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EXTENDED LAPLACE PRINCIPLE FOR
EMPIRICAL MEASURES OF A MARKOV CHAIN

STEPHAN ECKSTEIN∗ University of Konstanz

Abstract

We consider discrete-time Markov chains with Polish state space. The large deviations
principle for empirical measures of a Markov chain can equivalently be stated in Laplace
principle form, which builds on the convex dual pair of relative entropy (or Kullback–
Leibler divergence) and cumulant generating functional f �→ ln

∫
exp ( f ). Following

the approach by Lacker (2016) in the independent and identically distributed case, we
generalize the Laplace principle to a greater class of convex dual pairs. We present in
depth one application arising from this extension, which includes large deviation results
and a weak law of large numbers for certain robust Markov chains—similar to Markov
set chains—where we model robustness via the first Wasserstein distance. The setting
and proof of the extended Laplace principle are based on the weak convergence approach
to large deviations by Dupuis and Ellis (2011).
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1. Introduction

Throughout the paper (E, d) denotes a Polish space, P(E) denotes the space of Borel
probability measures on E endowed with the topology of weak convergence, and Cb(E) denotes
the space of continuous and bounded functions mapping E into R. Let a Markov chain with
state space E be given by its initial distribution π0 ∈P(E) and Borel measurable transition
kernel π : E →P(E), and denote by πn ∈P(En) the joint distribution of the first n steps of the
Markov chain. Define the empirical measure map Ln : En →P(E) by

Ln(x1, . . . , xn) = 1

n

n∑
i=1

δxi,

and recall the relative entropy R : P(E) ×P(E) → [0, ∞] given by

R(ν, μ) =
∫

E
log

( dν

dμ

)
dν if ν � μ, R(ν, μ) = ∞ else.

The main goal of this paper is to generalize the large deviations result for empirical measures
of a Markov chain in its Laplace principle form. Under suitable assumptions on the Markov
chain, the usual Laplace principle for empirical measures of a Markov chain states that, for all
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F ∈ Cb(P(E)),

lim
n→∞

1

n
ln

∫
En

exp (nF ◦ Ln) dπn = sup
ν∈P(E)

(F(ν) − I(ν)). (1.1)

Here, I : P(E) → [0, ∞] is the rate function, given in the setting of [20, Chapter 8] by

I(ν) = inf
q : νq=ν

∫
E

R(q(x), π (x))ν(dx),

where the infimum is over all stochastic kernels q on E that have ν as an invariant measure. In
this paper a stochastic kernel q on E is a Borel measurable mapping q : E →P(E), and νq ∈
P(E) is defined by νq(A) := ∫

E q(x, A)ν(dx) for ν ∈P(E), where we write q(x, A) = q(x)(A) for
x ∈ E and Borel sets A ⊆ E. The Laplace principle (1.1)—in the mentioned setting of [20]—
is equivalent to the more commonly used form of the large deviations result for empirical
measures of a Markov chain, which states that, for all Borel sets A ⊆P(E),

− inf
ν∈Å

I(ν) ≤ lim inf
1

n
ln πn(Ln ∈ Å) ≤ lim sup

1

n
ln πn(Ln ∈ Ā) ≤ − inf

ν∈Ā
I(ν),

where Å denotes the interior and Ā the closure of A. Large deviation probabilities of Markov
chains have been studied in a variety of settings and under different assumptions; see e.g. [13],
[16], [17], [18], [30], and [36].

The way we generalize the Laplace principle is by using the fact that both sides of the
Laplace principle (1.1) can be stated solely in terms of relative entropy, its chain rule, and its
convex dual pair. Equation (1.1) can therefore be formulated analogously for functionals re-
sembling the relative entropy, in the sense that these functionals have to satisfy the same type of
chain rule and duality. The kind of convex duality referred to is Fenchel Moreau duality, which
is often studied in the context of convex risk measures; see, for example, [1], [4], [12], and [33].

The original idea for extensions of Laplace principles of this form is due to Lacker [34],
who pursued this in the context of independent and identically distributed (i.i.d.) sequences
of random variables instead of Markov chains. The initial goal was to provide a setting to
study more than just exponential tail behavior of random variables, as is given by large
deviations theory. The extension of Sanov’s theorem he proved [34, Theorem 3.1] can be
used to derive many interesting results, such as polynomial large deviation upper bounds,
robust large deviation bounds, robust laws of large numbers, asymptotics of optimal transport
problems, and more, while several possibilities remain unexplored.

In this paper the same type of extension for Markov chains is obtained. To this end, we work
in a setting similar to that of [20, Chapter 8]. In particular, the results from [20, Chapter 8] are
a special case of Theorem 1.1. To showcase the potential implications of Theorem 1.1, we
focus on one broad application related to robust Markov chains, summarized in Theorems 1.2
and 1.3.

1.1. Main results

Let β : P(E) ×P(E) → (−∞, ∞] be a Borel measurable function which is bounded from
below and satisfies β(ν, ν) = 0 for all ν ∈P(E). One may think of β(·, ·) = R(·, ·). To state
the chain rule, we introduce the following notation for the decomposition of an n-dimensional
measure ν ∈P(En) into kernels νi,i+1 : Ei →P(E) for i = 1, . . . , n − 1 and ν0,1 ∈P(E):

ν(dx1, . . . , dxn) = ν0,1(dx1)
n−1∏
i=1

νi,i+1(x1, . . . , xi, dxi+1).
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138 S. ECKSTEIN

For θ ∈P(E), define βθ
n : P(En) → (−∞, ∞] by

βθ
n (ν) = β(ν0,1, θ ) +

∫
En

n−1∑
i=1

β(νi,i+1(x1, . . . , xi), π (xi))ν(dx1, . . . , dxn),

where in the case in which β(·, ·) = R(·, ·) we obtain β
π0
n (ν) = R(ν, πn) for ν ∈P(En) by the

chain rule for relative entropy. Note that β ·
n( ·) is well defined as the term inside the integral is

Borel measurable, for example, by [6, Proposition 7.27]. Define ρθ
n as the convex dual of βθ

n
by

ρθ
n ( f ) = sup

μ∈P(En)

( ∫
En

f dμ − βθ
n (μ)

)

for Borel measurable functions f : En →R, where we adopt the convention ∞ − ∞ :=
−∞. For β(·, ·) = R(·, ·), we obtain ρ

π0
n ( f ) = ln

∫
En exp ( f ) dπn by the Donsker–Varadhan

variational formula for the relative entropy. In the above definitions, θ is a placeholder for
variable initial distributions, which is required as a tool in the proof. For the actual statement,
only β

π0
n and ρn := ρ

π0
n are needed. We write ρ := ρ1 and ρθ := ρθ

1 .
The assumptions for the main theorem are stated below. Assumption M is [20,

Condition 8.4.1.], and Assumption T is a direct generalization of [20, Condition 8.2.2].

Assumption M. The following conditions hold on the Markov chain.

(M1) Define the k-step transition kernel π (k) of the Markov chain recursively by
π (k)(x, A) := ∫

E π (y, A)π (k−1)(x, dy) for x ∈ E and Borel sets A ⊆ E.
Assume that there exist l0, n0 ∈N such that, for all x, y ∈ E,

∞∑
i=l0

1

2i
π (i)(x) �

∞∑
j=n0

1

2j
π ( j)(y).

(M2) π has an invariant measure, i.e. there exists μ∗ ∈P(E) such that μ∗π = μ∗.

Assumption B. The following assumptions hold on β.

(B1) The mapping P(E) ×P(E2) � (θ, μ) �→ βθ
2 (μ) is convex.

(B2) The mapping P(E) ×P(E2) � (θ, μ) �→ βθ
2 (μ) is lower semi-continuous.

(B3) If ν is not absolutely continuous with respect to μ then β(ν, μ) = ∞.

Assumption T. At least one of the following assumptions must hold in order to guarantee the
tightness of certain families of random variables.

(T1) There exists a Borel measurable function U : E → [0, ∞) such that the following
conditions hold:

(a) infx∈E (U(x) − ρπ (x)(U)) > −∞;

(b) {x ∈ E : U(x) − ρπ (x)(U) ≤ M} is a relatively compact subset of E for all M ∈R;

(c) ρ(U) < ∞.

(T1’) E is compact.

In the case in which β(·, ·) = R(·, ·), we usually impose another Condition on π in the form
of the Feller property, i.e. continuity of x �→ π (x); see, e.g. [20, Condition 8.3.1]. Here, this is
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Extended Laplace principle for empirical measures of a Markov chain 139

implicitly included in Condition (B2). Indeed, we can quickly check that, for (B2) to hold in
the case in which β(·, ·) = R(·, ·), the following is sufficient: if θn

w→ θ ∈P(E) then θn ⊗ π
w→

θ ⊗ π ∈P(E2) has to hold as well. The Feller property implies this; see [20, Lemma 8.3.2].
The following extension of the Laplace principle for empirical measures of a Markov chain

is the main result.

Theorem 1.1. Define the rate function I : P(E) → (−∞, ∞] by

I(ν) := inf
q:νq=ν

∫
E

β(q(x), π (x))ν(dx) = inf
q:νq=ν

βν
2 (ν ⊗ q). (1.2)

Under Condition (B1), (B2), and Assumption T, the upper bound

lim sup
n→∞

1

n
ρn(nF ◦ Ln) ≤ sup

ν∈P(E)
(F(ν) − I(ν))

holds for all upper semicontinuous and bounded functions F : P(E) →R.
Under Condition (M1), (M2), (B1), and (B3), the lower bound

lim inf
n→∞

1

n
ρn(nF ◦ Ln) ≥ sup

ν∈P(E)
(F(ν) − I(ν))

holds for all F ∈ Cb(P(E)).

Intuition, applicability, and difficulties in dealing with the above result are very similar to
the i.i.d. case and are described in detail in the introduction of [34]. The main differences for
Markov chains are conditions (B1) and (B2). To verify these conditions, we would ideally like
to have a better expression for β ·

2( ·) than is given by the definition, which is often not trivial.
In the applications of this paper the choices of β are convenient in this regard. Some of the
applications pursued in the i.i.d. case, e.g. [34, Chapter 4 and 6] appear more difficult to obtain
for Markov chains. A thorough analysis of the range of applications of Theorem 1.1 remains
incomplete for now, as the goal of this work is to give a detailed account of one application of
Theorem 1.1 to robust Markov chains.

The following corollary complements Theorem 1.1.

Corollary 1.1. (a) If (θ, ν) �→ βθ
2 (ν) is lower semicontinuous then I is lower semicontinuous.

If (θ, ν) �→ βθ
2 (ν) is convex then I is convex.

(b) If the Theorem 1.1 upper bound holds and, additionally, I has compact sub-level
sets, then the upper bound extends to all functions F : P(E) → [−∞, ∞) which are upper
semicontinuous and bounded from above.

