉sT ‖ f ‖2L2 +‖u‖4L4〈t〉sT ‖∇v‖
2
L2 +

1
T
〈t〉s−1

T ‖∇v‖
2
L2).

Applying Gronwall’s lemma and using (3.10) leads to (3.13).

Similarly from inequality (3.17), we deduce that for any non-negative t0 and t such

that t is greater than or equal to t0,

d
dt
((t − t0)‖∇v(t)‖2L2) = ‖∇v(t)‖2L2 + (t − t0)

d
dt
‖∇v(t)‖2L2

. ‖∇v(t)‖2L2 + (t − t0)‖ f (t)‖2L2 +‖u(t)‖4L4(t − t0)‖∇v(t)‖2L2 .

Applying Gronwall’s inequality yields

(t − t0)‖∇v(t)‖2L2 .
∫ t

t0
(‖∇v(t ′)‖2L2 + (t ′− t0)‖ f (t ′)‖2L2) dt ′ exp

(
C
∫ t

t0
‖u(t ′)‖4L4 dt ′

)
,

which together with the energy estimate on v, namely inequality (3.8), ensures

(t − t0)‖∇v(t)‖2L2 .

(
‖v(t0)‖2L2 +

(∫ t

t0
‖ f (t ′)‖L2 dt ′

)2

+

∫ t

t0
(t ′− t0)‖ f (t ′)‖2L2 dt ′

)

× exp
(

C
∫ t

t0
‖u(t ′)‖4L4 dt ′

)
.

Taking t0 equal to t/2 in the above inequality gives

t‖∇v(t)‖2L2 .

(
‖v(t/2)‖2L2 + t

∫ t

t/2
‖ f (t ′)‖2L2 dt ′

)
exp

(
C
∫ t

t/2
‖u(t ′)‖4L4 dt ′

)
.

This together with (3.10) concludes the proof of (3.14).
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3.2. Sharp L2 decay estimates

The purpose of this subsection is to prove the following proposition.

Proposition 3.1. Let T0(ρ0, u0) be given by Theorem 3.1 and T1(ρ0, u0)
def
= max{T0,

E0/E1}. Then under the assumptions of Theorem 3.1, there holds (3.2) for T > T0. And

for T > T1, we have following decay estimate

‖∇u(t)‖2L2 . E1〈t〉−3
T . (3.18)

Proof. It is based on the method introduced by Wiegner in [33] in order to study the

decay of the energy of the classical Navier–Stokes system in two space dimension (see

also [30, 31]). The idea is to use a cutoff in the frequency space adapted to time. More

precisely, let us consider a positive constant T (which can be understood as a scaling

parameter which has the dimension of time), and g any positive real function defined

on R+ such that

g2(τ ) 6 3〈τ 〉−1 with 〈τ 〉
def
= (e+ τ). (3.19)

Let us define

ST (t)
def
= {ξ ∈ R2,

√
T |ξ | 6

√
2gT (t)} and v[(t)

def
= F−1(1ST (t)v̂(t)). (3.20)

Here we adapt this method to the inhomogeneous case through the following lemma.

Lemma 3.3. Let (ρ, u, v) solve (L I N S2D). Then we have

1
2

d
dt
‖
√
ρv(t)‖2L2 +

1
T

g2
T (t)‖

√
ρv(t)‖2L2 6

2
T

g2
T (t)‖v[(t)‖

2
L2 + ( f (t)|v(t))L2 .

Proof. As v(t)− v[(t) and v[(t) are orthogonal in all Sobolev spaces, we get in particular

that

‖∇v(t)‖2L2 = ‖∇v[(t)‖2L2 +‖∇(v(t)− v[(t))‖2L2 .

By definition of ST (t) and again by the orthogonality between v(t)− v[(t) and v[(t), we

get

‖∇(v(t)− v[(t))‖2L2 >
2
T

g2
T (t)‖v(t)− v[(t)‖

2
L2

>
2
T

g2
T (t)‖v(t)‖L2 −

2
T

g2
T (t)‖v[(t)‖

2
L2 .

As ρ(t, x) is less than or equal to 2, the energy estimate (3.7) implies the lemma.

The interest of this lemma is that the term on the left is typically a term that creates

decay. Of course, the control of the term v[ associated with (very) low frequencies is the

term that tends to prevent the decay. It must be estimated in a careful way. Writing a

general theory with external force seems too ambitious. We are going to restrict ourselves

to two cases: the case when u = v and f ≡ 0, namely, the case of solution of (INS2D),

and later on the case of a family of solution vh(·, z) of (INS2D) where z is a real parameter

and then v represents derivatives of vh(·, z) with respect to the parameter z (see [14, §§ 4
and 5] for details).
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Lemma 3.4. Under the hypothesis of Proposition 3.1, we have, for any T greater than or

equal to T0,

‖u[(t)‖2L2 6
1
4
‖
√
ρu(t)‖2L2 +C E2

0〈t〉
−2
T

+Cg6
T (t)

(∫ t

0
‖
√
ρu(t ′)‖L2

dt ′

T

)2

+Cg4
T (t)

(∫ t

0
‖
√
ρu(t ′)‖2L2

dt ′

T

)2

.

Proof. It relies on the rewriting of the momentum equation of (INS2D) as

∂t u−1u+∇5 = −∂t (%u)− div(ρu⊗ u). (3.21)

If P denotes the Leray projection on divergence free vector fields on R2, the above relation

writes in term of Fourier transform

û(t, ξ) = e−t |ξ |2 û0(ξ)−

∫ t

0
e−(t−t ′)|ξ |2∂tFP(%u)(t ′, ξ) dt ′

−

∫ t

0
e−(t−t ′)|ξ |2FP(div(ρu⊗ u))(t ′, ξ) dt ′.

By integration by parts in time, we get that∫ t

0
e−(t−t ′)|ξ |2∂tFP(%u)(t ′, ξ) dt ′ = FP(%u)(t, ξ)

− e−t |ξ |2FP(%0u0)(ξ)−

∫ t

0
e−(t−t ′)|ξ |2

|ξ |2FP(%u)(t ′, ξ) dt ′.

Let us notice that in the integral term, we exchange one time derivative for two space

derivatives. This gives the following key formula

û(t, ξ) = e−t |ξ |2FP(ρ0u0)(ξ)−FP(%u)(t, ξ)+
∫ t

0
e−(t−t ′)|ξ |2

|ξ |2FP(%u)(t ′, ξ) dt ′

−

∫ t

0
e−(t−t ′)|ξ |2FP(div(ρu⊗ u))(t ′, ξ) dt ′. (3.22)

Because P decreases the modulus of the Fourier transform, we get for any t and ξ ,

|̂u(t, ξ)|2 6 2e−2t |ξ |2 ∣∣F(ρ0u0)(ξ)|
2
+ 2|F(%u)(t, ξ)|2

+ 2|ξ |4
(∫ t

0
|F(%u)(t ′, ξ)| dt ′

)2

+ 2|ξ |2
(∫ t

0
|F(ρu⊗ u)(t ′, ξ)| dt ′

)2

. (3.23)

To estimate ‖u[(t)‖L2 , we have to integrate the above inequality over ST (t). In order to

do it, we make pointwise estimates in the Fourier variable.

First, let us observe that u0 and thus ρ0u0 belongs to L1(R2, |x | dx). Because of the

fact that ρ0u0 is mean free, we infer that

|F(ρ0u0)(ξ)| 6 |ξ | ‖DξF(ρ0u0)‖L∞ 6 |ξ |
∫
R2
ρ0(x)|u0(x)| |x | dx .

By integration on ST (t), this gives, because T is greater than T0 and g2(τ ) 6 3〈τ 〉−1,∫
ST (t)

e−2t |ξ |2
|F(ρ0u0)(ξ)|

2 dξ . E2
0〈t〉
−2
T . (3.24)
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Let us observe that, thanks to (3.11), we get, for T greater than or equal to T0

|F(%u)(t ′, ξ)| 6 ‖%(t ′)‖L2‖u(t ′)‖L2

6 ‖%0‖L2‖u(t ′)‖L2 6 T
1
2

0 ‖u(t
′)‖L2 .

From this, we infer that,∫
ST (t)
|ξ |4

(∫ t

0
|F(%u)(t ′, ξ)| dt ′

)2

dξ . g6
T (t)

(∫ t

0
‖
√
ρu(t ′)‖L2

dt ′

T

)2

. (3.25)

Along the same lines, we get that

|F(ρu⊗ u)(t ′, ξ)| . ‖
√
ρu(t ′)‖2L2 .

Thus we get∫
ST (t)
|ξ |2

(∫ t

0
|F(ρu⊗ u)(t ′, ξ)| dt ′

)2

dξ . g4
T (t)

(∫ t

0
‖
√
ρu(t ′)‖2L2

dt ′

T

)2

. (3.26)

Because of the hypothesis on ρ0, we obviously have∫
ST (t)

2|F(%u)(t, ξ)|2 dξ 6 4(2π)2‖%‖2L∞‖
√
ρu(t)‖2L2

6 4(2π)2‖%0‖
2
L∞‖
√
ρu(t)‖2L2 6

1
4
(2π)2‖

√
ρu(t)‖2L2 .

Together with estimates (3.24)–(3.26), we achieve the proof of the lemma.

Continuation of the proof of Proposition 3.1. The above lemmas give immediately that

d
dt
‖
√
ρu(t)‖2L2 +

1
T

g2
T (t)‖

√
ρu(t)‖2L2 .

1
T

E2
0〈t〉
−3
T +

1
T

g8
T (t)

(∫ t

0
‖
√
ρu(t ′)‖L2

dt ′

T

)2

+
1
T

g6
T (t)

(∫ t

0
‖
√
ρu(t ′)‖2L2

dt ′

T

)2

. (3.27)

Let us define

G(τ ) def= exp
(∫ τ

0
g2(τ ′) dτ ′

)
. (3.28)

The above formula writes after integration

‖
√
ρu(t)‖2L2 GT (t)− E0 . E2

0

∫ t

0
〈t ′〉−3

T GT (t ′)
dt ′

T

+

∫ t

0
g8

T (t
′)GT (t ′)

(∫ t ′

0
‖
√
ρu(t ′′)‖L2

dt ′′

T

)2
dt ′

T

+

∫ t

0
g6

T (t
′)GT (t ′)

(∫ t ′

0
‖
√
ρu(t ′′)‖2L2

dt ′′

T

)2
dt ′

T
. (3.29)
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Now we iterate this inequality several times to get the final decay estimates of u given

by Proposition 3.1. Let us first choose the function g as

g2(τ ) = 3(〈τ 〉 log〈τ 〉)−1 which gives G(τ ) = log3
〈τ 〉.

Using that ‖
√
ρu(t)‖2L2 is less than or equal to the initial energy E0, inequality (3.29)

writes

‖
√
ρu(t)‖2L2 log3

〈t〉T − E0 . E0(1+ E0)

∫ t

0
〈t ′〉−1

T
dt ′

T
. E0(1+ E0) log〈t〉T .

We deduce that

‖
√
ρu(t)‖2L2 log2

〈t〉T . E0(1+ E0). (3.30)

Now let us plug this estimate into inequality (3.29) with the choice g2(τ ) = 〈τ 〉−1, which

gives G(τ ) = 〈τ 〉. This leads to

‖
√
ρu(t)‖2L2〈t〉T − E0 . E2

0

∫ t

0
〈t ′〉−2

T
dt ′

T
+

∫ t

0
〈t ′〉−3

T

(∫ t ′

0
‖
√
ρu(t ′′)‖L2

dt ′′

T

)2
dt ′

T

+

∫ t

0
〈t ′〉−2

T

(∫ t ′

0
‖
√
ρu(t ′′)‖2L2

dt ′′

T

)2
dt ′

T
.

Let us define V (t) def= supt ′6t (‖
√
ρu(t ′)‖2L2〈t ′〉T ). We get

V (t)− E0 . E2
0

∫ t

0
〈t ′〉−2

T
dt ′

T
+ (1+ E0)

2
∫ t

0
〈t ′〉−2

T HT (t ′)V (t ′)
dt ′

T
with

H(τ ) def
= 1+

(∫ τ

0
〈τ ′〉−

1
2 log−1

〈τ ′〉 dτ ′
)2

.

As we have that H(τ ) . 1+〈τ 〉T log−2
〈τ 〉T , the function 〈t ′〉−2

T HT (t ′) is integrable and

then Gronwall lemma gives

‖
√
ρu(t)‖2L2〈t〉T 6 C(E0)E0.

Let us plug this estimate into (3.29) and choose g2(τ ) = 2〈τ 〉−1 which gives G(τ ) = 〈τ 〉2.
We infer that

‖
√
ρu(t)‖2L2〈t〉2T − E0 6 E2

0

∫ t

0
〈t ′〉−1

T
dt ′

T
+ C(E0)E0

∫ t

0
〈t ′〉−1

T log2
〈t ′〉T

dt ′

T

6 C(E0)E0 log3
〈t〉T .

Finally resuming the above estimate into (3.29) once again with the choice g2(τ ) =

α〈τ 〉−1, for α ∈ ]2, 3[ gives G(τ ) = 〈τ 〉α and

‖
√
ρu(t)‖2L2〈t〉αT − E0 . E2

0

∫ t

0
〈t ′〉α−3

T
dt ′

T
+ C(E0)E0

∫ t

0
〈t ′〉α−4

T log5
〈t ′〉T

dt ′

T

+ C(E0)E0

∫ t

0
〈t ′〉α−5

T log6
〈t ′〉T

dt ′

T
,

which implies the estimate (3.2).
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Let us prove (3.18). Applying (3.14) with v = u and f ≡ 0, and inequality (3.2), we

get

t‖∇u(t)‖2L2 . ‖u(t/2)‖2L2 . E0〈t〉−2
T ,

which write, in the case when T is greater than T1,

‖∇u(t)‖2L2 .
E0

T
T
t
〈t〉−2

T . E1
T
t
〈t〉−2

T .

