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The spatiotemporal evolution of a viscoelastic jet depends on the relative magnitude
of capillary, viscous, inertial and elastic stresses. The interplay of capillary and elastic
stresses leads to the formation of very thin and stable filaments between drops, or
to ‘beads-on-a-string’ structure. In this paper, we show that by understanding the
physical processes that control different stages of the jet evolution it is possible to
extract transient extensional viscosity information even for very low viscosity and
weakly elastic liquids, which is a particular challenge in using traditional rheometers.
The parameter space at which a forced jet can be used as an extensional rheometer is
numerically investigated by using a one-dimensional nonlinear free-surface theory for
Oldroyd-B and Giesekus fluids. The results show that even when the ratio of viscous
to inertio-capillary time scales (or Ohnesorge number) is as low as Oh ∼ 0.02, the
temporal evolution of the jet can be used to obtain elongational properties of the
liquid.
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1. Introduction
Understanding the instability and breakup of polymeric jets is important for a wide

variety of applications including spraying of fertilizers and paints and ink-jet printing
applications (Hoath et al. 2009; Morrison & Harlen 2010). Such fluids are typically
only weakly viscoelastic and the jetting/breakup process involves a delicate interplay
of capillary, viscous, inertial and elastic stresses.

In this study, we investigate the growth and evolution of surface-tension-driven
instabilities on an axisymmetric viscoelastic jet using nonlinear theory for a range
of different constitutive equations. The initial growth of the disturbances can be
predicted by using linear instability analysis for small perturbations. A viscoelastic
jet is initially more unstable when compared with a Newtonian fluid of the same
viscosity and inertia (Middleman 1965; Goldin et al. 1969; Brenn, Liu & Durst
2000). As the local radius of constrictions in the jet decreases under the action of
surface tension, elastic stresses grow and become comparable to the capillary pressure,
leading to the formation of a uniform thread connecting two primary drops. This
‘beads-on-a-string’ structure can be captured by quasi-linear constitutive models like
the Oldroyd-B model, and the radius of the thin cylindrical ligament connecting the
beads necks down exponentially in time (Bousfield et al. 1986; Entov & Yarin 1984).
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The finite time breakup of the jet observed experimentally can be captured using
the nonlinear Giesekus model or finitely extensible nonlinear elastic (FENE) model
(Fontelos & Li 2004).

The temporal evolution of a viscoelastic fluid thread depends on the relative
magnitude of the viscous, inertial and elastic stresses and the capillary pressure (Bhat
et al. 2010). In order to study this inertio-elasto-capillary balance in detail for a jet,
two dimensionless parameters are defined: the Ohnesorge number Oh = η0/

√
ργR0,

which is the inverse of the Reynolds number based on a characteristic capillary

velocity γ /η0 and, secondly, the intrinsic Deborah number De = λ
√

γ /ρR3
0 defined as

the ratio of the time scale for elastic stress relaxation, λ, to the ‘Rayleigh time scale’

for inertio-capillary breakup of an inviscid jet, tR =
√

ρR3
0/γ . In these expressions, ρ

is the fluid density, η0 is the fluid zero shear viscosity, γ is the surface tension, R0 is
the initial radius of the jet and λ is the relaxation time associated with the polymer
solution.

Schümmer & Tebel (1983) proposed that an extensional rheometer based on jetting
can be used to obtain comparative information about elongational behaviour of
polymer solutions. Here, we show that by understanding the physical processes that
control each stage of the spatiotemporal evolution in the jet profile it is possible to
extract transient extensional viscosity information even for very low viscosity and
weakly elastic liquids, at high strain rates relevant to spraying and jetting. The jet
extensional rheometer is especially useful since filament-stretching rheometers can
typically only be used to measure the extensional viscosity of moderately viscous
non-Newtonian fluids, at least in 1g. Gravitational sagging is a limiting factor in
filament-stretching devices for low-viscosity polymeric liquids (Anna et al. 2001).
Similarly, the capillary breakup elongational rheometry (CABER) technique faces
challenges for low-viscosity elastic polymer solutions. The limitations arise from the
finite time it takes for the device to impose the initial axial deformation to the
sample. In addition, the Ohnesorge number needs to be large enough (Oh � 0.14) to
be able to distinguish the effect of viscosity on the local necking and breakup of the
filament (Rodd et al. 2005). For aqueous solutions with surface tension coefficient
of γ � 0.07 N m−1 and plate radius of 3 mm, the lower bound on the measurable
viscosity is η0 � 63 mPa s.

