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Abstract The purpose of this paper is to provide a large class of initial data which generates global

smooth solution of the 3D inhomogeneous incompressible Navier—Stokes system in the whole space R3.
This class of data is based on functions which vary slowly in one direction. The idea is that 2D
inhomogeneous Navier—Stokes system with large data is globally well-posed and we construct the 3D
approximate solutions by the 2D solutions with a parameter. One of the key point of this study is the
investigation of the time decay properties of the solutions to the 2D inhomogeneous Navier—Stokes system.
‘We obtained the same optimal decay estimates as the solutions of 2D homogeneous Navier—Stokes system.
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1. Introduction

In this paper, we investigate the global well-posedness of three-dimensional (3D)
incompressible inhomogeneous Navier—Stokes system with large initial data slowly
varying in one space variable. In general, inhomogeneous Navier-Stokes system in RY

d
reads Bp+1-Vp =0,

poiu+ pu-Vu —Au+ VII =0,
divu = 0,
(0, wr=0 = (0o, uo).

(INSdD)

Here the unknown p is a function from [0, T'] x R? into the interval 10, co[ which
represents the density of fluid at time 7 and point x,' the unknown u = (u', ..., u%)

1We do want to avoid vacuum.
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is a time dependent vector field on R? which represents the velocity of fluid locating at
position x and time ¢ and IT is a function from [0, 7] x R? to R which represents the
pressure at point x and time ¢, which ensures the incompressibility of the fluid. The choice
of R? as a domain is a real simplification because as we shall see later on the pressure is
uniquely determined by the divergence free condition on the vector field u (the case of
periodic boundary condition i.e., the flat torus T¢ as a domain also works).

Let us notice that in the case when pyp = 1, the system (INSdD) turns out to be the
homogeneous incompressible Navier—Stokes system. We have to keep in mind that the
system of (INSdD) is more complex than this one.

This system (INSAD) can be used as a model to describe a fluid that is incompressible
but has non-constant density. Basic examples are mixture of incompressible and
non-reactant flows, flows with complex structure (e.g. blood flow or model of rivers),
fluids containing a melted substance, etc.

First of all, this equation satisfies some a priori estimates. Let us first study the a priori
estimate on the density. It is classical to consider the density p as a perturbation of the
homogeneous density arbitrarily chosen to be equal to 1. Let us introduce the notation

o def o—1
which will be used all along this text.

This system has three major basic features. First of all, the incompressibility expressed
by the fact that the vector field u is divergence free gives

Vpell,ool, lle®lr =lleollLr and @)L= = llpollLe. (1.1)

Moreover, the second equation of (INSdD), called the momentum equation, implies a
control of the total kinetic energy which is formally expressed by

1 2 ! N2 ’ 1 2

3 pt, )u(t, )["dx+ | [Vu@)l;2dt" =5 | po(x)|uo(x)|”dx. (1.2)
R4 0 2 R4

This third basic feature is the scaling invariance. Indeed, if (p, u, IT) is a solution of

(INSdD) on [0, T] x R?, then (p, u, IT); defined by

(0. 1, T (1 ) © (020, 2x), 232, 2x), 22T, Ax)) (1.3)
is also a solution of (INSdD) on [0, T/A?] x RY. This leads to the notion of critical
regularity.

Based on the energy estimate (1.2), Simon (see also Kazhikov [22]) constructed in [32]
global weak solutions of (INSdD) with finite energy (see the book by Lions [24] for the
variable viscosity case).

In the case of smooth data with no vacuum, Ladyvzenskaja and Solonnikov first
addressed in [23] the question of unique solvability of (INSdD). More precisely, they
considered the system (INSdD) in a bounded domain Q with homogeneous Dirichlet

2
boundary condition for u. Under the assumptions that ug € WZ_F”’(SZ) (p>4d) is
divergence free and vanishes on dQ and that pyp € C'(Q) is bounded away from zero,
then they proved in [23] that
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e the system (INS2D) is globally well-posed;

2
e the system (INS3D) is Local well-posed. If in addition ug is small in WZ_F”’(SZ), then
global well-posedness holds true.

More recently, Paicu, Zhang and the second author proved in [28] the following
well-posedness result for (INS3D) with small data.

Theorem 1.1. Let us consider an initial data (po, uo) in L°(R3) x H'(R3). Let us assume
that for some positive constant Cy,

Gy < pox) < Co.

Then there exists a constant g9 > 0 depending only on Co such that if |luoll ;21| Vuoll 2 <
g0, then the system (INS3D) has a unique global solution (p, u).

Let us notice that the smallness condition in Theorem 1.1 is scaling invariant. Moreover,
the fact that in dimension two, the system (INS2D) is globally well-posed is related to
the fact that in dimension two, the quantity

1 o
3 [opanma b dss [ Ivueiz, d
2 Jre 0 L
is scaling invariant under the transformation (1.3).
In this text, we shall consider slowly varying initial data i.e., a family of initial data of
the form

(0,615 U0.e) = (14 nl0le, ([0h1e, 0), (1.4)

where € and n are two positive real parameters, ¢g is a smooth function, and vg is a smooth
divergence free two-dimensional (2D) vector field which depends on a real parameter z.
All along this text, we use the notation, for a function f on R3,

[£1eCen. x3) 2 £ (oap, £03).

Here we are interested in the size of the initial data. We do not intent to solve (INS3D)
for rough initial data, instead we want to exhibit a large class of initial data which
are ‘large’ in the sense that they do not satisfy any previous smallness hypothesis
which ensures global existence of regular solutions. The main theorem of this text is
the following.

Theorem 1.2. Let us consider initial profiles co and vg which are functions and vector
fields in S(R?) such that dthvg = 0 and such that for any z in R and any j in {1, 2}

/RZ co(xn, z)vg(xh, 2)dxp =0 and /1‘@2 Xj60(xn, z)vg(xh, z)dxp = 0. (1.5)

Then there exists two positive constants ng and gy which depend on norms of ¢y and vg
such that if n < no and € < &g, the initial date defined by (1.4) generate a unique global
smooth solution of (INS3D).
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Let us make some comments about this theorem. Slowly varying data has been
introduced by Gallagher and the first author in [7] in the case of homogeneous
incompressible Navier—Stokes equations, i.e., the case when p = 1. The above theorem
is proved in [7] in this case. The motivation of this work was to provide a large
class of examples of initial data which are large (in the homogeneous incompressible
Navier—Stokes, it means essentially that the BO_O{OO norm of the initial data defined by

def LA
lall g1 = suptz|le'all (1.6)
00,00 t>0

is large), which is the case here, because ”[Ug]g”Bo—Oloo has the same size as ||v3||B;c1oo. The
idea of the proof in [7] was to use that homogenéous 2D incompressible Navier—Stokes
equation with initial data v8(~, z) is globally well-posed and then to prove the real solution
was close (in some appropriated way) to [vM].

Slowly varying turns out to be a useful tool to study the set G of initial data in
the space H %(R3) which generates unique global smooth solutions to 3D homogeneous
Navier-Stokes system. Since the work in [21] by Gallagher, Iftimie and Planchon, it is
known that this set is open and connected. In [9], Gallagher and the two authors used
slowing varying initial data to prove that through each point of G passes an uncountable
number of arbitrarily long segments which are included in G.

The study of initial data in the homogeneous case as presented above can be qualified
as ‘well-prepared’ using the language of singular perturbation theory. The ‘ill-prepared’
case has been studied by Gallagher, Paicu and the first author in [8]; they proved that

the initial data
h 1 3
[wple, g[wo]e

generates a unique global smooth solution of the homogeneous incompressible
Navier—Stokes equation when the profile w is a divergence free vector field and which
is small in a Banach space of analytic function with respect to the vertical variable.

Let us see why the result of Theorem 1.2 is in some sense a ‘ill-prepared’ result. In
order to explain this, we recall the precise definition of the Besov norms from [5] for
instance.

Definition 1.1. Let us consider a smooth function ¢ on R, the support of which is included
in [3/4, 8/3] such that

Vr>0, > ¢@77t)=1 and x(1) defy _ > @ 1) € D((0.4/3]).
jez j>0
Let us define
Aja=F Y@@ /Igha). and Sja=F'(xQ7/IEDa).
Let (p,r) bein [1, —}—oo]2 and s in R. We define the Besov norm by

def ;
IICIIIB;J = 127 1A allLr)jlle z)-
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We remark that in the particular case when p = r = 2, the Besov spaces Bls,’r coincides

with the classical homogeneous Sobolev spaces H*.
All the well-posedness results of (INS3D) for small data requires that for p € 11, 6[

< 1L

volell i3 « 1 with or without nll[solell
B . P®3 B,

p.1
One may check the references [1-4, 15-18, 20, 27-29] for details.
Let us also mention that Paicu and the two authors proved this theorem in [10] in the
case when n < &% with o > }t.
Note that a divergence free vector field with the components of which are integrable is
mean free. Thus, Hypothesis (1.5) implies in particular that

Vz e R, fz(l + 150 (xh, 2)) V8 (xn, 2) dxy = 0. (1.7)
R

3
P
P

Let us notice that the hypothesis about the momentum of govg ensures in particular
3

—15 . "
that g()vg belongs to the anisotropic space B, "> (see forthcoming Definition 2.1).
Following observations of the first author and Gallagher in [7], it is easy to prove that

Bl (®%) -
Therefore, the result of Theorem 1.2 is of ‘ill-prepared’ type because of inequality
(1.8), where the norm coincides with the one given by (1.6) in the case when (s, p, r) =
(—1, 00, 00). Yet we do not require any analytic assumption on the initial data.
Let us complete this section by the notations of the paper:
For a < b, we mean that there is a uniform constant C, which may be different on
different lines, such that a < Cb. We denote by (alb);2 the L*(R%) inner product of a
and b. For X, X; Banach spaces, T a positive real number and ¢ in [1, +o0], we denote

1 1
Ilsolell 3 Ze v and |[volell _,3 e 7. (1.8)
p 3 B P(RS)

the norm |- |xnx, def Il-lIx+1-lx, and L%(X) for the set of measurable functions on
[0, T] with values in X, such that t — || f(¢)||x belongs to L4([0, T]). We denote

LELI(LY) = LP([0, TT; L9 Ry, L™ (R,)))

with xp = (x1, x2), and Vi = (9y,, 0x,), Ap = 89%1 + 8)%2. Finally A, stands for Ay +sza§,
Vg for (Vp, €9;), and || f]lx, for the X norm of f in the horizontal variable xy.

2. Structure and main ideas of the proof

Because we shall seemingly consider the density functions as perturbations of the
reference density 1, it is natural to set

el o
p 4o
so that System (INSdD) translates into
ora+u-Va=0,
(INSdD) 8,u+u-Vu—('l+a)(Au—V1'I) =0,
divu = 0,

(a, u)|;=o0 = (ao, uo).
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Even if our main motivation comes from dimension 3, we shall consider this system in
both R? and R3. In dimension 3, we use systematically the notation x = (xp, x3) and x =
(xn, z) in the case when z represents ex3.

For proving Theorem 1.2, we follow the idea of [7], namely, using the fact that the
2D incompressible inhomogeneous Navier—Stokes system is globally well-posed. We shall
construct the approximate solutions of (INS3D) with initial data slowly varying in one
space variable in the following way. Let us denote by (a”, v, IT") the (global) solution of
INS2D with initial data (ao(-, z), vg (-, 2)), that is

aa + " Vha" =0,
du" + o Vo — (1 +a") (Ap" — wIT") =0,

2.1
divy ot = 0, (2.1)
a0 = ao(xn, 2), V=0 = vf(xn, 2),
which can also be equivalently written as
3 p" + 0" Vip" =0,
3 (p"o™) + divp ("0 @ v — AP + Vi IT" = 0, 2.2)
divy o = 0, )
h _ h _.h
P =0 = 1+ng0(xn, 2), v lt=0 = vy(xn, 2),
where ph def ﬁ and ag = —lf%r/. As in [7], we consider ([a"e, [v"]e, [TI],) as the first
order approximation of the solution to (INS3D) and let us write the solution (ae, ue, ﬁg)
as
(@, ue, Te) = ([a"]e, ([W"]e, 0), [T1"]e) + £(be, Re, Te). (2.3)

It is easy to observe that
0 Re +[v"]e - VaRe + Re - V([V"]e, 0) + 6 Re - VR: — (1 +a) (ARe — VITe) = —E,
where the error term E, is given by

_ 1
E, df E([a,vh +0" Vo — (1 +dM (AR = VI, 0)

—e(1+a) ([920M5, 0) — (1 +a5)(0, [3;T1"].) — b ([Apv" — VAT, 0). (2.4)

At this stage, we need to define precisely the norms we shall use to measure the size of
all the terms above. As already commented in the introduction, this point is crucial. Let
us define the anisotropic Besov norms.