Moreover, inequality (3.12) implies that ‖∇u(t)‖L2 . ‖∇u0‖
2
L2 which proves (3.18).

3.3. Decay estimates for the second and third derivatives of u

The main idea which seems to be the simplest one at the first glance consists in the

differentiation of the momentum equation of (INS2D) with respect to the space variables

and then trying to apply result of the previous subsections. However, for this particular

system, this quite natural idea fails. The reason is due to the fact that term of the

type ∇xρ will appear in this process. Their control demands a control of the norm which

is L1 in time with value in Lip in space for the vector field u. This control cannot be

assumed and has to be proved. The main idea to overcome this difficulty consists in

differentiating the momentum equation of (INS2D) with respect to the time variable. As

shown by Lemma 3.2, this represents the estimate of the second space derivatives of u.

All the results of this subsection relies on the following lemma.

Lemma 3.5. Let (ρ, u, v) solve (LINS2D). Then we have, for any positive constant T ,

1
2

d
dt
‖
√
ρvt (t)‖2L2 +

3
4
‖∇vt‖

2
L2 6 ( ft |vt )L2 +C F1,T (u(t))‖

√
ρvt (t)‖2L2 +C F2,T (u(t), v(t))

+C‖∇vt (t)‖
1
2
L2‖∇ut (t)‖

1
2
L2‖∇v(t)‖L2‖

√
ρvt (t)‖

1
2
L2‖
√
ρut (t)‖

1
2
L2

with

F1,T (u)
def
= ‖u‖4L4 +

1
T
‖u‖2L2‖∇

2u‖2L2 and

F2,T (u, v)
def
= ‖∇u‖L2‖∇

2u‖L2‖∇v‖L2‖∇
2v‖L2 +C‖u‖L2‖∇v‖

2
L2‖∇

2u‖2L2 + T ‖∇2v‖2L2 .

Before applying and then proving this lemma, let us make some comments about it.

First of all, the parameter T is a scaling parameter, the role of which will appear in a

while. Inequalities (3.10) and (3.12) imply that, for any positive t ,∫
∞

t
F1,T (u(t)) dt 6 ‖u(t)‖4L2 +

‖∇u(t)‖2L2

T
C(E0). (3.31)

In the same spirit, it can easily be inferred that, for any positive t ,∫
∞

t
F2,T (u(t ′), v(t ′)) dt ′ 6 ‖∇u‖L∞([t,∞[;L2)‖∇

2u‖L2([t,∞[×R2)

×‖∇v‖L∞([t,∞[;L2)‖∇
2v‖L2([t,∞[×R2)

+C‖u‖L∞([t,∞[;L2)‖∇v‖
2
L∞([t,∞[;L2)

‖∇
2u‖2L2([t,∞[×R2)

+ T ‖∇2v‖2L2([t,∞[×R2)
.
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Inequality (3.12) implies that for any positive t ,∫
∞

t
F2,T (u(t ′), v(t ′)) dt ′ .

(
‖∇v(t)‖2L2 +

∫
∞

t
‖ f (t ′)‖2L2 dt ′

)
× (‖∇u(t)‖2L2 +‖u(t)‖L2‖∇u(t)‖2L2 + T ). (3.32)

Let us establish now the following corollary.

Corollary 3.1. Let (ρ, u,∇5) be a smooth enough solution of (INS2D), then we have for

any positive t0 and any t greater than or equal to t0,

‖
√
ρut (t)‖2L2 +‖∇

2u(t)‖2L2 +‖∇5(t)‖2L2 +

∫ t

t0
‖∇ut (t ′)‖2L2 dt ′ . E2(t0).

Proof. Let us apply Lemma 3.5 with u = v and f ≡ 0. This gives

1
2

d
dt
‖
√
ρut (t)‖2L2 +

3
4
‖∇ut (t)‖2L2 6 C F1,T (u(t))‖

√
ρut (t)‖2L2 +C F2,T (u(t), u(t))

+C‖∇ut (t)‖L2‖∇u(t)‖L2‖
√
ρut (t)‖L2 .

Using the convexity inequality, this gives

d
dt
‖
√
ρut (t)‖2L2 +‖∇ut‖

2
L2 . F̃1,T (u(t))‖

√
ρut (t)‖2L2 + F2,T (u(t), u(t)) (3.33)

with F̃1,T (w)
def
= F1,T (w)+‖∇w‖

2
L2 . Then Gronwall lemma implies that for any

positive t0 and any t greater than or equal to t0,

‖
√
ρut (t)‖2L2 +

∫ t

t0
‖∇ut (t ′)‖2L2 dt ′ .

(
‖
√
ρut (t0)‖2L2 +

∫
∞

t0
F2,T (u(t ′), u(t ′)) dt ′

)
× exp

(∫
∞

t0
F̃1,T (u(t ′)) dt ′

)
.

Inequalities (3.9), (3.31) and (3.32) applied with u = v gives

‖
√
ρut (t)‖2L2 +

∫ t

t0
‖∇ut (t ′)‖2L2 dt ′

. (‖
√
ρut (t0)‖2L2 + (1+‖u(t0)‖L2)‖∇u(t0)‖2L2(‖∇u(t0)‖2L2 + T ))

× exp

(
C

(
‖
√
ρu(t0)‖2L2 +‖u(t0)‖4L2 +

‖∇u(t0)‖2L2

T
C(E0)

))
.

Choosing T = ‖∇u(t0)‖2L2 ensures

‖
√
ρut (t)‖2L2 +

∫ t

t0
‖∇ut (t ′)‖2L2 dt ′ . E2(t0),

which together with the first inequality of Lemma 3.2 implies

‖∇
2u(t)‖L2 +‖∇5(t)‖L2 . ‖ut (t)‖L2 +‖u(t)‖L2‖∇u(t)‖2L2 . E

1
2
2 (t0).

This finishes the proof of the corollary.
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Proof of Lemma 3.5. By applying ∂t to the momentum part of (LINS2D), we obtain

ρ∂tvt + ρu · ∇vt −1vt +∇∂t5v = f̃t with f̃t
def
= −ρtvt − ρt u · ∇v− ρut · ∇v+ ft .

(3.34)

Now let us observe that as ρ is transported by the flow of u, we have ρt = −div(ρu).
Thus the new external force becomes

f̃t = div(ρu)vt + div(ρu)u · ∇v− ρut · ∇v+ ft .

Applying the basic energy estimate (3.7), we get

1
2

d
dt
‖
√
ρvt‖

2
L2 +‖∇vt‖

2
L2 = ( f̃t |vt )L2 .

The key point consists in estimating the term ( f̃t |vt )L2 . It follows by integration by

parts that

( f̃t |vt )L2 = ( ft |vt )L2 +
∑5

i=1 Ei (t) with

E1(t)
def
= −2(ρu · ∇vt |vt )L2

E2(t)
def
= −(ρ(u · ∇u) · ∇v|vt )L2

E3(t)
def
= −(ρ(u⊗ u) : ∇2v|vt )L2

E4(t)
def
= −(ρu · ∇v|u · ∇vt )L2 and

E5(t)
def
= −(ρut · ∇v|vt )L2 .

(3.35)

By using the 2D interpolation inequality (3.16), we get

|E1(t)| . ‖u‖L4‖∇vt‖L2‖vt‖L4

. ‖∇vt‖
3
2
L2‖u‖L4‖vt‖

1
2
L2 6 ε‖∇vt‖

2
L2 +Cε‖u‖4L4‖vt‖

2
L2 . (3.36)

Using again 2D interpolation inequality (3.16) yields

|E2(t)| 6 ‖u‖L4‖∇u‖L4‖∇v‖L4‖vt‖L4

. ‖∇u‖
1
2
L2‖∇

2u‖
1
2
L2‖∇v‖

1
2
L2‖∇

2v‖
1
2
L2‖u‖L4‖vt‖

1
2
L2‖∇vt‖

1
2
L2 .

Hölder inequality implies that

E2(t) 6 ε‖∇vt‖
2
L2 +Cε‖u‖4L4‖vt‖

2
L2 +Cε‖∇u‖L2‖∇

2u‖L2‖∇v‖L2‖∇
2v‖L2 . (3.37)

Using the 2D interpolation inequality

‖a‖L∞(R2) . ‖a‖
1
2
L2(R2)

‖∇
2a‖

1
2
L2(R2)

, (3.38)

we get

|E3(t)| 6 ‖u‖2L∞‖∇
2v‖L2‖vt‖L2

. ‖∇2v‖L2‖u‖L2‖∇
2u‖L2‖vt‖L2 . T ‖∇2v‖2L2 +

1
T
‖u‖2L2‖∇

2u‖2L2‖vt‖
2
L2 . (3.39)
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Similarly using again 2D interpolation inequality (3.38), we get

|E4(t)| 6 ‖u‖2L∞‖∇v‖L2‖∇vt‖L2

6 ε‖∇vt‖
2
L2 +Cε‖u‖2L2‖∇

2u‖2L2‖∇v‖
2
L2 . (3.40)

In order to estimate E5, we use (3.16) which gives

|E5(t)| . ‖∇vt (t)‖
1
2
L2‖∇ut (t)‖

1
2
L2‖∇v(t)‖L2‖

√
ρvt (t)‖

1
2
L2‖
√
ρut (t)‖

1
2
L2 .

Together with inequalities (3.36)–(3.40), this yields Lemma 3.5.

Now let us investigate the decay properties of the second order space derivatives or of

one time derivative of u. They are described by the following proposition.

Proposition 3.2. For any T greater than or equal to T2(ρ0, u0)
def
= max{T1, E2/E1} and

under the assumptions of Theorem 3.1, inequality (3.4) holds.

Proof. We follow the same lines as the proof of inequality (3.14) with the following

computations. Using relation (3.33), we get that for any positive t0 and t such that t is

greater than or equal to t0,

d
dt
((t − t0)‖

√
ρut (t)‖2L2)+ (t − t0)‖∇ut‖

2
L2

. ‖
√
ρut (t)‖2L2 + F̃1,T (u(t))(t − t0)‖

√
ρut (t)‖2L2 + (t − t0)F2,T (u(t), u(t)).

Gronwall lemma along with (3.9) and (3.31) implies that

(t − t0)‖
√
ρut (t)‖2L2 .

(∫ t

t0
‖
√
ρut (t ′)‖2L2 dt ′+

∫ t

t0
(t ′− t0)F2,T (u(t ′), u(t ′)) dt ′

)
× exp

(
‖
√
ρu(t0)‖2L2 +‖u(t0)‖4L2 +

‖∇u(t0)‖2L2

T

)
. (3.41)

It follows from (3.32) that∫ t

t0
(t ′− t0)F2,T (u(t ′), u(t ′)) dt ′ 6 t

∫ t

t0
F2,T (u(t ′), u(t ′)) dt ′

. t (‖∇u(t0)‖2L2 + T )‖∇u(t0)‖2L2 .

Resuming the above estimates into (3.41) and choosing T = ‖∇u(t0)‖2L2 yields

(t − t0)‖
√
ρut (t)‖2L2 . ‖∇u(t0)‖2L2 + t‖∇u(t0)‖4L2 .

Taking t0 equals to t
2 in the above inequality, then inequality (3.18) of Proposition 3.1

ensures that

‖
√
ρut (t)‖2L2 . E1

T
t

1
T
〈t〉−3

T + E2
1〈t〉
−6
T .

Using Corollary 3.1, we infer that for t > T2

‖
√
ρut (t)‖2L2 . (E2+ E2

1 + E1/T )〈t〉−4
T . E2〈t〉−4

T . (3.42)
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While it follows from Lemma 3.2 that

‖∇
2u(t)‖L2 +‖∇5(t)‖L2 . ‖ut (t)‖L2 +‖u(t)‖L2‖∇u(t)‖2L2 ,

which together with inequalities (3.2), (3.18) and (3.42) leads to inequality (3.4). The

proposition is proved.

Corollary 3.2. Under the assumptions of Theorem 3.1, we have

‖u(t)‖L∞ . E
1
4
0 E

1
4
2 〈t〉

−( 3
2 )

T and (3.43)∫
∞

t
‖∇u(t ′)‖L∞ dt ′ . (

√
E2T )

3
4 〈t〉−1

T + (
√

E2T )
1
4 〈t〉−2

T . (3.44)

Moreover, we have the following estimates on the density. For any p in [2,∞], we have

‖∇ρ(t)‖L p . ‖∇ρ0‖L p , (3.45)

‖ρt (t)‖L p . ‖∇ρ0‖L p E
1
4
0 E

1
4
2 〈t〉

−( 3
2 )

T , (3.46)

‖∇
2ρ(t)‖L2 . ‖∇2ρ0‖L2 +‖∇ρ0‖L∞E

1
2
2 T and (3.47)

‖∇ρt (t)‖L2 . (E
1
4
2 ‖∇

2ρ0‖L2 +‖∇ρ0‖L∞(E
3
4
2 T + E

1
2
1 ))〈t〉

−( 3
2 )

T . (3.48)

Proof. Inequality (3.43) follows directly from inequalities (3.2) and (3.4) and from the

interpolation inequality (3.38). By using 2D interpolation inequality, we get, by applying

Lemma 3.2 with p equal to 4, that

‖∇u(t)‖L∞ 6 C‖∇u(t)‖
1
2
L4‖∇

2u(t)‖
1
2
L4

6 C‖∇u(t)‖
1
2
L4(‖ut‖

1
2
L4 +C‖u‖L8‖∇u(t)‖

1
2
L2).

Using that ‖u(t)‖L8 6 C‖u(t)‖
1
4
L2‖∇u(t)‖

3
4
L2 , we infer that

‖∇u(t)‖L∞ 6 C‖∇u(t)‖
1
4
L2‖∇

2u(t)‖
1
4
L2‖
√
ρut‖

1
4
L2‖∇ut‖

1
4
L2 +C‖∇u(t)‖

3
2
L2‖u(t)‖

1
4
L2‖∇

2u(t)‖
1
4
L2 .