Achieving a quantitative understanding of Schümmer & Tebel’s (1983) experimental
measurements was limited by the large experimental parameter space involved. We
use our numerical simulations to explore the range of operating conditions over which
a jet can effectively be used to measure the transient extensional viscosity of the liquid.
We show that this is limited by three independent factors: (i) calculation of the tensile
stress difference in the thread connecting the drops must be directly connected to the
evolution in the local jet radius; i.e. an ‘elasto-capillary balance’ must be established;
(ii) the range of diameters over which this elasto-capillary regime is established
must be experimentally resolvable; (iii) the formation of secondary droplets along
the thread must be suppressed. In the present work, we show how the perturbation
frequency of forcing that is imposed on the jet can be used to control those conditions
and determine the optimal range of excitations for using the self-thinning dynamics
of fluid jet breakup as a means of performing transient extensional rheometry.

2. Problem description
In this study, we consider an axisymmetric slender jet of polymeric liquid using the

Giesekus and Oldroyd-B constitutive equations (Bird, Armstrong & Hassager 1987).
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The radius of the jet R(z, t) slowly varies along the liquid jet and we only consider
the leading-order approximation in an expansion in the radius (Eggers 1997). The
conservation of volume and momentum along the jet can be written as follows (Forest
& Wang 1990):

∂R2

∂t
+

∂

∂z
(vR2) = 0, (2.1)

ρ

(
∂v

∂t
+ v

∂v

∂z

)
= −γ

∂κ

∂z
+ 3ηs

1

R2

∂

∂z

(
R2 ∂v

∂z

)
+

1

R2

∂

∂z

(
R2(σzz − σrr )

)
, (2.2)

κ =
1

R
(
1 + R2

z

)1/2
− Rzz(

1 + R2
z

)3/2
. (2.3)

Here, v(z, t) is the axial velocity; ηs and ηp are the solvent and polymer contribution
to the total viscosity, respectively (total viscosity η0 = ηs +ηp); Rz indicates the partial
derivative ∂R/∂z; σzz and σrr are the diagonal terms of the extra-stress tensor and
they can be calculated as follows:

σzz + λ

(
∂σzz

∂t
+ v

∂σzz

∂z
− 2

∂v

∂z
σzz

)
+

αλ

ηp

σ 2
zz = 2ηp

∂v

∂z
,

σrr + λ

(
∂σrr

∂t
+ v

∂σrr

∂z
+

∂v

∂z
σrr

)
+

αλ

ηp

σ 2
rr = −ηp

∂v

∂z
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.4)

where λ is the relaxation time of the liquid and α is a positive dimensionless parameter
corresponding to the anisotropy of the hydrodynamic drag on the polymer molecules
and is called the mobility factor (Giesekus 1982). For α = 0, the Oldroyd-B model is
recovered. Equation (2.2) can be written in conservative form as (Li & Fontelos 2003)

ρ

(
∂(R2v)

∂t
+

∂(R2v2)

∂z

)
=

∂

∂z

[
R2

(
γK + 3ηs

∂v

∂z
+ σzz − σrr

)]
=

1

π

∂F

∂z
, (2.5)

