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SUMMARY
This paper deals with the design, implementation, and
performance evaluation of a new type of 4-DOF parallel
mechanism providing three translations and one rotation
for high-speed handling and machining. This parallel
mechanism is named H4. A necessary condition and system
configuration of the H4 are also described. Hardware and
kinematics of the H4 is addressed and the manipulability
ellipsoid which is one of the widely used methods to
examine the design of parallel mechanisms is addressed.
The performance evaluation is carried out to demonstrate
the H4 robot. The simulation and experimental results show
that three different controllers, the PD, PD + velocity feed-
forward, and dynamic compensation controller, dramatically
improve the trajectory tracking accuracy.
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1. Introduction
Recently, parallel robots have been studied enthusiastically
since their capabilities are superior to those of conventional
serial robots in many aspects.7,15 The notable advantages of
the parallel mechanism are high accuracy, high-load capacity,
high rigidity, and quickness.

Many kinds of parallel robots have been developed so
far.1,11,16 Clavel developed a novel 3-DOF pantograph-type
parallel robot named DELTA.6 Since the DELTA mechanism
has only 3-DOF, applications are limited. The DELTA robot
can have 6-DOF if given additional serially actuated 3-
DOF for postures. Such serial-parallel hybrid robots have
a relatively large workspace for postures, however, at a loss
of some of the advantages of parallel mechanisms such as
rigidity and quickness. In contrast, Pierrot et al. proposed
a 6-DOF fully parallel robot HEXA14,17,18 which has a
pantograph mechanism similar to the DELTA robot. J. Kim
et al. developed Eclipse-II which is an over-actuated 7-DOF
parallel mechanism.9,10

There are a lot of applications in which 3-DOF are not
enough and 6-DOF are too many. For example, 4-DOF (3-
DOF for translation and 1-DOF for rotation) are necessary
and enough in many pick-and-place tasks which are typical
industrial applications. Nevertheless, only few attempts have
been made so far on development of 4-DOF parallel robots.

* Corresponding author. E-mail: ojhee@cnu.ac.kr

Pierrot et al. proposed a 4-DOF parallel mechanism called H4
for such applications .12,13 The H4 mechanism proposed by
Pierrot et al. has large workspace and high-speed acceleration
along the vertical axis (z-axis), since all of the four motors
are mounted on the upper base. However, most of industrial
applications require a large workspace and good performance
in horizontal plain (x–y plane).

In order to meet the requirement for industrial applications,
a new type of H4 robot is developed (“H4” is not a name
of a specific robot but a name of a class of 4-DOF parallel
mechanisms, therefore, the developed new robot is also called
“H4” in this paper).3 The new H4 robot proposed in this
paper equips two motors on an upper base while two other
motors are on a side base. Therefore, the performance and
dimensions of the workspace along the vertical axis and in the
horizontal plane are well balanced. This paper addresses the
design, kinematics, manipulability, dynamics, and control of
the newly developed 4-DOF parallel robot H4.

2. Hardware Configuration of the Newly Developed
H4 Robot
The basic concept of H4 is shown by a simple architectural
scheme illustrated in Fig. 1, in which joints are represented
by rectangles and links that connect joints are represented by
lines. P, R, U, and S represent prismatic, revolute, universal,
and spherical joint, respectively. A quasi-equivalence
exists between U–U (Universal–Universal) and (S–S)2 (two
Spherical–Spherical) chains.12 For mechanical simplicity,
(S–S)2 chain is chosen for the new H4.

2.1. Constraints
The four (S–S)2 chains of the H4 robot are illustrated in Fig. 2.
Spherical joints are denoted by “©”. In the structure shown
in Fig. 2, Bi1–Bi2–Ci1–Ci2 (i = 1 ∼ 4) form parallelograms.
Therefore,

−−−→
Bi1Bi2 and

−−−→
Ci1Ci2 are always parallel. Due to

these constraints, the vectors v1 and v2 shown in Fig. 2 are
kept perpendicular to the ground surface. In other words, the
rotations around pitch and roll axes of the traveling plate
are constrained, while only the rotation around yaw axis is
allowed. Figure 3 shows the developed H4 robot.

2.2. Motors
The robot employs direct-drive motors M-SSB014
manufactured by NSK Ltd. The motor is equipped with a
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Fig. 1. Architectural scheme of the H4.

Fig. 2. R(SS)2 chains.

resolver to detect the rotation angle. The maximum torque,
rated speed, and weight of the motor are 14 Nm, 3.75 rps,
and 6 kg, respectively.