Applying Hölder inequality with respectively ( 1
8 ,

3
4 ,

1
8 ) and ( 3

4 ,
1
4 ) gives

∫
∞

t
‖∇u(t ′)‖L∞ dt ′ .

(∫
∞

t
‖∇u(t ′)‖2L2 dt ′

) 3
4
(∫
∞

t
‖u(t ′)‖L2‖∇

2u(t ′)‖L2 dt ′
) 1

4

+

(∫
∞

t
‖∇u(t ′)‖2L2 dt ′

) 1
8
(∫
∞

t
‖∇

2u(t ′)‖
1
3
L2‖
√
ρut (t ′)‖

1
3
L2 dt ′

) 3
4
(∫
∞

t
‖∇ut (t ′)‖2L2 dt ′

) 1
8
,

which together with (3.9), (3.2)–(3.4) and Corollary 3.1 ensures (3.44).

Inequality (3.45) comes simply from the density equation after differentiation which is

∂t∇ρ+ u · ∇∇ρ = −∇u · ∇ρ. (3.49)
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Gronwall lemma and (3.44) allows to conclude the L p estimate for ∇ρ. For the inequality

on ρt , let us observe that, thanks to inequalities (3.43) and (3.45), the transport equation

implies that,

‖ρt (t)‖L p 6 ‖u(t)‖L∞‖∇ρ(t)‖L p . ‖∇ρ0‖L p E
1
4
0 E

1
4
2 〈t〉

−( 3
2 )

T ,

which is exactly the required inequality. In order to prove inequality (3.47), let us

differentiate twice the transport equation which gives

∂t∂ j∂kρ+ u · ∇∂ j∂kρ = −∂ku · ∇∂ jρ− ∂ j u · ∇∂kρ− ∂ j∂ku · ∇ρ. (3.50)

Let us observe that

‖∂ku(t) · ∇∂ jρ(t)‖L2 6 ‖∇u(t)‖L∞‖∇
2ρ(t)‖L2 and

‖∂ j∂ku(t) · ∇ρ(t)‖L2 6 ‖∇2u(t)‖L2‖∇ρ(t)‖L∞ ,

so that we obtain

d
dt
‖∇

2ρ(t)‖L2 6 2‖∇u(t)‖L∞‖∇
2ρ(t)‖L2 +‖∇

2u(t)‖L2‖∇ρ(t)‖L∞ . (3.51)

Gronwall lemma along with Proposition 3.2 gives inequality (3.47). Finally it follows

from inequality (3.49) that

‖∇ρt (t)‖L2 6 ‖u(t)‖L∞‖∇
2ρ(t)‖L2 +‖∇u(t)‖L2‖∇ρ(t)‖L∞ .

Then inequality (3.48) follows from inequalities (3.43), (3.47) and (3.18).

Let us remark that before inequality (3.45), we never use any regularity property for

the density ρ. From now on, we shall do it in order to estimate the third derivatives of

the velocity field.

Proposition 3.3. For any T greater than or equal to T3(ρ0, u0)
def
= max{T2, E2/E3}, we

have under the assumptions of Theorem 3.1,

‖∇ut (t)‖2L2 +

∫
∞

t
(‖ut t (t ′)‖2L2 +‖∇

2ut (t ′)‖2L2 +‖∇∂t5(t ′)‖2L2) dt ′ . E3〈t〉−5
T , (3.52)

and for any non-negative t0 and any t > t0,∫ t

t0
〈t ′〉5−T (‖ut t (t ′)‖2L2 +‖∇

2ut (t ′)‖2L2 +‖∇∂t5(t ′)‖2L2) dt ′ . (1+ T )(1+‖∇ρ0‖
2
L∞)E3.

(3.53)

Here and in all that follows, a− denotes any number strictly less than a.

Proof. Relation (3.34) applies with v = u and f ≡ 0 claims exactly that ut is a solution

of (LINS2D) with the external force

f̃ def
= −ρt ut − ρt u · ∇u− ρut · ∇u.

In order to apply Lemma 3.1, we have to estimate ‖ f̃ (t)‖L2 . Hölder inequality and

interpolation inequality allow to write

‖ f̃ ‖2L2 6 2‖ρt‖
2
L∞‖ut‖

2
L2 + 2‖ρt‖

2
L∞‖u‖

2
L∞‖∇u‖2L2 + 4‖ut‖

2
L4‖∇u‖2L4

. ‖ρt‖
2
L∞‖ut‖

2
L2 +‖ρt‖

2
L∞‖u‖

2
L∞‖∇u‖2L2 +‖∇ut‖L2‖ut‖L2‖∇

2u‖L2‖∇u‖L2 .
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Using Corollary 3.2 and Proposition 3.2, we get

‖ f̃ (t)‖2L2 . ‖∇ρ0‖
2
L∞E

1
2
2 〈t〉

−3
T ‖ut (t)‖2L2

+‖∇ρ0‖
2
L∞E2〈t〉−6

T ‖∇u(t)‖2L2 + E2〈t〉−4
T ‖∇ut (t)‖L2‖∇u(t)‖L2 . (3.54)

Cauchy–Schwarz inequality gives∫ t

t0
‖ f̃ (t ′)‖2L2 dt ′ . ‖∇ρ0‖

2
L∞E

1
2
2 〈t0〉

−3
T

∫ t

t0
‖ut (t ′)‖2L2 dt ′

+‖∇ρ0‖
2
L∞E2〈t0〉−6

T

∫ t

t0
‖∇u(t ′)‖2L2 dt ′

+ E2〈t0〉−4
T

(∫ t

t0
‖∇ut (t ′)‖2L2 dt ′

) 1
2
(∫ t

t0
‖∇u(t ′)‖2L2 dt ′

) 1
2

.

Applying (3.12) and Corollary 3.1 leads to∫ t

t0
‖ f̃ (t ′)‖2L2 dt ′ . (‖∇ρ0‖

2
L∞E

1
2
2 (E1+ E

1
2
2 )+ E

3
2
2 )〈t0〉

−6
T . E3〈t0〉−6

T . (3.55)

Applying again (3.12) gives

‖∇ut (t)‖2L2 +

∫
∞

t0
(‖ut t (t ′)‖2L2 +‖∇

2ut (t ′)‖2L2 +‖∇∂t5(t ′)‖2L2) dt ′

. ‖∇ut (t0)‖2L2 +

∫
∞

t0
‖ f̃ (t ′)‖2L2 dt ′. (3.56)

In particular, (3.55) and (3.56) ensure that

‖∇ut (t)‖2L2 . E3. (3.57)

While it follows from (3.14) and (3.55) that

t‖∇ut (t)‖2L2 . ‖ut (t/2)‖2L2 + t
∫
∞

t/2
‖ f̃ (t ′)‖2L2 dt ′

. E2〈t〉−4
T + E3t〈t〉−6

T ,

which together with (3.57) implies that if T greater than or equal to E2/E3

‖∇ut (t)‖2L2 . max(E3, E2/T )〈t〉−5
T + E3〈t〉−6

T . E3〈t〉−5
T .

Resuming the above estimate and (3.55) into (3.56) gives∫
∞

t
(‖ut t (t ′)‖2L2 +‖∇

2ut (t ′)‖2L2 +‖∇∂t5(t ′)‖2L2) dt ′ . E3〈t〉−5
T .

This proves inequality (3.52). (3.52) together with (3.54) implies that

‖ f̃ (t)‖2L2 . (1+‖∇ρ0‖
2
L∞)E3〈t〉−7

T .
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In order to prove (3.53), we apply (3.13) for any s less than 5 and v equal to ut to get

〈t〉5−T ‖∇ut (t)‖2L2 +

∫ t

t0
〈t ′〉5−T (‖ut t (t ′)‖2L2 +‖∇

2ut (t ′)‖2L2 +‖∇∂t5(t ′)‖2L2) dt ′

. 〈t0〉
5−
T ‖∇ut (t0)‖2L2 +

∫ t

t0
〈t ′〉5−T ‖ f̃ (t ′)‖2L2 dt ′+

∫ t

t0
〈t ′〉4−T ‖∇ut (t ′)‖2L2

dt ′

T
,

which together with the fact that∫ t

t0
〈t ′〉5−‖ f̃ (t ′)‖2L2 dt ′ . (1+‖∇ρ0‖

2
L∞)E3T and∫ t

t0
〈t ′〉4−T ‖∇ut (t ′)‖2L2

dt ′

T
. E3

∫ t

t0
〈t ′〉−1+

T
dt ′

T
. E3

leads to estimate (3.53). This completes the proof of the proposition.

Now let us translate the control of ‖∇ut (t)‖L2 in term of control of ‖∇3u(t)‖L2 .

Proposition 3.4. Under the hypothesis of Theorem 3.1, for any T > T3(ρ0, u0), we have

‖∇
3u(t)‖2L2 +‖∇

25(t)‖2L2 . (1+‖∇ρ0‖L2)E3〈t〉−5
T log2

〈t〉T and (3.58)

‖∇u(t)‖L∞ . (1+‖∇ρ0‖L2)
1
4 E

1
4
1 E

1
4
3 〈t〉

−2
T log

1
2 〈t〉T . (3.59)

Proof. By differentiation of the momentum equation of (INS2D) with respect to the

space variables, we get, by using Leibniz formula, that

1∂ j u− ∂ j∇5 = ρ ∂ j ut + ∂ jρ ut + ∂ jρ u · ∇u+ ρ ∂ j u · ∇u+ ρu · ∇∂ j u.

Applying Lemma 3.2 with v = ∂ j u and f = ∂ jρ ut + ∂ jρ u · ∇u+ ρ ∂ j u · ∇u gives

‖1∂ j u‖L2 +‖∂ j∇5‖L2 6 C(‖∇ut‖L2 +‖ f ‖L2 +‖u‖2L4‖∇
2u‖L2).

In view of Propositions 3.1 and 3.3, we infer that

‖1∂ j u(t)‖L2 +‖∂ j∇5(t)‖L2 . E
1
2
3 〈t〉

−( 5
2 )

T + E
1
2
1 E

1
2
2 〈t〉

−( 9
2 )

T +‖ f (t)‖L2

. E
1
2
3 〈t〉

−( 5
2 )

T +‖ f (t)‖L2 . (3.60)

Let us estimate ‖ f (t)‖L2 . We write that

‖∂ jρ u · ∇u‖L2 6 ‖∇ρ‖L∞‖u‖L∞‖∇u‖L2 and

‖ρ ∂ j u · ∇u‖L2 6 ‖ρ‖L∞‖∇u‖L2‖∇
2u‖L2 .

Applying Propositions 3.1 and 3.3, we infer that

‖∂ jρ u · ∇u‖L2 +‖ρ ∂ j u · ∇u‖L2 . (‖∇ρ0‖L∞E
1
2
1 E

1
4
2 + E

1
2
1 E

1
2
2 )〈t〉

−3
T

. E
1
2
3 〈t〉

−3
T . (3.61)
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The linear term ∂ jρ ut is more delicate to estimate. Let us write that, using Hölder

inequality and interpolation inequality, for any ε in ]0, 1[,

‖∂ jρut‖L2 6 ‖∇ρ‖
L

2
1−ε
‖ut‖L

2
ε

6
C
ε
‖∇ρ‖

L
2

1−ε
‖ut‖

ε
L2‖∇ut‖

1−ε
L2 .

Using Propositions 3.2 and 3.3, and estimates (3.45), we get that, for any ε in ]0, 1[,

‖∂ jρ ut‖L2 6 (‖∇ρ0‖
2
L∞E2)

ε
2 (‖∇ρ0‖

2
L2 E3)

1−ε
2 〈t〉

−
5
2

T ×
1
ε
〈t〉

ε
2
T .

By convexity inequality we get that for any ε in ]0, 1[,

(‖∇ρ0‖
2
L∞E2)

ε
2 (‖∇ρ0‖

2
L2 E3)

1−ε
2 6 ‖∇ρ0‖L∞E

1
2
2 +‖∇ρ0‖L2 E

1
2
3 6 (1+‖∇ρ0‖L2)E

1
2
3 .

Thus, for any ε in ]0, 1[,

‖∂ jρut‖L2 . (1+‖∇ρ0‖L2)E
1
2
3 〈t〉

−
5
2

T ×
1
ε
〈t〉

ε
2
T . (3.62)

Choosing ε equal to log−1
〈t〉T in (3.62), and then substituting the resulting inequality

and inequality (3.61) into (3.60) leads to (3.58).

Finally (3.59) follows from interpolation inequality (3.38), and (3.18), (3.58). This

finishes the proof of Proposition 3.4.

By summarizing Propositions 3.1, 3.2, 3.3 and 3.4, we conclude the proof of

Theorem 3.1.

3.4. Decay of solutions to (2.2)

Applying Theorem 3.1 to the System (2.2) leads to the following theorem:

Theorem 3.2. Let (ρh, vh,∇h5
h) be the smooth solution of (2.2). Then under the

assumptions of Theorem 1.2, we have

〈t〉‖vh(t, ·, z)‖L2
h
+〈t〉

3
2 (‖∇hv

h(t, ·, z)‖L2
h
+‖vh(t, ·, z)‖L∞h

)

+〈t〉2(‖vh
t (t, ·, z)‖L2

h
+‖∇

2
hv

h(t, ·, z)‖L2
h
+‖∇h5

h(t, ·, z)‖L2
h
)

+〈t〉
5
2 log−1

〈t〉(‖∇3
hv

h(t, ·, z)‖L2
h
+‖∇

2
h5

h(t, ·, z)‖L2
h
)

+〈t〉
5
2 ‖∇hv

h
t (t, ·, z)‖L2

h
+〈t〉2 log−

1
2 〈t〉‖∇hv

h(t, ·, z)‖L∞h
6 C0h(z), (3.63)

and ∫ t

t0
〈t ′〉5−T (‖∂2

t v
h(t ′)‖2

L2
h
+‖∇

2
hv

h
t (t
′)‖2

L2
h
+‖∇h∂t5

h(t ′)‖2
L2

h
) dt ′ . C0h2(z). (3.64)

We also have

‖∇
4
hv

h(·, ·, z)‖L1
t (L

2
h)
6 C0h(z) and (3.65)

‖%h(t, ·, z)‖H4
h
+〈t〉

3
2 ‖ρt (t, ·, z)‖H3

h
6 C0ηh(z). (3.66)
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Here and in what follows, we always denote %h def
= ρh

− 1 and h(z) to be a generic positive

function which belongs to L2
v ∩ L∞v .