K =
1

R
(
1 + R2

z

)1/2
+

Rzz(
1 + R2

z

)3/2
, (2.6)

where ∂κ/∂z = −(1/R2)(∂/∂z)(R2K) (Entov & Yarin 1984) and F is the total tensile
force exerted over the cross-sectional area of the jet. The above equations are
asymptotically derived for a slender jet of a viscoelastic fluid by Forest & Wang
(1990). Bousfield et al. (1986) obtained the thin-filament equation by averaging the
quantities across the radius in the form of the Cosserat equation and numerically
solved the one-dimensional model. The above equations are solved using an implicit
finite difference scheme on a staggered grid. The implemented implicit method enables
computation of weakly viscoelastic jets at low values of Oh and De, which were not
carried out earlier. Fourteen hundred grid points are used and the time step is set
equal to 3 × 10−5tR . Periodic boundary conditions are used and the initial shape of
the jet, at t = 0, is described as R = R0(1 + 0.01 cos(kz)), where k is the wavenumber.
The evolution and breakup of a viscoelastic jet can be represented in terms of five
dimensionless parameters: Oh , De, the dimensionless wavenumber kR0, the solvent
viscosity ratio β = ηs/η0 and the mobility factor α.

The results from the simulation can be used to calculate extensional viscosity of
the viscoelastic liquid. For a slender liquid jet, the local strain rate can be calculated
as

ε̇ =
∂v

∂z
= − 2

R

dR

dt
. (2.7)
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The transient uniaxial extensional viscosity can be written as

η+
E ≡ τzz − τrr

ε̇
= 3ηs +

σzz − σrr

ε̇
. (2.8)

As defined, the extensional viscosity is a locally varying quantity, and to realize a
useful rheometer we need to generate a spatially and temporally constant extension
rate. In the elasto-capillary regime, we obtain a thin uniform tread with a radius which
decreases exponentially in time, resulting in a constant strain rate (Clasen et al. 2006):

Rmid (t)

R0

≈
(

ηpR0

2λγ

)1/3

exp(−t/3λ), ε̇mid =
2

3λ
. (2.9)

3. Results and discussion
In this section, we show how the temporal evolution of a jet can be used to extract

the extensional properties of a low-viscosity weakly elastic liquid. In particular,
we discuss computational rheometry for an aqueous polymeric solution with zero
shear viscosity η0 = 3.7 mPa s, ηs = 1 mPa s, relaxation time λ= 0.17 ms, density
ρ = 1000 kgm−3 and surface tension γ = 0.06 Nm−1 exiting a nozzle with the radius
of R0 = 140 µm. Fluids with similar rheological properties are discussed by Hoath
et al. (2009). The dimensionless parameters for such a liquid are Oh ∼ 0.04, β = 0.27,
De =0.8. As described in § 1, filament stretching or CABER devices cannot be used to
measure the tensile property of such a low-viscosity liquid because of the rapid time
scale for breakup and formation of satellite beads. The formation of a satellite droplet
must be inhibited for the purpose of extensional rheometry, and we next show that
this can be achieved by varying the perturbation wavenumber, kR0, in the liquid jet.