1.2. Applications to robust Markov chains

In this paper robustness broadly refers to uncertainty about the correct model specification
of the Markov chain. This type of uncertainty is often studied in terms of nonlinear expectations
(see, e.g. [10], [35], [38], and [39]) and distributional robustness (see, e.g. [8], [23], [25], and
[27]). Here, the main point is to take uncertainty with respect to the transition kernel π into
consideration. Conceptually, a robust transition kernel is the following. If the Markov chain
is at point x ∈ E, the next step of the Markov chain is not necessarily determined by a fixed
measure π (x), but rather can be determined by any measure π̂ ∈ P(x) ⊆P(E). In our context,
P(x) will be defined as a neighborhood of π (x) with respect to the first Wasserstein distance.
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140 S. ECKSTEIN

The existing literature on robust Markov chains focuses on finite state spaces, where
transition probabilities are uncertain in some convex and closed sets, usually expressed via
matrix intervals. For example Škulj [42] gave a good overview of the field. Robust Markov
chains are studied under the names of Markov set chains (see, e.g. [28], [29], and [32]),
imprecise Markov chains (see, e.g. [14]), as well as Markov chains with interval probabilities
(see, e.g. [41] and [42]). Recently, continuous-time versions have also received attention (see,
e.g. [22] and [43]). While different types of laws of large numbers are studied frequently, large
deviations theory seems to be absent in the current literature on robust Markov chains. Robust
Markov chains find applications in several areas in machine learning and operations research,
as well as in reinforcement learning [37], [46], [47], and [48], network control [22], [40], and
server assignment [31].

In the following, the asymptotic behavior of such Markov chains is analyzed. The type of
asymptotics studied is worst-case behaviors over all possible distributions, in the sense of large
deviation probabilities (Theorem 1.2) and a law of large numbers (Theorem 1.3) of empirical
measures of robust Markov chains. Worst-case behavior for large deviations means that the
slowest possible rate of convergence to 0 of a tail event is identified. For laws of large numbers,
we give upper bounds—or by changing signs, lower bounds—for law of large number type
limits.

Define the first Wasserstein distance dW on P(E) by

dW (μ, ν) = inf
τ∈	(μ,ν)

∫
E

d(x, y)τ (dx, dy)

for μ, ν ∈P(E), where 	(μ, ν) ⊆P(E2) denotes the set of measures with first marginal μ and
second marginal ν. See, for example, [26] for an overview regarding the Wasserstein distance.
In order to avoid complications with respect to compatibility of the weak convergence and
Wasserstein distance, we assume that E is compact for the applications.

Fix r ≥ 0. The set of possible joint distributions of the robust Markov chain up to step n is
characterized by Mn(π0) ⊆P(En) defined by

Mn(π0) := {ν ∈P(En) : dW (ν0,1, π0) ≤ r and dW (νi,i+1(x1, . . . , xi), π (xi)) ≤ rν-a.s.

for i = 1, . . . , n − 1}.
Note that elements of Mn(π0) do not have to be Markov chains. In this context the Markov
property only applies to the evolution of the set of measures, but each individual measure can
depend on the entire path.

For technical reasons related to Condition (B3), we also consider the following modifica-
tion:

Mn(π0) :={ν ∈ Mn(π0) : ν � π0 ⊗ π ⊗ · · · ⊗ π}.
Both definitions above can of course be stated for arbitrary θ ∈P(E) instead of π0. We show
that

β(ν, μ) := inf
μ̂∈M1(μ)

R(ν, μ̂)

satisfies the assumptions for the upper bound of Theorem 1.1, and that

β(ν, μ) := inf
μ̂∈M1(μ)

R(ν, μ̂)
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satisfies the assumptions for the lower bound of Theorem 1.1. In Lemma 3.1 and Lemma 3.5
we will characterize βθ

n and βθ
n

in terms of Mn(θ ) and Mn(θ ).
The rate functions I and I denote the rate functions for β and β, respectively, as given by

(1.2) and can be expressed as

I(ν) = inf
q:νq=ν

inf
μ∈M2(ν)

R(ν ⊗ q, μ), I(ν) = inf
q:νq=ν

inf
μ∈M2(ν)

R(ν ⊗ q, μ).

In the r = 0 case, these rate functions simplify to those used in [20, Chapter 8], since, for r = 0,

it holds that M2(ν) = M2(ν) = {ν ⊗ π}.
Theorem 1.1 yields the following result.

Theorem 1.2. Assume that (E, d) is compact. Let β, β and Mn(θ ), Mn(θ ) for θ ∈P(E) be
given as above. Let I and I denote the rate functions for β and β, respectively, as given by
(1.2).

(a) If π satisfies the Feller property, it holds that, for Borel sets A ⊆P(E),

lim sup
n→∞

sup
μ∈Mn(π0)

1

n
ln μ(Ln ∈ Ā) ≤ − inf

ν∈Ā
I(ν).

(b) If π satisfies (M), it holds that, for Borel sets A ⊆P(E),

lim inf
n→∞ sup

μ∈Mn(π0)

1

n
ln μ(Ln ∈ Å) ≥ − inf

ν∈Å
I(ν).

For a (numerical) illustration of the above result, see Example 3.1. Among other things, the
example showcases that one can identify conditions such that there is no difference between
the upper and lower bounds, and, thus, the above identifies precise asymptotic rates. Note that
in finite state spaces one can guarantee Mn(θ ) = Mn(θ ) by assuming that π (x)(y) > 0 for all
x, y ∈ E.

The following is the law of large numbers result for robust Markov chains, which is based
on the choices

β(μ, ν) :=
{

0 if dW (μ, ν) ≤ r,

∞ otherwise,
β(μ, ν) :=

{
0 if dW (μ, ν) ≤ r and μ � ν,

∞ otherwise,

again for fixed r ≥ 0.

Theorem 1.3. Assume that (E, d) is compact. Let Mn(θ ), Mn(θ ) for θ ∈P(E) be given as
above.

(a) If π satisfies the Feller property, it holds that, for all F : P(E) → [−∞, ∞), which are
upper semicontinuous and bounded from above,

lim sup
n→∞

sup
μ∈Mn(π0)

∫
En

F ◦ Ln dμ ≤ sup
ν∈P(E) : there exists q,νq=ν : ν⊗q∈M2(ν)

F(ν).

(b) If π satisfies (M), it holds that, for all F ∈ Cb(P(E)),

lim inf
n→∞ sup

μ∈Mn(π0)

∫
En

F ◦ Ln dμ ≥ sup
ν∈P(E) : there exists q,νq=ν : ν⊗q∈M2(ν)

F(ν).
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142 S. ECKSTEIN

This result is easiest interpreted by looking at the r = 0 case. If both the upper and lower
bounds hold, the above states that

πn ◦ L−1
n

w→ δμ∗ ∈P(P(E)),

where μ∗ is the unique invariant measure under the Markov chain transition kernel π , which—
under Assumption M—always exists (see [20, Lemma 8.6.2(a)]).

Specifically, the choices F(ν) := ∫
E f dν for f ∈ Cb(E) in the above theorem can be

interpreted as a robust Cesàro limit of a Markov chain. Indeed, for r = 0, this yields

lim
n→∞

1

n

n∑
i=1

π0π
(i−1) w→ μ∗.

For r > 0, however, we obtain a result which strongly resembles, e.g. [28, Theorem 4.1], but
in a more general state space.

1.3. Generalizations and relation to the literature

In this paper robustness is modeled via the first Wasserstein distance because it is both
tractable and frequently used. Nevertheless, the question arises whether the presented approach
can be applied more generally, specifically related to the existing literature in finite state spaces.
In this section we roughly outline potential extensions.

In the existing literature regarding robust Markov chains in finite state spaces—where
we mainly refer to [28] and [42] as references—the starting point is a robust transition
kernel P : E → 2P(E) satisfying certain convexity and closedness conditions. For our approach
however, we start with both a transition kernel π : E →P(E) and a mapping U : P(E) → 2P(E),
with the relation of the approaches being P = U ◦ π .

In Section 1.2 we used U(μ) = {μ̂ ∈P(E) : dW (μ, μ̂) ≤ r}. The setting of Section 1.2 trans-
lates to β(ν, μ) = infμ̂∈U(μ) R(ν, μ̂) for large deviation results (Theorem 1.2) and β(ν, μ) =
∞ · 1U(μ)C (ν) for law of large number results (Theorem 1.3). Furthermore, Mn(θ ) = {μ ∈
P(En) : μ0,1 ∈ U(θ ), μi,i+1(x1, . . . , xi) ∈ U(π (xi)) μ-a.s. for i = 1, . . . , n − 1} for θ ∈P(E).
In general, the following conditions on U would allow for a similar type of proof for analogs
of Theorems 1.2 and 1.3, where the assumptions on E (compactness) and π (Feller property
and/or Assumption M) stay the same.

(a) μ ∈ U(μ) for all μ ∈P(E).

(b) The graph of U, i.e. {(μ, μ̂) ∈P(E)2:μ̂ ∈ U(μ)}, is closed and convex.

Here, (a) implies that β(μ, μ) = 0 for all μ ∈P(E). That the graph of U is convex implies
Condition (B1); see Lemma 3.2 and the subsequent paragraph, as well as Lemma 3.7.
Closedness of the graph is used to verify Condition (B2); see Lemmas 3.3, 3.4, and 3.7. For
the large deviations result, closedness of the graph also guarantees a representation of βθ

n in
terms of Mn(θ ); see Lemmas 3.1 and 3.5.

The assumption that E has to be compact can likely be loosened by assuming that U is
compact valued instead, even though an analog of Lemma 3.3 is then more difficult to obtain.

1.4. Further ideas and outlook

There are several possibilities for further directions that the main result, Theorem 1.1, can
be used for. We refer again to the paper by Lacker [34] in which a range of applications are
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discussed in detail for the i.i.d. setting. For Markov chains, further natural choices for β that
may lead to interesting applications are, for example, the following.

• ϕ-divergences, i.e. for a convex function ϕ : R+ →R,

β(ν, μ) :=
∫

E
ϕ
( dν

dμ

)
dμ,

which is understood to be ∞ if ν is not absolutely continuous with respect to μ.

• Transport costs, i.e. for a lower semicontinuous c : E2 → [0, ∞],

β(ν, μ) := inf
τ∈	(ν,μ)

∫
E

c dτ .

• The Lp norm of the Radon–Nikodym derivative

β(ν, μ) :=
∥∥∥ dν

dμ

∥∥∥
Lp(μ)

.

• The sum of different choices for β, i.e. for β(i) (i = 1, . . . , K), define

β(ν, μ) :=
K∑

i=1

β(i)(ν, μ).

The first choice of ϕ-divergences is certainly interesting, and the key conditions (B1) and
(B2) appear obtainable. Yet, the manifestations of this choice are difficult to interpret, since
the resulting functionals βn and ρn are very complex; see also [34, Chapter 1.5.]. The second
choice of transport costs is analyzed in detail in [34, Chapter 6] in the i.i.d. case. For Markov
chains, conditions (B1) and (B2) are satisfied in compact spaces. This is shown in detail in
the supplementary material to this paper [21], as it nicely illustrates standard methods used to
apply Theorem 1.1. Condition (B3) for the lower bound is, in general, not satisfied (consider
E =R and the Euclidean distance c), but can be satisfied for specific c (e.g. c(x, y) = 0 if
x = y and c(x, y) = ∞ otherwise). The resulting limit theorem is loosely related to all kinds
of optimization problems, including optimal transport balls; see, e.g. [2], [5], [7], [8], [23],
and [25]. The third idea leads to polynomial large deviation bounds in the i.i.d. case (see
[34, Chapter 4]). For Markov chains, while β is a very natural choice, β is in general not
jointly convex, and, hence, Condition (B1) is not satisfied. Nevertheless, one should still keep
this choice in mind, as there might be possible adaptations to make it applicable. The fourth
point arises from the observation that all major assumptions on β, (B1), (B2), and (B3), are
closed under finite summation, and, furthermore, the resulting dual ρn is tractable via the inf-
convolution of the individual duals; see, e.g. [11, Chapter 1.6] for background.