Proof. (3.63) and (3.64) follows directly from Theorem 3.1 and (3.53). In order to prove

(3.65), we get, by applying (3.63) and [5, Theorem 3.14], that

‖%(t)‖L∞t (H
3
h )

. ‖%0‖H3
h

exp
(

C
∫ t

0
‖∇hv

h(t ′)‖H2
h

dt ′
)
6 C0ηh(z). (3.67)

Whereas we deduce from the momentum equation of (2.2) and the classical estimates on

Stokes operator that

‖∇
4
hv

h(t)‖L2
h
+‖∇

3
h5

h(t)‖L2
h
. ‖∇2

h (ρ
h∂tv

h)(t)‖L2
h
+‖∇

2
h (ρ

hvh
· ∇hv

h)(t)‖L2
h
,

which together with (3.63) and (3.67) ensures that

‖∇
4
hv

h(t)‖L2
h
+‖∇

3
h5

h(t)‖L2
h
6 C0(h(z)〈t〉

−

(
5
2

)
+‖∇

2
hρ

h∂tv
h(t)‖L2

h
+‖∇

2
h∂tv

h(t)‖L2
h
).

(3.68)

Note that for any ε in ]0, 1[, we have

‖∇
2
hρ

h∂tv
h
‖L2

h
. ‖∇2

hρ
h
‖

L
2

1−ε
h

‖∂tv
h
‖

L
2
ε
h

.
1
ε
‖∇

3
hρ

h
‖
ε

L2
h
‖∇

2
hρ

h
‖

1−ε
L2

h
‖∂tv

h
‖
ε

L2
h
‖∇h∂tv

h
‖

1−ε
L2

h
.

Applying (3.63), (3.67) and using a similar derivation of (3.62) gives

‖∇
2
hρ

h∂tv
h(t)‖L2

h
6 C0h(z)〈t〉

−

(
5
2

)
log〈t〉.

Resuming the above estimate into (3.68) and using (3.64), we infer (3.65).

With (3.63) and (3.65), we deduce from [5, Theorem 3.14] that

‖%h
‖L∞t (H

4
h )

6 ‖%0‖H4
h

exp
(

C
∫ t

0
‖∇hv

h(t ′)‖H3
h

dt ′
)
6 C0ηh(z). (3.69)

Then by taking one more horizontal derivative to (3.50) and using (3.63) and (3.69), we

get

‖∇
3
h∂tρ

h(t)‖L2
h
6 ‖vh(t)‖L∞h

‖∇
4
hρ

h(t)‖L2
h
+ 3‖∇hv

h(t)‖L∞h
‖∇

3
hρ

h(t)‖L2
h

+ 3‖∇2
hv

h(t)‖L2
h
‖∇

2
hρ

h(t)‖L∞h
+‖∇

3
hv

h(t)‖L2
h
‖∇hρ

h(t)‖L∞h

6 C0ηh(z)〈t〉
−

(
3
2

)
.

This together with (3.46) and (3.69) ensures (3.66). This finishes the proof of Theorem 3.2.

4. Estimates of vh in terms of anisotropic Besov norms

In general, we have the following theorem concerning the decay estimates of solutions

to (2.2), namely, (∂`z v
h, ∂`z5

h), for ` = 1, 2, share the same decay properties as (vh,5h)

itself.
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Theorem 4.1. Under the assumptions of Theorem 1.2, System (2.2) has a unique global

solution (ρh, vh,∇h5
h) so that there hold

2∑
`=0

(
〈t〉‖∂`z v

h(t, ·, z)‖L2
h
+〈t〉

3
2 (‖∇h∂

`
z v

h(t, ·, z)‖L2
h
+‖∂`z v

h(t, ·, z)‖L∞h
)

+〈t〉2(‖∂`z v
h
t (t, ·, z)‖L2

h
+‖∇

2
h∂
`
z v

h(t, ·, z)‖L2
h
+‖∇h∂

`
z5

h(t, ·, z)‖L2
h
)

+〈t〉
5
2 log−1

〈t〉(‖∇3
h∂
`
z v

h(t, ·, z)‖L2
h
+‖∇

2
h∂
`
z5

h(t, ·, z)‖L2
h
)

+ 〈t〉
5
2 ‖∇h∂

`
z v

h
t (t, ·, z)‖L2

h
+〈t〉2 log−

1
2 〈t〉‖∇h∂

`
z v

h(t, ·, z)‖L∞h

)
6 C0h(z), (4.1)

and

2∑
`=0

∫ t

0
〈t ′〉5−(‖∂2

t ∂
`
z v

h(t ′)‖2
L2

h
+‖∇

2
h∂
`
z v

h
t (t
′)‖2

L2
h
+‖∇h∂

`
z ∂t5

h(t ′)‖2
L2

h
) dt ′ 6 C0h2(z). (4.2)

We also have

‖%h(t, ·, z)‖H4
h
+‖ρh

z (t, ·, z)‖H3
h
+‖ρh

zz(t, ·, z)‖H2
h

+〈t〉
3
2 (‖ρh

t (t, ·, z)‖H3
h
+‖∂zρ

h
t (t, ·, z)‖H2

h
+‖∂2

z ρ
h
t (t, ·, z)‖H1

h
) 6 C0ηh(z). (4.3)

Let us remark that: except cumbersome calculations, the proof of the above theorem

for the case: ` = 1, 2, follows exactly the same line as that of Theorem 3.1. For a clear

presentation, we choose to skip the details here. Instead we just outline the proof for the

case when ` = 1 (one may check [14, §§ 4 and 5] for details).

In view of (2.2), the quantity (ρh
z , v

h
z ,5

h
z )

def
= (∂zρ

h, ∂zv
h, ∂z5

h) satisfies the system in

R+×R2

(D1INS2D)


∂tρ

h
z + v

h
· ∇hρ

h
z = −v

h
z · ∇hρ

h,

ρh∂tv
h
z + ρ

hvh
· ∇hv

h
z −1v

h
z +∇h5

h
z = f1+ L(t)vh

z ,

divhv
h
z = 0,

(ρz, v
h
z )|t=0 = (η∂zς0, ∂zv

h
0).

with

f1 = −ρ
h
z v

h
t − ρ

h
z v

h
· ∇hv

h and L(t)w def
= −ρhw · ∇hv

h.

The external force f1 contains term with ρh
z . We want of course global estimate. But

the control of L p norm of ρh
z demands the control of vh

z in L1(R+; L∞) which will be

proved at the end. Thus we argue with a continuation argument. More precisely, we shall

first prove the decay estimates for vh
z that are valid for t less than T ?1 defined by

T ?1
def
= sup{t / ‖ρh

z ‖L∞([0,t];L2
h∩L∞h )

6 1}. (4.4)

The first step of the study is the proof that ∂zv
h has the same decay property as vh for

the L2
h norm, namely,

‖vh
z (t)‖

2
L2

h
6 C0h2(z)〈t〉−2 for t 6 T ?1 . (4.5)
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As in the proof of Proposition 3.1, the main idea to prove (4.5) is still based on Wiegner’s

approach in [33]. We first notice that

‖L(t)‖L(L2
h)
6 2‖∇hv

h(t)‖L∞ . (4.6)

Thus thanks to (3.63), ‖L(t)‖L(L2
h)

is integrable on R+. According to the remark at the

beginning of § 3.1, we introduce

ṽh
z (t)

def
= vh

z (t) exp
(
−

∫ t

0
‖L(t ′)‖L∞ dt ′

)
.

Then the energy estimate (3.7) applied to the System (D1INS2D) gives

1
2

d
dt
‖
√
ρ

h
ṽh

z (t)‖
2
L2

h
+‖∇hṽ

h
z ‖

2
L2

h
6 ( f1 |̃v

h
z )L2

h
.

Then the key point of the proof will be again the estimate of ‖̃vh
z,[(t)‖L2

h
, which needs

the decay estimate (3.63) and the differentiated Identity of (3.22) with respect to the

parameter z.

With (4.5), we apply energy estimates of § 3.1 to get the decay of higher order

derivatives of vh
z , which implies that T ?1 given by relation (4.4) equals to ∞, and there

hold (4.1) and (4.2) for ` = 1. Then as in the proof of (3.66), we can use [5, Theorem 3.14]

to prove

‖ρh
z (t, ·, z)‖H3

h
+〈t〉

3
2 ‖∂tρ

h
z (t, ·, z)‖H2

h
6 C0ηh(z). (4.7)

This leads to Theorem 4.1 for ` = 1.

Now we shall transform the above decay estimates of vh to the L1 or L2 in time

estimate of the Besov norms to vh. For the convenience of the readers, we recall the

following anisotropic Bernstein type lemma from [11, 26]:

Lemma 4.1. Let Bh (respectively Bv) a ball of R2
h (respectively Rv), and Ch (respectively Cv)

a ring of R2
h (respectively Rv); let 1 6 p2 6 p1 6∞ and 1 6 q2 6 q1 6∞. Then there

holds:

If the support of â is included in 2kBh, then

‖∂αh a‖L
p1
h (L

q1
v )

. 2
k
(
|α|+2

(
1
p2
−

1
p1

))
‖a‖L

p2
h (L

q1
v )
.

If the support of â is included in 2`Bv, then

‖∂βz a‖L
p1
h (L

q1
v )

. 2
`
(
β+( 1

q2
−

1
q1
)
)
‖a‖L

p1
h (L

q2
v )
.

If the support of â is included in 2kCh, then

‖a‖L
p1
h (L

q1
v )

. 2−k N sup
|α|=N

‖∂αh a‖L
p1
h (L

q1
v )
.

If the support of â is included in 2`Cv, then

‖a‖L
p1
h (L

q1
v )

. 2−`N
‖∂N

z a‖L
p1
h (L

q1
v )
.
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In view of Definition 2.1, as a corollary of Lemma 4.1, we have the following inequality,

if 1 6 p2 6 p1,

‖a‖
B

s1−2
(

1
p2
−

1
p1

)
,s2−

(
1
p2
−

1
p1

)
p1

. ‖a‖Bs1,s2
p2

. (4.8)

To consider the product of a distribution in the isotropic Sobolev space with

a distribution in the anisotropic Besov space, we need the following interpolation

inequalities:

Lemma 4.2. We have the following interpolation inequality for the L∞ norm.

‖ f ‖L∞ . ‖ f ‖
2
3

B
−

1
2+

2
p ,

1
p

p

‖∇h f ‖
1
3

B
2
p ,

1
p

p

. (4.9)

Moreover, let 1 < q 6 p 6∞, −2/q + 2/p < s1 < 1− (2/q − 2/p) and s2 in ]0, 1[,
one has

‖ f ‖Bs1,s2
p

6 C p,q‖ f ‖

(
1−s1−2

(
1
q−

1
p

))
(1−s2)

L p
v (L

q
h )

‖∂z f ‖

(
1−s1−2

(
1
q−

1
p

))
s2

L p
v (L

q
h )

×‖∇h f ‖

(
s1+2

(
1
q−

1
p

))
(1−s2)

L p
v (L

q
h )

‖∇h∂z f ‖

(
s1+2

(
1
q−

1
p

))
s2

L p
v (L

q
h )

. (4.10)

Proof. In order to prove the first inequality, let us write according to Lemma 4.1 that

‖ f ‖L∞ 6
∑

(k,`)∈Z2

‖1h
k1

v
` f ‖L∞

. 2
K
2
∑
k<K
`∈Z

2
k
(
−

1
2+

2
p

)
2
`
p ‖1h

k1
v
` f ‖L p + 2−K

∑
k>K
`∈Z

2k 2
p 2

`
p ‖1h

k1
v
`∇h f ‖L p

. 2
K
2 ‖ f ‖

B
−

1
2+

2
p ,

1
p

p

+ 2−K
‖∇h f ‖

B
2
p ,

1
p

p

.

The appropriate choice of K ensures (4.9). Let us prove the second one. According to

Definition 2.1, we have

‖ f ‖Bs1,s2
p
=

∑
k,`∈Z2

2ks12`s2‖1h
k1

v
` f ‖L p .

For any integers K , L1, which will be chosen late, we get, by applying Lemma 4.1, that∑
k6K ,`6L1

2ks12`s2‖1h
k1

v
` f ‖L p .

∑
k6K ,`6L1

2
k
(

s1+
2
q−

2
p

)
2`s2‖1h

k1
v
` f ‖L p

v (L
q
h )

. 2
K
(

s1+
2
q−

2
p

)
2L1s2‖ f ‖L p

v (L
q
h )
,

by using the fact that s1 is greater than −2/q + 2/p and s2 is positive.

Similarly since s1 is greater than −2/q + 2/p and s2 is less than 1, one has∑
k6K ,`>L1

2ks12`s2‖1h
k1

v
` f ‖L p .

∑
k6K ,`>L1

2
k
(

s1+
2
q−

2
p

)
2−`(1−s2)‖1h

k1
v
`∂z f ‖L p

v (L
q
h )

. 2
K
(

s1+
2
q−

2
p

)
2−L1(1−s2)‖∂z f ‖L p

v (L
q
h )
.
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Along the same line, since s1 is less than 1− (2/q − 2/p) and s2 is in ]0, 1[, for some

integer L2 to be chosen hereafter, we write∑
k>K ,`6L2

2ks12`s2‖1h
k1

v
` f ‖L p .