Definition 2.1. Let us consider two functions ¢ and x given by Definition 1.1 and let us
define the operators of localization in horizontal and vertical frequencies by

Abag = F- Y@@ *gDa), Aya=F (@7 ¢ha),
Sta = F'(x@¥eha), Sfa=F '@ ).
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Now let us define the norm we are going to use in this text. For p in [1, oo], and (s, s)
in R?, we define
lallgr = 37 2 A AVal L.
(k,0)eZ?
We shall also use the following norm on force f which involves the action of the heat
flow. Let p be in ]3,4[, and T a positive time, we define

t
ENR H / TOA f (' dr! with
0 X(T)
Ilxay C0F0 a0 U 20 +105F) s 120
X(T = -1+2.1 z1 ¢ -1+2. L
LyB,* 7 L3By") LyB,> 7
HIVAL 20 +I5F1 s, for8€10.1-3/pL.
LyBJ'P) rBy T

Let us make some comments about this definition. We first point out that the norms
of By, are homogeneous with respect to the vertical variable. More precisely, we have

s'—1
?lall

”[a]é‘”B.;;s’ ~ e (25)

B.r,s’ .
P
In particular, the norm |- || | 1 is invariant under the vertical dilation.
B P

)4
We now investigate the relation between L! norm in time with value in some anisotropic

Besov spaces and the norm F,(T). For any p in [1, oo], and for any (o, 8) in R? such
that

3 3
ot+,3=—1+;, a§—1+8+; and B <

"BI>—*

then we have
”f“]:p(T) < Ca’ﬁ”f”Ll([O,T];Bi'ﬂ)' (26)

We postpone its proof in the Appendix A.
We also use frequently some law of product in particular (see [10, Lemma 2.3])

1061 o3 ey S Nl 6] (2.7)

where the two sums s1 + s1 and $2 +s2 are positive and s; and s1 (respectively s, and sé)
are less than or equal to 2/p (respectively 1/p).

Now let us analyze the constraints we have for the choice of norms for the different
terms in the external force given by (2.4). For those which are purely of the form [ ],

there is in fact no choice. Indeed, since no positive power of ¢ appears, the choice of norm
1

to the space B:’; is mandatory. This space must be L! in time because we want R, to
be in Lt1 (Lip) due to the control of the transport equation. Then the parabolic scaling
determines the index o of the horizontal regularity. The space must be

L@,

Let us see whether the term [3,I1"], which appears in (2.4) belongs to this space or
not. Let us compute this horizontal pressure. Applying the horizontal divergence to the
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momentum equation of (2.2), we write that
—ARTT" = divy, (3, (p"0™)) + divy, divy ("o @ oM.

Using the fact that v" is divergence free, we infer that for o" def 1,

nh=nf + 0  with

(2.8)
mh € AL dive(3, (") and T E— AL divy diva(p"0" ® oP).

It will be possible to prove that the term [0, 1'[h ]e belongs to LR, B 2) this will be a
consequence of Theorem 4.1 concerning the large time decay estimates of v". On the other
hand, it is not possible to prove that d,I1; belongs to the Besov space Bg’l horizontally.
Indeed, it is equivalent to the fact that a homogeneous Fourier multiplier of order —1
applied to a product belongs to Bol in the horizontal variable The lowest possible

regularity of a product is L'. But the space L! is included in B o in dimension two and
even not in the homogeneous Sobolev space H~2. Tn order to bypass this difficulty, we

introduce a correction term. In order to define it, let us consider the vector field w, (¢, xp, z)

the solution of
= —thl

= —£29. 11! + 0,118, (2.9)

divw, = 0 and  wej=0 = 0.

h
Wy
3
We

Let us introduce the following Ansatz. We search the solution (a, u,, 1:[5) of (INS3D) of
the form

(ae, ue, ﬁe) = ([ah]s, Ug,app> Hs,app) +e(be, Re, Tly)  with (2 10)
def :
(e app- Tesapp) = ([, 0), [MMe) + e ((e[w!e, [w]le). e[MTL1e).
Then (R, VII,) solves the system
0 R+t app - VRe + R - Vg ypp + R - VR — (1 +a.) (AR, — VII,) = —E,,

(INS3D), .
divR, =0 and R.|;— =0.

where the error term E; is given by

def 1
E; = E(atus,app + Ug app - v’/ls,app -1+ as)(Aua,app - VI_Is,app))~ (2-11)

Of course the key point then is the estimate of the error term. Let us analyze it. First
we write that

1
Ee = —([9,0" 40" VIl — (1 + &) (A" — v, TIM),, 0)
£

+ [vh . Vh(swl;, wg) +sw; - V(vh, 0) + 82w8 . V(sw?, wg)](9

—e(1+a) ([97v"s, 0) — be ([Anv" — V4T, 0)
+[3 (ewl, w)) — Ag(ewy, w3) — eV, IT} — (0, 8.11})],
— ag[As(ewf, w}) — (0, . 1T") — eV, I1}]e — (0, [3; [T} ).
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By definition of (a®, v", TT") and (wy, Hé), we can write

4
E; =Y Ef with
(=1
E' € b Wy (ewt, w}) — (0, 3,1} + ewe - V(0" 0) + 2we - V(ewy, w)le, (2.12)
def |
EZ = —e(1+a)([320"];, 0),

E3 % g [A(ewh, wd) — (0, 8.TTh) — eV, I1!],  and

def
E* S b ([Ap" — VyITM,, 0).

Let us remark that the term o" is ubiquitous in the error term E,, even in w,

because I"I}i depends on this vector field v". Thus the property of v" are crucial for
the understanding of the error term E,.

Section 3 is devoted to the systematic study of the time decay of v". This section is
devoted to the 2D case and can be of independent interest. We generalize the decay in
time estimates obtained in the case of homogeneous Navier—Stokes equation by Wiegner
in [33] (see also the works [6, 19, 30, 31] and see [13] for the application of this method to
a singular perturbed 2D Navier—Stokes system). We remark that to obtain this optimal
time decay estimate for v", we need to use a completely new formulation (see (3.22)
below) of the inhomogeneous Navier—Stokes system.

As it can be observed in the term ESZ, we need L! in time estimate of term that involves
second derivative of v with respect to the vertical variable z. This is the purpose of
Theorem 4.1. A first consequence of this study is the following proposition, the proof of
which will be presented in §4.

Proposition 2.1. Under the hypothesis of Theorem 1.2, we have

o™ R R A Ll
2RE:B, ) L2R+:B, %) L'R*:B, %)
+10.0") 33 + 011" 11 <Co
LI(R‘*;B;%) LI(R-#;BZZ'Z)
Here and in all that follows, we always denote Co to be a positive constant which depends
on norms of the profile ¢y and vg of the initial data and which may be changed from line

to line.

The decay estimates of v! obtained in Theorem 4.1 allow to prove the following
proposition.

Proposition 2.2. Let (wg, H;) be the solution of the System (2.9), then we have

ho 3 ho 3
ell(ewg, wy)ll 11 Hliewg, wy)ll 11
LA®R*:BE'?) LAR+:B, %)
h o3 ho3
+ [ Ve(ewe, wo)l 01 T IVelewe, wy)ll < Co.
2RYB, 7

Moreover, for any a in 10, 1[, we have

| Ae(ew?, wd) — eV, 1} 1 < Colo.

LI(R+: B 2)

1,1
LY (RT:B,'?)
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The proof of this proposition is the purpose of Section 5.
Using law of product (2.7), the above two propositions imply that
IE | o1 < Co, (2.13)
LI®R*:B, %)
which is the content of Corollary 5.1.

The two terms E? and E} are of a different nature. They contain of course terms which
are rescaled functions of (a", v", IT") and w, multiplied by the function a,. Their control
demands estimates on the function a.. This requires the following induction hypothesis.

Let p be in ]3,4[ and Rg be a positive real number which will be chosen large enough
later on, we define T, as

SIS

— f
T Youple < T2/IRN 120 VR 21 <TRo (2.14)
LB, ') LiBy")

where T} denotes the life span of the regular solution of (INS3D) associated with the

initial data (1 +n[cole, ([v(})‘]g, 0)). Under the above induction hypothesis, the regularity
of a; is controlled thanks to the following proposition.

Proposition 2.3. Let (uy). be a family of divergence free vector fields and ag a function
in LP with derivatives also in LP. Let us consider the family (ag)e of the solutions to

dras +ue-Va, =0,
tdg T Ug + Vg (2.15)
Ag|t=0 = [aole-
Then for any s in 10,1 —1/p[, we have
l—s—ll] s+117 ! P ’ .
IIae(I)IIBs,% S llaoll, "IVaoll," exp|{ C | Ue(t)dt with
P 0

def 1
Ue(t) = |V (t) | 1o + gnagu‘;(r’)um + e[| Vntd (1) || Lo

Proof. Let us change the variable by defining

~ Z ~ z z

ag(t, xn, 2) ety (t, Xh, —) and  ug(t, xp, 2) e (”2 <t7xh, —) eu’ (t,xh, —)) .

e e €
The transport equation (2.15) becomes
0;ds + U - Vag =0,
dl;=0 = ap.

Let us remark that, because u. is divergence free, we have ||Vig| e ~ Ug(t). It is well
known that isotropic Besov norms with regularity index less than 1 are propagated by the

Lipschitz norm of the convection velocity. More precisely (see for instance Theorem 3.14
of [5]), we have for s in 10, 1 —1/p],

t
lae (Ol 1 < llaoll ;.1 exp <C/ | Vite (£)]| oo dt’)
B 7R3 P(®r3) 0

p.1l : Bp,l

t
< llaoll .1 exp (C / Ug (1) dt’).
B P (R3) 0

p.l
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As we have (see [12, Lemma 4.3] for instance)

l—s—L s+ L

S
lall 1 S llall oo \ and laoll .1 \ Sllaoll, " IIVaoll,”,
B, B, " (R B, " ®%)
the proposition is proved because [la(®)| , 1 ~ @@ , 1. O
B,, p Bp’ p

Under the induction hypothesis (2.14), we have the following corollary.

Corollary 2.1. Let (ag, u,, ﬁg) be a smooth enough solution of (INS3D) on [0, T.[. Then
for any s in 10,1 —1/pl, a constant C exists such that, for any time t less than T,
we have

||aa(l)||BS,% < Conexp(CRo).
P

Proof. In view of (2.10), we have

t t
/ Ue(t') dt’ S/ (V@)oo + 2| Vwe ()| oo + IV R () | ) dF
0 0

which together with Propositions 2.1 and 2.2 ensures that
t
/ Us(t) dt' < Co+ Ro.
0

Then applying Proposition 2.3, we conclude the proof of the corollary. O

With Corollary 2.1, we can establish the estimates of the terms E? and EJ. Indeed for
any p in 13,4(, ¢ € 1p/(p—2).2p/(p— D[ and § in ]1/q —1/p,1=3/p[, so that —1+
3+ 1/p+2/q,1+1/qg—1/p—26 €10, 1[. Then it follows from (2.5) and Lemma 4.1 that

2.h
SH[BZv ]€ ” | ,1+5+§‘,3
)

1-5—1 h
< Ce' o
T P LT

3
— 145+ 2,18
By P

1_1

1,2 .
—l48+ 5+ 2,145 — 5 =8
B P )

1-5—1
< Ce T llo" T
LT q

Applying the law of product (2.7), gives

1-8—1 h
ellacld?o"lell sy <Ce P llasl o N0l i1
el¥z € lT pl+8+1,, s)\ € L%Q pp,p) 4 LIT(Bq1+3+p+q,1+q 7 3)
Therefore, thanks to (4.14) of Lemma 4.3 and Corollary 2.1, we conclude
1-5—1
IEZ  se3 s <Coe "7 exp(CRo). (2.16)
Lp®B, ")

Similarly we deduce from the law of product (2.7) that

llae[Ae(ew?, w?) — (0, 8, TT") — eV, 111, ||

e 1

421
LiB, 7’7

+llo. I

— é L 9
LT<B,7'+”'”>>

<=

<llaell 11 (lAcewd, wd)—eVeIlll 5
LI L@, 77
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which together with Propositions 2.2 and 2.1, and (4.8) ensures that
IEZI .21 < Conexp(CRo). (2.17)
LB, ")

The term E? given by (2.12) is much more difficult to be treated. It is indeed here
that we encounter the difficulty of our method (which originates from the framework of
parabolic system) due to the transport equation. Let us investigate the equation on by,
which is given by (2.3),

ibe + 1t - Vbe + R - V[a"]e + e[we - Va'], =0 with bej,—g = 0. (2.18)

The control of b, is given by the following proposition.

Proposition 2.4. Under the induction hypothesis (2.14), we can decompose by = b, + b,
such that, for any p in 13, 4[, there holds, for any t less than T,

1B 21 < Con(1+Ro)r)>  and (2.19)
B

1Be () lLr < Coe' ™7 (1+Ro)2(1). (2.20)

Let us notice that the norms of b, grows in time. As we need L! in time control on the
remainder term R, it seems a disaster. In fact, it is compensated by the time decay of v"
established in Theorem 4.1 below. The proof of this proposition is the purpose of §6.
Then we can obtain the following estimates for E4 = E+! 4 E}2)

-1
IES < Coe' 7 (1+Ro)%,

7By

<Con(1+Ro) and [EF| s
)

21
+p.p)
T\°p

(2.21)
which is the content of Corollary 6.1.
Now we are in position to solve globally the coupled system (INS3D), with (2.18).
Let us think this system as a perturbation of a semi-linear parabolic system. We first
compute VII,. The point is that the resolution operator of the elliptic system

div((14+a)VII—- f) =0

can be written as
ATl +div(aVIT) = div f

and then dof
(Id—M VI = VA~ divf with M,g = —VA~"div(ag) (2.22)

It is obvious that if a is a bounded function, the operator M, is a bounded linear operator
from (L%2(R9))? into itself and that

[IMaglliz2 < llalizeliglizz-
Thus, if |la||z is less than 1, the operator Id —M, is invertible on (L2(R))?, and
VI = (Id—My)~'vAa~ldivy. (2.23)

This leads to the following definition of the modified Leray projection operator on
divergence free vector field.
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Definition 2.2. Let a be a bounded function with the L® norm of which is less than 1.
We can define the modified Leray projection operator on divergence free vector fields
associated with a (denoted P,) by

Pof € f— 1+ a)1d—My)~ (VA div /).

Let us remark that it is a bounded operator on (L%(R%))? and that if the function a
is identically equal to 0, then the operator P, is the classical Leray projection operator
on divergence free vector fields.