2.3. Arms
The arms are made of aluminum square (0.02 m × 0.02 m)
pipes whose thickness is 0.002 m (Fig. 4). The length of
the arm is L = 0.26 m. The moment of inertia around the
rotary axis is 4.527 × 10−3 kg m2. The operating range of the
arm around the motor axis is limited to 150◦ by mechanical
stoppers made of synthetic resin.

Fig. 3. Newly developed H4 robot.

2.4. Rods
The rods are made of aluminum cylindrical pipes whose outer
diameter is 8 mm. The length and thickness of the pipe are
M = 0.48 m and 0.001 m, respectively (Fig. 5). The total
mass of the rod is 0.048 kg.

2.5. Passive spherical joints
As described above, (S–S)2 chains are used instead of (U–
U) chains. Spherical joints connect between the arms and
rods, and between the rods and traveling plate. The spherical
joints (Fig. 6) are newly developed in order to enlarge the
movable range of parallel robots.8 The movable range of
the developed spherical joint is ± 40◦, while the range of the
general off-the-shelf spherical joints is approximately ± 20◦.

Fig. 4. Arm.

Fig. 5. Rod.
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Fig. 6. Newly developed spherical joint whose movable range is ±40◦.

2.6. Traveling plate
The traveling plate is composed of two lateral bars and one
central bar (Fig. 7). The difference of translational positions
between the two lateral bars rotates the central bar. The two
lateral bars are constrained by kinematic chains not to rotate
with respect to the base frame, and hence, they are always
parallel. The traveling plate is made of aluminum plate and
weighs 0.398 kg.

3. Kinematics of the H4

3.1. Geometric description
The parameters L, M , A, and h shown in Fig. 8 are the
length of the arm, the length of the rod, the offset of the
motor axis from the center of the base, and the offset of each
ball-joint from the center of traveling plate, respectively. The
points Ai , Bi , and Ci are the intersections between the motor
axis and arm, between the arm and rod, and between the rod
and traveling plate, respectively. The numbers i = 1 ∼ 4 are
assigned for each serial kinematic chain. The following three
coordinate systems are defined here:

� �b: the base coordinate system,
� �t: the traveling plate coordinate system,
� �ai : the motor coordinate system fixed on the ith motor

so that zai = yb (i = 1, 2), zai = zb (i = 3, 4) and yai is
parallel to the rotation axis of the ith motor (i = 1 ∼ 4).

The parameters h, Qy , and Qz (Fig. 8) of the real robot are
0.06 m, 0.42 m, and 0.42 m, respectively.

3.2. Inverse kinematics
As is the case with most parallel robots, the inverse
kinematics of H4 is analytically derived. The traveling plate
is composed of three parts: two lateral bars and one central
bar (Fig. 8). The four corners C1, C2, C3, and C4 form a
parallelogram.

Let bC i , ai Bi , and aiC i be the homogeneous coordinates
of the points Ci with respect to �b, Bi with respect to �ai

and Ci with respect to �ai , respectively.
When the point Ot , origin of the traveling plate coordinate

system, and the rotation of the central bar of the traveling
plate are given by p = [x y z α]T with respect to �b, the
homogeneous coordinates bC i and aiC i are expressed as
follows:

bC i( p) =

⎡
⎢⎣

x + hE1i cos α

y + hE1i sin α + hE2i

z

1

⎤
⎥⎦ =

[ bci

1

]
, (1)

E11 = E14 = 1, E12 = E13 = −1, E21 = E22 = 1,

E23 = E24 = −1,

aiC i( p) = ai T b
bC i =

⎡
⎢⎣

aiλi
aiρi
aiμi

1

⎤
⎥⎦ =

[ ai ci

1

]
, (2)

where ai T b is the constant homogeneous transfer matrix
from �b to �ai .

Fig. 7. Traveling plate which is composed of two lateral bars and a central bar.
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Fig. 8. Coordinate systems and design parameters.

The homogeneous coordinates ai Bi are functions of the
motor angle θi and expressed as

ai Bi(θi) =

⎡
⎢⎣

L cos θi

0
−L sin θi

1

⎤
⎥⎦ =

[ ai bi

1

]
. (3)

The kinematic closure of each elementary chain is given
by:

‖−−−−−→
aiBi

aiCi‖2 = (
ai ci( p) − ai bi(θi)

)T (
ai ci( p) − ai bi(θi)

)
= M2. (4)

Substituting Eqs. (2) and (3) into Eq. (4), the motor angles θi

are given by

θi = 2tan−1

(
−aiμi ± √

aiμ2
i + aiλ2

i − W2
i

aiλi + Wi

)
, (5)

where

Wi = L2 − M2 + aiμ2
i + aiλ2

i + aiρ2
i

2L
.