Some choices of β have direct implications for applications, e.g. the large deviation bounds
for robust Markov chains from Theorem 1.2 can be used to analyze and fine-tune systems
using robust Markov chains; see, e.g. [22], [31], [40], [46], [47], and [48]. On the other
hand, there may be some hidden applications that are more nuanced. One example is to
use the results from Section 1.2 to analyze certain complex stochastic processes, which are
themselves not Markovian (or even precisely determined at all), but can be shown to be close
to a certain Markov chain (in the sense of Section 1.2). Processes like this may arise naturally,
for example, in numerical implementations of certain Markovian algorithms. The stochastic
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144 S. ECKSTEIN

process corresponding to the numerical implementation, including numerical inaccuracies and
other potential sources of error, may be difficult to model precisely. However, it is natural
to think of this process as close to the process corresponding to the theoretical algorithm, and,
hence, the asymptotic behavior may be analyzed using the results from Section 1.2. The reason
this requires the results from this paper as opposed to the results from the existing literature on
robust Markov chains is that usually finite state spaces are too restrictive, while the assumption
of compact state spaces (as in this paper) is often reasonable.

1.5. Structure of the paper

In Section 2 we prove Theorem 1.1 and Corollary 1.1. The method of proof is oriented at
[20, Chapters 8 and 9], while also using tools from convex duality and measurable selection. In
Section 2.1 we provide results relating to the lower bound and its proof, and in Section 2.2 we
provide results relating to the upper bound and its proof. In Section 2.3 we provide the proof
of Corollary 1.1.

In Section 3 we present in depth the applications to robust Markov chains. Aside from
using Theorem 1.1 and Corollary 1.1, Section 3 is self-contained, so readers who prefer to read
Section 3 before Section 2 can easily do so. A large part of Section 3 is devoted to verifying
conditions (B1) and (B2) for the different choices of β. Furthermore, the large deviation results
obtained are illustrated in Example 3.1.

Many of the smaller results not listed in the introduction are interesting in their own right,
e.g. Lemmas 2.1, 2.2, and 3.3.

In the supplementary material [21] to this paper, applicability of the main theorem for the
choice of β as a transport cost is shown.

2. Proofs of Theorem 1.1 and Corollary 1.1

2.1. The lower bound of Theorem 1.1

At some points in this section it is necessary to evaluate ρθ
n at universally measurable

functions, which is still well defined. More precisely, upper semi-analytic functions are the
object of interest, the reason made obvious in Lemma 2.1. In particular, upper semi-analytic
functions are universally measurable; see, e.g. [6, Chapter 7] for background.

2.1.1. Preliminary results

Lemma 2.1. (See also [34, Proposition A.1].) For θ ∈P(E), f : En →R upper semi-analytic,
and 0 < k < n, it holds that

ρθ
n ( f ) = ρθ

k (g),

where g : Ek →R is defined by

g(x1, . . . , xk) = ρ
π (xk)
n−k ( f (x1, . . . , xk, ·)).

Furthermore, g is upper semi-analytic.

Proof. First, let ν ∈P(Ek) and let K : Ek →P(En−k) be a stochastic kernel. For notational
purposes, we write x̄ = (x1, . . . , xk) for x1, . . . , xk ∈ E and

K(x1, . . . , xk) = K(x̄) = Kx̄.

Denote the decomposition of Kx̄ in the usual way, i.e.

Kx̄ = Kx̄
0,1 ⊗ Kx̄

1,2 ⊗ · · · ⊗ Kx̄
n−k−1,n−k.

https://doi.org/10.1017/apr.2019.6 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.6


Extended Laplace principle for empirical measures of a Markov chain 145

For the decompositions of ν and ν ⊗ K, the trivial ν ⊗ K-almost-sure equalities hold:

νi,i+1(x1, . . . , xi) = (ν ⊗ K)i,i+1(x1, . . . , xi) for i = 0, . . . , k − 1,

Kx̄
i,i+1(xk+1, . . . , xk+i) = (ν ⊗ K)k+i,k+i+1(x1, . . . , xk+i) for i = 0, . . . , n − k − 1.

Hence,

βθ
k (ν) +

∫
Ek

β
π (xk)
n−k (Kx̄)ν(dx1, . . . , dxk)

=
∫

En
β(ν0,1, θ ) +

( k−1∑
i=1

β(νi,i+1(x1, . . . , xi), π (xi))

)
+ β(Kx̄

0,1, π (xk))

+
( n−k−1∑

i=1

β(Kx̄
i,i+1(xk+1, . . . , xk+i), π (xk+i))

)

× Kx̄(dxk+1, . . . , dxn)ν(dx1, . . . , dxk)

= βθ
n (ν ⊗ K).

Using the above and a standard measurable selection argument [6, Proposition 7.50], we
obtain

ρθ
k (g) = sup

ν∈P(Ek)

( ∫
Ek

g dν − βθ
k (ν)

)

= sup
ν∈P(Ek)

(∫
Ek

sup
μ∈P(En−k)

( ∫
En−k

f (x1, . . . , xn)μ(dxk+1, . . . , dxn) − β
π (xk)
n−k (μ)

)

× ν(dx1, . . . , dxk) − βθ
k (ν)

)

= sup
ν∈P(Ek)

sup
K : Ek→P(En−k),

K Borel

( ∫
En

f dν ⊗ K − βν
n (ν ⊗ K)

)

= ρθ
n ( f ).

That g is upper semi-analytic can be shown as follows. Both the mappings

(xk, ν) �→ −β
π (xk)
n−k (ν), (x1, . . . , xk, ν) �→

∫
En−k

f (x1, . . . , xk, ·) dν

are upper semi-analytic by [6, Proposition 7.48], where, for the first mapping, we implicitly
have to use [6, Proposition 7.27] as mentioned after the definition of β ·

n( ·). The sum of these
mappings is therefore still upper semi-analytic (see, e.g. [6, Lemma 7.30(4)]) and, hence, by
[6, Proposition 7.47], g is upper semi-analytic. �

Lemma 2.2. Under Condition (B3), for all θ ∈P(E) and f : En →R upper semi-analytic, it
holds that

ρθ
n ( f ) ≥

∫
E

ρδx
n ( f )θ (dx).
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Proof. By Condition (B3), it holds that, for all x ∈ E,

ρδx
n ( f ) = sup

ν∈P(En)

( ∫
En

f dν − βδx
n (ν)

)

= sup
ν∈P(En) : ν0,1=δx

( ∫
En

f dν − βδx
n (ν)

)

= sup
ν∈P(En−1)

( ∫
En

f d(δx ⊗ ν) − βδx
n (δx ⊗ ν)

)
.

Hence, we obtain, for θ ∈P(E),∫
E

ρ
δx1
n ( f )θ (dx1)

=
∫

E
sup

ν∈P(En−1)

( ∫
En

f d(δx1 ⊗ ν) − β
δx1
n (δx1 ⊗ ν)

)
θ (dx1)

=
∫

E
sup

ν∈P(En−1)

(∫
En−1

f (x1, ·) dν

−
∫

En−1

n∑
k=2

β(νk−2,k−1(x2, . . . , xk−1), π (xk−1)ν(dx2, . . . , dxn)

)
θ (dx1)

(∗)= sup
K:E→P(En−1)

KBorel

( ∫
En

f dθ ⊗ K − βθ
n (θ ⊗ K)

)

≤ sup
ν∈P(En)

( ∫
En

f dν − βθ
n (ν)

)

= ρθ
n ( f ).

Here, (∗) follows by a standard measurable selection argument; see, for example, [6,
Proposition 7.50]. �
Lemma 2.3. Let (Xi)i∈N be an E-valued sequence of random variables such that
limn→∞ (1/n)

∑n
i=1 F(Xi) =E[F(X1)] holds almost surely for all F ∈ Cb(E). Let ν(n) = P ◦

(X1, . . . , Xn)−1 be the distribution of (X1, . . . , Xn) for n ∈N. Then ν(n) ◦ L−1
n

w→ δν(1) .

Proof. By a standard separability argument (cf. [44, Proof of Theorem 3.1]), it follows that
Ln(X1, . . . , Xn)

w→ ν(1) holds P-a.s. Hence, by dominated convergence,

ν(n) ◦ L−1
n

w→ δν(1) . �

For the following results, note that, under Assumption M, π has a unique invariant measure,
which we denote by μ∗; see [20, Lemma 8.6.2(a)]. Furthermore, recall that, for k ∈N, we
denote by π (k) the k-step transition kernel of the Markov chain, as defined in Condition (M1).

Lemma 2.4. ([20, Lemma 8.6.2(b)].) Let Assumption M be satisfied. Let A ⊆ E be a Borel set
such that π (l0)(x0, A) > 0 for some x0 ∈ E. Then μ∗(A) > 0, where μ∗ is the unique invariant
measure under π .
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Lemma 2.5. (Adapted version of [20, Lemma 8.6.2(c)].) Let Assumption M and
Condition (B3) be satisfied. Let ν ∈P(E) satisfy βν

2 (ν ⊗ p) < ∞ for some stochastic kernel
p on E such that νp = ν. Then it holds that ν � μ∗, where μ∗ is the unique invariant measure
under π .

Proof. Let �0 ⊆ E be a Borel set such that ν(�0) = 1 and p(x) � π (x) for all x ∈ �0, which
we can choose by (B3) and since βν

2 (ν ⊗ p) < ∞. Define p̃(x) := 1�0 (x)p(x) + 1�C
0

(x)π (x).

Since p̃(x) � π (x) for all x ∈ E, we have p̃(l0)(x) � π (l0)(x) for all x ∈ E, where l0 is the constant
from Condition (M1).

Now choose a Borel set A ⊆ E such that ν(A) > 0. By iterating νp̃ = ν, we obtain a Borel set
B ⊆ E with ν(B) > 0 and p̃(l0)(x, A) > 0 for all x ∈ B. Hence, π (l0)(x, A) > 0 for all x ∈ B and,
therefore, by Lemma 2.4, μ∗(A) > 0. �
2.1.2. Proof of Theorem 1.1: the lower bound. Let F ∈ Cb(P(E)) and ε > 0 be fixed. We have
to show that

lim inf
n→∞

1

n
ρn(nF ◦ Ln) ≥ sup

ν∈P(E)
(F(ν) − I(ν)) − 4ε.

We do this by showing that every subsequence has a further subsequence which satisfies this
inequality. So we fix a subsequence and relabel it n ∈N. Labeling subsequences by the same
index as the original sequence will be a common practice throughout the remainder of this
paper.