Moreover, in the case when the L® norm of g, is less than 1, the system (INS3D), can
be equivalently reformulated as

{8,R5 — AR = Py, (@ AR — div(ut app ® Re + Re @ tte app + £ Re @ Re) — Ey), (2.24)

divR, =0 and Rg|;—0=0.

We shall conclude the proof of Theorem 1.2 in § 7 by proving that the solution of the
coupled system of equations (2.18) and (2.24) is global provided that n and & are small
enough.

3. Decay estimates for 2D flows

In this section, we investigate the decay properties of the global regular solution
(p, u, VII) of 2D incompressible inhomogeneous Navier—Stokes system (INS2D).
In this section, we use the following notations:

def def def
Eo(t) = Il pu?,,  Ex@) = [Vu®2,,  Ex() S |/pou@®2, +1IVu®)],,

def 3 def .
E3(t) S IVou)|2, + E; )+ ExOIVeOlliw,  Ei = Ei(0), i=0,1,2,3,

C(Ep) is an increasing function of Ej,
a <b= a < C(Ep)b.

Moreover, in this section, we denote by x a generic point of R%. The main result of this
section is the following theorem.

Theorem 3.1. Let us consider the smooth solution (p, u, VIT) of (INS2D) associated with
the initial data (pg, ug). In addition we assume that

def

3 5
Uy = / |x| lug(x)|dx < oo, / pouo(x)dx =0, and - < po(x) < -. (3.1)
R2 R2 4 4
For any T greater than or equal To(po, ug) with
def Uo 2
To(po, uo) = max {E_o IIQolle} ,
we have the following decay property for the total kinetic energy
lu@1?, S Eo(t)7. (3.2)
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For higher order derivatives of u, we get for T large enough,

)

TR
IVu@ll 2+ lu@®llee S Ef ()7 7 3.3

©
=~

1
l3:u ()l 2 + IV u@) 2 + IVITO) | 2 S ES ()77,

-(3)

1 -3
IVou) 2 S Eq(t)r

and ||v3u<r>||Lz+||v2n<t>||Lz<E§<> log(t)r, (3.5

(3-3)
(3-4)
(3.5)
IVu@llze S EﬁEé (t>¥210g7<t>r- (3.6)

Here and in the rest of this section, we always denote (T ) (e + 1) and hr (¢) def h(t/T).

We remark that the decay rate of [lu(¢)|;2 given by (3.2) is optimal even in the case
of classical Navier—Stokes system (see [25, Theorem Al).

3.1. Global energy estimates for the linearized system
Let (p,u, VIT) be a global classical solution of (INS2D). We first consider some
basic energy estimate for linearized equations of 2D inhomogeneous incompressible
Navier—Stokes system

ap+u-Vp =0,

pov+pu-Vv— Av+ VI, = f+ L(t)v,
divu =divv =0,
pli=0 = po, Vl|i=0 = vo.

(LINS2D)

e L2 energy estimate

If the operator L is such that [|L(7)]z2) belongs to L'(R*), then by multiplying

(LINS2D) by the quantity
t
exp (— /O L) 22y dﬂ)

reduces to the case when L(#) is a non-positive operator in the sense that (L(t)v|v),2 is
non-positive. Then the operator L can be ignored in the energy estimates. We assume
this from now on.

We shall assume that all the vector fields and functions are smooth in time with value
in any Sobolev space.

First of all, let us notice that the energy estimate, obtained by taking into account the
fact that the vector field u is divergence free, writes

d
5 77 WAV OIT F Vo172 < (Flo) 2. (3.7)
By integration this gives
1 2 ! N2 l 1 2 ! / l
§||ﬁv(t)||L2+ Vo)l dt" < —||ﬁv(to)||Lz+ (f @) @) 2
1o 0]

f
NG

—||fv(ro)||L2 + /

t
T

I/Bo() 2 de’.
L2
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From this, we deduce that for any non-negative typ and any ¢ greater than #

f

1 ! t 2
SIVBUIE oo g 11 +/ V()72 di" < I/pv(io) 172 +2 (/ ~=() dr’) :
P Vevlly ([to-11:L2) o L2 VP L2 w | /P 2
(3.8)
In particular, since (p, u, VII) is a classical solution of (INS2D), the above argument
leads to
1 ! 1
SIVPu@Ig: + / Va2 dt’ = SIVputo)z, for 0<m <1, (3.9)
Iy
which implies in particular that
'
INTE] ’ 2 2 4
A) ||M([ )”L4 dt Sj ”u”LOO([tOJ];l}) ”VMHLZ([tO,t];Lz) S ”u(to)”LZ' (310)
Moreover, the fact that the vector field u is divergence free implies that
min p(¢, x) = min po(x) and Vp e [l,00], [le@®lr = lloollLr- (3.11)
xeR? xeR?

e The estimates for the first order derivatives

The basic result is the following lemma.

Lemma 3.1. Let p, u, v and f satisfy (LINS2D). Then for any non-negative ty and t
with t greater than or equal to ty, we have,

t
VoI, + / IR )32 + V)7, + IVIT ()13 ,) df’
fo

t
<C (nw(to)niz + / Lf@)72 dt/) exp(Cllu(to)|l}2)- (3.12)
fo

Moreover, some decay on Vv can be obtained through the following inequalities. If s is a
positive real number, we have.

t

OF VU3, + f (Y5 (/P17 + V212, + IVIT, (213 ,) df’

fo

t dt/ t
<C ((zo»nw(ro)niz + / <r/>ST*1||Vv<t’>||227 + / O FACOT dr’)
1 0]

0

x exp(Cllu(to)[}5), (3.13)

and
t
Vv, < C (nv(r/z)niz +1 / , Lf @72 dr’) exp(Cllu(t/2)]},)- (3.14)
t

Proof. Multiplying the momentum part of (LINS2D) by d;v and integrating the resulting
equation over R2, we obtain

1d
Iv/Porvl7, + §E||Vv(t)||iz = —(pu-Vv|d,v) 2+ (f|3,v),2.
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As p lies between 1/2 and 2, we get

3 1d
SIVPORIT: + 5 IVV@ 72 <4l VOOIE: +41f O7:-

It is important now to make precise the idea in the framework of the time evolutionary
Stokes problem, one time derivative of v is equivalent to two space derivatives of v. In
the case of the system (LINS2D), this equivalent inequality is described by the following
lemma.

Lemma 3.2. Let (p, v, VII,) be a solution of (LINS2D). Then we have, for any p in the
interval 11, oo,

IV20llLr + IVITyllLe < CUPILr + [l 72, IVl 2 + 1 £llLr)-
In the case when p equals to 2, we have the opposite inequality
Iv/P3rvll3, < CUVIT, + lullFoIVVlIT2 + 1 £17,).
Proof. Observing that

—Av+ VIl = f—pdv—pu- Vo,

SSE
( ) { divv =0,

we deduce from the classical estimate on Stokes operator that for any p in ]1, oo[

IV 0llr + IV llie < CULf e +1l08vlle + llou - VollLr)
< C(If e + /PO vliLr + lull 20 VO 25) - (3.15)

By using the 2D interpolation inequality that

1 1
lall 2oz < Cpllal2a e IValZ, o, (3.16)

we get

IV20llr + IVITullze < 51V0llze + CULf e + 11000l e + [l 72, IV V] 22).

This proves the first inequality. Because v, is divergence free, we get, by taking the L2
scalar product of d;v with (SSE), that

VP33, = (F13v) 12 + (Av|9v) 12 — (/pu - Vol /pdv) 2
< (ﬁ(nfnu +||Av||Lz)+C||u||L4||Vv||iz||v2v||ﬁz> Iv/Pd;vll 2
Holder inequalities imply that
Ivpvil72 < %nﬁa,vniz +CUIf 17+ IV20l3, + Cllull IVl 21Vl 2).

This leads to the second inequality and the lemma is proved. O
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Continuation of the proof of Lemma 3.1. Applying the above lemma in the case when p
equals to 2, we obtain that

%nwmniz +Ivpavl7, + é(ﬂvzvniz FIVILIT) < CALIT + lullfaIVol3,).
(3.17)
Gronwall lemma implies that, for any non-negative #p and ¢ such that ¢ is greater than
or equal to 1y,

t

V@2, + f

fp
t t

<C (nwao)niz - / LF a3, dt’) exp (C / )54 dt’)
t fo

which together with (3.10) implies (3.12).
Let us prove (3.13). For any s > 0, by multiplying (¢)}. to (3.17), we get

1 1
<||ﬁazv(t’>||iz + Envzv(z/)uiz += ||an(r’)||iz) dr’

d
TUDTIVVOIZ) + 07 (VP332 + IVl + VT IZ2)
1
< CUNTIf g2 + Nl (T IVVIZ2 + = 07 Hvol2,).
Applying Gronwall’s lemma and using (3.10) leads to (3.13).

Similarly from inequality (3.17), we deduce that for any non-negative 7y and ¢ such
that ¢ is greater than or equal to 1y,

d \v4 2 — |V 2 d \v4 2
(=) VvOIZ) = IVVOI7, + ¢ = 10) I Vv@) 7,
SV + =) FON72 + @] = 1) [ VD7

Applying Gronwall’s inequality yields
t t
t—1)IVv®I3, < / (Vo2 + (' — 1) £ ()17,) dt’ exp (c / ()11} 4 dt/) :
fo 0]

which together with the energy estimate on v, namely inequality (3.8), ensures

t 2 t
(t =) IVo®2, < <||v(to>||iz+( / £ @) 2 d;/) + / @ — )l FE)I2, dt/>
140 fo

t
X exp (cf ()1} dt’) .
fo

Taking 79 equal to t/2 in the above inequality gives

t t
HIVv@ 12, S (||v<r/2>||iz +1 f , LF I3 dt/) exp (C / B ()1} dr’).
t t

This together with (3.10) concludes the proof of (3.14). O
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3.2. Sharp L? decay estimates

The purpose of this subsection is to prove the following proposition.

Proposition 3.1. Let Ty(pg, ug) be given by Theorem 3.1 and Ti(po, uo) def max{Tp,
Eo/E1}. Then under the assumptions of Theorem 3.1, there holds (3.2) for T > Ty. And
for T > Ty, we have following decay estimate

IVu@3, S Ei()y. (3.18)

Proof. It is based on the method introduced by Wiegner in [33] in order to study the
decay of the energy of the classical Navier-Stokes system in two space dimension (see
also [30, 31]). The idea is to use a cutoff in the frequency space adapted to time. More
precisely, let us consider a positive constant T (which can be understood as a scaling
parameter which has the dimension of time), and g any positive real function defined
on RT such that ot
g2 (1) <3(r)™' with () € (e+1). (3.19)
Let us define
def def _ ~
Sr() S (€ e R VTIEI < V2gr() and w() S F~' (L5, 0(1)). (3.20)

Here we adapt this method to the inhomogeneous case through the following lemma.
Lemma 3.3. Let (p, u, v) solve (LINS2D). Then we have

1d 1 2
5 77 VPP O + =87 OIVPv®l72 < 27 Ol @172 + (f O v®) 2.

Proof. As v(t) —v,(t) and vy (¢) are orthogonal in all Sobolev spaces, we get in particular
that
Vo)1, = Vo ()15 + [V @) — v (D)2,

By definition of S7(¢) and again by the orthogonality between v(z) — v, (¢) and v,(t), we
get

2
IV@® =072 > Ze7 @@ = w®lZ

2, 2, 2
> Tgr(t)llv(l)lle TgT(I)HUb(I)HLz-

As p(t, x) is less than or equal to 2, the energy estimate (3.7) implies the lemma. O

The interest of this lemma is that the term on the left is typically a term that creates
decay. Of course, the control of the term v, associated with (very) low frequencies is the
term that tends to prevent the decay. It must be estimated in a careful way. Writing a
general theory with external force seems too ambitious. We are going to restrict ourselves
to two cases: the case when u = v and f = 0, namely, the case of solution of (INS2D),
and later on the case of a family of solution v"(-, z) of (INS2D) where z is a real parameter
and then v represents derivatives of v(-, z) with respect to the parameter z (see [14, §§4
and 5] for details).
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Lemma 3.4. Under the hypothesis of Proposition 3.1, we have, for any T greater than or
equal to Ty,

1 _
lus Iz, < 7 IVPuOIT: + CEG()7?
6 ! / dt’ ? 4 ! N dr' ?
+Cgr (1) A Iv/pou(t Ne2= | +Cer(®) A IV/pou(t 27 ) -
Proof. It relies on the rewriting of the momentum equation of (INS2D) as
d;u — Au+ VI = —0,(ou) — div(pu Q u). (3.21)

If P denotes the Leray projection on divergence free vector fields on R?, the above relation
writes in term of Fourier transform

t
Q&) = e Py E) — / e EP Y, FPou) (', £) dt’
0

t
B / e~ =R FP(div(pu @ u))(r', £) dt .
0

By integration by parts in time, we get that

t
/ e~ =ER Y FPou) (', &) di’ = FP(ou)(t, £)
0

t
_ e_tlg‘zm(Qouo)(%') _ /(; g_(t_t/)lglz|§|2.7:P(Qu)(f/, &) dr'.

Let us notice that in the integral term, we exchange one time derivative for two space
derivatives. This gives the following key formula

t
Q. &) = e &’ FP(pouo) (&) — FP(ou)(1. &) + /0 e ER |1 REPou) (¢, ) i’

t
_/ =P FP(diviou @ w)(¢'. £) i’ (3.22)
0

Because P decreases the modulus of the Fourier transform, we get for any ¢ and &,

i, €)1 < 2e72EF | Fpouo) €) 2 + 2| Fou) (1, €)1

t 2 t 2
+2/g* ( fo |f<gu>(r/,5)|dﬂ) +2/¢? ( fo |.7-'(pu®u)(t/,§)|dt’> . (3.23)

To estimate ||up(¢)]|;2, we have to integrate the above inequality over St (¢). In order to
do it, we make pointwise estimates in the Fourier variable.