The choice of sign in Eq. (5) corresponds to the multiple
solution in which we use “elbow-down” solution.

3.3. Forward kinematics
In general, it is not always possible to solve the forward
kinematics of a parallel robot analytically. Arai and
others proposed a numerical solution of the forward
kinematics of a parallel robot utilizing the Newton–Raphson
method.2

In case of H4, it is not possible to solve the forward
kinematics analytically, but possible to solve in a closed
form. The forward kinematics solution of the H4 is given
by solving a set of four nonlinear simultaneous equations.4

Please refer ref. [4] for more detail.

3.4. Workspace
The movable region of the arm is illustrated in Fig. 9(a).
The workspace of the H4 is presented in Fig. 9(b). Since the
overmobility (forward singularity) easily happens when z ≥
−0.42 m, hence, the workspace is calculated in the region
z < −0.42 m.5

3.5. Jacobian matrices
The homogeneous coordinate ai Bi calculated by Eq. (3) is
transferred with respect to the base coordinate system as
follows:

b Bi(θi) = bT ai
ai Bi =

[ bbi

1

]
, (6)

where bT ai is the constant homogeneous transfer matrix from
�ai to �b.

Equation (4) can be rewritten with respect to the base
coordinate system �b as follows:

fi( p, θi) = 1

2
‖−−→BiCi‖2 − 1

2
M2 = 0, (7)

where the vector
−−→
BiCi is given by:

−−→
BiCi = bci( p) − bbi(θi).

Equation (7) for all i is packed into a single equation as
follows:

f ( p, θ ) = 0. (8)

Differentiating Eq. (8) with respect to time, the following
relationship is derived:

Jp ṗ + J θ θ̇ = 0, (9)
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Fig. 9. Working range of arm and workspace.

where

Jp =

⎡
⎢⎢⎢⎢⎢⎣

−−→
B1C1 · ∂ bc1

∂x
. . .

−−→
B1C1 · ∂ bc1

∂α
... . . .

...

−−→
B4C4 · ∂ bc4

∂x
. . .

−−→
B4C4 · ∂ bc4

∂α

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

(−−→
B1C1

)T −−→
B1C1 · ∂ bc1

∂α
...

...

(−−→
B4C4

)T −−→
B4C4 · ∂ bc4

∂α

⎤
⎥⎥⎥⎥⎥⎦ ,

J θ = −diag

[−−→
BiCi · ∂ bbi

∂θi

]
.

Equation (9) can be rewritten as follows:

ṗ = −J−1
p J θ θ̇ = J θ̇ (10)

4. Manipulability
In this section, the manipulability ellipsoid and the
manipulability measure of the H4 robot is investigated. It
will be beneficial for design and planning of the H4 robot
to have a good manipulating ability in positioning and
orienting the end effector. The manipulability ellipsoid and
the manipulability measure were suggested by refs. [19,20].

If we consider a manipulator with n DOF whose joint
variables are denoted by q. A vector of the position
and orientation of the end effector are described by p =
[p1, p2, . . . , pm]T and θ = [θ1, θ2, . . . , θn]T (m ≤ n) is the
joint angle vector. Manipulability ellipsoid in task space are
transformed from the area in joint velocity space as follows:

‖θ̇‖ ≡ θ̇
T
θ̇ ≡ ṗT J+T

J+ ṗ ≤ 1, (11)

where J+ is pseudo-inverse matrix19,20 of the Jacobian
matrix J .

Manipulability measure also has been defined in many
previous researches using Jacobian:19,20

ω =
√

det(JJ T ) = σ1σ2 . . . σm (12)

where σi (i = 1, . . . , m) are singular values of J .

4.1. Manipulability of the H4 robot
To show the H4 robot has good performances along x-
and y-axis, we calculate manipulability of the H4 robot.
Figures 10, 11, and 12 show manipulability ellipsoid along
x-, y- and z-axis, respectively. Here, in these figures, the
subparts (a), (b), (c), and (d) stand for top view, 3D view,
front view, and side view, respectively. Figure 13 shows the
value of w as a manipulability measure.