Outline of the proof. First, we show that there exists a Borel set 
 ⊆ E such that
π (l0)(y, 
) = 1 for all y ∈ E, and, for all x ∈ 
,

lim inf
n→∞

1

n
ρ

δx
n−l0

(nF ◦ Ln(x1, . . . , xl0 , ·)) ≥ sup
ν∈P(E)

(F(ν) − I(ν)) − 3ε (2.1)

holds for all x1, . . . , xl0 ∈ E and a further subsequence (the same subsequence for all
x1, . . . , xl0 ). This subsequence then remains fixed for the rest of the proof and is again labeled
by n ∈N.

The next step is to use Lemma 2.1, i.e. for all f ∈ Cb(En),

ρn( f ) = ρl0 ((x1, . . . , xl0 ) �→ ρ
π (xl0 )
n−l0

( f (x1, . . . , xl0 , ·)),
where l0 is the constant from Condition (M1). This is used together with Lemma 2.2, i.e. for
all f ∈ Cb(En) and θ ∈P(E),

ρθ
n ( f ) ≥

∫
E

ρδx
n ( f )θ (dx).

We then use these two results to show that

ρn(nF ◦ Ln) ≥ ρl0 (gn), (2.2)

where

gn(x1, . . . , xl0 ) =
∫




ρ
δx
n−l0

(nF ◦ Ln(x1, . . . , xl0 , ·))π (l0)(xl0 , dx).

We conclude by combining the first limit result (2.1) and inequality (2.2), which works by
Fatou’s lemma, using monotonicity of ρn and the fact that ρn(c) ≥ c for all c ∈R.

Step 1. We show that (2.1) holds for all x ∈ 
 and x1, . . . , xl0 ∈ E, where 
 and the required
further subsequence is specified later.
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We can, without loss of generality, choose ν0 ∈P(E) such that

−∞ < sup
ν∈P(E)

(F(ν) − I(ν)) ≤ F(ν0) − I(ν0) + ε < ∞,

since if the supremum equals −∞, there is nothing to show. Then

inf
q:ν0q=ν0

∫
E

β(q(x), π (x))ν0(dx) = I(ν0) < ∞.

Choose a stochastic kernel p on E with ν0p = ν0 such that

∞ > I(ν0) + ε ≥
∫

E
β(p(x), π (x))ν0(dx) = β

ν0
2 (ν0 ⊗ p).

By (B3), we can choose a Borel set N ⊆ E with ν0(N) = 0 such that p(x) � π (x) for all x ∈ NC.
Define the stochastic kernel p0 on E by p0(x) := 1N(x)π (x) + 1NC (x)p(x) for x ∈ E and show
that

∞ > I(ν0) + ε ≥ β
ν0
2 (ν0 ⊗ p) = β

ν0
2 (ν0 ⊗ p0).

For all x ∈ E, p0(x) � π (x) holds. Next, we replace ν0 and p0 by ν1 and p1, such that F(ν1) +
β

ν1
2 (ν1 ⊗ p1) ≥ F(ν0) + β

ν0
2 (ν0 ⊗ p0) − 2ε and, additionally, p1 is pointwise equivalent to π .

By conditions (M1) and (M2), π has a unique invariant measure, denoted by μ∗; see [20,
Lemma 8.6.2(a)]. By the lower boundedness of β, we can choose κ0 ∈ (0, 1) such that

(1 − κ0)βν0
2 (ν0 ⊗ p0) ≤ β

ν0
2 (ν0 ⊗ p0) + ε.

By continuity of F, we can further choose κ1 > 0 such that, for all 0 ≤ κ̂ ≤ κ1,

F((1 − κ̂)ν0 + κ̂μ∗) ≥ F(ν0) − ε.

Choose κ := min{κ0, κ1} and define ν1 := (1 − κ)ν0 + κμ∗ and

p1(x) = dν0

dν1
(x)(1 − κ)p0(x) + dμ∗

dν1
(x)κπ (x).

Then one quickly checks that ν1 ⊗ p1 = (1 − κ)(ν0 ⊗ p0) + κ(μ∗ ⊗ π ), in particular, therefore,
ν1p1 = ν1. By the convexity of β ·

2( ·) and the assumption that β(ν, ν) = 0 for all ν ∈P(E), it
holds that

β
ν1
2 (ν1 ⊗ p1) ≤ (1 − κ)βν0

2 (ν0 ⊗ p0) + κβ
μ∗
2 (μ∗ ⊗ π ) ≤ β

ν0
2 (ν0 ⊗ p0) + ε,

and, thus,
F(ν1) − β

ν1
2 (ν1 ⊗ p1) ≥ F(ν0) − β

ν0
2 (ν0 ⊗ p0) − 2ε.

Since β
ν1
2 (ν1 ⊗ p1) < ∞, without loss of generality, p1(x) � π (x) for all x ∈ E. By Lemma

2.5 (which yields ν1 � μ∗ and, hence, dμ∗(x)/ dν1 > 0 for ν1-almost all x ∈ E) and by the
construction of p1, it also holds that π (x) � p1(x), again without loss of generality for all
x ∈ E.

So p1 also satisfies (M1), as every kernel which is pointwise equivalent to π satisfies (M1),
notably with the same constants l0 and n0.

It follows that the Markov chain with initial distribution ν1 and transition kernel p1 is
ergodic; see [20, Lemma 8.6.2(a)]. It follows from the pointwise ergodic theorem (for both
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ergodic theorems used, see [20, Appendix A.4] or the references therein, i.e. [9, Corollaries
6.23 and 6.25]) that the sequence

(μ(n))n∈N :=
(

ν1 ⊗
( n−1⊗

i=1

p1

))
n∈N

satisfies the conditions of Lemma 2.3 and, thus, μ(n) ◦ L−1
n

w→ δν1 . This yields

lim
n→∞

∫
En

|F ◦ Ln − F(ν1)| dμ(n) = lim
n→∞

∫
P(E)

|F − F(ν1)| dμ(n) ◦ L−1
n = 0. (2.3)

Let (Xn)n∈N be a sequence of E-valued random variables such that (X1, . . . , Xn) ∼ μ(n) for
all n ∈N. We see that

E[β(p1(X1), π (X1))] = β
ν1
2 (ν1 ⊗ p1),

E[|β(p1(X1), π (X1))|] ≤
∣∣∣ min

x∈P(E)2
β(x)

∣∣∣ + β
ν1
2 (ν1 ⊗ p1) < ∞,

and, thus, by the L1-ergodic theorem,

lim
n→∞ E

[∣∣∣∣1

n

n−1∑
i=1

β(p1(Xi), π (Xi)) − β
ν1
2 (ν1 ⊗ p1)

∣∣∣∣
]

= 0

⇐⇒ lim
n→∞

∫
En

∣∣∣∣1

n

n−1∑
i=1

β(p1(xi), π (xi)) − β
ν1
2 (ν1 ⊗ p1)

∣∣∣∣μ(n)(dx1, . . . , dxn) = 0. (2.4)

For θ ∈P(E) and a stochastic kernel q : E →P(E), we define

(μ(θ,q,n))n∈N :=
(

θ ⊗
( n−1⊗

i=1

q
))

n∈N
.

By the above limits (2.3) and (2.4), and the fact that L1-convergence implies almost-sure
convergence of a subsequence, we can choose a Borel set 
 ⊆ E, ν1(
) = 1 such that, for all
x ∈ 
 and a subsequence (again labeled by n ∈N),

lim
n→∞

∫
En

|F ◦ Ln − F(ν1)|μ(δx,p1,n)(dx1, . . . , dxn) = 0 (2.5)

and

lim
n→∞

∫
En

∣∣∣∣1

n

n−1∑
i=1

β(p1(xi), π (xi)) − β
ν1
2 (ν1 ⊗ p1)

∣∣∣∣μ(δx,p1,n)(dx1, . . . , dxn) = 0

�⇒ lim
n→∞ βδx

n (μ(δx,p1,n)) = β
ν1
2 (ν1 ⊗ p1).

Since ν1 and μ∗ are equivalent by Lemma 2.4, μ∗(
) = 1. Since μ∗(
) = 1, π (l0)(
) = 1
holds, as otherwise Lemma 2.4 would imply that μ∗(
C) > 0. So we have found the set 


mentioned at the beginning of the proof and the required subsequence. It remains to show that
(2.1) holds for all x ∈ 
 and x1, . . . , xl0 ∈ E.
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Let x1, . . . , xl0 ∈ E. By (2.5), dominated convergence, and the triangle inequality,∫
En−l0

|F ◦ Ln(x1, . . . , xn) − F(ν1)|μ(δx,p1,n−l0)(dxl0+1, . . . , dxn)

≤
∫

En−l0
|F ◦ Ln(x1, . . . , xn) − F ◦ Ln−l0 (xl0+1, . . . , xn)|μ(δx,p1,n−l0)(dxl0+1, . . . , dxn)

+
∫

En−l0
|F ◦ Ln−l0 (xl0+1, . . . , xn) − F(ν1)|μ(δx,p1,n−l0)(dxl0+1, . . . , dxn)

→ 0,

since F is continuous and ‖Ln(x1, . . . , xl0 , ·) − Ln−l0‖v ≤ 2l0/n → 0, where ‖ · ‖v denotes the
total variation norm. Thus,∫

En−l0
F ◦ Ln(x1, . . . , xn)μ(δx,p1,n−l0)(dxl0+1, . . . , dxn) → F(ν1).

Finally, it follows that

lim inf
n→∞

1

n
ρ

δx
n−l0

(nF ◦ Ln−l0 (x1, . . . xl0 , ·))

= lim inf
n→∞ sup

ν∈P(En−l0 )

( ∫
En−l0

F ◦ Ln(x1, . . . , xn)ν(dxl0+1, . . . , dxn) − β
δx
n−l0

(ν)

)

≥ lim inf
n→∞

( ∫
En−l0

F ◦ Ln(x1, . . . , xn)μ(δx,p1,n−l0)(dxl0+1, . . . , dxn)

− β
δx
n−l0

(μ(δx,p1,n−l0))

)
= F(ν1) − β

ν1
2 (ν1 ⊗ p1)

≥ sup
ν∈P(E)

(F(ν) − I(ν)) − 3ε.

Step 2. First, define gn : El0 →R for n > l0 by

gn(x1, . . . , xl0 ) =
∫




ρ
δx
n−l0

(nF ◦ Ln(x1, . . . , xl0 , ·))π (xl0, dx).

Then gn is upper semi-analytic, since (x, x1, . . . , xl0 ) �→ ρ
δx
n−l0

(nF ◦ Ln(x1, . . . , xl0 , ·)) is (by
[6, Propositions 7.47 and 7.48]; see also Lemma 2.1) and, thus, gn is as well (by [6, Prop.
7.48]).

By Fatou’s lemma (applicable since ρ
δx
n (nF ◦ Ln)/n ≥ −‖F‖∞), for all x1, . . . , xl0 ∈ E,

lim inf
n→∞

1

n
gn(x1, . . . , xn) ≥

∫



lim inf
n→∞

1

n
ρ

δx
n−l0

(nF ◦ Ln(x1, . . . , xl0 , ·))π (xl0, dx)

≥ sup
ν∈P(E)

(F(ν) − I(ν)) − 3ε.