∑
k>K ,`6L2

2
−k
(

1−s1−
2
q+

2
p

)
2`s2‖1h

k1
v
`∇h f ‖L p

v (L
q
h )

. 2
−K

(
1−s1−

2
q+

2
p

)
2L2s2‖∇h f ‖L p

v (L
q
h )
,

and ∑
k>K ,`>L2

2ks12`s2‖1h
k1

v
` f ‖L p .

∑
k>K ,`>L2

2
−k
(

1−s1−
2
q+

2
p

)
2−`(1−s2)‖1h

k1
v
`∇h∂z f ‖L p

v (L
q
h )

. 2
−K

(
1−s1−

2
q+

2
p

)
2−L2(1−s2)‖∇h∂z f ‖L p

v (L
q
h )
.

As a consequence, we obtain

‖ f ‖Bs1,s2
p

. 2
K
(

s1+
2
q−

2
p

)
2L1s2(‖ f ‖L p

v (L
q
h )
+ 2−L1‖∂z f ‖L p

v (L
q
h )
)

+ 2
−K

(
1−s1−

2
q+

2
p

)
2L2s2(‖∇h f ‖L p

v (L
q
h )
+ 2−L2‖∇h∂z f ‖L p

v (L
q
h )
).

Taking L1, L2 in the above inequality so that

2L1 ∼

‖∂z f ‖L p
v (L

q
h )

‖ f ‖L p
v (L

q
h )

and 2L2 ∼

‖∇h∂z f ‖L p
v (L

q
h )

‖∇h f ‖L p
v (L

q
h )

,

we get

‖ f ‖Bs1,s2
p

. 2
K
(

s1+
2
q−

2
p

)
‖ f ‖1−s2

L p
v (L

q
h )
‖∂z f ‖s2

L p
v (L

q
h )

+ 2
−K

(
1−s1−

2
q+

2
p

)
‖∇h f ‖1−s2

L p
v (L

q
h )
‖∇h∂z f ‖s2

L p
v (L

q
h )
.

Taking K in the above inequality so that

2K
∼

‖∇h f ‖1−s2
L p

v (L
q
h )
‖∇h∂z f ‖s2

L p
v (L

q
h )

‖ f ‖1−s2
L p

v (L
q
h )
‖∂z f ‖s2

L p
v (L

q
h )

gives rise to (4.10). This finishes the proof of Lemma 4.2.

Lemma 4.3. Let p be in ]2,∞[, s1 and s2 in ]0, 1[ and s′ in ]2/p− 1, 2/p[. Let

(ρh, vh,∇h5
h) be the global unique solution of (2.2). Then under the assumptions of

Theorem 1.2, we have

‖%h
‖

L∞(R+;Bs1,s2
2 ∩B2+s1,s2

2 )
+‖ρh

z ‖L∞(R+;Bs1,s2
2 ∩B1+s1,s2

2 )
6 C0η, (4.11)

‖ρh
t (t)‖Bs1,s2

2 ∩B1+s1,s2
2

+‖∂zρ
h
t (t)‖Bs1,s2

2
6 C0η〈t〉−(

3
2 ), (4.12)
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‖vh
t (t)‖Bs1,s2

2
+‖∂zv

h
t (t)‖Bs1,s2

2
6 C0〈t〉

−

(
2+ s1

2

)
, (4.13)

‖vh(t)‖Bs1,s2
p
+‖∂zv

h(t)‖Bs1,s2
p

6 C0〈t〉
−

(
3
2+

s1
2 −

1
p

)
, (4.14)

‖vh(t)‖B1+s1,s2
p

+‖∂zv
h(t)‖B1+s1,s2

p
6 C0〈t〉

−

(
2+ s1

2 −
1
p

)
log

(
1− 2

p

)
s1
〈t〉 and (4.15)

1∑
`=0

(‖∂`z v
h(t)‖

B2+s′,s2
p

+‖∇h∂
`
z5

h(t)‖
Bs′,s2

p
) 6 C0〈t〉

−

(
5
2+

s′
2 −

1
p

)
log

(
1+s′− 2

p

)
〈t〉. (4.16)

Proof. The inequalities (4.11)–(4.13) follow directly from Lemma 4.2 and from

inequalities (4.3) and (4.1). Whereas note that in two space dimension, there holds

∀p ∈ ]2,∞[, ‖ f ‖L p
h
. ‖ f ‖

2
p

L2
h
‖∇h f ‖

1− 2
p

L2
h
. (4.17)

Then in view of (4.1), we infer for ` in {0, 1, 2},

‖∂`z v
h(t)‖L p . ‖∂`z v

h(t)‖
2
p

L p
v (L2

h)
‖∇h∂

`
z v

h(t)‖
1− 2

p

L p
v (L2

h)
6 C0〈t〉

−

(
3
2−

1
p

)
,

‖∇h∂
`
z v

h(t)‖L p . ‖∇h∂
`
z v

h(t)‖
2
p

L p
v (L2

h)
‖∇

2
h∂
`
z v

h(t)‖
1− 2

p

L p
v (L2

h)
6 C0〈t〉

−

(
2− 1

p

)
and

‖∇
2
h∂
`
z v

h(t)‖L p . ‖∇2
h∂
`
z v

h(t)‖
2
p

L p
v (L2

h)
‖∇

3
h∂
`
z v

h(t)‖
1− 2

p

L p
v (L2

h)
6 C0〈t〉

−

(
5
2−

1
p

)
log1− 2

p 〈t〉.

Hence, by virtue of Lemma 4.2, we infer for ` in {0, 1} and s1, s2 ∈ ]0, 1[,

‖∂`z v
h(t)‖Bs1,s2

p
6 ‖∂`z v

h(t)‖(1−s1)(1−s2)
L p ‖∂`+1

z vh(t)‖(1−s1)s2
L p

×‖∇h∂
`
z v

h(t)‖s1(1−s2)
L p ‖∇h∂

`+1
z vh(t)‖s1s2

L p

6 C0〈t〉
−

(
3
2−

1
p

)
(1−s1)

×〈t〉
−

(
2− 1

p

)
s1
.

This proves (4.14). A similar argument yields (4.15).

Since s′ is in ]2/p− 1, 2/p[ , by applying Lemma 4.2 and (4.1), we get for ` in {0, 1},

‖∇
2
h∂
`
z v

h(t)‖
Bs′,s2

p
6 ‖∇2

h∂
`
z v

h(t)‖

(
2
p−s′

)
(1−s2)

L p
v (L2

h)
‖∇

2
h∂
`+1
z vh(t)‖

(
2
p−s′

)
s2

L p
v (L2

h)

×‖∇
3
h∂
`
z v

h(t)‖

(
1+s′− 2

p

)
(1−s2)

L p
v (L2

h)
‖∇

3
h∂
`+1
z vh(t)‖

(
1+s′− 2

p

)
s2

L p
v (L2

h)

6 C0〈t〉
−

(
5
2+

1
2

(
s′− 2

p

))
log

(
1+s′− 2

p

)
〈t〉.

The same estimate holds for ∇h∂
`
z5

h. This leads to (4.16), and the proof of the lemma is

complete.

Remark 4.1. It is easy to observe that ah satisfies the same estimate as (4.11), that is

‖ah
‖

L∞(R+;Bs1,s2
2 ∩B2+s1,s2

2 )
+‖∂zah

‖
L∞(R+;Bs1,s2

2 ∩B1+s1,s2
2 )

6 C0η, (4.18)

for any s1, s2 ∈ ]0, 1[.
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Let us now turn to the proof of Proposition 2.1.

Proof of Proposition 2.1. It follows from Lemma 4.3 and interpolation inequality in

Besov spaces that for ` in {0, 1}

‖∂zv
h(t)‖

B
3
4 ,

3
4

2

6 C0〈t〉−(
11
8 ),

‖∂`z v
h(t)‖

B
1, 1

2
2

. ‖∂`z v
h(t)‖

1
2

B
1
2 ,

1
2

2

‖∇h∂
`
z v

h(t)‖
1
2

B
1
2 ,

1
2

2

6 C0〈t〉−(
3
2 ) and

‖∇hv
h(t)‖

B
1, 1

2
2

. ‖∇hv
h(t)‖

1
2

B
1
2 ,

1
2

2

‖∇
2
hv

h(t)‖
1
2

B
1
2 ,

1
2

2

6 C0〈t〉−2 log
1
4 〈t〉.

(4.19)

This implies

‖vh
‖

L2(R+;B
1, 1

2
2 )

+‖∂zv
h
‖

L2(R+;B
1, 1

2
2 )

+‖∂zv
h
‖

L1(R+;B
1, 1

2
2 )

+‖∂zv
h
‖

L1(R+;B
3
4 ,

3
4

2 )

+‖∇hv
h
‖

L1(R+;B
1, 1

2
2 )

6 C0. (4.20)

It remains to handle ‖∂z5
h
‖

L1(R+;B
1
2 ,

1
2

2 )

. Indeed it is easy to observe from (2.1) that

1h5
h
= −divh(ah(∇h5

h
−1hv

h))− divh divh(v
h
⊗ vh), (4.21)

from which, we deduce from the law of product (2.7) that

‖5h
‖

L1(R+;B
1
2 ,

1
2

2 )

6 C(‖vh
⊗ vh
‖

L1R+;(B
1
2 ,

1
2

2 )

+‖ah
‖

L∞(R+;B
1, 1

2
2 )

(‖5h
‖

L1(R+;B
1
2 ,

1
2

2 )

+‖∇hv
h
‖

L1(R+;B
1
2 ,

1
2

2 )

)).

Whereas it follows from (4.18) that

‖ah
‖

L∞(R+;B
1, 1

2
2 )

+‖∂zah
‖

L∞(R+;B
1, 1

2
2 )

6 C0η. (4.22)

When we take η so small that CC0η 6 1
2 , (4.22) implies

‖5h
‖

L1(R+;B
1
2 ,

1
2

2 )

6 C

(
‖ah
‖

L∞(R+;B
1, 1

2
2 )

‖∇hv
h
‖

L1(R+;B
1
2 ,

1
2

2 )

+ ‖vh
‖

L∞t (B
1
2 ,

1
2

2 )

‖vh
‖

L1(B
1, 1

2
2 )

)
6 C0. (4.23)

Similar to the proof of (4.23), we also have

‖5h
z‖

L1(R+;B
1
2 ,

1
2

2 )

6 C

(
‖∂zah

‖
L∞(R+;B

1, 1
2

2 )

(‖5h
‖

L1(R+;B
1
2 ,

1
2

2 )

+‖∇hv
h
‖

L1(R+;B
1
2 ,

1
2

2 )

)

+‖ah
‖

L∞(R+;B
1, 1

2
2 )

‖∇h∂zv
h
‖

L1(R+;B
1
2 ,

1
2

2 )

+‖∂zv
h
‖

L∞t (B
1
2 ,

1
2

2 )

‖vh
‖

L1(B
1, 1

2
2 )

)
.

Hence by virtue of Lemma 4.3, (4.22) and (4.23), we infer

‖5h
z‖

L1(R+;B
1
2 ,

1
2

2 )

6 C0.

Together with (4.20), we complete the proof of Proposition 2.1.

https://doi.org/10.1017/S1474748016000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748016000323


1158 J.-Y. Chemin and P. Zhang

5. The equation on wε and estimates of some error terms

The purpose of this section is to study the equation that determines the correction term

in uε,app. Let us recall it.
∂tw

h
ε −1εw

h
ε = −∇h5

1
ε

∂tw
3
ε −1εw

3
ε = −ε

2∂z5
1
ε + ∂z5

h
L

divwε = 0 and wε |t=0 = 0.
with 5h

L
def
= −1−1

h divh∂t (%
hvh). (5.1)

We have the following proposition.

Proposition 5.1. Let (wε,5
1
ε) be the unique solution of the above system, then we have

‖(εwh
ε , w

3
ε )‖

L2(R+;B
1, 1

2
2 )

+‖∇ε(εw
h
ε , w

3
ε )‖

L2(R+;B
0, 1

2
2 )

+‖∇ε(εw
h
ε , w

3
ε )‖

L1(R+;B
1, 1

2
2 )

6 C‖%0v
h
0‖

B
−1, 3

2
2

+C‖%hvh
‖

L2(R+;B
0, 3

2
2 )∩L1(R+;B

1, 3
2

2 )

,

and

ε‖(εwh
ε , w

3
ε )‖

L4(R+;B
1
2 ,

1
2

2 )

6 C‖%0v
h
0‖

B
0, 1

2
2

+C‖%hvh
‖

L4(R+;B
1
2 ,

1
2

2 )

.

Moreover, for any positive α less than 1, we have

‖1ε(εw
h
ε , w

3
ε )‖L1(R+;Bα,

1
2 )
+‖ε∇ε5

1
ε‖L1(R+;Bα,

1
2 )

6 Cα‖∂t (%
hvh)‖

L1(R+;B
−1+α, 3

2
2 )

.

Proof. Let us first compute 51
ε . Applying the divergence operator to the System (5.1)

gives

−1ε5
1
ε + ∂

2
z5

h
L = 0. (5.2)

This together with (5.1) gives

wh
ε =

∫ t

0
e(t−t ′)1ε∇h1

−1
ε ∂2

z1
−1
h divh∂t (%

hvh)(t ′) dt ′ and

w3
ε = −

∫ t

0
e(t−t ′)1ε∂z1

−1
ε divh∂t (%

hvh)(t ′) dt ′.
(5.3)

By integration by parts, we get

wh
ε = ∇h1

−1
ε ∂2

z1
−1
h divh(%

hvh)(t)− et1ε∇h1
−1
ε ∂2

z1
−1
h divh(%0v

h
0)

+

∫ t

0
e(t−t ′)1ε∇h∂

2
z1
−1
h divh(%

hvh)(t ′) dt ′ and

w3
ε = −∂z1

−1
ε divh(%

hvh)(t)+ et1ε∂z1
−1
ε divh(%0v

h
0)

−

∫ t

0
e(t−t ′)1ε∂z divh(%

hvh)(t ′) dt ′.