First, let us observe that ug and thus poug belongs to L'(R?, |x|dx). Because of the
fact that pguo is mean free, we infer that

|F (pouo) (§)] < 1&] | De F (pouo)llL> < |§] /ZPO(X)|MO(X)| x| dx.
R
By integration on S7(z), this gives, because T is greater than Ty and g2(r) < 3(z)~!,

/S ()Hf'g P I F (oouo) ©) 2 dt < E2()72. (3.24)
T
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Let us observe that, thanks to (3.11), we get, for T greater than or equal to Tp

|F ), &) < o)l 2llu@)l 2
1
< llooll 2 lu@)ll 2 < T lu (@)l 2

From this, we infer that,

t 2 t N 2
dt
/ BE ( / Flou)(t', £)] dr’) d& < g8.0) ( / ||ﬁu(z’)||L27) . (3.25)
St(t) 0 0
Along the same lines, we get that

\Flou@u)(t', &) S l/pu)?,.
Thus we get
5 ¢ 2 4 t , dr’ 2
/ H / |F(ou@u)(t', &)|dt" ) d& < g7(1) / IVou)3,— ) . (3.26)

St (1) 0 0 T
Because of the hypothesis on pg, we obviously have

/S ()2|f(eu><t,s>|2ds < 4@m)’lleliellvou®l7,

Tt

1
< 4@m) ool lvAumiz: < @M VPu® |7,
Together with estimates (3.24)—(3.26), we achieve the proof of the lemma. O
Continuation of the proof of Proposition 3.1. The above lemmas give immediately that

d 1 1 1 ' dr'\?
TIVPHOIT: + e OV, S ZEj0)7” + —87(0) ( /0 ||ﬁu(r/)||L27’)

1 6 ' N2 dr’ ?
s ([1vmanT) . e

Let us define

T
G(r) Yexp (/ g()) dﬂ). (3.28)
0
The above formula writes after integration

2 L SN

IVou®ll;.Grt) — Ey < EO/O () GT(t)7
! a ar"\’ ar’
+ / gHHGr () (/ ”\/EM(IH)HLQT> T

0 0

t , . ' , dt’
+/O gh )GT(I)</O I/pult ”'izT) T (329)
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Now we iterate this inequality several times to get the final decay estimates of u given
by Proposition 3.1. Let us first choose the function g as
¢*(v) =3((r)log(r))~! which gives G(t) = log’(1).
Using that IIN/ﬁu(t)Ili2 is less than or equal to the initial energy Ey, inequality (3.29)

writes
2 1.3 1df
IVou® ;. log’(t)r — Eo S Eo(l+ Ep)
< Eo(1+ Ep) log( )T-
We deduce that
I/Au@?; log? ()7 S Eo(1+ Eo). (3.30)

Now let us plug this estimate into inequality (3.29) with the choice g%(t) = (r)~!, which
gives G(t) = (r). This leads to

’ 2
t _ dt/ t _ t d[// d[/
Iv/Pu®3,(t)r — Eo S Eé/ (W)= /<;/>T3 (f ||ﬁu(t’/)||Lz7> -
0 0 0

t ' ” t// dt/
+/0<r )72 (/0 Iu2, ) =

Let us define V (¢) def supt/gt(”\/_u(t’)ll2 (t"Y7). We get

t
V() - Ey < E§f<> 240 +(1+E0)/ P H OV i
0

T | 2
H(7) g (/ ()72 log_l(t’)dr’) .
0

As we have that H(t) < 14 ()7 log=%(r)7, the function (t’)}zHT(t’) is integrable and
then Gronwall lemma gives

IV/ouI72(t)r < C(Eo)Eo.

Let us plug this estimate into (3.29) and choose g%(7) = 2(r)~! which gives G(z) = (1)
We infer that

t _ dt/ t _ dt/
IV/ou®?,(t)7 — Eo < Ej /0 <r’>T17 +C(Eo) Eo /0 <r’>Tllog2<r’>T7

< C(Eo)Eolog*(1)r.
Finally resuming the above estimate into (3.29) once again with the choice g?(r) =
a(t)~!, for a €12, 3[ gives G(t) = (7)¥ and

t B dt/ t o
Iv/pu® 30§ — Eo < E} /O ()77 = +C(E) Eo /0 (t)5 o (1) 1 —

dtr’
7

t
+C(Eo)Eo /0 ()37 1og%(t') 7

which implies the estimate (3.2).
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Let us prove (3.18). Applying (3.14) with v =u and f =0, and inequality (3.2), we
get
HVu®)7, < lu@/207, < Eolt)z”
which write, in the case when T is greater than T,
T 2

EoT 5 _ _
IIVu(t)IILz S 77( )7 NE1?(t)T

Moreover, inequality (3.12) implies that ||Vu(#)|;2 < ||Vuo||i2 which proves (3.18). O

3.3. Decay estimates for the second and third derivatives of u

The main idea which seems to be the simplest one at the first glance consists in the
differentiation of the momentum equation of (INS2D) with respect to the space variables
and then trying to apply result of the previous subsections. However, for this particular
system, this quite natural idea fails. The reason is due to the fact that term of the
type Vyp will appear in this process. Their control demands a control of the norm which
is L' in time with value in Lip in space for the vector field u. This control cannot be
assumed and has to be proved. The main idea to overcome this difficulty consists in
differentiating the momentum equation of (INS2D) with respect to the time variable. As
shown by Lemma 3.2, this represents the estimate of the second space derivatives of u.
All the results of this subsection relies on the following lemma.

Lemma 3.5. Let (p, u, v) solve (LINS2D). Then we have, for any positive constant T,

3
EEII\/E O+ ZIIszIIiz < (filv) 2 + CFL 7 @@)I/pv ()72 + CFy 7 (u(@), v(1))

1 1 1 1
+cnwt(r)nzz||Vu,<r)||§2||Vv<t)||Lz||ﬁv,<r)|| NG
with
def 1
Fi7(u) = ||u||‘;4+7||u||iz||vzu||iz and

def
Fy7(u,v) = [Vul 2| V2ull 21Vl 2 V20l 2+ Cllal 219011 [ V2ul 7o + TVl 7.
Before applying and then proving this lemma, let us make some comments about it.
First of all, the parameter T is a scaling parameter, the role of which will appear in a
while. Inequalities (3.10) and (3.12) imply that, for any positive ¢,

o0 IVu()|?
/ R o) di < ol + ——L
t

In the same spirit, it can easily be inferred that, for any positive ¢,

C(Eo). (3.31)

o
/ Fy 7 (u(), v(t")) dt’” < [[Vull poo .o 22 V20l 121 c0[xR2)
t

2
X VUl oo (gr,00r:22) IV 7V L2 (11 00[ xR2)
2 2. 112
+ Cllell oo 1,001 .2 IV VI 00 17.00p: 22y IV T8N 2 11 00 xR2)
2
+T“V U||L2([t oo[xR2)"
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Inequality (3.12) implies that for any positive ¢,
> 2 > 2
/ Fo (') o) di’ < (uwanz + / 12 dr’)
' '

) (IVu@12, + luOll 2 IVu@ 12, + 7). (3.32)

Let us establish now the following corollary.

Corollary 3.1. Let (p, u, VII) be a smooth enough solution of (INS2D), then we have for
any positive ty and any t greater than or equal to ty,

t
/o (DN + IV2u@ll7, + IVIT@) 13, + / IVu ()13, dt’ < Ea(to).
fp
Proof. Let us apply Lemma 3.5 with u = v and f = 0. This gives

1d 3
5 77 IWPH DIz + IV Ol < CFRLT@®) VP72 + CF 7 (@), ()
+ CIVu ) 21V [ 21l ot (1) 2

Using the convexity inequality, this gives
d ~
VPOl +IVuelze S Frr @)l O + Fa.r (), u(®) (3.33)

with FLT(w) def Fy 7 (w) + ||Vw||iz. Then Gronwall lemma implies that for any
positive fp and any ¢ greater than or equal to fg,

t o0
NG AT (nﬁut(m)niﬁ / F2,T<u<r’>,u<r’>>dr/)
o 4]

X exp (/00 FI,T(u(I’)) dt’) .
0]

Inequalities (3.9), (3.31) and (3.32) applied with u = v gives
t
Iour N+ [ IVu ()l dt’

fo

< (Ipur )72 + (1 + uo) | ) Vo) 17 (Vo)1 + 7))

[ Vu(to) |12
X exp (C (II«/FM(fo)Iliz + llu(ro) 12 + #C(Eo)>> :

Choosing T = ||Vu(t0)||i2 ensures
t
Iv/pus (D117, + f IV ()17, dt’ S Ea(to),
fo
which together with the first inequality of Lemma 3.2 implies

1
IV2u@ll2 + IV 2 S s O]l g2 + @ 21 Vu@) 72 S E3 (o).

This finishes the proof of the corollary. O
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Proof of Lemma 3.5. By applying 9; to the momentum part of (LINS2D), we obtain

~ . ~ def
po:vy + pu - Vo — Avy + Vo I1, = f;  with f; = —prvr — prt - VU — puy - Vo + fr.

(3.34)

Now let us observe that as p is transported by the flow of u, we have p, = —div(pu).

Thus the new external force becomes
fi = div(pu)v; + div(pu)u - Vo — puy - Vo + f;.

Applying the basic energy estimate (3.7), we get

1d ~
5 77 IWPUlI L + 1V uilz, = (filv) 2.

The key point consists in estimating the term (ﬁlvt) 12 It follows by integration by

parts that
(filv)2 = (filv) 2 + Y5, &) with

&1 ¥ “20pu- Vv 2
&) L —(p(u- Vi) - Volv),2
&0 L —(pweu) : V2o,
E4(1) def —(pu-Vulu-Vu);2 and
Es(t) L' —(pu, - Volvr) 2.

By using the 2D interpolation inequality (3.16), we get

&Y S Nl oVl g2 llvell s
3 |
3 2 2 4 2
SV Ll palivell 7, < €Vl + Cellullallvelly
Using again 2D interpolation inequality (3.16) yields
1E2(O] < NullgaIVull g4IVl galloell g4

1 1 1 1 1 1
I R : :
S IVl 192l 2 1Vl V2012 el 125 190 .

Holder inequality implies that

E(t) < ellVurlZ, + Cellull}allvell3 2 + Cell Vull 2 1V2ull 21 Voll 2 V2] 2.

Using the 2D interpolation inequality

1 1
, .
lall o) S lallZ g 1924l g

we get

2 o2
1E3(O] < Nullzoc IVl llvell 2

(3.35)

(3.36)

(3.37)

(3.38)

1
SVl 2 llull 21Vl 2 vl 2 S TV 02, + ;nuuiz||v2u||iz||v,||iz. (3.39)
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Similarly using again 2D interpolation inequality (3.38), we get
€40 < NulFeo IVl 21 Vel 2
< €| Vurll2, + Cellull 2, 1 V2ull3, [ Voll3 . (3.40)

In order to estimate &, we use (3.16) which gives

1 1 1 1
1Es(D] S MV O IV DN L IVoO 2l oD I our -
Together with inequalities (3.36)—(3.40), this yields Lemma 3.5. O

Now let us investigate the decay properties of the second order space derivatives or of
one time derivative of u. They are described by the following proposition.

Proposition 3.2. For any T greater than or equal to T>(po, uo) def max{T, E2/E1} and
under the assumptions of Theorem 3.1, inequality (3.4) holds.

Proof. We follow the same lines as the proof of inequality (3.14) with the following
computations. Using relation (3.33), we get that for any positive fy and ¢ such that 7 is
greater than or equal to 1y,

d
(=10 /P (Ol72) + (¢ = 10) | Va7
S VPO, + Fi () (t — t0) |/t (D115 + (¢ — 10) Fo, 7 (u(2), u(t)).

Gronwall lemma along with (3.9) and (3.31) implies that

t t
(t —to) /s (DIl7, < ( f I/pur ()13, dt’ + / (t/—zo)Fz,ﬂu(/),u(r/))dr/)
to ]

||Vu<to>||iz>

- (3.41)

X exp (nﬁm(to)niz + lluto)l}, +
It follows from (3.32) that

t t
/ (" —to) P (u(t'), u(t')) dt’ < t / B r(u(t'), ut")) dt’
1) 1

0
S (Vo) 172 + DI Vulto) 7 2.
Resuming the above estimates into (3.41) and choosing T = ||Vu(t0)||i2 yields
(t — 1) /s D72 S IVulto)ll2 + [ Vulto)ll; 2.

Taking 7y equals to % in the above inequality, then inequality (3.18) of Proposition 3.1
ensures that

T1 _
IVPu OIZ: S Ev—— (07" + EF(0)7°.
Using Corollary 3.1, we infer that for r > T

Vo (O3, S (Ex+ EF + E1/T)t) " < Ex(t)7*. (3.42)
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While it follows from Lemma 3.2 that
IV2u@)ll 2 + IVIIOll 2 S llue (@)1l 2 + ||u(l)||L2||Vu(l)||iz,

which together with inequalities (3.2), (3.18) and (3.42) leads to inequality (3.4). The
proposition is proved. O

Corollary 3.2. Under the assumptions of Theorem 3.1, we have

e < EZEF (172 and (3.43)

/t T IVa@ e dt’ < VEDHNT + (VBT 072 (3.44)

Moreover, we have the following estimates on the density. For any p in [2, 00], we have
IVo@liLr < IVpollzr. (3.45)

o le < 1Vpole B EZ 077, (3.46)

192002 S 19200l + IV 0l EST  and (3.47)

Vo)l 2 S (Eé IV2poll 2 + IIVpolle(EQ% T+ EI%))(H;(%)- (3.48)

Proof. Inequality (3.43) follows directly from inequalities (3.2) and (3.4) and from the
interpolation inequality (3.38). By using 2D interpolation inequality, we get, by applying
Lemma 3.2 with p equal to 4, that

1 1
IVu@llz= < CIVa@ 2 1v2u@)])2,
1 1 1
< CIVuOZ, (e}, + Cllull s 1Vu(@)113,).