We define the sets

�n :=
{

(x1, . . . , xl0 ) ∈ El0 :
1

n
gj(x1, . . . , xl0 ) ≥ sup

ν∈P(E)
(F(ν) − I(ν)) − 4ε for all j ≥ n

}
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for n ∈N, which are universally measurable and satisfy �1 ⊆ �2 ⊆ �3 · · · with
⋃∞

i=1 �i =
El0 . For n ∈N, let pn := μπ0,π,l0 (�n). Then, by continuity from below, pn → 1 for n → ∞.
We have, by Lemmas 2.1 and 2.2, and the monotonicity of ρl0 ,

lim inf
n→∞

1

n
ρn(nF ◦ Ln) ≥ lim inf

n→∞
1

n
ρl0 (gn)

≥ lim inf
n→∞

1

n
ρl0

(
1�n n

(
sup

ν∈P(E)
(F(ν) − I(ν)) − 4ε

)
− 1�C

n
n‖F‖∞

)

≥ lim inf
n→∞

(
pn

(
sup

ν∈P(E)
(F(ν) − I(ν)) − 4ε

)
− (1 − pn)‖F‖∞

)
= sup

ν∈P(E)
(F(ν) − I(ν)) − 4ε,

where the last inequality uses β(ν, ν) = 0 for all ν ∈P(E), which implies that βπ0
l0

(μπ0,π,l0 ) = 0

and, hence, ρl0 ( f ) ≥ ∫
El0 f dμπ0,π,l0 for all f ∈ Cb(El0 ).

2.2. The upper bound of Theorem 1.1

2.2.1. Preliminary results. The following theorem is essential for the proof of the upper bound.
It is based on Proposition 8.2.5 and Theorem 8.2.8 of [20].

Theorem 2.1. Suppose that Assumption T holds, and let (μ(n))n∈N ⊆P(En) be a sequence of
measures such that

sup
n∈N

1

n
βπ0

n (μ(n)) < ∞.

For n ∈N, let Xn = (Xn,1, . . . , Xn,n) be En-valued random variables with distribution μ(n).
Define the sequence of P(E × E)-valued random variables (γn)n∈N by

γn−1 := 1

n − 1

n−1∑
i=1

δXn,i ⊗ μ
(n)
i,i+1(Xn,1, . . . , Xn,i).

It holds that

(i) (γn)n∈N is tight;

(ii) for every convergent (in distribution) subsequence of (γn)n∈N, there exists a probability
space (�̄, F̄ , P̄) such that, on this space, there exist random variables γ̄n ∼ γn and γ̄ ∼ γ

with γ̄n
w→ γ̄ , P̄-a.s. Furthermore, γ̄ (1) = γ̄ (2), P̄-a.s., where γ̄ (1) and γ̄ (2) are the first

and second marginals of γ̄ , respectively.

Proof. For the proof of (i), there is nothing to show if (T1’) holds. So we only consider the
case in which (T1) holds. Define the sequence of first marginals (L̃n)n∈N := (γ (1)

n )n∈N. We first
show that (L̃n)n∈N is tight. The idea is to use (T1) which yields a tightness function c on E
defined by

c(x) := U(x) − ρπ (x)(U),

and, thus, a tightness function G on P(E) defined by

G(θ ) :=
∫

E
c dθ,

https://doi.org/10.1017/apr.2019.6 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.6


152 S. ECKSTEIN

where we refer to Appendix A.3.17 of [20] and the preceding definition, as well as
Lemma 8.2.4 of [20] for properties of a tightness function. In the following, we show that
E[

∫
E c dL̃n] ≤ K ∈R uniformly in n ∈N, which is sufficient to yield the claim since

E

[ ∫
E

c dL̃n

]
=

∫
P(E)

( ∫
E

c dθ

)
P ◦ L̃−1

n (dθ )

and the set {Q ∈P(P(E)) :
∫
P(E) G(θ )Q(dθ ) ≤ M} is tight for every M ∈R by Lemma 8.2.4 of

[20].
In a first step, we assume that U is bounded. Then, for all x ∈ E, by the definition of ρπ (x),

for all ν ∈P(E),

β(ν, π (x)) ≥
∫

E
U dν − ρπ (x)(U). (2.6)

For i ∈ {1, 2, . . . , n − 1}, μ
(n)
i,i+1(Xn,1, . . . , Xn,i) is a regular conditional distribution of

Xn,i+1 given σ (Xn,1, . . . , Xn,i) and, therefore (see, for example, [19, Theorem 10.2.5], where
U was bounded),

E[U(Xn,i+1) | Xn,1, . . . , Xn,i] =
∫

E
U dμ

(n)
i,i+1(Xn,1, . . . , Xn,i).

We calculate

E[U(Xn,i+1) − U(Xn,i)]

=E[E[U(Xn,i+1)|Xn,1, . . . , Xn,i] − U(Xn,i)]

=E

[ ∫
E

Udμ
(n)
i,i+1(Xn,1, . . . , Xn,i) − U(Xn,i)

]

=E

[ ∫
E

Udμ
(n)
i,i+1(Xn,1, . . . , Xn,i) − ρπ (Xn,i)

]
+E[ρπ (Xn,i) − U(Xn,i)]

(2.6)≤ E[β(μ(n)
i,i+1(Xn,1, . . . , Xn,i), π (Xn,i))] −E[c(Xn,i)].

Summing the above inequalities over i ∈ {1, 2, . . . , n − 1} yields

E[U(Xn,n) − U(Xn,1)] ≤
n−1∑
i=1

(E[β(μ(n)
i,i+1(Xn,1, . . . , Xn,i), π (Xn,i))] −E[c(Xn,i)])

⇒
n−1∑
i=1

E[c(Xn,i)]

≤E[U(Xn,1)] +
n−1∑
i=1

E[β(μ(n)
i,i+1(Xn,1, . . . , Xn,i), π (Xn,i))],

where E[U(Xn,n)] ≥ 0 is used. Dividing the above inequality by (n − 1), we obtain

E

[ ∫
E

cdL̃n−1

]

= 1

n − 1

n−1∑
i=1

E[c(Xn,i)]
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≤ 1

n − 1

(
E[U(Xn,1)] +

n−1∑
i=1

E[β(μ(n)
i,i+1(Xn,1, . . . , Xn,i), π (Xn,i))]

)

≤ 1

n − 1

(
β(μ(n)

0,1, π0) + ρπ0 (U) +
n−1∑
i=1

E[β(μ(n)
i,i+1(Xn,1, . . . , Xn,i), π (Xn,i))]

)

= 1

n − 1
βπ0

n (μ(n)) + 1

n − 1
ρπ0 (U).

The last term of the above inequality chain is uniformly bounded for all n ≥ 2 by assumption
and part (c) of (T1), and we denote this bound by K ∈R.

Now, let us show that the above holds for unbounded U. Let Uk := U ∧ k (for k ∈N) and
ck(x) := Uk(x) − ρπ (x)(Uk). We have shown that

E

[ ∫
E

ck dL̃n−1

]
≤ 1

n − 1
βπ0

n (μ(n)) + 1

n − 1
ρπ0 (Uk) ≤ 1

n − 1
βπ0

n (μ(n)) + 1

n − 1
ρπ0 (U).

One quickly verifies that ck ≥ c ∧ ( infτ∈P(E)2 β(τ )). Indeed, ck(x) ≥ infτ∈P(E)2 β(τ ) if U(x) ≥
k, and ck(x) ≥ c(x) if U(x) ≤ k. Hence, the ck are uniformly bounded below by a constant owing
to the lower boundedness of β and (T1). Furthermore, for all x ∈ E, c(x) = limk→∞ ck(x) by
monotone convergence and, therefore, by Fatou’s lemma

E

[ ∫
E

c dL̃n−1

]
≤ lim inf

k→∞ E

[ ∫
E

ck dL̃n−1

]
≤ 1

n − 1
βπ0

n (μ(n)) + 1

n − 1
ρπ0 (U) ≤ K.

This shows that (L̃n)n∈N is tight.
Next, we show that the sequence of second marginals of (γn)n∈N is tight, i.e. we prove

tightness of the sequence (γ (2)
n )n∈N given by γ

(2)
n−1 = (1/(n − 1))

∑n−1
i=1 μ

(n)
i,i+1(Xn,1, . . . , Xn,i).

This follows from

E

[ ∫
E

c dγ (2)
n

]
= 1

n

n∑
i=1

E

[ ∫
E

c dμ
(n+1)
i,i+1 (Xn+1,1, . . . , Xn+1,i)

]

(∗)= 1

n

n∑
i=1

E[E[c(Xn+1,i) | Xn+1,1, . . . , Xn+1,i]]

= 1

n

n∑
i=1

E[c(Xn+1,i)]

=E

[ ∫
E

c dL̃n

]
≤ K,

where the last inequality is uniformly in n ∈N as shown above. Note that while equality (∗)
requires integrability, we can circumvent this requirement by using the same arguments as
above, in that we first assume U is bounded and use Fatou’s lemma for the transition to the
general case.
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Tightness of (γn)n∈N now follows from tightness of the marginals (γ (2)
n )n∈N and (L̃n)n∈N.

For part (ii), choose any subsequence still denoted by (γn)n∈N that converges in distribution,
which means there exists a P(E × E)-valued random variable γ such that

P ◦ γ −1
n

w→ P ◦ γ −1.

With Skorokhod’s representation theorem (see, e.g. [24, page 102]), we can go over to a
probability space (�̄, F̄ , P̄) such that on this space there exist random variables γ̄n ∼ γn and
γ̄ ∼ γ with γ̄n

w→ γ̄ , P̄-a.s..
It only remains to show that γ̄ (1) = γ̄ (2) holds P̄-a.s. Since μ

(n)
i,i+1(Xn,1, . . . , Xn,i) is a regular

conditional distribution of Xn,i+1 given Xn,1, . . . , Xn,i,

E

[(
f (Xn,i+1) −

∫
E

f dμ
(n)
i,i+1(Xn,1, . . . , Xn,i)

) ∣∣∣∣ Xn,1, . . . , Xn,i

]
= 0

for f ∈ Cb(E), n ∈N, and i ∈ {1, . . . , n − 1}. This means that the terms inside the expectation
form (for fixed n) a martingale difference sequence. For ease of notation, we write

an,i := f (Xn,i), and bn,i :=
∫

E
f dμ

(n)
i−1,i(Xn,1, . . . , Xn,i−1),

and get for n ≥ 2,

Ē

[( ∫
E

f dγ̄
(1)
n−1 −

∫
E

f dγ̄
(2)
n−1

)2]

=E

[( ∫
E

f dγ
(1)
n−1 −

∫
E

f dγ
(2)
n−1

)2]

=E

[(
1

n − 1

n−1∑
i=1

an,i − bn,i+1

)2]

= 1

(n − 1)2
E

[(
(bn,1 − bn,n) +

( n−1∑
i=1

an,i − bn,i

))2]

= 1

(n − 1)2
E

[
(bn,1 − bn,n)2 + 2(bn,1 − bn,n)

( n−1∑
i=1

an,i − bn,i

)

+
( n−1∑

i=1

(an,i − bn,i)
2
)]

≤ 4 + 8(n − 1) + 4(n − 1)

(n − 1)2
‖ f ‖2∞,

which converges to 0 for n → ∞. By the triangle inequality,

Ē

[( ∫
E

f dγ̄ (1) −
∫

E
f dγ̄ (2)

)2]
= 0,

which implies that
∫

E f dγ̄ (1) = ∫
E f dγ̄ (2), P̄-a.s. for every f ∈ Cb(E). By a standard separabil-

ity argument (cf. [44, Proof of Theorem 3.1]), it follows that γ̄ (1) = γ̄ (2), P̄-a.s. �
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2.2.2. Proof of Theorem 1.1: the upper bound. Let F : P(E) →R be bounded and upper semi-
continuous. By definition,

1

n
ρn(nF ◦ Ln) = sup

μ∈P(En)

( ∫
En

F ◦ Ln dμ − 1

n
βπ0

n (μ)

)
.