In order to consider effects of the imposed perturbation wavenumber on the jet
morphology, let us first examine the prediction of the linear instability theory for
a viscoelastic liquid jet. The dispersion relation between the wave growth rate and
the wavenumber for a temporal instability of a viscoelastic jet in an inviscid gaseous
environment was first given by Middleman (1965) (see also Goldin et al. 1969 and
Brenn et al. 2000) and is plotted in figure 1(a). It should be noted that all the
quantities presented in this section are dimensionless; time is non-dimensionalized
using the Rayleigh time, tR , length using R0 and stress using γ /R0. For reference
we also show the dispersion curve for a more viscous liquid at Oh ∼ 0.4 and β = 0.5
in figure 1(b). The corresponding limits for a viscous Newtonian jet (De = 0) and
an inviscid jet (Oh = 0) are plotted for both cases. A viscoelastic liquid has a larger
growth rate compared to a Newtonian liquid of the same viscosity. The fluid elasticity
enhances the growth of instabilities, whereas viscous effects result in a more stable
jet. The effect of varying the excitation wavenumber also has a pronounced effect on
the nonlinear evolution of the jet at long time. Snapshots of the nonlinear jet profiles
developed by different wavenumbers reveals three distinct regimes. Increasing the
dimensionless wavenumber, from k = 0.2 to k = 0.9 (denoted by a, b, c, respectively),
results in the formation of multiple, single and zero secondary droplets as the jet
evolves. For a wavenumber smaller than the one corresponding to the maximum
growth rate, k = 0.2, travelling capillary waves are observed, the details of which are
shown in figure 2. Multiple satellite droplets form and migrate towards the centre, and
they coalesce with another droplet to form a larger intermediary drop. Li & Fontelos
(2003) investigated the effects of elastic forces on the drop dynamics, including drop
migration, oscillation, merging and drop drainage for highly elastic liquids. Bhat et al.
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Figure 1. Dispersion curve predicted by linear instability of a viscoelastic jet and comparison
to a purely viscous jet and an inviscid jet. The formation of satellite droplets is suppressed at
wavenumbers larger than k � 0.85 at Oh =0.04 and k � 0.75 at Oh = 0.4. The axial jet profiles
at long times are calculated using nonlinear analysis.

(2010) showed that inertia is required for the initial formation of such structures and
that satellite beads do not form if the liquid is sufficiently viscous. Here we show that
increasing the critical wavenumber suppresses the formation of satellite beads for low
viscosity and weakly elastic liquids. It is clear that the spatiotemporal dynamics of the
thinning jet greatly impact the ability to use the process of jet breakup as a rheometer.

The information shown in figure 2(a,b) can be condensed into the space–time
diagram plotted in figure 3(a). Contour plots of log10(R) in the z − t plane show the
oscillations of both the satellite and main droplets due to capillary forces. A thin
axially uniform thread forms between these droplets and an exponential thinning can
be clearly observed in the thread connecting the main drop and the satellite drops
(green–blue regions). For the wavenumber corresponding to the maximum growth
rate, k = 0.675, a single satellite droplet forms (figure 3b). Both the satellite and
primary droplets oscillate due to interaction of capillary and inertia. The period of
oscillation for second harmonic infinitesimal-amplitude perturbations of a drop of an
inviscid liquid is given by Rayleigh (1879) as T =(π/

√
2)R3/2

drop , equal to T = 5.8 and
T = 0.96 for the main and satellite droplets, respectively. The period of oscillation
of the main drop and secondary drop for k = 0.675 determined from figure 3(b) are
5.4 and 1.06, respectively. Lamb (1932) considered the effect of small viscosity on
the small-amplitude oscillation of drops and showed that the damping ratio for the
second harmonic oscillation is ξ =(2.5Oh/

√
2)R−1/2

drop . Basaran (1992) calculated the
nonlinear oscillation of a viscous drop and showed that the period of oscillation
increases as disturbance amplitude rises. The above calculations are for Newtonian
fluids; Bauer & Eidel (1987) and Khismatullin & Nadim (2001) considered the effect
of fluid viscoelasticity on the small-amplitude vibration of drops.

As the disturbance wavenumber increases beyond the one corresponding to the
maximum growth rate, k = 0.8, the size of the secondary droplet decreases and
the oscillations of the satellite droplet are dampened more rapidly (figure 3c). For a
wavenumber of k = 0.9 close to the cutoff wavenumber, we see the formation of an axi-
ally uniform thread, which is more appropriate for extensional rheometry (figure 3d ).

We next investigate how the temporal evolution of a jet can be used to measure
the tensile rheological properties of a viscoelastic liquid. For a viscoelastic liquid at
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Figure 2. Temporal evolution of an Oldroyd-B liquid jet at Oh =0.04, De = 0.8, β = 0.27,
α = 0. (a) k = 0.2; (b) k = 0.8.