3

1 3
Using that ()]s < Clu()ll Va5, we infer that

1 1 1 1 3 1 1
IVu@lize < CUVuO I IV @1 1o IV ul ) + CIVa@ 12 e 1V @) .

Applying Holder inequality with respectively (%, %, %) and (%, 4—1‘) gives
1

00 [’} % 00 %
/ IVu() Lo dt’ S </ IIVu(t/)Iliz dt/) </ lu() 2 1 V2u ) 2 dt/)
t t t

00 5 % 00 2 1 1 % 00 5 g
+( / ||wa/)||L2d/) ( / v u(/)||;2||ﬁu,</)||;2d/> ( / ||vm(/)||L2dz/) ,
t t t

which together with (3.9), (3.2)—(3.4) and Corollary 3.1 ensures (3.44).
Inequality (3.45) comes simply from the density equation after differentiation which is

Vp+u-VVp=—-Vu-Vp. (3.49)
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Gronwall lemma and (3.44) allows to conclude the L? estimate for Vp. For the inequality
on py, let us observe that, thanks to inequalities (3.43) and (3.45), the transport equation
implies that,
1 1 3
Lot =3
lo:llr < lu@llzelIVo®liLe SIVeollLr Eg Ey (t)y 2,

which is exactly the required inequality. In order to prove inequality (3.47), let us
differentiate twice the transport equation which gives

00j0kp+u-Vojdp =—0ku-Vojp—0ju-Vorp—09;0u-Vp. (3.50)
Let us observe that
1ku(t) - VI p)l 2 < IVu@ L=V p(@®)l2  and
19;0ku(6) - Vo)l 2 < [IVu@ | 2V 2.
so that we obtain
%nvzpumz L2Vu® =V o0l 2 + 1 V2u@ | 211V p () 2. (351)
Gronwall lemma along with Proposition 3.2 gives inequality (3.47). Finally it follows
from inequality (3.49) that
IVl 2 < Nu@ oI V2@ 2 + I Vu@) [ 21V p (@) | L2
Then inequality (3.48) follows from inequalities (3.43), (3.47) and (3.18). O

Let us remark that before inequality (3.45), we never use any regularity property for
the density p. From now on, we shall do it in order to estimate the third derivatives of
the velocity field.

Proposition 3.3. For any T greater than or equal to T3(pg, uo) def max{T», E»/E3}, we
have under the assumptions of Theorem 3.1,

o
IVu O3> + f Ul (132 + IV2u O, + IVETIE) 13 ,) di S Es(t)y, (3.52)
t
and for any non-negative ty and any t = ty,

t
/ W) Qe 125+ 1V2u ()12, + IV ITE)2,) de’ S (14 T)(1+ [V poll2oe) Es.
I

0
(3.53)
Here and in all that follows, a_ denotes any number strictly less than a.

Proof. Relation (3.34) applies with v = u and f = 0 claims exactly that u, is a solution
of (LINS2D) with the external force

deef —pety — peut - Vu — puy - Vu,

In order to apply Lemma 3.1, we have to estimate ||f(t)|| 12. Holder inequality and
interpolation inequality allow to write

212 2 2 2 2 2 2 2
1F1l72 < 2loelizoo luelly 4 2l o Iz oo lullpoo IVl 2 4 4luell 74 | Vaelly 4
L L L L L

2 2 2 2 2 2
S loelzeolluelly s + oo lullpeo IVl + IVuell 2 lluell 2 1V 7wl 2 | Vel 2.
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Using Corollary 3.2 and Proposition 3.2, we get

~ 1
LFO132 S 1Veoll7e E2 ()7 lur (D117 2
1V ool 7o E2 ()7 NVU @12 + Eo ()7 I Vur (Ol 21 V@)l 2. (3.54)

Cauchy—Schwarz inequality gives
L F A2 2 3 3 [ 2
/ IF @72 dt" S IVeolize E5 (to) 7 / lluee (£)1172 dt’
o Ip

t
+ IV ol 0 Ea(t0) 7° / IVuh|3, dt’
fo

1 1
t 2 t 2
T Ealio) 7 (/ ||Vut<r’>||izdr’> ( / ||Vu(r’>||izdt’) .
to to

Applying (3.12) and Corollary 3.1 leads to

P 1 1 3

/, IFOI22de < (IVpollie EZ (E1+ EZ) + EZ)(10)7° < E3to)7°. (3.55)

0

Applying again (3.12) gives
o0
IVu (D117, + f Ut 72 4+ 1Vu ()1 + IV T ,) di’
0]

o
S IVu )7, + / IFa3, dr'. (3.56)

fo

In particular, (3.55) and (3.56) ensure that
IVu 03, < Es. (3.57)
While it follows from (3.14) and (3.55) that
2 2 X F 2
tHVu, DOl ||14z(t/2)||Lz"H//2 £ @2 dr’
t
< Ea(ng’ + Est(ng®,

which together with (3.57) implies that if T greater than or equal to E»/E3

IVu ()1, < max(Es, E2/T)(t)7 + E3(t);° < Es(t)>.
Resuming the above estimate and (3.55) into (3.56) gives

* 2 2 2 2 5

/ e (2 + 12 (2 + VT2 di’ S Esr)7.
1

This proves inequality (3.52). (3.52) together with (3.54) implies that

IFO12, S A+1Vpoli=)Esit)y .
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In order to prove (3.53), we apply (3.13) for any s less than 5 and v equal to u; to get

t
5_ 5_
7 IVur (D7, + / (7 N O3+ 1V ()17, + IV TTE13,) di’
fo

!/

t ~ t dt
< (0)3 Vs ()12, + / 3 IO, d + / O I35
]

fo

which together with the fact that

t
/ W IF@IRdr’ S (1 + IV pol ) EsT  and
I

0
t /! t /!
4. dt _.dt
/ ')y IIVMt(t/)IIiz— S E3/ (g " — S Es
to r fp
leads to estimate (3.53). This completes the proof of the proposition. O
Now let us translate the control of ||Vu,(#)| ;2 in term of control of ||V3u(t)||L2.

Proposition 3.4. Under the hypothesis of Theorem 3.1, for any T > T3(pg, ug), we have
IV u®7, + IVIO N7, S A+ ||Vpo||Lz>E3<r>*5 log*(t)r and (3.58)

Log 2
IVu@ e S A+11Vpoll2)3 E} E (7 10g2( )T (3.59)

Proof. By differentiation of the momentum equation of (INS2D) with respect to the
space variables, we get, by using Leibniz formula, that

Adju —9;VIl = pdjus +0jpur+0jpu-Vu+p0dju-Vu+ pu-Voju.
Applying Lemma 3.2 with v = d;u and f =djpu; +9djpu-Vu+pd;u-Vu gives
1A ul 2+ 118, VIl 2 < CUVuell g2+ 1 Fllg2 + lull a1 V20l 2).

In view of Propositions 3.1 and 3.3, we infer that

1

1 ) 11 _(2)
[Adju )|l 2 + 119, VIT() || 2 S E5 (t ) +E2E2(I)T THIfO 2

S E3 () 2 If Ol (3.60)

Let us estimate || f(¢)]; 2. We write that

19jpu-Vullpz < IVellrellullzelVull2  and
lp dju - Vull g2 < llpllzlVull 2] V2ul 2.

Applying Propositions 3.1 and 3.3, we infer that

L1 L1
lj0u-Vull2+llpdju-Vul2 < (Vpoll~Ef Ef +E{ E3) 07

~
1

S EF g (3.61)
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The linear term 9;pu; is more delicate to estimate. Let us write that, using Holder
inequality and interpolation inequality, for any € in ]0, 1,

1800l < IVl 2 Nl 2
C _
< z”VP”L&||ut||€Lz||vut”1LzE~
Using Propositions 3.2 and 3.3, and estimates (3.45), we get that, for any € in 10, 1[,

€ le -3 £
100 usllz2 < (IVpollz E)I(IVp0ll72E3) 2 (872 X pars
By convexity inequality we get that for any € in ]0, 1[,
€ 1—€ 1 1 1
(IVooll i EDZ(IVP0l32E3) T < IVpollL~E; + Vool 2E3 < (1+[IVpoll2)EZ.

Thus, for any € in ]0, 1,

-3
2

: 1
19jpurll 2 S A+ 11Vpoll2)ES (1) 7 % ) (3.62)

~ ol

Choosing € equal to logf1 (t)7 in (3.62), and then substituting the resulting inequality
and inequality (3.61) into (3.60) leads to (3.58).

Finally (3.59) follows from interpolation inequality (3.38), and (3.18), (3.58). This
finishes the proof of Proposition 3.4. O

By summarizing Propositions 3.1, 3.2, 3.3 and 3.4, we conclude the proof of
Theorem 3.1.

3.4. Decay of solutions to (2.2)
Applying Theorem 3.1 to the System (2.2) leads to the following theorem:

Theorem 3.2. Let (oM, v", ViII") be the smooth solution of (2.2). Then wunder the
assumptions of Theorem 1.2, we have

3
(10" Dl + 02 AV @ D2 + 10" D)
H 2 - 2Dz + IV @ Dl + VAT - 2 2)
3 100! 3,h 217h
+ (03 log” () (IVp" (1, - Dl 2 + IR (2, - 2 2)

S 1
OV (@ )2 + (1) log 2 ()| V"2, . D) g < Cohz),  (3.63)

and
/m t<t/>§*(||a,2vh</)||§ﬁ HIVRU 72 + Va0 ()72 di S Coh* (2). (3.64)
We also have
IV Dl g2y < Coh(z)  and (3.65)
l" @+ Dll s + 03 llpr e, Dy < Conh(2). (3.66)
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Here and in what follows, we always denote o" df p" —1 and h(z) to be a generic positive
function which belongs to L% NLYF.

Proof. (3.63) and (3.64) follows directly from Theorem 3.1 and (3.53). In order to prove
(3.65), we get, by applying (3.63) and [5, Theorem 3.14], that

t
lo@ N oo p13) < Nloll 3 exp (C/O ”thh(t/)”[-[}% dt/) < Conh (z). (3.67)

Whereas we deduce from the momentum equation of (2.2) and the classical estimates on
Stokes operator that

V0" Ol 2 + VR @l 2 < 1V "M @)l 2 + VR (0" - Vi) (O]l 2.
which together with (3.63) and (3.67) ensures that
—(3
VR Ol 2 + IR ()] 2 < Coh(2) (1) (3 4 195" 80" )1l 2 + 175 0" @ 2)-

(3.68)
Note that for any € in ]0, 1[, we have

2 h h 2 h h
IVie oo 2 S VRl 2 Nl 2
h th—e th

1
< _ 3 hje 2 hl—e hye hjl—e
N €||Vh,0 ||Lﬁ||Vh;0 ”Lﬁ ll0:v ||Lﬁ||Vh31U ”Lﬁ :
Applying (3.63), (3.67) and using a similar derivation of (3.62) gives

3
2

Vg "8 )]l 2 < con@ 3 ogin).

Resuming the above estimate into (3.68) and using (3.64), we infer (3.65).
With (3.63) and (3.65), we deduce from [5, Theorem 3.14] that

t
0" | 2o g2y < llooll a exp (c fo V0" () dr/) < Conh(2). (3.69)

Then by taking one more horizontal derivative to (3.50) and using (3.63) and (3.69), we
get

Vi3 Dl 2 < 10 Ollege VA Ol 2 + 31900 Ol e I V32" (O]l 2
+3IVRo" Ol 2 IR Ol + 1V Ol 21 Va" @)l e
-(3)
< Conh(@)()\?/.
This together with (3.46) and (3.69) ensures (3.66). This finishes the proof of Theorem 3.2.
O
4. Estimates of v" in terms of anisotropic Besov norms

In general, we have the following theorem concerning the decay estimates of solutions
to (2.2), namely, (vah, Bfl'[h), for € = 1,2, share the same decay properties as (v", IT")
itself.
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Theorem 4.1. Under the assumptions of Theorem 1.2, System (2.2) has a unique global
solution (ph, o, Vi IT?) so that there hold

2
3
> (1850, 2l + 0 AIVRO - D2 + 10507, D o)
=0
H2 A0 @ D2 + VROV E, - g2 + V0TI, -, 2 2)
3 —
+{0)2 log ™ () IV (¢, -, D)l 2 + I VFO T, -, 2 2)
5 1
+ (O3 NVROLP (- Dl + (02 Tog 2 (DI Vadlo (1, - Dllae ) < Coh@), (4.1)

and
2t
> fo ('Y (U070 (W12 + V300 (7 + IV AT di' < Coh? (D). (4.2)
=0

We also have
10"t - D)l gt + 102Gt - D g3 + 105t -, Dl g2
3
2PN D g3 + 10000, Dl g2 + 192000 D 1) < Conh2). (4.3)

Let us remark that: except cumbersome calculations, the proof of the above theorem
for the case: £ = 1,2, follows exactly the same line as that of Theorem 3.1. For a clear
presentation, we choose to skip the details here. Instead we just outline the proof for the

case when £ = 1 (one may check [14, §§4 and 5] for details).
def

In view of (2.2), the quantity (p?, vlz‘, HIZ‘) = (9.p", 8.v", 8.TT") satisfies the system in
Rt x R?
3 P! + v V!t = —vlt . vy o,
B3 vl + phoh . vyl — Avh + VI = £ + L()o,
(DIINS2D) P %P Bbz ~ 20T Thi AFLOvE
divpy] =0,
(02, ¥))li=0 = (19250, 3 V).
fi= —,oilvi1 — p?vh Vpo" and L(Hw def —,ohw - Vo

The external force f contains term with ,o?. We want of course global estimate. But
the control of L? norm of ,o? demands the control of v? in LY(R*; L) which will be
proved at the end. Thus we argue with a continuation argument. More precisely, we shall
first prove the decay estimates for v? that are valid for 7 less than 7} defined by

def
T7 = sup(t / 103 ooy 22nzze) < 1 (44)

The first step of the study is the proof that 8.v" has the same decay property as v for
the L% norm, namely,

||v?(t)||iﬁ < Coh?(2)(t)™% fort < T} (4.5)
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As in the proof of Proposition 3.1, the main idea to prove (4.5) is still based on Wiegner’s
approach in [33]. We first notice that

L@ £z < 2NV @2 (4.6)

Thus thanks to (3.63), ||L(t)||£(Lﬁ) is integrable on R*. According to the remark at the
beginning of § 3.1, we introduce

def !
(1) S (1) exp (—/ L") oo dﬂ).
0

Then the energy estimate (3.7) applied to the System (D1INS2D) gives
1d

h ~]
5 27 WP B OIL: + IVRTZ I < (A1) 2.