Using the boundedness of F, the lower boundedness of β, and the fact that β(ν, ν) = 0 for
all ν ∈P(E), we can show that the right-hand side of the above equation is bounded below
by −‖F‖∞ and bounded above by ‖F‖∞ + infτ∈P(E)2 |β(τ )|. Thus, for each n ∈N, we can
choose μ(n) ∈P(En) such that

1

n
ρn(nF ◦ Ln) − 1

n
≤

∫
En

F ◦ Ln dμ(n) − 1

n
βπ0

n (μ(n)) (2.7)

and

sup
n∈N

1

n
βπ0

n (μ(n)) < ∞.

The latter will be used to apply Theorem 2.1 in a few moments. First, we use β(ν, ν) = 0 for
all ν ∈P(E) and the convexity of β ·

2( ·) to calculate

1

n
βπ0

n (μ(n)) = 1

n
β(μ(n)

0,1, π0) + 1

n

n−1∑
i=1

∫
En

β(μ(n)
i,i+1(x1, . . . , xi), π (xi))μ

(n)(dx1, . . . , dxn)

= 1

n
β

π0
2 (μ(n)

0,1 ⊗ π ) +
∫

En

1

n

n−1∑
i=1

β
δxi
2 (δxi ⊗ μ

(n)
i,i+1(x1, . . . , xi))μ

(n)(dx1, . . . , dxn)

≥
∫

En
β

(π0+∑n−1
i=1 δxi )/n

2

(
1

n

(
μ

(n)
0,1 ⊗ π +

n−1∑
i=1

δxi ⊗ μ
(n)
i,i+1(x1, . . . , xi)

))

× μ(n)(dx1, . . . , dxn), (2.8)

where ‘⊗’ denotes the product measure if both arguments are measures.
For n ∈N, let Xn = (Xn,1, . . . , Xn,n) be En-valued random variables with distribution μ(n).

Define the sequence of P(E × E)-valued random variables (γn)n∈N by

γn−1 := 1

n − 1

n−1∑
i=1

δXn,i ⊗ μ
(n)
i,i+1(Xn,1, . . . , Xn,i).

For any subsequence, Theorem 2.1(i) yields a further subsequence (again labeled by
n ∈N and fixed for the rest of the proof of the upper bound) such that (γn)n∈N converges
in distribution. By Theorem 2.1(ii), there exists a probability space (�̄, F̄ , P̄), such that on
this space, there exist random variables γ̄n ∼ γn and γ̄ ∼ γ with γ̄n

w→ γ̄ , P̄-a.s. Furthermore,
γ̄ (1) = γ̄ (2), P̄-a.s., where γ̄ (1) and γ̄ (2) are the first and second marginals of γ̄ , respectively.

Define the sequence of first marginals of (γ̄n)n∈N as (L̄n)n∈N := (γ̄ (1)
n )n∈N and L̄ := γ̄ (1), and

note that L̄n
w→ L̄, P̄-a.s. With these definitions, (2.7), and (2.8), we obtain

1

n
ρn(nF ◦ Ln) − 1

n

≤ Ē

[
F
(n − 1

n
L̄n−1 + 1

n
δx̄n,n

)
− β

π0/n+(n−1)L̄n−1/n
2

(μ
(n)
0,1 ⊗ π

n
+ n − 1

n
γ̄n−1

)]
,
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where the Xn,n are (redefined) random variables on (�̄, F̄ , P̄) such that (Xn,n, γn−1) ∼
(x̄n,n, γ̄n−1) for all n ∈N. For ease of notation, define

tn,0 := n − 1

n
L̄n−1 + 1

n
δx̄n,n, tn,1 := π0

n
+ n − 1

n
L̄n−1,

tn,2 := μ
(n)
0,1 ⊗ π

n
+ n − 1

n
γ̄n−1,

and note that tn,0
w→ L̄, tn,1

w→ L̄, and tn,2
w→ γ̄ , all P̄-a.s. Therefore, by the upper semi-

continuity of F and −β ·
2( ·),

lim sup
n→∞

1

n
ρn(nF ◦ Ln) ≤ lim sup

n→∞
Ē[F(tn,0) − β

tn,1
2 (tn,2)]

≤ Ē[F ◦ L̄ − β L̄
2 (γ̄ )]

= Ē

[
F ◦ L̄ −

∫
E

β(γ̄1,2(x), π (x))L̄(dx)

]

≤ sup
ν∈P(E)

(
F(ν) − inf

q:νq=ν

∫
E

β(q(x), π (x))ν(dx)

)
,

where in the last inequality we used the fact that γ̄ (1) = γ̄ (2) holds P̄-a.s. We have shown that
every subsequence has a further subsequence such that this inequality holds, which implies it
also holds for the whole sequence.

2.3. Proof of Corollary 1.1

Claim 2.1. If β ·
2( ·) is lower semicontinuous then I is lower semicontinuous. If β ·

2( ·) is convex
then I is convex.

Proof. To prove the lower semicontinuity, let νn
w→ ν ∈P(E). We have to show that

lim inf
n→∞ I(νn) ≥ I(ν).

Note that I is bounded below. If the left-hand side of the above inequality equals ∞ then there
is nothing to prove. So, for any subsequence, we can choose a further subsequence still denoted
by (νn)n∈N such that I(νn) < ∞ for all n. Thus, we can choose stochastic kernels qn such that

β
νn
2 (νn ⊗ qn) ≤ I(νn) + 1

n
and νnqn = νn.

Since νnqn = νn and the sequence (νn)n∈N is tight by Prokhorov, the sequence (νn ⊗ qn)n∈N
is tight as well. We go over to a further subsequence still denoted by (νn ⊗ qn)n∈N such
that νn ⊗ qn → ν ⊗ q, where νq = ν follows by convergence of the marginals. By the lower
semicontinuity of β ·

2( ·),

lim inf
n→∞ I(νn) ≥ lim inf

n→∞ β
νn
2 (νn ⊗ qn) − 1

n
≥ βν

2 (ν ⊗ q) ≥ I(ν).
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To prove the convexity, note that I(ν) = infτ∈P(E2) : τ1=τ2=ν βν
2 (τ ). Let ν1, ν2 ∈P(E) and

τ (1), τ (2) ∈P(E2) with τ
(1)
1 = τ

(1)
2 = ν1, and τ

(2)
1 = τ

(2)
2 = ν2. Then

λβ
ν1
2 (τ (1)) + (1 − λ)βν2

2 (τ (2)) ≥ β
λν1+(1−λ)ν2
2 (λτ (1) + (1 − λ)τ (2))

≥ inf
τ∈P(E2) : τ1=τ2=λν1+(1−λ)ν2

β
λν1+(1−λ)ν2
2 (τ )

= I(λν1 + (1 − λ)ν2).

Taking the infimum on the left-hand side over all such τ (1) and τ (2) yields the claim. �
Claim 2.2. If the upper bound of Theorem 1.1 holds, and, additionally, I has compact sublevel
sets, then the upper bound extends to all functions F : P(E) → [−∞, ∞) which are upper
semicontinuous and bounded from above.

Proof. Let F : P(E) → [−∞, ∞) be upper semicontinuous and bounded from above.
Define Fm := −m ∨ F (m ∈N). By assumption, for all m ∈N,

lim sup
n→∞

1

n
ρn(nF ◦ Ln) ≤ lim sup

n→∞
1

n
ρn(nFm ◦ Ln) ≤ sup

ν∈P(E)
(Fm(ν) − I(ν)),

so it remains to only show that

lim sup
m→∞

Sm := lim sup
m→∞

sup
ν∈P(E)

(Fm(ν) − I(ν)) ≤ sup
ν∈P(E)

(F(ν) − I(ν)) =: S.

The Sm are decreasing (for increasing m). If Sm → −∞ there is nothing to show. So assume
that the Sm are bounded below by C ∈R. Choose νm ∈P(E) such that

Fm(νm) − I(νm) ≥ Sm − 1

m
≥ C − 1.

So the I(νm) are uniformly bounded. By compact sublevel sets of I, for any subsequence,
we can choose a further subsequence still denoted by (νm)m∈N such that νm

w→ ν∞ for some
ν∞ ∈P(E). Then by the upper semicontinuity of F and −I,

lim sup
m→∞

Fm(νm) − I(νm) ≤ F(ν∞) − I(ν∞) ≤ S. �

3. Applications to robust Markov chains

3.1. Robust large deviations

In this section (E, d) is assumed to be compact. The main goal of this section is to show
Theorem 1.2 and illustrate it in Example 3.1. To this end, we show the respective upper bound
in Theorem 3.1 and the respective lower bound in Lemma 3.6. The intermediate results in this
section are concerned with representation formulae for the functionals βn (see Lemmas 3.1 and
3.5) and the verification of conditions (B1) and (B2) (see Lemmas 3.2, 3.3, and 3.4).

In the following part leading up the Theorem 3.1, we assume that π satisfies the Feller
property. We work with

β(ν, μ) := inf
μ̂ : dW (μ,μ̂)≤r

R(ν, μ̂) = inf
μ̂∈M1(μ)

R(ν, μ̂)

for some fixed r ≥ 0. Recall that

Mn(θ ) := {ν ∈P(En) : dW (ν0,1, θ ) ≤ r and dW (νi,i+1(x1, . . . , xi), π (xi)) ≤ r, ν-a.s.

for i = 1, . . . , n − 1}.
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To be precise, the above definition requires the Condition dW (νi,i+1(x1, . . . , xi), π (xi)) ≤ r to
hold for ν-almost all (x1, . . . , xn) ∈ En for every decomposition of ν, where the respective
ν-null set may depend on the given decomposition. Equivalently, the definition could state
that there has to exist one decomposition of ν such that this Condition holds pointwise. That
this notion is equivalent follows from the fact that decompositions of ν are only unique up to
ν-almost-sure equality.

Lemma 3.1. (See also [3, Lemma 4.4] and [34, Proposition 5.2].) For all n ∈N, it holds that

βθ
n (ν) = inf

μ̂∈Mn(θ)
R(ν, μ̂).