(5.4)
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Written in term of Fourier transform with the notation ξ = (ξh, ζ ) and using the fact

that divhv
h
= 0,

|(εŵh
ε (t, ξ), ŵ

3
ε (t, ξ))| 6 |ξh|

−1
|F(∂z(%

hvh))(t, ξ)|

+ e−t (|ξ2
h+ε

2ζ 2)
|ξh|
−1
|F(∂z(%0v

h
0))(ξ)|

+

∫ t

0
e−(t−t ′)(|ξ2

h+ε
2ζ 2)(ε|ζ | + |ξh|)|ζ | |F(%hvh)(t ′, ξ)| dt ′. (5.5)

Applying the cutoff operator in the frequency space in the horizontal and the vertical

directions gives, for any r in [1, 2],

2k 2
r +

`
2 ‖1h

k1
v
`(εw

h
ε , w

3
ε )(t)‖L2 6 C2

k
(

2
r −1

)
+

3`
2 ‖1h

k1
v
`(%

hvh)(t)‖L2 +Wk,`(t)

with

Wk,`(t)
def
= e−ct (22k

+ε222`)2
k
(

2
r −1

)
+

3`
2 ‖1h

k1
v
`(%0v

h
0)‖L2

+

∫ t

0
e−c(t−t ′)(22k

+ε222`)(2k
+ ε2`)2k 2

r +
3`
2 ‖1h

k1
v
`(%

hvh)(t ′)‖L2 dt ′.

As r is in [1, 2], we get by convolution inequality,

‖Wk,`‖Lr (R+;L2) 6 C2−k+ 3`
2 ‖1h

k1
v
`(%0v

h
0)‖L2

+ (2k
+ ε2`)1−

2
r 2k 2

r +
3`
2 ‖1h

k1
v
`(%

hvh)‖L1(R+;L2)

6 C2−k+ 3`
2 ‖1h

k1
v
`(%0v

h
0)‖L2 + 2k+ 3`

2 ‖1h
k1

v
`(%

hvh)‖L1(R+;L2).

By summation with respect to the indices k and `, we get thanks to the Minkowski

inequality, ∑
k,`

‖Wk,`‖Lr (R+;L2) 6 C‖%0v
h
0‖

B
−1, 3

2
2

+C‖%hvh
‖

L1(R+;B1, 3
2 )
.

By definition of the Bs,s′
p norms, we infer that, for r in [1, 2],

‖(εwh
ε , w

3
ε )‖

Lr (R+;B
2
r ,

1
2

2 )

6
∑

(k,`)∈Z2

2k 2
r +

`
2 ‖1h

k1
v
`(εw

h
ε , w

3
ε )‖Lr (R+;L2)

. ‖%0v
h
0‖

B
−1, 3

2
2

+‖%hvh
‖

Lr (R+;B
2
r −1, 3

2
2 )∩L1(R+;B

1, 3
2

2 )

. (5.6)

Now let us estimate ‖ε∂z(εw
h
ε , w

3
ε )‖

L2(R+;B
0, 1

2
2 )

and ‖ε∂z(εw
h
ε , w

3
ε )‖

L1(R+;B
1, 1

2
2 )

. As w is a

divergence free vector field, we have

ε‖∂zw
3
ε‖

L2(R;B
0, 1

2
2 )

6 C‖ε divhw
h
‖

L2(R+;B
0, 1

2
2 )

6 C‖εwh
‖

L2(R+;B
1, 1

2
2 )

,

ε‖∂zw
3
ε‖

L1(R;B
1, 1

2
2 )

6 C‖ε divhw
h
‖

L1(R+;B
1, 1

2
2 )

6 C‖εwh
ε‖

L1(R;B
2, 1

2
2 )

.

Then inequality (5.6) applied with r equal to 2 and r equal to 1 gives

ε‖∂zw
3
ε‖

L2(R;B
0, 1

2
2 )

+‖ε∂zw
3
ε‖

L1(R;B
1, 1

2
2 )

6 C‖%0v
h
0‖

B
−1, 3

2
2

+C‖%hvh
‖

L2(R+;B
0, 3

2
2 )∩L1(R+;B

1, 3
2

2 )

.

(5.7)
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Now let us estimate ‖ε2∂zw
h
ε‖

L1(R+;B
1, 1

2
2 )

. From equality (5.4), we infer that

ε‖1h
k1

v
`(εw

h
ε , w

3
ε )(t)‖L2 . ‖1h

k1
v
`(%

hvh)(t)‖L2 + e−ct (22k
+ε222`)

‖1h
k1

v
`(%0v

h
0)‖L2

+

∫ t

0
e−c(t−t ′)(22k

+ε222`)(ε2`+ 2k)ε2`‖1h
k1

v
`(%

hvh)(t ′)‖L2 dt ′.

(5.8)

Taking the L1 norm in time gives

2k+ 3`
2 ε‖1h

k1
v
`(εw

h
ε , w

3
ε )‖L1(R+;L2) . 2−k+ 3`

2 ‖1h
k1

v
`(%0v

h
0)‖L2

+ 2k+ 3`
2 ‖1h

k1
v
`(%

hvh)‖L1(R+;L2).

By summation with respect to the indices k and `, we infer that

ε‖(εwh
ε , w

3
ε )‖

L1(R+;B
1, 3

2
2 )

. ‖%0v
h
0‖

B
−1, 3

2
2

+‖%hvh
‖

L1(R+;B
1, 3

2
2 )

.

Together with inequalities (5.6) and (5.7), this gives the first inequality of the proposition.

To prove the second inequality, we get, by taking the L4 norm in time of (5.8), that

2
k
2 2

`
2 ε‖1h

k1
v
`(εw

h
ε , w

3
ε )‖L4(R+;L2) . 2

`
2 ‖1h

k1
v
`(%0v

h
0)‖L2 + 2

k
2 2

`
2 ‖1h

k1
v
`(%

hvh)‖L4(R+;L2).

Summing up the above inequality with respect to the indices k and ` yields

ε‖(εwh
ε , w

3
ε )‖

L4(R+;B
1
2 ,

1
2

2 )

6 C‖%0v
h
0‖

B
0, 1

2
2

+C‖%hvh
‖

L4(R+;B
1
2 ,

1
2

2 )

.

This proves the second inequality of the proposition.

Let us prove the third inequality. Using (5.3), we can write that

|F1ε(εŵh
ε , w

3
ε )(t, ξ)| 6 C

∫ t

0
e−(t−t ′)(|ξh|

2
+ε2ζ 2)(ε|ζ | + |ξh|)|ζ ||F(∂t (%

hvh))(t ′, ξ)| dt ′.

Then applying the cutoff operators in both horizontal and vertical frequencies gives

2kα+ `2 ‖1h
k1

v
`1ε(εŵ

h
ε , w

3
ε )(t)‖L2

6
∫ t

0
e−c(t−t ′)(22k

+ε222`)(ε2`+ 2k)2kα+ 3`
2 ‖1h

k1
v
`∂t (%

hvh)(t ′)‖L2 dt ′.

Using Young’s inequality, we get

2kα+ `2 ‖1h
k1

v
`1ε(εw

h
ε , w

3
ε )‖L1(R+;L2) 6 C2k(−1+α)+ 3`

2 ‖1h
k1

v
`∂t (%

hvh)‖L1(R+;L2).

By summation the above inequality with respect to the indices k and `, we get

‖1ε(εw
h
ε , w

3
ε )‖

L1(R+;B
α, 1

2
2 )

6 Cα‖∂t (%
hvh)‖

L1(R+;B
−1+α, 3

2
2 )

. (5.9)

In order to get the estimates on the pressure term 51
ε , let us observe that Relation (5.2)

implies that

ε∇ε5
1
ε =

(
−ε∇h1

−1
ε ∂z divh1

−1
h ∂z∂t (%

hvh)

ε21−1
ε ∂2

z divh1
−1
h ∂z∂t (%

hvh)

)
.
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As we have
ε|ζ |

|ξh|2+ ε2ζ 2 6
1
|ξh|

and
ε2
|ζ |2

|ξh|2+ ε2ζ 2 6 1

we infer that, for any α in ]0, 1[,

ε‖∇ε5
1
ε‖

L1(R+;B
α, 1

2
2 )

6 ‖∂z∂t (%
hvh)‖

L1(R+;B
−1+α, 1

2
2 )

.

Then the proposition is proved.

Let us now turn to the proof of Proposition 2.2.

Proof of Proposition 2.2. It follows from the law of product (2.7) and Lemma 4.3 that

‖%0v
h
0‖

B
0, 1

2
2

. ‖%0‖
B

1
2 ,

1
2

2

‖vh
0‖

B
1
2 ,

1
2

2

6 C0η,

‖%hvh
‖

L4(R+;B
1
2 ,

1
2

2 )

. ‖%h
‖

L∞(R+;B
3
4 ,

1
2

2 )

‖vh
‖

L4(R+;B
3
4 ,

1
2

2 )

6 C0η,

and

‖%hvh
‖

L2(R+;B
0, 3

2
2 )

6 ‖%h
‖

L∞(R+;B
1
2 ,

1
2

2 )

‖∂zv
h
‖

L1(R+;B
1
2 ,

1
2

2 )

+‖∂zρ
h
‖

L∞(R+;B
1
2 ,

1
2

2 )

‖vh
‖

L1(R+;B
1
2 ,

1
2

2 )

6 C0η.

Similarly, we deduce from law of product (2.7) and (4.19) that

‖%hvh
‖

L1(R+;B
1, 3

2
2 )

6 ‖%h
‖

L∞(R+;B
1, 1

2
2 )

‖∂zv
h
‖

L1(R+;B
1, 1

2
2 )

+‖∂zρ
h
‖

L∞(R+;B
1, 1

2
2 )

‖vh
‖

L1(R+;B
1, 1

2
2 )

6 C0η.

Hence by virtue of the first two inequalities of Proposition 5.1 and the remark following

(1.7), we conclude the first inequality of Proposition 2.2.

On the other hand, for any α in ]0, 1[, we get, by applying the law of product (2.7),

that

‖∂z(∂t%
hvh)‖

L1(R+;B
−1+α, 1

2
2 )

. ‖∂t∂zρ
h
‖

L∞(R+;B
α
2 ,

1
2

2 )

‖vh
‖

L1(R+;B
α
2 ,

1
2

2 )

+‖∂tρ
h
‖

L∞(R+;B
α
2 ,

1
2

2 )

‖∂zv
h
‖

L1(R+;B
α
2 ,

1
2

2 )

,

and

‖∂z(%
h∂tv

h)‖
L1(R+;B

−1+α, 1
2

2 )

. ‖∂zρ
h
‖

L∞(R+;B
α
2 ,

1
2

2 )

‖∂tv
h
‖

L1(R+;B
α
2 ,

1
2

2 )

+‖%h
‖

L∞(R+;B
α
2 ,

1
2

2 )

‖∂z∂tv
h
‖

L1(R+;B
α
2 ,

1
2

2 )

,

so that by applying Lemma 4.3, we obtain

‖∂t (%
hvh)‖

L1(R+;B
−1+α, 3

2
2 )

6 ‖∂z(ρ
h
t v

h)‖
L1(R+;B

−1+α, 1
2

2 )

+‖∂z(%
hvh

t )‖
L1(R+;B

−1+α, 1
2

2 )

6 C0.

This together with the third inequality of Proposition 5.1 leads to the second inequality

of Proposition 2.2.

https://doi.org/10.1017/S1474748016000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748016000323


1162 J.-Y. Chemin and P. Zhang

Corollary 5.1. Under the assumptions of Theorem 1.2, there holds (2.13).

Proof. We first deduce from the law of product (2.7) that

‖vh
· ∇h(εw

h
ε , w

3
ε )‖

L1(R+;B
0, 1

2
2 )

. ‖vh
‖

L2(R+;B
1, 1

2
2 )

‖(εwh
ε , w

3
ε )‖

L2(R+;B
1, 1

2
2 )

,

‖ε2wε · ∇(εw
h
ε , w

3
ε )‖

L1(R+;B
0, 1

2
2 )

. ‖εwε‖
L2(R+;B

1, 1
2

2 )

‖∇ε(εw
h
ε , w

3
ε )‖

L2(R+;B
0, 1

2
2 )

,

and

‖εwε · ∇(v
h, 0)‖

L1(R+;B
0, 1

2
2 )

. ‖εwh
ε‖

L2(R+;B
1, 1

2
2 )

‖vh
‖

L2(R+;B
1, 1

2
2 )

+ ε‖w3
ε‖

L4(R+;B
1
2 ,

1
2

2 )

‖∂zv
h
‖

L
4
3 (R+;B

1
2 ,

1
2

2 )

.

Moreover, it follows from (2.8) and (2.7) that

‖∂z5
h
Q‖

L1(R+;B
0, 1

2
2 )

. ‖∂z(ρ
hvh
⊗ vh)‖

L1(R+;B
0, 1

2
2 )

. ‖ρh
z ‖

L∞(R+;B
1
2 ,

1
2

2 )

‖vh
‖

L2(R+;B
1
2 ,

1
2

2 )

‖vh
‖

L2(R+;B
1, 1

2
2 )

+ (1+‖%h
‖

L∞(R+;B
1
2 ,

1
2

2 )

)‖vh
‖

L2(R+;B
1
2 ,

1
2

2 )

‖∂zv
h
‖

L2(R+;B
1, 1

2
2 )

.

Hence by virtue of (2.12), Proposition 2.2, and Lemma 4.3, we conclude the proof

of (2.13).