Oh = 0.4, De = 1, β = 0.5, k = 0.9 the jet radius thins in the centre and main drops
form as shown in figure 1(b). The corresponding axial velocity field and radius of
the jet are plotted in figure 4(a). The velocity profile shows regions of homogeneous
elongational flow in the cylindrical ligament and the magnitude of the extension rate
is equal to ε̇ = 2/3De (Entov & Hinch 1997). At later times, as the perturbation
amplitude grows nonlinearly, the elastic stress grows in the jet and the elasto-capillary
regime given by (2.9) can be clearly observed. The radius of the uniform thread in
the centre thins exponentially in time and a beads-on-a-string morphology forms
(Clasen et al. 2006). In this regime (t � 45) the tensile stress difference, τzz − τrr , at
the midpoint of the filament is approximately equal to the capillary stress (1/Rmid )
as shown in figure 4(b). Even though Oh < 1, the extensional viscosity of the liquid
can be calculated using (2.7) and (2.8) and is plotted in figure 4(b). Initially the
polymeric stress is small and the Trouton ratio, defined as η+

E/η0, is equal to 3β . Then
a viscous dominated plateau with Trouton ratio η+

E/η0 = 3 is observed, as expected for
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Figure 3. Space–time diagrams for thinning and breakup of an Oldroyd-B liquid jet at
different disturbance wavenumbers, Oh = 0.04, De = 0.8, β = 0.27, α = 0. For each axial position
and time, contour plots of log10[R(z, t)] are shown. Simulations are continued till a minimum
dimensionless radius of 10−3.5 = 0.0003 is obtained. Dimensionless axial position, z, varies
between 0 and 2π/k. (a) k = 0.2, (b) k =0.675, (c) k = 0.8 and (d ) k = 0.9.
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Figure 4. Midpoint properties of an Oldroyd-B liquid jet at Oh = 0.4, De = 1, β = 0.5, k = 0.9,
α = 0, t = 52. (a) Jet radius, axial velocity and extension rate are plotted. (b) Capillary stress is
a good representative of the normal stress difference in the elasto-capillary regime.

a linear viscoelastic fluid with constant viscosity. Later, in the elasto-capillary thinning
regime, extensional hardening is observed due to the stretch of polymer molecules.
In an experiment, the local extension rate in the thinning ligament can be calculated
by measuring the radius of the midpoint. Due to symmetry, the spatial derivative of
stress is zero at the midpoint and (2.4) can be integrated to calculate the tensile stress
difference. For an Oldroyd-B fluid we have

(τzz − τrr )mid = 3βOh ε̇ + exp(2ε − t/De)

∫ t

0

2(1 − β)
Oh

De
ε̇(t ′) exp(−2ε(t ′)

+ t ′/De) dt ′ + exp(−ε − t/De)

∫ t

0

(1 − β)
Oh

De
ε̇(t ′) exp(ε(t ′) + t ′/De)dt ′. (3.1)

This implies that the transient extensional viscosity of the viscoelastic liquid can be
calculated using an experimentally obtained extension rate together with (3.1).
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(a) Radius of the jet and (b) evolution in the extension rate and extensional viscosity at the
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α = 0. (a) Stress at the midpoint and (b) stress at z = 6.2, k = 0.675.

In a Giesekus fluid, variation in the magnitude of strain-hardening influences the
necking process (see figure 5). As the mobility factor (α) increases, necking occurs
more rapidly and the breakup occurs progressively earlier (Ardekani, Sharma &
McKinley 2010). Unlike the Oldroyd-B fluid, for which a constant strain rate is
established in the elasto-capillary regime, the strain rate does not remain constant for
larger Giesekus parameters but slowly increases.