5. A Simplified Dynamic Model of the H4 Robot
A simplified dynamic model which was developed by
ref. [14] is introduced in this section. The simplified model
assumes that the mass of the rod mr is concentrated at Bi

(see Fig. 14(a)), and the inertia of the rod can be neglected.
This assumption greatly contributes to reduce the cost of
dynamics calculation, since the dynamics of the rod is not
included. Actually, the mass and inertia of the H4 robot are
small enough to be neglected.

5.1. Dynamic model of the arm
Force and moment acting on the arm are illustrated in
Fig. 14(a). When a force FBi is applied to Bi through the rod
i, the force produces a moment ni around the motor axis Y ai .
The force FBi is generated by the dynamics of the traveling
plate. From the principle of virtual work, the moment ni is
related to the forces and moment acting on the traveling plate
as follows:


θT n = 
 pT
[ Ft

Ntz

]
, (13)

n = [ n1 n2 n3 n4 ]T ,

θ = [ θ1 θ2 θ3 θ4 ]T ,
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Fig. 10. Manipulability ellipsoid along x-axis at y = 0 m and z = −0.52 m.

where Ft is the force acting on the traveling plate while Ntz

is the moment acting on the plate around the Zt -axis. 
θ and

 p are the virtual displacements.

Equation (10) can be rewritten in a difference equation
form as follows:


 p = J
θ . (14)

Substituting Eq. (14) into Eq. (13), the relationship between
Ft , Ntz and n is given by

n = JT
[ Ft

Ntz

]
. (15)

Using the simplified model, the dynamic equation is given
as follows:

τ = (
Ia + mrL

2 + Im

)
I4×4θ̈ + (mala + mrL) g

⎡
⎢⎣

0
0

cos θ3

cos θ4

⎤
⎥⎦

+ V (θ̇ ) + JT
[ Ft

Ntz

]
, (16)

where τ is the joint torque vector, Im and Ia are the inertias
of the motor and arm, respectively, la is the length from the

Fig. 11. Manipulability ellipsoid along y-axis at x = 0 m and z = −0.52 m.
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Fig. 12. Manipulability ellipsoid along z-axis at x = 0.0 m and y = 0.0 m.

Fig. 13. Manipulability measure.

Fig. 14. A simplified model.
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motor axis to the center of mass of the arm (Fig. 14-(a)), g

is the gravity acceleration, and V (θ̇ ) is the viscous frictional
moment.

5.2. Dynamics of the traveling plate
Forces and moments acting on the traveling plate are
illustrated in Fig. 14-(b). The dynamics of the traveling plate
is expressed as follows:

Ft = mbc(öt + g) + mla(d̈1 + d̈2 + 2g) + Fext, (17)

Ntz =
{

I t ω̇t + ωt × (I tωt ) + mla

2∑
i=1

−−→
OtDi

× (d̈i + g) + Next

}
· Zt , (18)

where mbc, mla are the masses of the central bar and lateral
bar (see Fig. 14-(b)), ot , d1, and d2 are the three-dimensional
position vector of the points Ot , D1, and D2 (see Fig. 8),
respectively, I t is the inertia tensor of the traveling plate, and
Fext, Next are the external force and moment vectors.

Here, ωt is the angular velocity vector of the traveling plate
and is given by

ωt = α̇Zt . (19)

di , ḋi , and d̈i are expressed using ot , ωt , and
−−→
OtDi as follows:

di = ot + −−→
OtDi, (20)

ḋi = ȯt + ωt × −−→
OtDi = ȯt + α̇Zt × −−→

OtDi, (21)

d̈i = öt + ω̇t × −−→
OtDi + ωt × (ωt × −−→

OtDi)

= öt + α̈Zt × −−→
OtDi − α̇2−−→

OtDi. (22)

Substituting Eq. (22) into Eq. (17) and considering that−−−→
OtD2 = −−−−→

OtD1, Eq. (17) is simplified as follows:

Ft = (mbc + 2mla)(öt + g) + Fext. (23)

Scalar triple products in Eq. (18) are simplified as follows:

(ωt × (I tωt )) · Zt = (Zt × ωt ) · (I tωt ) = 0,(−−→
OtDi × g

)
· Zt = (g × Zt ) · −−→

OtDi = 0.

Therefore, Eq. (18) can be rewritten as follows:

Ntz = (
ZT

t I t Zt + 2mlah
2
)
α̈ + Nextz (24)

Nextz = Next · Zt

Substituting Eq. (23) and Eq. (25) into Eq. (15), the
following equation is obtained:

n = JT
[ Ft

Ntz

]

= JT

[
(mbc + 2mla)E3×3 0

01×3 ZT
t I t Zt + 2mlah

2

] [ öt

α̈

]

Fig. 15. Specification of the adept motion.