Then the key point of the proof will be again the estimate of IIT)?’b(t)ll 12 which needs
the decay estimate (3.63) and the differentiated Identity of (3.22) with respect to the
parameter z.

With (4.5), we apply energy estimates of §3.1 to get the decay of higher order
derivatives of v?, which implies that 7| given by relation (4.4) equals to oo, and there
hold (4.1) and (4.2) for £ = 1. Then as in the proof of (3.66), we can use [5, Theorem 3.14]
to prove

3
10t D)l + 0 213080, -, D) 2 < Conh(). (47)
This leads to Theorem 4.1 for £ = 1.
Now we shall transform the above decay estimates of ! to the L! or L? in time

estimate of the Besov norms to v". For the convenience of the readers, we recall the
following anisotropic Bernstein type lemma from [11, 26]:

Lemma 4.1. Let By (respectively By ) a ball olez1 (respectively Ry ), and Cy, (respectively Cy)
a ring of Rﬁ (respectively Ry ); let 1 < pr < p1 <00 and 1< g2 < g1 < 00. Then there
holds:

If the support of @ is included in 2XBy, then

”aga”Ll’l @i < zk(|a|+2<p'f2_ﬁ>)
n Ly

||a||Llf2(L3‘)'
If the support of @ is included in 2°By, then
e(B+(5—7)
l6fallm oy <2 (=3 )||a||L},:1(L32).

If the support of @ is included in 2KCy, then

—kN o
LS 27 sup logall,

lall r o
Ly (L la|=N

pl (L
If the support of @ is included in 2Cy, then

< A—LNjgN
lall gy S 27 10N all g
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In view of Definition 2.1, as a corollary of Lemma 4.1, we have the following inequality,
if1<p2<pr,

< S Ry 4.8
||61||BSI_Z(L_7)S2 (h-1) S ||a||312 (4.8)

1
P2 Pl
P1

To consider the product of a distribution in the isotropic Sobolev space with
a distribution in the anisotropic Besov space, we need the following interpolation
inequalities:

Lemma 4.2. We have the following interpolation mequality for the L*° norm.

2
Il < ||f||3_l+;villvhf||3
BPZ p'p B

Moreover, let 1 <g<p<oo, =2/q+2/p<s1<1—=02/qg—2/p) and s2 in ]0,1],

one has
—s1=2( 4~ - a1 1
”f”Bf,"”Z < Cp"]”f”ElC(ZZ) (q ))( 2)||3zf||<1 o (q p))sz

(4.9)

2
P’

<=

LY(LY)
1_1 _ 1_1
x||vhf||£pfq( D010, fIIEpZ( D

Proof. In order to prove the first inequality, let us write according to Lemma 4.1 that
Ifllzee < D0 IAFA] fllze

(k,0)eZ?
l

<28 Y ) ad Ay e +27K 37 2527 jAbAY s

k<K k>K
LeZ ZeZ
—K
S 22||f|| 12 L H27RIVREL 21
B, B,

The appropriate choice of K ensures (4.9). Let us prove the second one. According to
Definition 2.1, we have

sy — ks1 sy hav
Il = D 29122 ARAY f L.
k,teZ?
For any integers K, L1, which will be chosen late, we get, by applying Lemma 4.1, that

ksi sz || b k(51457 ) yls2y Ah
Y Al sy 20 P>252||AkAzf||Lg(Lg>
k<K <Ly k<K, L<Ly

K(s;+2-2
S, 2 <Al+q p>2L152||f||L€(Lg),

by using the fact that s; is greater than —2/¢g +2/p and s; is positive.
Similarly since s is greater than —2/q 4+2/p and s; is less than 1, one has

k(si+2-2) _p1—
Yo 2kt ARAY £l > Porti=5)y-ea DNAFAY: f 1)
k<K.,t>L, k<K.,l>L,

A

2_2
< 2K<s1+q p>27L1(17S2)”82f||L€(Lz)'
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Along the same line, since sy is less than 1 —(2/¢g —2/p) and s; is in ]0, 1[, for some
integer L, to be chosen hereafter, we write

—k(1—
Yo 2nMalaAlfie S0 )) 2 (1=~ >2‘S2||AhAVvhf||Lp(m
k>K <Ly k>K <Ly
—K(1—s
S2 (1= )2L232||Vhf||LP(L‘1),
and
—k(1=s1-242)  _p(1—

Yo 2 IARA I S ) 2 (1=1=3+3)p-ea DN ALATINO 1 p 1,

k>K,l>L, k>K {>Lo

_ g =242
<2 K(l 1 q+p)2_L2(l_S2)”Vhazf”L{,’(Lg)'
As a consequence, we obtain
K(si+2-2 _
Ifllgys <2 (43 ﬂ)zL”%nfan(Lq +275108: fll o 10)

1-
4K 1’)2L252<||vhf||Ln(Lq +272 1V, £l g 19))-

Taking L, L, in the above inequality so that

L ”3Zf||L€’(Lg) 4 ol ||Vh3zf||L5(Lg)
”f”LC’(LZ) ||Vhf”L(,’(LZ)

we get

K(si+2-2 1—s
Iflgyn < 2500 ”)IIfIILp(ZLq 19 £ 1

1—s 1—s
+2 ( " )“Vhf”Lpziq | Vi, f”L”(Lq
Taking K in the above inequality so that
1—
A PP A

1—
LAy 192 £ o,

gives rise to (4.10). This finishes the proof of Lemma 4.2. O

Lemma 4.3. Let p be in 12,00[, s; and s, in 10,1[ and s’ in 12/p—1,2/p[. Let
(oM, P, VpITM) be the global unique solution of (2.2). Then under the assumptions of
Theorem 1.2, we have

h h
”Q ”LOC(R"';B;’S2QBZ+S1J2) + ”loz ”LOC(R+;B;1"?2QB;+‘V1*‘Y2) < CO77’ (411>

3
107 Ol g2tz + 10207 Dl gz < Comte)™, (4.12)
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— 2+‘Ll
IPOlg0n + 10O non < oty 2, (4.13)
h h —(%JF%I—l)
lv (t)llg;wz + |9;v (I)IIB;}Jz < Co(t) r7, (4.14)
_ Sp_ 1 _2
1@l oo + 180" (1)1l 5 s < Colt) (2+% ”)log<1 ”>Sl(t) and 415
152 152

5,8 1 14+s'—2
Z(ua%hmn 21y IR Ol gr.,) < Colt) ) 10002y (w10)
£=0
Proof. The inequalities (4.11)—(4.13) follow directly from Lemma 4.2 and from
inequalities (4.3) and (4.1). Whereas note that in two space dimension, there holds

2

2 1—
Vpel2, ool flly < ||f||,‘jﬁ|IVhf||Lﬁ " (4.17)

Then in view of (4.1), we infer for £ in {0, 1,2},

(31
[ERRGIITS ||a‘v“(r>||Lp(Lz ||Vha€v“(r)||Lp(Lz) <oy (7).

_(2-1
VRO () llLr S IVhdlo h(t)an(Lz V2t < Coty B7P) and

~

L"(L2 =
1

_(5_1
IVELo () lr < IIVEBEV ()] < Colt) (3 f’)logl‘m.

~

Lp(Lz)nvhaZ POl

LP(LZ)
Hence, by virtue of Lemma 4.2, we infer for £ in {0, 1} and s, s» € 10, 1],
¢ h s ¢ h sDU=s2) g b+1 )b (1=s1)s52

18 v Ol g2 < N3z v (t)IILp ll9; Oy
X Vel @155 2 VRl @) 32

< Cotny )00y =3

This proves (4.14). A similar argument yields (4.15).
Since s is in 12/p — 1, 2/p[, by applying Lemma 4.2 and (4.1), we get for £ in {0, 1},

2.0 h 2 (3-)a-s O+ (3-)s
IV Oll g < VOO o) IV POl

2 _ 12
X V39 vhu)ngmz) 2i S”||vga§+lvh<t>||£w) 2k
< Co(t)_(%+%(s/_;)) log(lﬂ/_%)(t).

The same estimate holds for Vhaf TP, This leads to (4.16), and the proof of the lemma is
complete. O

Remark 4.1. Tt is easy to observe that a" satisfies the same estimate as (4.11), that is

lla®| + 118a™ < Com, (4.18)

LQO(R+;B;l ,852 mB;-H] .52) 100 (R+;B;1 K mBé+x1 ,sz)

for any s1, s2 € 10, 1[.
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Let us now turn to the proof of Proposition 2.1.

Proof of Proposition 2.1. It follows from Lemma 4.3 and interpolation inequality in
Besov spaces that for £ in {0, 1}

11
190" 3.3 < Col)™5,
B4
1 1 3
lozo @1,y S IO IO @) | < Co(r) ™2 and (4.19)
B, 2 B22 B22 .
2 2
1 1 1
IVeo™ @)1 1 S IVe™ @17, IVER @117, < Colr) 2 loga (1).
B, 2 B22 B22
2 2
This implies
L I o L A o [ I
R+:B,?) L2(R+;B,'?) LYR*;B,?)
+ 190" 33 + V"l 11 < 0o (4.20)
L'®R+:BH ) LIR+:B, %)
It remains to handle ||, TT"| 11 . Indeed it is easy to observe from (2.1) that
L'®R+;B3'?)
ARIT! = —divy (a™(VpIT" — Ap™)) — divy, divy, (0" @ o), (4.21)
from which, we deduce from the law of product (2.7) that
I 11 < O 11
L'®R+:B}'?) LIR*;(B}'?)
+lla"] R 11 Ve 1)
L®[R+;B,'2) LYR+;B2'2) LY R+;B2'2)
Whereas it follows from (4.18) that
la™ Ly lazal| L1 <Con. (4.22)
L®(R*;B,'?) L®(R*;8,'%)
When we take n so small that CCon < %, (4.22) implies
Ty v < Cflla R 11
LY(RT;B2'2) L®[RT;B,'2) LY (RT;B2'2)
h h
+ (vl Rt ) < Co. (4.23)
L®(B}'?) LY(B,?)
Similar to the proof of (4.23), we also have
Iy 11 <cfaal R 11+ V| 1)
LI(R+;622 2) LOO(R+;BZ 2) LI(R+1622 2) LI(R+;822 2)

h h h h
+lla" oy IVRAM el ).
Lo®@®R+:;B,2) LI®R+;B}'?) L& (B]

Hence by virtue of Lemma 4.3, (4.22) and (4.23), we infer

I 11 <Co.
L'(R+:B}'?)

Together with (4.20), we complete the proof of Proposition 2.1. O
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5. The equation on w, and estimates of some error terms

The purpose of this section is to study the equation that determines the correction term

in ug app- Let us recall it.

dwh — Awh = w11}

w3 — Agwd = —e20. 111 + 0,110 with TT! %" — A divyd, (oM™,

divw, =0 and  wg)=0 = 0.

We have the following proposition.

(5.1)

Proposition 5.1. Let (w,, Hé) be the unique solution of the above system, then we have

+ Ve (ew?, w)

h 3 h 3
||(8wg9w5)|| 1, 1 ”VS(gwg?wg)” 0l l,l
L2(R+;B,'2) L2(R:B, 2) L'R*:B, %)
h h, h
< Clleovgll ;3 +Cllo™v| 0.3 13
B, 2 L2R*;:B, H)NLI(RT; B, 2)
and
h 3 h h, h
ell(ewg, wy)|| 11 < Clleovgll 41 +Cllo™v"|l 11
4R+;B2?) B,? LYR+;B3'?)

Moreover, for any positive a less than 1, we have

ho3 h
||A5(8w8,wg)”Ll(R+;Ba_%)+”8V5H8|| < Cy 13 (0™ )||

LI®HB%3) LIR+:B,

Proof. Let us first compute I1}. Applying the divergence operator to the System (5.1)

gives
— AL+ 021} =o0.