Proof. Fix θ ∈P(E). Define the sets

Q0 := {μ̂ ∈P(E) : dW (μ̂, θ ) ≤ r}
and, for i = 1, . . . , n − 1 and x1, . . . , xi ∈ E,

Qi(x1, . . . , xi) := {μ̂ ∈P(E) : dW (μ̂, π (xi)) ≤ r}.
We note that Mn(θ ) = Q0 ⊗ Q1 ⊗ · · · ⊗ Qn−1, where Q0 ⊗ Q1 ⊗ · · · ⊗ Qn−1 is defined as
the set of measures μ = K0 ⊗ K1 ⊗ K2 ⊗ · · · ⊗ Kn−1 ∈P(En), where K0 ∈ Q0 and Ki:Ei →
P(E) are Borel measurable kernels such that Ki(x1, . . . , xi) ∈ Qi(x1, . . . , xi) for μ-almost all
x1, . . . , xi. Since, for all i = 1, . . . , n, the set {(x1, . . . , xi, μ̂) ∈ Ei ×P(E):μ̂ ∈ Qi(x1, . . . , xi)}
is trivially Borel, a measurable selection argument (e.g. [6, Proposition 7.50]) yields, for
ν ∈P(En),

inf
μ̂∈Mn(θ)

R(ν, μ̂)

= inf
K0⊗···⊗Kn−1∈Q0⊗···⊗Qn−1

n−1∑
i=0

∫
En

R(νi,i+1(x1, . . . , xi), Ki(x1, . . . , xi))ν(dx1, . . . , dxn)

(∗)=
n−1∑
i=0

∫
En

inf
μ̂∈Qi(x1,...,xi)

R(νi,i+1(x1, . . . , xi), μ̂)ν(dx1, . . . , dxn)

= β(ν0,1, θ ) +
n−1∑
i=1

∫
En

β(νi,i+1(x1, . . . , xi), π (xi))ν(dx1, . . . , dxn)

= βθ
n (ν),

where rigorously step (∗) works inductively; see the proofs of [3, Lemma 4.4] and [34,
Proposition 5.2]. �
Lemma 3.2. Let θ1, θ2 ∈P(E), ν1 ∈ M2(θ1), ν2 ∈ M2(θ2), and λ ∈ (0, 1). Then

λν1 + (1 − λ)ν2 ∈ M2(λθ1 + (1 − λ)θ2).

Proof. Write ν1 = μ1 ⊗ K1 and ν2 = μ2 ⊗ K2 for some μ1, μ2 ∈P(E) and K1, K2 stochas-
tic kernels on E. Furthermore, K1 and K2 are chosen such that dW (Ki(x), π (x)) ≤ r for all x ∈ E
and i ∈ {1, 2}. We have the equality

λν1 + (1 − λ)ν2 = (λμ1 + (1 − λ)μ2) ⊗ K, (3.1)
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where K : E →P(E) is defined by

K(x) = dμ1

d(λμ1 + (1 − λ)μ2)
(x)λK1(x) + dμ2

d(λμ1 + (1 − λ)μ2)
(x)(1 − λ)K2(x)

=: λxK1(x) + (1 − λx)K2(x).

Equation (3.1) obviously holds for Borel sets of the form A × B ⊆ E2, which extends the
equality to arbitrary Borel sets by Carathéodory. So K is a pointwise convex combination
of K1 and K2. Since, for the first Wasserstein distance, the Kantorovich duality (see, e.g. [45,
Chapter 5]) implies that

dW (λμ1 + (1 − λ)μ2, λθ1 + (1 − λ)θ2) ≤ λdW (μ1, θ1) + (1 − λ)dW (μ2, θ2) ≤ r

and, for all x ∈ E,

dW (λxK1(x) + (1 − λx)K2(x), λxπ (x) + (1 − λx)π (x))

≤ λxdW (K1(x), π (x)) + (1 − λx)dW (K2(x), π (x))

≤ r,

the claim follows. �
That β ·

2( ·) is convex follows by the previous lemma and the convexity of R(·, ·), since

β
λθ1+(1−λ)θ2
2 (λν1 + (1 − λ) ν2)

= inf
μ̂∈M2(λθ1+(1−λ)θ2)

R(λν1 + (1 − λ)ν2, μ̂)

(3.2)≤ inf
μ̂1∈M2(θ1), μ̂2∈M2(θ2)

R(λν1 + (1 − λ)ν2, λμ̂1 + (1 − λ)μ̂2)

≤ inf
μ̂1∈M2(θ1), μ̂2∈M2(θ2)

λR(ν1, μ̂1) + (1 − λ)R(ν2, μ̂2)

= λβ
θ1
2 (ν1) + (1 − λ)βθ2

2 (ν2)

It remains to show that β ·
2( ·) is lower semicontinuous. To this end, we first show the following.

Lemma 3.3. If π satisfies the Feller property then M2(θ ) is closed.

Proof. Recall that μ ⊗ K ∈ M2(θ ) if and only if both

dW (μ, θ ) ≤ r, (3.2)

dW (K(x), π (x)) ≤ r for μ-a.a. x ∈ E. (3.3)

Condition (3.2) is closed (which is obvious once it is rewritten via the Kantorovich duality), so
we focus on Condition (3.3). Since, by assumption, (E, d) is compact and thus totally bounded,
the set of Lipschitz-1 functions mapping E onto R which are absolutely bounded by 1 (denoted
by Lip1) is separable with respect to the sup-norm (follows since the space of uniformly
bounded and continuous functions is separable and every subset of a separable metric space is
again separable). We denote by {f1, f2, . . .} ⊆ Lip1 a countable dense subset. Furthermore, we
are going to use the fact that, for bounded and measurable functions h : E →R and ν ∈P(E),

(h ≥ 0, ν-a.s.) ⇐⇒
(

for all g ∈ Cb(E), g ≥ 0:
∫

E
g(x)h(x)ν(dx) ≥ 0

)
,
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which holds because E is a Polish space and thus the function 1A for the Borel set A :=
{h < 0} can be approximated in L1(ν) by a sequence of nonnegative, continuous, and bounded
functions.

We can rewrite Condition (3.3) as follows

dW (K(x), π (x)) ≤ r for μ-a.a. x ∈ E

⇐⇒
(

for all f ∈ Lip1 :
∫

E
f dK(x) −

∫
E

f dπ (x) ≤ r

)
for μ-a.a. x ∈ E

⇐⇒
(

for all i ∈N :
∫

E
fi dK(x) −

∫
E

fi dπ (x) ≤ r

)
for μ-a.a. x ∈ E

⇐⇒
(

for all i ∈N and all g ∈ Cb(E), g ≥ 0:∫
E

g(x)

(∫
E

fi(y)K(x, dy) −
∫

E
fi(y)π (x, dy) − r

)
μ(dx) ≤ 0

)

⇐⇒
(

for all i ∈N and all g ∈ Cb(E), g ≥ 0:
∫

E2
g(x)fi(y)μ ⊗ K(dx, dy)

−
∫

E
g(x)

(∫
E

fi dπ (x) − r

)
μ(dx) ≤ 0

)
.

The last line expresses a closed Condition if π satisfies the Feller property, which guarantees
that x �→ ∫

E f dπ (x) is continuous for all f ∈ Cb(E). �

Lemma 3.4. The function β ·
2( ·) is lower semicontinuous.

Proof. Let (θn, νn)
w→ (θ, ν) ∈P(E) ×P(E2) as n → ∞. We have to show that

lim inf
n→∞ β

θn
2 (νn) ≥ βθ

2 (ν),

which is done by choosing an arbitrary subsequence and showing that there exists a further
subsequence such that the inequality holds. So we start with a subsequence still denoted by
(θn, νn)n∈N. Let μ̂n ∈ M2(θn) such that

β
θn
2 (νn) ≥ R(νn, μ̂n) − 1

n
,

and choose a further subsequence still denoted by (θn, νn)n∈N such that dW (θn, θ ) ≤ 1/n and
μ̂n converges weakly to some μ̂ ∈P(E2). We show that μ̂ ∈ M2(θ ). To this end, define

Mr,n
2 (θ ) :=

{
μ ⊗ K ∈P(E2) : dW (μ, θ ) ≤ r + 1

n
, dW (K(x), π (x)) ≤ r for μ-a.a. x ∈ E

}
,

which is closed, as the proof of the previous lemma trivially carries over to this set. We see that
μ̂m ∈ Mr,n

2 (θ ) for all m ≥ n, and, therefore, μ̂ ∈ Mr,n
2 (θ ) for all n ∈N, which yields μ̂ ∈ M2(θ ).

Finally, by the lower semicontinuity of R(·, ·), we obtain

lim inf
n→∞ β

θn
2 (νn) ≥ lim inf

n→∞ R(νn, μ̂n) ≥ R(ν, μ̂) ≥ inf
μ∈M2(θ)

R(ν, μ) = βθ
2 (ν). �
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The rate function I corresponding to the choice of β as defined at the beginning of the
section is given by

I(ν) := inf
q:νq=ν

∫
E

inf
Kx∈M(π (x))

R(q(x), Kx)ν(dx) for ν ∈P(E).

Using the above observations to apply the main theorem, we obtain the following result.

Theorem 3.1. For all functions F : P(E) → [−∞, ∞) which are upper semicontinuous and
bounded from above, it holds that

lim sup
n→∞

sup
μ∈Mn(π0)

1

n
ln

∫
En

exp (nF ◦ Ln) dμ ≤ sup
ν∈P(E)

(F(ν) − I(ν)).

Furthermore, for all closed sets A ⊆P(E), it holds that

lim sup
n→∞

sup
μ∈Mn(π0)

1

n
ln μ(Ln ∈ A) ≤ − inf

ν∈A
I(ν).

Proof. For the first claim, apply Theorem 1.1, which by the compactness of E and, thus, by
Corollary 1.1 extends to all functions F : P(E) → [−∞, ∞) which are upper semicontinuous
and bounded from above. To arrive at the given form of ρn, we use Lemma 3.1 to obtain, for
f ∈ Cb(En),

ρn( f ) = sup
ν∈P(En)

( ∫
En

f dν − inf
μ∈Mn(π0)

R(ν, μ)

)

= sup
μ∈Mn(π0)

sup
ν∈P(En)

( ∫
En

f dν − R(ν, μ)

)

= sup
μ∈Mn(π0)

ln
∫

En
exp ( f ) dμ,

where the last step follows by the Gibbs variational formula for the relative entropy.
With the first claim established, the second claim follows by choosing F = −∞1AC for a

closed set A ⊆P(E). �
For the large deviations bound in Theorem 3.1 to be nonvacuous for a closed set, A ⊆P(E)

requires that

inf
ν∈A

I(ν) > 0. (3.4)

Intuitively, (3.4) holds if and only if, for all pairs ν ∈ A and q with νq = ν, there is some
Borel set S ⊆ E with ν(S) > 0 such that dW (q(x), π (x)) > r for all x ∈ S.

To properly address the question of whether the attained bound is sharp, we need a lower
bound in accordance with the upper bound. The choice of β that leads to Theorem 3.1 cannot
yield a lower bound with our approach, since Condition (B3) is not satisfied for r > 0 and,
hence, the lower bound of Theorem 1.1 cannot be applied.

In the following we therefore consider the functional β, which is chosen such that it
resembles β and satisfies (B3), albeit at the cost of not satisfying (B2). This will lead to the
lower bound of Theorem 1.2 proven in Lemma 3.6. Define

β(ν, μ) := inf
μ̂ : dW (μ,μ̂)≤r, μ̂�μ

R(ν, μ̂), Mn(θ ) := {ν ∈ Mn(θ ) : ν � θ ⊗ π ⊗ · · · ⊗ π},

I(ν) := inf
q:νq=ν

∫
E

inf
Kx∈M(π (x))

R(q(x), K(x))ν(dx)
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Furthermore, we assume that, for the analysis of the lower bound, π satisfies Assumption M,
but no longer has to satisfy the Feller property.