+ JT
[ (mbc + 2mla)g

0

]
+ JT

[ Fext

Nextz

]

= JT M p̈ + JT G + JT
[ Fext

Nextz

]
, (25)

where Ek×k is a k × k identity matrix. Differentiating
Eq. (10), p̈ can be expressed as follows:

p̈ = J θ̈ + J̇ θ̇ (26)

Substituting Eq. (26) and Eq. (25) into Eq. (16), the equation
of motion is obtained as follows:

τ = M(θ )θ̈ + h(θ̇ , θ) + G(θ) + V (θ̇ ) + JT
[ Fext

Nextz

]
, (27)

where

M(θ) = (Ia + mrL
2 + Im)E4×4 + JT M J,

h(θ̇ , θ ) = JT M J̇ θ̇ ,

G (θ) = JT G + (mala + mrL)g

⎡
⎢⎣

0
0

cos θ3

cos θ4

⎤
⎥⎦ .

6. Evaluation of the Simplified Model
In order to evaluate the simplified model, simulations are
performed.

6.1. Adept motion
The Adept motion is chosen as a benchmark test to evaluate
the capability for quickness of the H4 robot. Figure 15
illustrates a rough scheme of the Adept motion. The dotted
line in the figure represents the trajectory along which
the endpoint of the robot should track. There are no
specifications on the corner radius, travel distance A and
height d of the trajectory. In the evaluation experiment,
the travel distance and height are specified as A =
0.300 m and d = 0.025 m, respectively. Both ends of the
trajectory are set at ( x y z ) = ( −0.15 0.0 −0.52 )
and ( 0.15 0.0 −0.52 ) m, respectively.

6.2. Simulation results
The traveling plate of the H4 robot is moved along the
specified trajectory to and from both of the ends. The round-
trip cycle time is set to 0.84 s. A short wait (0.02 s) is inserted
at both ends of the trajectory in order to simulate a pick-and-
place operation. It is assumed that the external forces and
moment are not applied to the traveling plate during the

https://doi.org/10.1017/S0263574709005621 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005621


Design, implementation, and performance evaluation of a 4-DOF parallel robot 115

Fig. 16. Motor torques (round-trip cycle time is 0.84 s).

motion, and the viscous frictions are small enough to be
ignored.

The simulation results are plotted in Fig. 16. The solid
lines in Fig. 16 are the motor torques calculated from the
simplified model (27) when the Adept motion trajectory is
given, while the dashed lines are the torques derived from an
engineering analysis software package ADAMSTM supplied
by MSC software corporation. ADAMS computes the full
dynamics of the H4 robot based on the CAD model.

Slight differences can be seen between the torques
computed from the simplified model (solid lines) and torques
derived from ADAMS (dashed lines). The average error rate
of those torques with respect to ADAMS results is 24.5%.
From the results shown in Fig. 16, it is concluded that the
simplified model has enough accuracy in the computation of
the inverse dynamics of the H4 robot.

7. Evaluation of the Performance
The quickness of the H4 robot is evaluated by performing
experiments. Three different controllers are applied and
evaluated: (i) PD (proportional-derivative) controller, (ii)
PD controller with velocity feed-forward, and (iii) dynamic
compensation controller.

7.1. Velocity feedback controller
Since the motor drivers of the H4 robot provide the hardware
velocity servo, the torques cannot be directly commanded to
the motor drivers. Therefore, the torque command has to be
converted into the velocity command. At first the hardware
velocity servo is modeled as follows:

τ = Kv(θ̇ com − θ̇ ), (28)

where τ , θ̇ com, and θ̇ denote the motor torque vector, the
velocity command vector, and the motor velocity vector,
respectively. Kv is the velocity feedback gain of the motor
driver. User gives θ̇ com as a control input to the motor drivers.

As described above, three controllers, (i) PD controller, (ii)
PD controller with velocity feed-forward, and (iii) dynamic
compensation controller are tested. These controllers are
developed to meet the velocity servo motor drivers.

7.2. PD controller
In the PD controller, the velocity command vector θ̇ com in
Eq. (28) is computed as

θ̇ com = Kp(θd − θ ) + Kd (θ̇d − θ̇ ), (29)

where θd denotes the desired motor angle vector, θ is the
motor angle vector measured by the resolvers.