This together with (5.1) gives
wh = fo -a VoA 92A0 ! divid, ("M () dt' and
w = — fo t =08 5 AT divid, (0" (1) di.
By integration by parts, we get
= VA 192 A divi (oM (1) — e Vi A 182 A divi(oovl)
+ /0 =a VhdZ A, divi(e"v™)(r) dr’  and
w? = —3, A7 divn ("™ (1) + €9, A7 divi(oovl)

t
- f =%, divy ("™ (1) di'.
0
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Written in term of Fourier transform with the notation & = (&, ¢) and using the fact
that divyo® = 0,

(e, &), W2(1, €))| < |& 71 F @, 0"M)(, &)
+ e B+ 171 F (D, (00vh)) (8))
t
+ / e OUEHED (o] 4 g IF Q) ) i (5.5)
0

Applying the cutoff operator in the frequency space in the horizontal and the vertical
directions gives, for any r in [1, 2],

A Al AL et w) )l < €2 AAY Q)02 + Wi
with
Wia(t) 28 e=er@ 4220 (143 Abav ool
+ /te—c(t—t’)<22k+8222¢)(2k+82e)2k3+3;”AEAZ(QhUh)(I/)”LZ dr'.
0
As r is in [1, 2], we get by convolution inequality,
Weell @z < C27 T ARAY (0ou) 2
+ (@5 4625 P T AR AT Q" I e )
< C2 M AR AV (o) 2 + 2 T AR AT @V e 1)

By summation with respect to the indices & and ¢, we get thanks to the Minkowski
inequality,

h h_h
D Wkl @12y < Cligovgl 1.3 +Cle""

3 .
L'(®+;BY2)
k.l 2

By definition of the B;,’s/ norms, we infer that, for r in [1, 2],

k2450 AD h w?
< Y0 2 ARAY Ew w)ll g 12

lEwf, w)ll o)
RSB, 5 oper
< leovgll 3+l 2,3 3. (5.6)
B, 2 L'R*:B, HNLIRTB, %)
Now let us estimate ||£81(8w?, wg’)|| ol and ||83Z(8w?, wg’)|| 1. Aswis a
2(R*:B, %) LI®R+:B, %)
divergence free vector field, we have
elowlll o1 < Clledivaw’]| 01 < Cllsw”| s
LARB, %) L2R+:B,'?) LXR*:B, ?)
elowlll 1 < Clledivaw”|| o <Clew?l L0
L'RB,?) LIRH:B,'2) L'(RB;?)
Then inequality (5.6) applied with r equal to 2 and r equal to 1 gives
h h h
elld-w; | o1 +led.wy| 11 < Clleovgll _y 3 +Clie™l 0.3 13
LXR B, ?) L' (R B, ?) B, ? L2R*;B, H)NL'(R+: B, 2)
(5.7)
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Now let us estimate [|e2d,w]| .1 . From equality (5.4), we infer that
1

1
R*:B,'?)

02k 2920
ellAFAY (ew!, w2 S NAFAY(@"o™) (D)2 + e T2 ARAY (00v) 12

+ / =@ (o | ok ot APAY (MM ()| 2 di
' (5.8)
Taking the L' norm in time gives
2T oA AL el WDl ey S 27T IARAY (0o 2
+ 25T ARAY "W 1 g 12)-
By summation with respect to the indices k and ¢, we infer that

h 3 h h_h
ell(ewg, wy)ll 13 S lleovgll _y 3 +lle™ 13-
LI(R+:B, %) B, ? LI(R+:B,?)

Together with inequalities (5.6) and (5.7), this gives the first inequality of the proposition.
To prove the second inequality, we get, by taking the L* norm in time of (5.8), that

kL £ k t
22226 || ARAY (ewg, w) | a2y S 22 IARAY (Qovg) 112 + 2722 | AR AT (@ 0™ [l parer . 12

Summing up the above inequality with respect to the indices k£ and ¢ yields

h

3 h h h
ell(ewg, w)ll < Clloovgll o1 +Cllo™v7l
L4 B,? L4

11 11 .
R+:B;%) ®R*:B;?)

This proves the second inequality of the proposition.
Let us prove the third inequality. Using (5.3), we can write that

] ! —(f—t 2 2.2
| FAe (e}, w))(1, §)] < c/ e~ (ORI (60 ] 180 DISIF B (™) (', )1 dr'.
0
Then applying the cutoff operators in both horizontal and vertical frequencies gives
£ ~
2 AL AT A W] w)) (D) 2
! —c(t—t") (2% +£2228) . ~0 kyoka+2E  Ah AV h, hy/,/ /
< A e (62" + 25252 AR Ao (0 v ) (D) | 2 dt .
Using Young’s inequality, we get
4 _ 3t
2kot+2 ||A2AZA5(8U)?, wg)”Ll(RJr;LZ) < Czk( I+a)+3 || AZAZBI(QhUh)“LI(RJr;LZ).

By summation the above inequality with respect to the indices k and £, we get

3 . (5.9)

—14a, 5

I Ae(swh, wl) || o1 < Calld (™Ml
! ) LIR*:B, %)

LIR+;B, 2

In order to get the estimates on the pressure term I1 é, let us observe that Relation (5.2)
implies that

L [—eVaA B divy AL 9,0 (0"
VeIl = 2A—102 gi Al hohy |
e~ A 07 divh Ay 9,9, (0"v")
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As we have _
£ 1 £
2|§|22< and 2|§|22\
|Enl* +e°¢ |nl |Enl= +e2¢

we infer that, for any « in ]0, 1[,

1
—l4a,5

1
ellVeIT ||
LI(R+ ®R+;B,

w1 <20 ") :

B, %) L! )

Then the proposition is proved. U
Let us now turn to the proof of Proposition 2.2.

Proof of Proposition 2.2. It follows from the law of product (2.7) and Lemma 4.3 that

h h
loovpll o1 < lleoll 1 1llvgll 11 < Con,
B,? B}? B}?
h,h h h
lle™vl 11 S el EN 3.1 < Con,
LA*R+:B}'?) Le®+:B}'2) LA®R+:B}'?)
and
h,h h h
™™ o3 < e 1.4 o) 1
LX(R+;B,'2) L®(R+:B7'2) LYR+;B2'2)
h h
+ 11907l N 11 < Con.

Lo R B72) LIRT;BZ?)

Similarly, we deduce from law of product (2.7) and (4.19) that

h,h h h
lle™ vl 13 < el 11 1907 11
LI(R+:B,'?) L®®R*:B,'?) LI(R+:B,'?)
h h
+ 1907 N U L1 < Con.
Le®RT:B) %) LIR*:B,?)

Hence by virtue of the first two inequalities of Proposition 5.1 and the remark following
(1.7), we conclude the first inequality of Proposition 2.2.
On the other hand, for any « in 10, 1[, we get, by applying the law of product (2.7),

that
h, h h h
119z (30" v )l el S 1190207 g 1 o7 o1
LI®RT:B, '2) LORT;B7'2) LI®R*T:B7'?)
h h
+ 118 o7l g1 [lo:v7] g1
LOR+:B;7 ) L'R+:B;?)
and
hg h h h
19z (0™ ;v ) S 13070 g1 o vl g1
L'®RHB, 2 L®[R+;B}'2) LY R B2'2)

+ o™ o 1 193,07
Loo( )

l 9
R‘*’;Bzz' "2y

IR

LY (R*:;B;

so that by applying Lemma 4.3, we obtain

h h hh hh
[19: (@™ v )l a3 S 18:(p 00l et 8@ et S Co
L'RT:B, '?) L'®RHB, %) LI®RHB, %)

This together with the third inequality of Proposition 5.1 leads to the second inequality
of Proposition 2.2. O
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Corollary 5.1. Under the assumptions of Theorem 1.2, there holds (2.13).
Proof. We first deduce from the law of product (2.7) that

h h h h
o™ Va(ew!, w))| o1 S L1 llewy, w3>||
LI(R+;B2 2) LZ(R+ B 2 ( R+ B 2)
le?we - V(ewf, w))| 0y S llewel Ly IVe(ewd w))]
LI(R+;B,'?) L2R+;B,'?) LXRT;B, %)
and
h h h
lews - V(v 0)]| ol S lewlll L1l 11
L'(R+:B, %) L2R+:B, %) L2R+:B,'%)
3
+ellwi|l N R ¥ 11
L4(R+;822 3 L3([R+:B}'2)
Moreover, it follows from (2.8) and (2.7) that
hohe h
19, T1¢ || 01 S 9:(p" @vY| o
LI(R*:B, %) LIR*:B, %)
h h
S ezl ] I 11
L®[®RT;B}?) L2R+:B}'?) L2R*:B, %)

h
+ {1+’ L)" I| 11 [ERe L1
L®(R+;B 2 2 LY(R+; B} L2RT;B,'?)

Hence by virtue of (2.12), Proposition 2.2, and Lemma 4.3, we conclude the proof
of (2.13). O
6. The control of the term b,

The purpose of this section is the control of the term b, which satisfies equation (2.18)
as described by Proposition 2.4. Namely we want to decompose the solution b, of
equation (2.18) which is

dbe +ug - Vb = —Re - V[a"], — e[we - Val.  with be—g =0 (6.1)
as b, = b, —1—58 such that

_ ~ _1
B 21 <Con(1+Ro)r)? and |Be(0)llLr < Cos' ™7 (1+Ro)2(r).

PP
By

In order to do it, let us introduce the following decomposition of b, = by + b2+ b3 ¢
with
b1 +ue- Vb e = —eR}[0.a",
hb2,e +[V"]e - Vaboe = =R} - Vhla"]s —[w; - Va"].  and (6.2)
atb3,e +ug - Vb3,e = _8((81‘—]?’ wg) +Re)- VbZ,s-

Let us first estimate ||b1 ¢ (¢)||Lr. As the vector field u, is divergence free, we have

-1 !
I1b1e@)llLr <& 7 f IR (¢ o 18,a" () 1 o dt.
0
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Interpolation inequality (4.9) and the induction hypothesis (2.14) implies that, for any ¢
less than T., we have

t 1 2 1
/ IR L di’ < / IIR(I/)I|3_l+; L IVRR@)?,  dr’
0 0 B2 PP BL'?

RASTINY

1 1

) t g% t 3
<12 f IRGHI® 5 1 dt’ f IVRR(D)| 2 1 di’
0 B;i*ﬁ’ 0 Br'P

< Rot?. (6.3)

wIN

Sl

Then using the estimate (4.3), we infer that, for any 7 less than T,,

-1 1
b1.e()lILr < Cone™ Pt2Ry. (6.4)
In order to estimate [|b3 ¢(¢)||Lr, We need to estimate ||[Vby ((¢)||Lr. Let us observe that

Vb e+ Ve - VaVbye = —VRY- Vyla]; — R! -V, V[a"],
— V[v"]e - Viba e — e[Vew, - Valle — e[we - VVea"].

Using the fact that v is divergence free, we get,
d -1 h h
E”Vbz,e(t)”LP <e v ((”VRg”LOO+||8vews||L°°)||Va lzr
+ (IRl + lewe =) V2@ 10 ) + 1Vl L | Voo ele- (6.5)
Estimate (4.3) together with Sobolev embedding implies that
Vi <Te, |Va"®)lr <nCo and [VZa"(®)]Lr < nCo. (6.6)

Induction hypothesis (2.14) and Proposition 2.2 implies that

T,
A (IVRM (1) || oo + [le Vewe (1) | o) dt < Ro + Co.

Together with (6.6) this implies that

7.
/0 VRO 1o + le Vewe (D ) IVa" @) | e dt < 0 Co(1+Ro). (6.7)
Proposition 2.2 yields that

t
f lewe ()l di’ < 13 (ew, wd)] < Cott. (6.8)
0

L2@®+:B"T)

Proposition 2.1 claims in particular that |Vu"(7)||z~ is an integrable function on RT the
integral of which is less than some Cy. Applying Gronwall’s Lemma to (6.5) and using
the estimates (6.3), (6.7) and (6.8), we get for any ¢ less than T,

1
Vb (D)l < Coe™ 7 (1+Ro)(r)2.
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Now let us consider the equation on b3, in (6.2). As u, is divergence free, we get, by
applying again the estimates (6.3) and (6.8), that

t
b3, llLr < 8/ (IR (1)l oo + llewg ()l oo + 1w} () | o) Vb2 e ()| o dt’
0

< Coe' T (1 4+Ro)2(0). (6.9)

Defining 178 = by ¢ + b3 ensures the inequality (2.20) of Proposition 2.4. As there is no
power of ¢ in the right-hand side of the equation on by . we must use another norm to
measure the size of by .. The fact that the convection vector field involved in the equation
of by . has no vertical component will allow us to propagate the anisotropic regularity
thanks to the following lemma.

Proposition 6.1. Given a smooth vector field v™ with divav® = 0, we consider the following
transport equation with a parameter z

{atb(tv Xh, Z) + vh(ta Xh, Z) : Vhb(ta Xh, Z) = g(t5 Xh, Z)7 (6 10)

b(0, xn, 2) = bo(xn, 2).
Let p be in 12,4[. Let us define

Vp 0= SUP/ IV (@', -, 2| 2 dr’.
B

7eR 2

Then for s in 10,2/p]l, we have

1 YT’)

exp(=CVpy)Ibll 1 < Cliboll ;1 +Cligll |
(R ) B p 1(

7 (Bp P + (Bp

+C||Uh|| lB%,%)(”Vhb()”lﬁo(Bf,)h—i_”vhg”L?,“(Ltl(B;)h))' (6-11)
P

t

Proof. Let us first observe that [5, Theorem 3.14] implies that for any o in [O, 1+ Z/p],
we have, for any z in R

t
6@, -, DBy, < (IIbo(-,Z)II(Bg)h +/0 g, - Dllg), dt/) exp(CV, (1)). (6.12)

def

Let us define (1_;5)(xh, 2) = b(xn, 2/ +2) and 8_,a & v_.a — a. Then in view of (6.10),
one has
ot_b+ r_zvh -Vhto b =1_.8.