In order to show how measurements of extensional viscosity will be affected as the
perturbation frequency varies at low Ohnesorge number, in figure 6 we compare the
stress difference at the midpoint for two different wavenumbers at Oh = 0.04. It can be
seen in figure 6(a) that for a wavenumber close to the cutoff wavenumber, the stress
at the midpoint can be approximated by the capillary stress, or in dimensionless form
(τzz − τrr )mid ≈ 1/Rmid . Whereas for a smaller wavenumber, k =0.675, a satellite bead
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Figure 7. Effects of the wavenumber, Deborah and Ohnesorge numbers on the jet morphology
for an Oldroyd-B liquid jet at β = 0.6 and α = 0. Wavenumbers smaller than k � kmax are not
useful for the purpose of extensional rheometry due to the formation of satellite droplets and
the resulting oscillation. (a) Oh = 0.02, the space–time diagrams associated with cases a, b, c
and d are plotted in figure 8. (b) De =1, the broken blue line shows the locus of the most
unstable mode from linear theory kmax(Oh,De).

is observed at the midpoint and the stress oscillates due to oscillation of the drop. In
this case, the capillary stress is not a good estimation of the normal stress difference.
However, in this case we can measure the stress in the thread connecting the satellite
and the main droplet, where the thread once again thins exponentially as exp(−t/3De).
Figure 6(b) shows the radius, capillary stress and normal stress difference of the thin
thread at z =6.2. Here, the capillary stress is a better approximation of the normal
stress difference in the thread, as compared to the jet midpoint which corresponds
to the satellite droplet. The stress at z = 6.2 varies quasi-periodically with frequencies
driven by both the main and satellite drops. If there is no satellite droplet then the
radius of the large end drops can be calculated to be R3

drop = 3π/2k. These inertio-
capillary oscillations are increasingly damped as viscous effects increase. For an

Ohnesorge number Oh � 0.4
√

2R
1/2
drop , the Newtonian drop response is overdamped

and no oscillation occurs. For k =0.9, the Ohnesorge number should be larger than
Oh � 0.75. As shown in figure 4, no oscillation is observed for the main drops for
Oh = 0.4.

Lastly, we explore the operational parameter space for a jet elongational rheometer
by considering the combined effects of the excitation frequency, Deborah and
Ohnesorge numbers. Two slices of the three-dimensional parameter space (k, De,
Oh) are shown in figure 7. For shorter wavenumbers, higher viscosity (Oh) and higher
elasticity (De) are required to inhibit the formation of a satellite droplet. The effect of
increasing elasticity (De) is illustrated by the space–time diagrams for the four cases in
figure 8(a–d ). Cases (a) and (b) are most appropriate for extensional rheometry since
no satellite droplet occurs in the elasto-capillary regime. However, case (b) is distinct
in the sense that initially a satellite droplet appears to develop near the midplane, but
the liquid in the secondary droplet subsequently drains into the main droplets. As
shown in figures 7 and 8, wavenumbers smaller than k � kmax are not useful for the
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Figure 8. Space–time diagrams for an Oldroyd-B liquid jet at different disturbance
wavenumbers and Deborah number, Oh = 0.02, β = 0.6 , α = 0. For each axial position and
time, contour plots of log10(R) are shown corresponding to the state diagram of figure 7.
(a) k = 0.9, De = 1.67; (b) k = 0.8, De = 3; (c) k = 0.55, De =25 and (d ) k = 0.2, De = 300.

purpose of extensional rheometry due to the formation of single (case c) or multiple
satellite droplets (case d ) and their subsequent oscillation and interaction.

4. Conclusions
We have shown that a perturbed jet undergoing capillary thinning can be used

successfully as an elongational rheometer for measuring tensile properties of even
weakly viscoelastic polymer solutions. The formation of satellite droplets can be
suppressed by imposing a perturbation wavenumber between kmax(Oh, De) <k < 1.
This allows the thread to thin as a single axially uniform filament. For a weakly

viscoelastic liquid (De = λ/tR = λ
√

γ /ρR3
0 = 0.8), a jet extensional rheometer will be

effective for Ohnesorge numbers as low as Oh � 0.02. For Oh < 0.02, additional
calculations show that the formation of satellite droplets is unavoidable even at
wavenumbers close to unity.

V.S. acknowledges support from Akzo Nobel.
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