7.3. PD controller with velocity feed-forward
In the PD controller with velocity feed-forward, the velocity
command vector θ̇ com is computed as:

θ̇ com = θ̇ff + Kp(θd − θ ) + Kd (θ̇d − θ̇), (30)

where θ̇ff is a feed-forward term to compensate the servo
delay, and given as

θ̇ff (t) = θ̇d (t + 
T ), (31)

where 
T is the sampling period set to be 2 ms.
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Fig. 17. Trajectories in x–z plane (round-trip cycle time is 0.48 s).

7.4. Dynamic compensation controller
In the dynamic compensation controller, the velocity
command vector θ̇ com is given as:

θ̇ com = K−1
v τ d + θ̇ff + Kp(θd − θ ) + Kd (θ̇d − θ̇), (32)

where τ d denotes the torque vector calculated from the
simplified model Eq. (27).

7.5. Simulation and experimentation results
The simulations and experiments are performed using the
three different controllers: PD controller, PD controller with
velocity feed-forward, and dynamic compensation controller.
The Adept motion is used for evaluation. The round-trip cycle
time is set to 0.48 s. As is the case with the evaluation of the
simplified model, a short wait (0.02 s) is inserted at both ends
of the trajectory.

In the simulations and experiments, the control gains,
Kp, Kd , and Kv are set to 200 s−1, 2.0 and 11 Nms/rad,
respectively.

The resultant trajectories of the traveling plate in x–z plane
are plotted in Fig. 17. Figures 18 and 19 depict the torques
produced by the motors 1 and 3, respectively. The dynamic
compensation τ d is superimposed on the Figures 18(c) and
19(c) for reference.

As clearly seen in Fig. 17, the traveling plate cannot
precisely track the reference trajectory when the conventional
PD controller is applied. Although the velocity feed-forward
contributes to reducing the tracking error, the tracking
error remains. Among the three controllers, the dynamic
compensation controller shows the best performance.
Figures 20– 23 present joint trajectories of the motors 1 and
3, and the traveling plate trajectories against the time along
Xt and Zt axes, respectively.

Fig. 18. Generated torque of motor 1 (round-trip cycle time is 0.48 s).

Fig. 19. Generated torque of motor 3 (round-trip cycle time is 0.48 s).
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Fig. 20. Response of motor 1 (round-trip cycle time is 0.48 s).

Fig. 21. Response of motor 3 (round-trip cycle time is 0.48 s).

Fig. 22. t–x profile (round-trip cycle time is 0.48 s).

Fig. 23. t–z profile (round-trip cycle time is 0.48 s).
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In order to track the given Adept motion trajectory within
the specified round-trip cycle time (0.48 s), the robot must
move very quickly. The average speed of the end-point is
1.458 m/s (0.7 m/0.48 s). Figure 17(c) shows that the H4
robot achieves such very quick motion without large tracking
error when the dynamic compensation controller is applied.

Figures 18 and 19 show that the dynamic compensation
controller contributes to reducing the torque, as well as to
reducing the tracking error.

8. Conclusion
This paper presents the design, kinematics, and controllers
of the newly developed parallel robot H4. The H4 robot
provides full parallel 4-DOF: three translations and one
rotation. Compared with the conventional parallel-serial
hybrid design (e.g. DELTA + one rotation), the full parallel
H4 robot has advantages in quickness, rigidity, simplicity in
mechanism, and high accuracy. Inverse kinematics solution
and Jacobian matrices for the H4 robot are given. The
manipulability ellipsoid and measure of the H4 are addressed
in order to confirm their manipulating ability which has
good performance along x- and y-axis. A simplified dynamic
model is proposed for H4 robot. In order to evaluate the
accuracy of the simplified model, the inverse dynamic
solution derived from the simplified model is compared with
the solution computed by ADAMS software which computes
full dynamics based on the CAD model. The comparison
shows that the simplified model has enough accuracy in
computation in the inverse dynamics.

Three controllers are developed and tested: PD controller,
PD controller with velocity feed-forward, and dynamic
compensation controller. The Adept motion is chosen
as a benchmark test to evaluate the controllers and the
performance of the H4 robot. When a very quick motion
(round-trip cycle time is 0.48 s) is tested, PD controller yields
significant tracking error. A feed-forward term contributes to
reduce the tracking error, however, the error remains and the
tracking result is not satisfactory. The dynamic compensation
controller drastically improves the tracking error and brings
best result. The result shows the performance of quickness
of the H4 robot, too. Taking advantage of the quickness, the
H4 robot will contribute to improve the take time in various
applications.
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