6. The control of the term bε

The purpose of this section is the control of the term bε which satisfies equation (2.18)

as described by Proposition 2.4. Namely we want to decompose the solution bε of

equation (2.18) which is

∂t bε + uε · ∇bε = −Rε · ∇[ah
]ε − ε[wε · ∇ah

]ε with bε |t=0 = 0 (6.1)

as bε = bε + b̃ε such that

‖bε(t)‖
B

2
p ,

1
p

p

6 C0η(1+R0)〈t〉
1
2 and ‖b̃ε(t)‖L p 6 C0ε

1− 1
p (1+R0)

2
〈t〉.

In order to do it, let us introduce the following decomposition of bε = b1,ε + b2,ε + b3,ε
with

∂t b1,ε + uε · ∇b1,ε = −εR3
ε [∂zah

]ε,

∂t b2,ε + [v
h
]ε · ∇hb2,ε = −Rh

ε · ∇h[ah
]ε − ε[wε · ∇ah

]ε and

∂t b3,ε + uε · ∇b3,ε = −ε((εw
h
ε , w

3
ε )+ Rε) · ∇b2,ε.

(6.2)

Let us first estimate ‖b1,ε(t)‖L p . As the vector field uε is divergence free, we have

‖b1,ε(t)‖L p 6 ε
1− 1

p

∫ t

0
‖R3

ε (t
′)‖L∞‖∂zah(t ′)‖L p dt ′.
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Interpolation inequality (4.9) and the induction hypothesis (2.14) implies that, for any t
less than T ε, we have∫ t

0
‖R(t ′)‖L∞ dt ′ 6

∫ t

0
‖R(t ′)‖

2
3

B
−

1
2+

2
p ,

1
p

p

‖∇h R(t ′)‖
1
3

B
2
p ,

1
p

p

dt ′

6 t
1
2

(∫ t

0
‖R(t ′)‖4

B
−

1
2+

2
p ,

1
p

p

dt ′
) 1

4×
2
3
(∫ t

0
‖∇h R(t ′)‖

B
2
p ,

1
p

p

dt ′
) 1

3

6 R0t
1
2 . (6.3)

Then using the estimate (4.3), we infer that, for any t less than T ε,

‖b1,ε(t)‖L p 6 C0ηε
1− 1

p t
1
2 R0. (6.4)

In order to estimate ‖b3,ε(t)‖L p , we need to estimate ‖∇b2,ε(t)‖L p . Let us observe that

∂t∇b2,ε + [v
h
]ε · ∇h∇b2,ε = −∇Rh

ε · ∇h[ah
]ε − Rh

ε · ∇h∇[ah
]ε

−∇[vh
]ε · ∇hb2,ε − ε[∇εwε · ∇ah

]ε − ε[wε · ∇∇εah
]ε.

Using the fact that vh is divergence free, we get,

d
dt
‖∇b2,ε(t)‖L p 6 ε

−
1
p
(
(‖∇Rh

ε‖L∞ +‖ε∇εwε‖L∞)‖∇ah
‖L p

+ (‖Rh
ε‖L∞ +‖εwε‖L∞)‖∇

2ah
‖L p

)
+‖∇vh

‖L∞‖∇hb2,ε‖L p . (6.5)

Estimate (4.3) together with Sobolev embedding implies that

∀t < T ε, ‖∇ah(t)‖L p 6 η C0 and ‖∇
2ah(t)‖L p 6 η C0. (6.6)

Induction hypothesis (2.14) and Proposition 2.2 implies that∫ T ε

0
(‖∇Rh

ε (t)‖L∞ +‖ε∇εwε(t)‖L∞) dt . R0+ C0.

Together with (6.6) this implies that∫ T ε

0
(‖∇Rh

ε (t)‖L∞ +‖ε∇εwε(t)‖L∞)‖∇ah(t)‖L p dt . η C0(1+R0). (6.7)

Proposition 2.2 yields that∫ t

0
‖εwε(t ′)‖L∞ dt ′ . t

1
2 ‖(εwh

ε , w
3
ε )‖L2(R+;B1, 1

2 )
6 C0t

1
2 . (6.8)

Proposition 2.1 claims in particular that ‖∇vh(t)‖L∞ is an integrable function on R+ the

integral of which is less than some C0. Applying Gronwall’s Lemma to (6.5) and using

the estimates (6.3), (6.7) and (6.8), we get for any t less than T ε,

‖∇b2,ε(t)‖L p 6 C0ε
−

1
p (1+R0)〈t〉

1
2 .
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Now let us consider the equation on b3,ε in (6.2). As uε is divergence free, we get, by

applying again the estimates (6.3) and (6.8), that

‖b3,ε(t)‖L p 6 ε

∫ t

0
(‖Rε(t ′)‖L∞ +‖εw

h
ε (t
′)‖L∞ +‖w

3
ε (t
′)‖L∞)‖∇b2,ε(t ′)‖L p dt ′

6 C0ε
1− 1

p (1+R0)
2
〈t〉. (6.9)

Defining b̃ε = b1,ε + b3,ε ensures the inequality (2.20) of Proposition 2.4. As there is no

power of ε in the right-hand side of the equation on b2,ε we must use another norm to

measure the size of b2,ε. The fact that the convection vector field involved in the equation

of b2,ε has no vertical component will allow us to propagate the anisotropic regularity

thanks to the following lemma.

Proposition 6.1. Given a smooth vector field vh with divhv
h
= 0, we consider the following

transport equation with a parameter z{
∂t b(t, xh, z)+ vh(t, xh, z) · ∇hb(t, xh, z) = g(t, xh, z),

b(0, xh, z) = b0(xh, z).
(6.10)

Let p be in ]2, 4[. Let us define

Vp(t)
def
= sup

z′∈R

∫ t

0
‖∇hv

h(t ′, ·, z′)‖
(B

2
p
p )h

dt ′.

Then for s in ]0, 2/p], we have

exp(−CVp(t))‖b‖
L∞t (B

s, 1
p

p )

6 C‖b0‖
B

s, 1
p

p

+C‖g‖
L1

t (B
s, 1

p
p )

+C‖vh
‖

L1
t (B

2
p ,

1
p

p )

(‖∇hb0‖L∞v (Bs
p)h
+‖∇hg‖L∞v (L

1
t (Bs

p)h)
). (6.11)

Proof. Let us first observe that [5, Theorem 3.14] implies that for any σ in
[
0, 1+ 2/p

]
,

we have, for any z in R

‖b(t, ·, z)‖(Bσp )h 6

(
‖b0(·, z)‖(Bσp )h +

∫ t

0
‖g(t ′, ·, z)‖(Bσp )h dt ′

)
exp(CVp(t)). (6.12)

Let us define (τ−zb)(xh, z′) def= b(xh, z′+ z) and δ−za def
= τ−za− a. Then in view of (6.10),

one has

∂tτ−zb+ τ−zv
h
· ∇hτ−zb = τ−zg.

Subtracting (6.10) from the above equation, we get

∂tδ−zb+ vh
· ∇hδ−zb+ δ−zv

h
· ∇hτ−zb = δ−zg. (6.13)

Applying again [5, Theorem 3.14], we infer that

exp(−CVp(t))‖δ−zb(t, ·, z′)‖(Bs
p)h

6 ‖δ−zb0(·, z′)‖(Bs
p)h

+C
∫ t

0
‖δ−zg(t ′, ·, z′)‖(Bs

p)h
dt ′+

∫ t

0
‖δ−zv

h(t ′, ·, z′) · ∇hτ−zb(t ′)‖(Bs
p)h

dt ′. (6.14)
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The law of product in R2, which claims that for s in [0, 2/p], ‖ab‖Bs
p
6 C‖a‖

B
2
p
p

‖b‖Bs
p
,

together with inequality (6.12) implies that

I (t, z, z′) def
=

∫ t

0
‖δ−zv

h(t ′, ·, z′) · ∇hτ−zb(t ′, ·, z′)
∥∥
(Bs

p)h
dt ′

6 sup
t ′∈[0,t]

z′∈R

‖∇hb(t ′, ·, z′)‖(Bs
p)h

∫ t

0
‖δ−zv

h(t ′, ·, z′)‖
(B

2
p
p )h

dt ′

6

(
‖∇hb0‖L∞v (Bs

p)h
+ sup

z∈R

∫ t

0
‖∇hg(t ′, ·, z)‖(Bσp )h dt ′

)
exp(CVp(t))

×

∫ t

0
‖δ−zv

h(t ′, ·, z′)‖
(B

2
p
p )h

dt ′.

Plugging this into inequality (6.14) gives

exp(−CVp(t))‖δ−zb(t, ·, z′)‖(Bs
p)h

6 ‖δ−zb0(·, z′)‖(Bs
p)h
+C

∫ t

0
‖δ−zg(t ′, ·, z′)‖(Bs

p)h
dt ′

+

(
‖∇hb0‖L∞v (Bs

p)h
+ sup

z∈R

∫ t

0
‖∇hg(t ′, ·, z)‖(Bs

p)h
dt ′
)∫ t

0
‖δ−zv

h(t ′, ·, z′)‖
(B

2
p
p )h

dt ′.

Taking L p norm of the above inequality with respect to the vertical variable z′ yields

exp(−CVp(t))‖δ−zb(t)‖L p
v (Bs

p)h
6 ‖δ−zb0‖L p

v (Bs
p)h
+C

∫ t

0
‖δ−zg(t ′)‖L p

v (Bs
p)h

dt ′

+C

(
‖∇hb0‖L∞v (Bs

p)h
+ sup

z∈R

∫ t

0
‖∇hg(t ′, ·, z)‖(Bs

p)h
dt ′
)∫ t

0
‖δ−zv

h(t ′)‖
L p

v (B
2
p
p )h

dt ′.

Dividing the above inequality by |z|
1
p and taking the L p norm of the resulting inequality

with the measure dz
|z| over R, we obtain inequality (6.11) and thus the proposition.

Continuation of the proof to Proposition 2.4. Let us observe that Proposition 6.1

implies that for t less than T ε,

‖b2,ε‖
L∞t (B

2
p ,

1
p

p )

6 C0

(
‖Rh

ε · ∇h[ah
]ε‖

L1
t (B

2
p ,

1
p

p )

+ ε‖wε · ∇ah
‖

L1
t (B

2
p ,

1
p

p )

+‖vh
‖

L1
t (B

2
p ,

1
p

p )

(‖∇h(Rh
ε · ∇h[ah

]ε)‖
L∞v (L

1
t (B

2
p
p )h)

+ ε‖∇h(wε · ∇ah)‖
L∞v (L

1
t (B

2
p
p )h)

)

)
.
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Hence it follows from the law of product (2.7), Proposition 2.2 and the induction

hypothesis (2.14) that

‖b2,ε‖
L∞t (B

2
p ,

1
p

p )

6

(
‖Rh

ε‖
L1

t (B
2
p ,

1
p

p )

+‖εwε‖
L1

t (B
2
p ,

1
p

p )

+‖∇h Rh
ε‖

L1
t (B

2
p ,

1
p

p )

+ ‖ε∇hwε‖
L1

t (B
2
p ,

1
p

p )

)(
‖∇ah

‖
L∞t (B

2
p ,

1
p

p )

+‖∇ah
‖

L∞v (L
∞
t (B

1+ 2
p

p )h)

)

6 C0(1+R0)〈t〉
1
2

(
‖∇ah

‖
L∞t (B

2
p ,

1
p

p )

+‖∇ah
‖

L∞v (L
∞
t (B

1+ 2
p

p )h)

)
. (6.15)

Yet it follows from Lemma 4.1, (4.18) and (4.3) that

‖∇ah
‖

L∞t (B
2
p ,

1
p

p )

. ‖∇ah
‖

L∞t (B
1, 1

2
2 )

. ‖∇ah
‖

1
2

L∞t (B
1
2 ,

1
2

2 )

‖∇h∇ah
‖

1
2

L∞t (B
1
2 ,

1
2

2 )

6 C0η,

‖∇ah
‖

L∞v (L
∞
t (B

1+ 2
p

p )h)
. ‖∇ah

‖L∞v (L
∞
t (B2

2)h)
. ‖∇ah

‖

1
2
L∞v (L

∞
t (Ḣ

1
h ))
‖∇ah

‖

1
2
L∞v (L

∞
t (Ḣ

3
h ))

6 C0η.

This implies that for all t less than T ε

‖b2,ε‖
L∞t (B

2
p ,

1
p

p )

6 C0η(1+R0)〈t〉
1
2 .

Taking bε = b2,ε leads to (2.19). We thus complete the proof of Proposition 2.4.

Corollary 6.1. Under the assumptions of Theorem 1.2, the inequalities of Assertion (2.21)

holds namely

‖E4,1
ε ‖

L1
T (B

−1+ 2
p ,

1
p

p )

6 C0η(1+R0) and ‖E4,2
ε ‖

L1
T (B

−1+δ+ 3
p ,−δ

p )

6 C0ε
1− 1

p (1+R0)
2,

for p ∈ ]3, 4[ and δ ∈ ]0, 1− 3/p[.