Subtracting (6.10) from the above equation, we get
38_.b+ " Vpd_b+68_ 0" Vb =5_.g. (6.13)
Applying again [5, Theorem 3.14], we infer that
exp(—=CVp () 6-:D(t, -, Z/)||(B;',)h < N8—zbo(-, Z/)||(B;;)h

t t
+c/0 ||8_Zg(t/,-,z/)II(B;)hdt/+/0 ||8_zvh(t/,-,z/)-Vht_zb(t/)H(B;)hdt/. (6.14)
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The law of product in R?, which claims that for s in [0, 2/p], ||ab||3% < Clal 2 ||b||3%,
By

together with inequality (6.12) implies that

t
def
1.2.2) € jﬁ 18-t ) Varcb (- 2| 5., '

t
< sup IIVhb(t/,-,z/)ll(zs;,)h/ 18—, -, )l 2 dt’
t'€[0,1] 0 B

7eR

1
< (IIVhbolng%B;)h + SUP/ IVhg (@', - 253, dl‘/) exp(CV) (1))
zeR JO

t
x/ 18—, ) 2 dr.
0 B

P
p)h

Plugging this into inequality (6.14) gives
t
exp(—=CVp () 6-:D(t, -, Z/)||(B;,)h < 8-zbo(, Z/)||(B~;,)h +C/ 16-.g(', -, Z/)||(B;,)h dr’
0

t t
+ { IVhboll g 8y, + SUP/ Vhg (', -, DB dt’ / 18—, -, )l 2 dr’.
zeR JO 0 B

Taking L? norm of the above inequality with respect to the vertical variable 7z’ yields
t
/ /
exp(_CVp(f))||57zb(t)||1‘{,’(5;)h < ”8*1170”145(3;)}1 +C/(; 6—zg(t )”Lf,’(B;,)h dt

t t
+C ||Vhb0||L3°(B;;)h+SuP/ Vag (¢, ',Z)||(B;)hdt/ /Il&zvh(t’)ll 2 dt.
2eR JO 0 LYBY

1
Dividing the above inequality by |z|? and taking the L? norm of the resulting inequality

with the measure % over R, we obtain inequality (6.11) and thus the proposition. O

Continuation of the proof to Proposition 2.4. Let us observe that Proposition 6.1
implies that for ¢ less than T,

Ib2ell 21 < Co|lIRY Vhla™ell 21 +elwe-Va"| 21
BrT LB LIB")
h h h
Tl 21 (IVe(Rg - Vala™le) | 2
LIBY'7) LP(LHBE )
+ &]| Va(we - Va")|| ERDIE
LP(LIBE )
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Hence it follows from the law of product (2.7), Proposition 2.2 and the induction
hypothesis (2.14) that

b2, l
oo

L (

+IVaRL

L;(

+lleVawell 20 ) (IVa"l 21 +Va"| 2
LiBr'") LXMBY") LPLP B, "in)
> 1+ (V|
BL'P)

< Col1 +Ro)(r)? (nwhu o
)

Sl

< UIRM 21+ llewell
) 1 PI’) L

2
5
P L;(Bp

2 1
LBl

(6.15)

t I

2 .
L$°<L?O<B;+”>h>>
Yet it follows from Lemma 4.1, (4.18) and (4.3) that

1 1
h h hy 2 hy 2
IVa'll 21 SIVa'll o SIVe'lr o IaVa'l® - < Con,
LBy ) LB, %) LPBE'?) LPBE'?)

Iva|

A

1 1
h h;2 h 2
IVa"l e ey S IV IVa)?

. . < Con.
LE (LR (HD) LewEdd) S N

1+2
LPLP B, "))

This implies that for all ¢ less than T,

< Con(1 +Ro){1)?.
Taking b, = by ¢ leads to (2.19). We thus complete the proof of Proposition 2.4. O

Corollary 6.1. Under the assumptions of Theorem 1.2, the inequalities of Assertion (2.21)
holds namely

4,1
[ -
Hs,

_1
<Con(14+Ro) and |EX?| | oo < Coe' TP (1+Rop)?,
Li( )

21
P7y
P

for pe 13,4 and § €10,1—-3/pl[.

Proof. We deduce from a similar derivation of (4.23) that

IO 21 < C [ la"] 21 V"I 2 1 +I"O12, ),
BL? Lo®+BLP) BL? BP'7
which together with (4.15) and (4.18) ensures that
h h < 2 (1*%>%
| Apv (r)nB_.ﬂz,,,% + (| ViIT (””s‘”%% < Cot) " log (t). (6.16)

p p

Moreover, as p belongs to ]13,4[ and § to 10,1 —3/p[, we have —14+8+5/p €10,2/pl
and —8§+1/p €10, 1[. Then it follows from inequality (4.16) that

h h
/R K (nAhv Ol _risrgoseg +IVTT (””8‘““?-‘”%) dt

p p

_ s, 3
g/ (t) <‘+2+2p)1og5+137 dt < Co. (6.17)
R+
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On the other hand, it follows from the law of product (2.7) that

—1+
»

1B Anv"]e + VeIl
Ll

21
P’P)

1
S/ 1B 2 1 AW E 2 1+ IVRIT*E) 2 1) dl,
0 Br'P B, B, 77

2.1
p'pr
from which, (2.19) and (6.16), we infer the first inequality of the corollary. Similarly,
again p belongs to ]3,4[ and § to 0, 1 —3/pl[, the law of product (2.7) ensures that

Io([ A" e + [VaIT'o) | g

t (Pp

t
x h h
5/ 6L (1A a5 51 NV s 5,1)dl,
0 Bp P P Bp p P

which together with (2.20) and (6.17) gives rise to the second inequality of the corollary.
O

7. Conclusion of the proof of the main theorem

Proof of Theorem 1.2. Let us first observe that law of products implies that, if p € 13, 4[

and |la|| 2 1 is less than cj,, which is the case for ||a8(t)|| 2.1 for + < T, thanks to
B P P

Corollary 2.1 provided that n is sufficiently small, P, glven by Definition 2.2 maps
continuously from B} into itself for any s; in ]-2/p,2/p] and s, in |-1/p, 1/p],
which reads

IPaglgsoe S lglgro:. (7.1)

Let us now fix p in ]3,4[ and ¢ in ]0, 1 —3/p[, which is determined by (2.16). For ¢ less
than T, defined by relation (2.14), we denote

t
def
gl(t) g(l‘) eXP( / Ua,app(t/) dt/) with Ug, app () = [lue, app(t)” Sli2l
0 AN
14
4
Hllueapp®I 5 1 + 100", | Fell€dw™, awHOIF . (7.2)
Bpp'p sz PP 32’2
Then we deduce from equality (2.24) that
t t
Re (1) = / exp (-K/ Ue,app(t”) dt”) e"TAP, (a: AR 1
0 t
- diV(ue,app ® Rs,k + Rs,)» ® Ug,app + eR: ® Rs,k) - Ee,k)(t/) dr'.
So that for the norm | - || x() given by Definition 2.1, we have
t
”RE,)»”X(I) < | exp <_)¥f Ua,app(t//) dl”) ]P)as (aaARa,A
t/
— div(ug,app ® Rg,x + Rg,)L & Ug,app +eR:® RS,A) - ES,A) (73)
Fp(t)
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It is easy to observe from inequality (2.6), the law of product (2.7) and Corollary 2.1 that

IPa, (@c AR NI Fy) < C | NlaeAnRenll 21 +llaediReall s,
L PPy LB P

P t\>~p
2
< Cla || 2 1 | IRe sl 2 1 +I05Rel 3
X e 21 &, 1+2,1 3R —145+3 -8
’ ; P Lt B p P) L)(Bp P )

P

)
R 92R )
< Conexp(CRy) <|| el i, 1% E,AHL}(BPHH;,.B)

Along the same lines, we get

P, div(eRe ® Re))l 7, )
< IPa, (RY - ViRe s + RIS o

Lt (Bp )

| Re || 21 ||R8A|| 21 FIRl 1,21 |3Resll 4 1,21 ).
(B,i7 P (Bli /’) t(B 2 P’ I Lt3 P I’)

<l-

14

Using inequality (2.6), we deduce from inequalities (2.13), (2.16), (2.17) and (2.21) that

51
1P, Ecll 7, 1) < Co(l+ (n+¢'°77) exp(CR0)).

Now let us turn to the estimates of the last two terms in the right-hand side of
inequality (7.3). We deduce again from inequality (2.6) that

'
eXp (_}L / Us,app(t//) dt”) dth(”s,app ® R?,A + R\ ® Mgapp)
t/

t t
S / eXp <_)‘ / Ue dpp(t//) dt”) | Re5 ®ue dpp(t )i i
0 t

21d
BP'P
By

t t
,S / eXp <_)L/ Ue,app(t”) dt”) ”ue‘app(l‘/)” 21 ||Re,)»(t/)|| 21 dr’
0 t BI’ p Bﬁp P

P
2
di' ] |Resll . 21,
L3 By ")

t t
5( [ exp (2 [ V@) 12
0 t/ Bé)v

which together with (7.2) ensures that

t
exp < / Us.app (1) dt’/) divn (g, app ® RM ex T Rep ® ug app)

Along the same lines, we have

t
exp <_)\./ Ug’app(t//) dl”) 93 (e app ® RS,A + R0 ® uf:,app)
r Fp(t)

t
5/ eXp (_)V/ U, app(t//)dt//) (03 Re  ® 1, app(t)+RaA®33ua app)(t)” ,|+
0 t

p

Fp(t)

=

dt’,

21
PP
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By the definition of u app given by (2.10), we infer

dt’

1
P

hSIIS)

t t
/ exp <_)\/ Ua,app(t//) dt”) IR ® a3ua,app(t/)||8_]+
0 t

14

t t
< _ ” " h,./ /
N/O eXP( )»/t, Ue,app(17) dt ) <8|I3zv (t)”B;%_,_%%”R&A(I)HB_

P
)dt/.

Then due to Definition (7.2) of Ug app, Holder inequality implies that

+

=

=
SIS

Sl

+ &2)(ed,w", w1 IRes ()
B2 B

2
vk
2 P

P

t t
/ exp <_)‘/ Us,app(t//) dl”) | Re ). ® 83ua,app(t/)”8_|+%,L dr’
0 t »

Following the same lines we get

t t 1
/ exXp (_)t/ Us,app(t//) dl//) 103 Re. 5. ®u8,app(t/)|| _1+2 1 dr’ S _1||33R8,A|| 4 1,21
0 12 B, 77 Al LB, ')

SIS

Substituting the above estimates into inequality (7.3) and using the definition of the
norm | - |x) given by Definition 2.1, we infer that, for any A greater than 1,

—s—1L C
IR llxy < Co(l+(+e' """ 7)exp(CRo)) + <C077 eXP(CRO)-l-)\—l) 1 Re.llx o)
i)

+ Ce(||Re || 1,21 FIRel
4 P L2

—3+5,

2.1
L} (B, ) yr

1(Sp

MRe M x @)
)

which together with the induction assumption (2.14) ensures that for ¢ less than T, and
for any A greater than 1,

1 _s_ 1
(1 -C (Conexp(@Ro) T +8Ro>) IResllx ) < Co(1+ (n+e'°"7) exp(CR0)).
1

(7.4)
Let us take &, n sufficiently small and A sufficiently large so that

1 c 1 1
<- and Ry < Emin{—111(281—‘3—1/1’), —1In(2n), — In(6CCyn), 1/6¢}.

T=6cc 35T 6

Then we deduce from inequality (7.4) that ||Reallx¢) < 4Co, from which and from
inequality (7.2), we infer

t

t
IRe I x (1) < IIRexllx(r) €XP <)“f Us,app(t/) dt/> < 4Cp exp <)‘/ Us,app(t/) dt/) .
0 0
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However, let us notice from equality (2.10) and Lemma 4.1 that

‘ < q[ph ho3
||Ma,app(f)||8;%+%,% S v (0”3%_% +ell(ew”, w )(0”3;%,
o (t < ht h 3 t
lltte,app( )”67% S v )”B;'% +ell(ew”, w)( )”B;%’
which together with Proposition 2.2, (4.14) and (4.19) ensures that

RRSS)

def
/R Ueamp@)di’ <€y and 1Rellxa < 4Coexp(Cor) ') (7.5)

We take Ry = 2(,’(’) and take €, n so small that

1
n < and 2C) < ol min{—In(2¢'72~Y7), —In(2n), —=In(6CCon), 1/6¢}.  (7.6)

6CCy
Then we deduce from inequality (7.5) that

_ Ro
Vi< Te, |Rellxe < 5

The necessary condition for blowup implies that T, equals to infinity. This completes the
proof of Theorem 1.2. O
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Appendix A. The proof of (2.6)

Proof of (2.6). For j =0, 1,2, we get, by applying [5, Lemma 2.4], that

< 9it
LLLr)

1 .
ARAY /0 DR f(tydr

! —c(t—t") Q%4228 N AV pt /
e lALAy fE) e dt
0

L7
it
S ——— AR,
(22k +22£)§
p—kant(j—p)

Lwr)

S dre WA gty

’ (22k+22g)$ LL(By")

where (dk,e); ez2 denotes a generic element of 2Y(Z%) so that Zk,ﬁezz dr¢ = 1. This
together with Definition 2.1 ensures that

t , ) k(s—a)pt(s'+j—P)
H /0 U8 F(ydt! e ——

<
g 5.’ ~ Z dk’l 2% 2¢ 1
LT(Bp ) k,@EZZ (2 +2 )q

11,1 g
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In the particular case when

2
a<s, B<s+j and a+B=s+s+j——,
q

we have ,

[eormadrarar] S, (A1)
0 L3(By) e

This together with the definition of the norm | - || Fp(T) given by Definition 2.1 leads

to (2.6). O
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