Lemma 3.5. (See also [3, Lemma 4.4] and [34, Proposition 5.2].) For all n ∈N, it holds that

βθ

n
(ν) = inf

μ∈Mn(θ)
R(ν, μ).

Proof. The proof is the same as that of Lemma 3.1, except here we need measurability of
the sets

Si := {(x1, . . . , xi, μ̂) ∈ Ei ×P(E):dW (μ̂, π (xi)) ≤ r and μ̂ � π (xi)}
for i ∈ {1, . . . , n − 1}. That these sets are indeed Borel measurable can be seen as follows:
Define the function g : P(E) ×P(E) × E →R+ by

g(μ, ν, x) = dμ|ν
dν

(x).

Here μ|ν denotes the absolutely continuous part of μ with respect to ν as given by Lebesgue’s
decomposition theorem. Then g is Borel as shown in [15, V.58 and subsequent remark]. We
have μ � ν if and only if

∫
E g(μ, ν, ·) dν = 1, which shows that Si is Borel (as the other

conditions that define Si are trivially Borel).
To arrive at the given form of Mn(θ ), we use the following equivalence for measures ν1, ν2 ∈

P(E) and stochastic kernels K1, K2 : E →P(E) (see, e.g. [3, Lemma A.2]):

(ν1 ⊗ K1 � ν2 ⊗ K2 ∈P(E2))

⇐⇒ (ν1 � ν2 and K1(x) � K2(x) for ν1-almost all x ∈ E). �

In complete analogy to the choice of β leading to Theorem 3.1, we see that β satisfies (B1),
which is a consequence of Lemma 3.5 in combination with Lemma 3.2, where one additionally
uses the fact that

(μ1 � θ1 and μ2 � θ2)

�⇒ λμ1 + (1 − λ)μ2 � λθ1 + (1 − λ)θ2 for μ1, μ2, θ1, θ2 ∈P(E), λ ∈ (0, 1).

As (B3) and Assumption M are satisfied as well, Theorem 1.1 yields, for all F ∈ Cb(P(E)),

lim inf
n→∞ sup

μ∈Mn(π0)

1

n

∫
En

exp (F ◦ Ln) dμ ≥ sup
ν∈P(E)

(F(ν) − I(ν)),

which leads to the following lemma.

Lemma 3.6. Let Assumption M be satisfied. For G ⊆P(E) open, it holds that

lim inf
n→∞ sup

μ∈Mn(π0)

1

n
ln μ(Ln ∈ G) ≥ − inf

ν∈G
I(ν).

Proof. The proof is an adapted version of [20, Theorem 1.2.3].
We work with the Laplace principle lower bound stated just before the lemma. Without

loss of generality, assume that infν∈G I(ν) < ∞. Let ν ∈ G such that I(ν) < ∞. Choose M ∈R
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such that I(ν) < M and k ∈N such that B(ν, 1/k) := {μ ∈P(E) : d̂(μ, ν) ≤ 1/k} ⊆ G, where d̂
is some metric on P(E) compatible with weak convergence. Define

h(θ ) := −M((d̂(ν, θ ) · k) ∧ 1).

We find that −M ≤ h ≤ 0, h(ν) = 0, and h(θ ) = −M for θ ∈ B(ν, 1/k)C. Thus, for any μ ∈
P(En),∫

En
exp (nh ◦ Ln) dμ ≤ exp (−nM) + μ(Ln ∈ B(ν, δ)) ≤ max{2 exp (−nM), 2μ(Ln ∈ B(ν, δ))}.

Therefore,

max

{
lim inf
n→∞ sup

μ∈Mn(π0)

1

n
ln μ(Ln ∈ B(ν, δ)), −M

}

≥ lim inf
n→∞ sup

μ∈Mn(π0)

1

n
ln

∫
En

exp (nh ◦ Ln) dμ

≥ sup
ν̂∈P(E)

(h(ν̂) − I(ν̂))

≥ h(ν) − I(ν)

= −I(ν).

Since M > I(ν),

lim inf
n→∞ sup

μ∈Mn(π0)

1

n
ln μ(Ln ∈ B(ν, δ)) ≥ −I(ν),

and using the facts that B(ν, δ) ⊆ G and the above reasoning works for all ν ∈ G with I(ν) < ∞,
we obtain the claim. �

The proof of Theorem 1.2 is now complete, as it follows from Theorem 3.1 and Lemma 3.6.
The following illustrates the obtained results. Note that to calculate the rates, as is usual in

large deviations theory, the necessary minimization can be solved efficiently (at least in theory)
over convex sets A, since I is convex.

Example 3.1. Consider the state space {1, 2, 3} with discrete metric, i.e. d(i, j) = 0 if i = j and
d(i, j) = 1 otherwise. The Markov chain is given by its initial distribution π0 = δ3 and transition
kernel π with matrix representation ⎡

⎣0.6 0.2 0.2
0.3 0.4 0.3
0 0.3 0.7

⎤
⎦.

Suppose that we are interested in the tail event that the empirical measure Ln under the
Markov chain is close (in a certain sense) to the initial distribution π0. We are uncertain of the
precise model specification of the Markov chain and want to find the worst case (i.e. slowest
possible) convergence rate to 0 of this tail event.

Formally, let r = 0.05 and take, for κ = 0.2, the set of measures A = BdW (δ3, κ), i.e. the
Wasserstein-1-ball around δ3 with radius κ . The set {Ln ∈ A} models the abovementioned tail
event. What is the (exponential) asymptotic rate of convergence of

sup
μ∈Mn(δ3)

μ(Ln ∈ A) → 0 (3.5)

as n → ∞? Note that r and the transition kernel are as always implicitly included in Mn(δ3).
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FIGURE 1: Illustration of convergence rates, simulated (100 paths) realized convergence, and the
stationary distributions under the normal Markov chain and the robust worst-case Markov chain.

Calculating the upper bound of Theorem 1.2 yields a worst-case exponential rate:

rworst case ≈ 0.0511.

This is significantly lower than the normal rate for the Markov chain without the robustness
(i.e. the r = 0 case), which is

rnormal ≈ 0.0910.

In Figure 1 we present the difference in convergence speed. Notably, the optimizer of the
optimization problem to obtain the worst-case rate also yields a kernel π̂ such that π0 ⊗ π̂

⊗ · · · ⊗ π̂ ∈ Mn(π0) and the Markov chain with transition kernel π̂ attains the worst-case rate,
i.e.

π0 ⊗ π̂ ⊗ · · · ⊗ π̂ (Ln ∈ A) ∼ exp (−n · rworst case).

In other words, the worst-case rate in (3.5) is obtained and one sequence of optimal measures
is Markovian, with transition kernel π̂ given by the matrix⎡

⎣0.6 − r 0.2 0.2 + r
0.3 − r 0.4 0.3 + r

0 0.3 − r 0.7 + r

⎤
⎦.

In Figure 1 we also present a simulated convergence rate for both the initial Markov chain and
the Markov chain with worst-case transition kernel π̂ (100 paths simulated), and a comparison
of the respective stationary distributions.
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Note that in the above example the rates are asymptotically sharp, as the worst-case kernel
π̂ for the rate function is already absolutely continuous with respect to π , so using I instead of
I yields the same rate.

Using the above example, we can get an idea when the upper and lower bounds of
Theorem 1.2 may not coincide. If we do not restrict ourselves to I, it may happen that no
optimal kernel π̂ is absolutely continuous with respect to the initial kernel π . In this case, we
can no longer guarantee that some near optimal kernel π̂ satisfies Condition (M1), which is
also needed in the nonrobust case to show the large deviations lower bound.

3.2. Robust weak law of large numbers

Let (E, d) be compact. In this section, Theorem 1.3 is proven. We first show the upper bound
in Theorem 3.2 and then explain how to obtain the lower bound.

Up to Theorem 3.2, let π satisfy the Feller property. Define

β(μ, ν) :=
{

0 if dW (μ, ν) ≤ r,
∞ otherwise,

.

for some r ≥ 0 and obtain
βθ

n (ν) = ∞ · 1(Mn(θ))C (ν).

Lemma 3.7. The function β ·
2( ·) is convex and lower semicontinuous.

Proof. We first show convexity. Let θ1, θ2 ∈P(E), ν1, ν2 ∈P(E2), and λ ∈ (0, 1). We have
to show that

β
λθ1+(1−λ)θ2
2 (λν1 + (1 − λ)ν2) ≤ λβ

θ1
2 (ν1) + (1 − λ)βθ2

2 (ν2).

To this end, it suffices to show that if the right-hand side is 0, the left-hand side has to be 0 as
well. If the right-hand side is 0 then both ν1 ∈ M2(θ1) and ν2 ∈ M2(θ2). It follows by Lemma
3.2 that λν1 + (1 − λ)ν2 ∈ M2(λθ1 + (1 − λ)θ2) and, thus, the left-hand side is also 0.

We now show lower semicontinuity. Let (θn, νn)
w→ (θ, ν) ∈P(E) ×P(E2). We have to

show that
lim inf
n→∞ β

θn
2 (νn) ≥ βθ

2 (ν).

Without loss of generality, the left-hand side is not equal to ∞. We have to show that the right-
hand side is 0. We first choose an arbitrary subsequence and then a further subsequence still
denoted by (θn, νn)n∈N such that, for all n ∈N,

β
θn
2 (νn) < ∞, dW (θn, θ ) ≤ 1

n
.

It follows that νn ∈ M2(θn) for all n ∈N and with the same notation and arguments as in
the proof of Lemma 3.4, it follows that ν ∈ Mr+1/n

2 (θ ) for all n ∈N and, thus, ν ∈ M2(θ ),
i.e. βθ

2 (ν) = 0. �
By applying Theorem 1.1 and Corollary 1.1 we obtain the following result.

Theorem 3.2. For all upper semicontinuous and bounded from above functions F : P(E) →
[−∞, ∞), it holds that

lim sup
n→∞

sup
μ∈Mn(π0)

∫
En

F ◦ Ln dμ ≤ sup
ν∈P(E) : there exists q,νq=ν such that ν⊗q∈M2(ν)

F(ν).
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We now focus on the lower bound in Theorem 1.3. Let π satisfy Assumption M (but no
longer has to satisfy the Feller property). We define

β(μ, ν) :=
{

0 if dW (μ, ν) ≤ r and μ � ν,

∞ otherwise,

so that (B3) holds. We obtain
βθ

n
(ν) = ∞ · 1(Mn(θ))C (ν).

Proving (B1) for β works completely analogous to the case of β in Lemma 3.7 by replacing
Mn by Mn. Applying Theorem 1.1 yields

lim inf
n→∞ sup

μ∈Mn(π0)

∫
En

F ◦ Ln dμ ≥ sup
ν∈P(E) : there exists q,νq=ν such that ν⊗q∈M2(ν)

F(ν)

for all F ∈ Cb(P(E)). Theorem 1.3 is shown.
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