Proof. We deduce from a similar derivation of (4.23) that

‖5h(t)‖
B

2
p ,

1
p

p

6 C

(
‖ah
‖

L∞(R+;B
2
p ,

1
p

p )

‖∇hv
h(t)‖

B
2
p ,

1
p

p

+‖vh(t)‖2
B

2
p ,

1
p

p

)
,

which together with (4.15) and (4.18) ensures that

‖1hv
h(t)‖

B
−1+ 2

p ,
1
p

p

+‖∇h5
h(t)‖

B
−1+ 2

p ,
1
p

p

6 C0〈t〉−2 log
(

1− 2
p

)
2
p 〈t〉. (6.16)

Moreover, as p belongs to ]3, 4[ and δ to ]0, 1− 3/p[, we have −1+ δ+ 5/p ∈ ]0, 2/p[
and −δ+ 1/p ∈ ]0, 1[. Then it follows from inequality (4.16) that∫

R+
〈t〉

(
‖1hv

h(t)‖
B
−1+δ+ 5

p ,−δ+
1
p

p

+‖∇h5
h(t)‖

B
−1+δ+ 5

p ,−δ+
1
p

p

)
dt

6
∫
R+
〈t〉
−

(
1+ δ2+

3
2p

)
logδ+

3
p dt 6 C0. (6.17)
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On the other hand, it follows from the law of product (2.7) that

‖b̄([1hv
h
]ε + [∇h5

h
]ε)‖

L1
t (B
−1+ 2

p ,
1
p

p )

.
∫ t

0
‖b̄(t ′)‖

B
2
p ,

1
p

p

(‖1hv
h(t ′)‖

B
−1+ 2

p ,
1
p

p

+‖∇h5
h(t ′)‖

B
−1+ 2

p ,
1
p

p

) dt ′,

from which, (2.19) and (6.16), we infer the first inequality of the corollary. Similarly,

again p belongs to ]3, 4[ and δ to ]0, 1− 3/p[, the law of product (2.7) ensures that

‖b̃([1hv
h
]ε + [∇h5

h
]ε)‖

L1
t (B
−1+δ+ 3

p ,−δ
p )

.
∫ t

0
‖b̃(t ′)‖L p (‖1hv

h(t ′)‖
B
−1+δ+ 5

p ,−δ+
1
p

p

+‖∇h5
h(t ′)‖

B
−1+δ+ 5

p ,−δ+
1
p

p

) dt ′,

which together with (2.20) and (6.17) gives rise to the second inequality of the corollary.

7. Conclusion of the proof of the main theorem

Proof of Theorem 1.2. Let us first observe that law of products implies that, if p ∈ ]3, 4[
and ‖a‖

B
2
p ,

1
p

p

is less than cp, which is the case for ‖aε(t)‖
B

2
p ,

1
p

p

for t 6 T ε thanks to

Corollary 2.1 provided that η is sufficiently small, Pa given by Definition 2.2 maps

continuously from Bs1,s2
p into itself for any s1 in ]−2/p, 2/p] and s2 in ]−1/p, 1/p],

which reads

‖Pag‖Bs1,s2
p

. ‖g‖Bs1,s2
p

. (7.1)

Let us now fix p in ]3, 4[ and δ in ]0, 1− 3/p[, which is determined by (2.16). For t less

than T ε defined by relation (2.14), we denote

gλ(t)
def
= g(t) exp

(
−λ

∫ t

0
Uε,app(t ′) dt ′

)
with Uε,app(t)

def
= ‖uε,app(t)‖4

B
−

1
2+

2
p ,

1
p

p

+‖uε,app(t)‖2
B

2
p ,

1
p

p

+‖∂zv
h(t)‖

4
3

B
−

1
2+

2
p ,

1
p

p

+ ε‖(ε∂zw
h, ∂zw

3)(t)‖2
B

0, 1
2

2

. (7.2)

Then we deduce from equality (2.24) that

Rε,λ(t) =
∫ t

0
exp

(
−λ

∫ t

t ′
Uε,app(t ′′) dt ′′

)
e(t−t ′)1Paε (aε1Rε,λ

− div(uε,app⊗ Rε,λ+ Rε,λ⊗ uε,app+ εRε⊗ Rε,λ)− Eε,λ)(t ′) dt ′.

So that for the norm ‖ · ‖X (t) given by Definition 2.1, we have

‖Rε,λ‖X (t) 6

∥∥∥∥ exp
(
−λ

∫ t

t ′
Uε,app(t ′′) dt ′′

)
Paε
(
aε1Rε,λ

− div(uε,app⊗ Rε,λ+ Rε,λ⊗ uε,app+ εRε⊗ Rε,λ)− Eε,λ)
∥∥∥∥
Fp(t)

. (7.3)
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It is easy to observe from inequality (2.6), the law of product (2.7) and Corollary 2.1 that

‖Paε (aε1Rε,λ)‖Fp(t) 6 C

(
‖aε1h Rε,λ‖

L1
t (B
−1+ 2

p ,
1
p

p )

+‖aε∂2
3 Rε,λ‖

L1
t (B
−1+δ+ 3

p ,−δ
p )

)

6 C‖aε‖
L∞t (B

2
p ,

1
p

p )

(
‖Rε,λ‖

L1
t (B

1+ 2
p ,

1
p

p )

+‖∂2
3 Rε,λ‖

L1
t (B
−1+δ+ 3

p ,−δ
p )

)

6 C0η exp(CR0)

(
‖Rε,λ‖

L1
t (B

1+ 2
p ,

1
p

p )

+‖∂2
3 Rε,λ‖

L1
t (B
−1+δ+ 3

p ,−δ
p )

)
.

Along the same lines, we get

‖Paε div(εRε⊗ Rε,λ))‖Fp(t)

. ‖Paε (εRh
ε · ∇h Rε,λ+ εR3

ε∂3 Rε,λ)‖
L1

t (B
−1+ 2

p ,
1
p

p )

. ε

(
‖Rε‖

L2
t (B

2
p ,

1
p

p )

‖Rε,λ‖
L2

t (B
2
p ,

1
p

p )

+‖Rε‖
L4

t (B
−

1
2+

2
p ,

1
p

p )

‖∂3 Rε,λ‖
L

4
3
t (B

−
1
2+

2
p ,

1
p

p )

)
.

Using inequality (2.6), we deduce from inequalities (2.13), (2.16), (2.17) and (2.21) that

‖Paε Eε‖Fp(t) 6 C0(1+ (η+ ε
1−δ− 1

p ) exp(CR0)).

Now let us turn to the estimates of the last two terms in the right-hand side of

inequality (7.3). We deduce again from inequality (2.6) that∥∥∥∥exp
(
−λ

∫ t

t ′
Uε,app(t ′′) dt ′′

)
divh(uε,app⊗ Rh

ε,λ+ Rε,λ⊗ uh
ε,app)

∥∥∥∥
Fp(t)

.
∫ t

0
exp

(
−λ

∫ t

t ′
Uε,app(t ′′) dt ′′

)
‖Rε,λ⊗ uε,app(t ′)‖

B
2
p ,

1
p

p

dt ′

.
∫ t

0
exp

(
−λ

∫ t

t ′
Uε,app(t ′′) dt ′′

)
‖uε,app(t ′)‖

B
2
p ,

1
p

p

‖Rε,λ(t ′)‖
B

2
p ,

1
p

p

dt ′

.

(∫ t

0
exp

(
−2λ

∫ t

t ′
Uε,app(τ ) dt ′′

)
‖uε,app(t ′)‖2

B
2
p ,

1
p

p

dt ′
) 1

2

‖Rε,λ‖
L2

t (B
2
p ,

1
p

p )

,

which together with (7.2) ensures that∥∥∥∥exp
(
−λ

∫ t

t ′
Uε,app(t ′′) dt ′′

)
divh(uε,app⊗ Rh

ε,λ+ Rε,λ⊗ uh
ε,app)

∥∥∥∥
Fp(t)

.
1

λ
1
2
‖Rε,λ‖

L2
t (B

2
p ,

1
p

p )

.

Along the same lines, we have∥∥∥∥exp
(
−λ

∫ t

t ′
Uε,app(t ′′) dt ′′

)
∂3(uε,app⊗ R3

ε,λ+ Rε,λ⊗ u3
ε,app)

∥∥∥∥
Fp(t)

.
∫ t

0
exp

(
−λ

∫ t

t ′
Uε,app(t ′′) dt ′′

)
‖(∂3 Rε,λ⊗ uε,app(t ′)+ Rε,λ⊗ ∂3uε,app)(t ′)‖

B
−1+ 2

p ,
1
p

p

dt ′,
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By the definition of uε,app given by (2.10), we infer∫ t

0
exp

(
−λ

∫ t

t ′
Uε,app(t ′′) dt ′′

)
‖Rε,λ⊗ ∂3uε,app(t ′)‖

B
−1+ 2

p ,
1
p

p

dt ′

.
∫ t

0
exp

(
−λ

∫ t

t ′
Uε,app(t ′′) dt ′′

)(
ε‖∂zv

h(t ′)‖
B
−

1
2+

2
p ,

1
p

p

‖Rε,λ(t ′)‖
B
−

1
2+

2
p ,

1
p

p

+ ε2
‖(ε∂zw

h, ∂zw
3)‖

B
0, 1

2
2

‖Rε,λ(t ′)‖
B

2
p ,

1
p

p

)
dt ′.

Then due to Definition (7.2) of Uε,app, Hölder inequality implies that∫ t

0
exp

(
−λ

∫ t

t ′
Uε,app(t ′′) dt ′′

)
‖Rε,λ⊗ ∂3uε,app(t ′)‖

B
−1+ 2

p ,
1
p

p

dt ′

.
1

λ
3
4
‖Rε,λ‖

L4
t (B
−

1
2+

2
p ,

1
p

p )

+
1

λ
1
2
‖Rε,λ‖

L2
t (B

2
p ,

1
p

p )

.

Following the same lines we get∫ t

0
exp

(
−λ

∫ t

t ′
Uε,app(t ′′) dt ′′

)
‖∂3 Rε,λ⊗ uε,app(t ′)‖

B
−1+ 2

p ,
1
p

p

dt ′ .
1

λ
1
4
‖∂3 Rε,λ‖

L
4
3
t (B

−
1
2+

2
p ,

1
p

p )

.

Substituting the above estimates into inequality (7.3) and using the definition of the

norm ‖ · ‖X (t) given by Definition 2.1, we infer that, for any λ greater than 1,

‖Rε,λ‖X (t) 6 C0(1+ (η+ ε
1−δ− 1

p ) exp(CR0))+

(
C0η exp(CR0)+

C

λ
1
4

)
‖Rε,λ‖X (t)

+Cε(‖Rε‖
L4

t (B
−

1
2+

2
p ,

1
p

p )

+‖Rε‖
L2

t (B
2
p ,

1
p

p )

)‖Rε,λ‖X (t),

which together with the induction assumption (2.14) ensures that for t less than T ε and

for any λ greater than 1,(
1−C

(
C0η exp(CR0)+

1

λ
1
4
+ εR0

))
‖Rε,λ‖X (t) 6 C0(1+ (η+ ε

1−δ− 1
p ) exp(CR0)).

(7.4)

Let us take ε, η sufficiently small and λ sufficiently large so that

η <
1

6CC0
,

C

λ
1
4
6

1
6

and R0 6
1
C

min{− ln(2ε1−δ−1/p),− ln(2η),− ln(6CC0η), 1/6ε}.

Then we deduce from inequality (7.4) that ‖Rε,λ‖X (t) 6 4C0, from which and from

inequality (7.2), we infer

‖Rε‖X (t) 6 ‖Rε,λ‖X (t) exp
(
λ

∫ t

0
Uε,app(t ′) dt ′

)
6 4C0 exp

(
λ

∫ t

0
Uε,app(t ′) dt ′

)
.
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However, let us notice from equality (2.10) and Lemma 4.1 that

‖uε,app(t)‖
B
−

1
2+

2
p ,

1
p

p

. ‖vh(t)‖
B

1
2 ,

1
2

2

+ ε‖(εwh, w3)(t)‖
B

1
2 ,

1
2

2

,

‖uε,app(t)‖
B

2
p ,

1
p

p

. ‖vh(t)‖
B

1, 1
2

2

+ ε‖(εwh, w3)(t)‖
B

1, 1
2

2

,

which together with Proposition 2.2, (4.14) and (4.19) ensures that∫
R+

Uε,app(t ′) dt ′ 6 C0 and ‖Rε‖X (t) 6 4C0 exp(C0λ)
def
= C′0. (7.5)

We take R0 = 2C′0 and take ε, η so small that

η <
1

6CC0
and 2C′0 6

1
C

min{−ln(2ε1−δ−1/p),−ln(2η),−ln(6CC0η), 1/6ε}. (7.6)

Then we deduce from inequality (7.5) that

∀t 6 T ε, ‖Rε‖X (t) 6
R0

2
.

The necessary condition for blowup implies that T ε equals to infinity. This completes the

proof of Theorem 1.2.
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We appreciate the hospitality and the financial support from MCM, National Center

for Mathematics and Interdisciplinary Sciences and Université Pierre et Marie Curie.
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Appendix A. The proof of (2.6)

Proof of (2.6). For j = 0, 1, 2, we get, by applying [5, Lemma 2.4], that∥∥∥∥1h
k1

v
`

∫ t

0
e(t−t ′)1∂

j
3 f (t ′) dt ′

∥∥∥∥
Lq

T (L
p)

. 2 j`
∥∥∥∥∫ t

0
e−c(t−t ′)(22k

+22`)
‖1h

k1
v
` f (t ′)‖L p dt ′

∥∥∥∥
Lq

T

.
2 j`

(22k + 22`)
1
q

‖1h
k1

v
` f ‖L1

T (L
p)

. dk,`
2−kα2`( j−β)

(22k + 22`)
1
q

‖ f ‖L1
T (B

α,β
p )
,

where (dk,`)k,`∈Z2 denotes a generic element of `1(Z2) so that
∑

k,`∈Z2 dk,` = 1. This

together with Definition 2.1 ensures that∥∥∥∥∫ t

0
e(t−t ′)1∂

j
3 f (t ′) dt ′

∥∥∥∥
Lq

T (B
s,s′
p )

.
∑

k,`∈Z2

dk,`
2k(s−α)2`(s

′
+ j−β)

(22k + 22`)
1
q

‖ f ‖L1
T (B

α,β
p )
.
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In the particular case when

α 6 s, β 6 s′+ j and α+β = s+ s′+ j −
2
q
,

we have ∥∥∥∥∫ t

0
e(t−t ′)1∂

j
3 f (t ′) dt ′

∥∥∥∥
Lq

T (B
s,s′
p )

. ‖ f ‖L1
T (B

α,β
p )
. (A.1)

This together with the definition of the norm ‖ · ‖Fp(T ) given by Definition 2.1 leads

to (2.6).
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