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With the development of sensor technology, sensor nodes are increasingly being used in under-
water environments. The strategy presented in this paper is designed to solve the problem of
using a limited number of autonomous underwater vehicles (AUVs) to complete tasks such as
data collection from sensor nodes when the number of AUVs is less than the number of tar-
get sensors. A novel classified self-organising map algorithm is proposed to solve the problem.
First, according to the K-means algorithm, targets are classified into groups that are determined
by the number of AUVs. Second, according to the self-organising map algorithm, AUVs are
matched with groups. Third, each AUV is provided with the accessible order of the targets in
the group. The novel classified self-organising map algorithm can be used not only to reduce the
total energy consumption in a multi-AUV system, but also to give the most efficient accessible
order of targets for AUVs. Results of simulations conducted to prove the applicability of the
algorithm are given.
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1. INTRODUCTION. Due to their flexibility and autonomy, AUVs (autonomous
underwater vehicles) are used to explore underwater environments (Burlutskiy et al., 2012;
Allotta et al., 2016; Cao et al., 2016; Yu et al., 2018; Zhang et al., 2018; Gan et al., 2019)
and for scientific investigation. As a development of information technology, sensors are
used to monitor conditions of the oceans. Due to limited communication distance, the
data stored in these sensors are mostly collected by tools such as multi-AUV systems.
Multi-AUV systems are attracting much attention in this field. Task allocation within the
multi-AUV system has become a hot topic in recent years (Chang et al., 2004; Li et al.,
2014; Zhu et al., 2019).

The following methods are widely used in task allocation. Conventional task allocation
strategies include market mechanisms (Akkiraju et al., 2001; Sariel et al., 2006; Sotzing
and Lane, 2010; Wang and Feng, 2011), contract net algorithm and distributed world
model. In a market-based system, the multi-robot system is considered as an economy
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and each robot is considered as an agent. The algorithm has been applied to task assign-
ment for AUVs, but the algorithm cannot guarantee the optimisation of task assignment
when the destination quantity is unknown. The contract net algorithm has been used for
task allocation in a multi-AUV system, and the method was used to solve the problem in
an heterogeneous multi-AUV system (Li and Zhang, 2017). The distributed world model
was presented to solve the problem of a cooperative robotic team under communication
constraints (Tsiogkas et al., 2014). However, these methods cannot solve the problem of
task allocation when the number of targets is unknown. Due to the similarity between the
self-organising map (SOM) algorithm and task allocation, the SOM has been applied to
task allocation (Tambouratzis, 2006; Muslim et al., 2007; Huang et al., 2012; Wang et al.,
2015; Liu and Zhu, 2017; Zhu et al., 2017). The SOM neural network was first proposed
by Kohonen in the 1980s (Kohonen et al., 2000). The method is used for dynamic classi-
fication of input vectors. Targets are allocated to the corresponding robot according to the
Euclidean distance. The SOM algorithm (Zhu et al., 2012) effectively solves the problem
of an unknown number of targets. With the development of sensor technology, a strategy is
needed to solve the problems that arise when using a limited number of AUVs to complete
tasks, such as data collection from sensors.

The traditional SOM algorithm has two limitations in task allocation and path planning.
First, the method relies on the order of the input vector. Because the number of AUVs is
less than the number of targets, there exists a problem with accessible order of the targets
for the AUV. When the order of the input vector is changed, the method may cause the large
energy consumption mainly because AUV has reentrant path. Second, the performance of
the total task assignment is bad. Because a single AUV carries limited energy, each AUV
may not be assigned too many tasks, although the AUV is the nearest to the target. At the
same time, the target is assigned to the farther AUV. Hence, the traditional algorithm may
cause greater energy consumption overall. The traditional SOM algorithm cannot give the
accessible order of targets for AUVs in a case where the number of targets is much greater
than that of AUVs.

The classified SOM algorithm is presented to solve this problem. A single AUV is
matched with a corresponding group of targets, and the classified SOM method then cal-
culates the navigation distance between the AUV and each target in the group. The target
with the minimum navigation distance is the first accessible target of the AUV. The location
of the AUV is then updated to the location of that target until all the targets in the group
have been accessed by the AUV. This method can give a more efficient accessible order of
targets for AUVs and it enables the AUVs to visit targets while guaranteeing the least total
energy consumption. AUVs may have different kinematics and dynamics from unmanned
aerial vehicles (UAVs), but the task allocation problems for them share certain similarities.
The improved algorithm may be used in more fields where the task allocation problems
share certain similarities, such as UAVs (Sujit and Beard, 2007; Xiang et al., 2017).

The structure of the paper is as follows. A description of the task allocation problem is
presented in Section 2. In Section 3, the classified SOM algorithm is proposed to solve the
issue. In order to prove the effectiveness of the proposed method, the simulation and its
results are given in Section 4. In Section 5, the conclusion is presented.

2. DESCRIPTION OF TASK ALLOCATION PROBLEM. In task allocation, tasks
(target sensors) are effectively allocated to agents (AUVs) through a certain strategy. The
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Figure 1. AUVs and targets randomly distributed.

task allocation problem is thus an assorted optimisation issue. Path planning is how to
select the reasonable path and accessible order (in this case) for an AUV to access target
sensors. The task allocation problem is illustrated in Figure 1, with eight targets (green
dots) and three AUVs (pink dots) in the workspace. We evaluate the AUV consumption
by the navigated distance from its starting position to its destination. The main issue of the
multi-AUV system is how to divide the whole task into several subtasks so that AUVs can
move to their designated targets along optimized paths.

3. ALGORITHM ANALYSIS.
3.1. Traditional SOM task allocation algorithm. SOM is a clustering and unsuper-

vised learning algorithm for high dimensional visualisation. It is very similar to the task
assignment problem, so the SOM algorithm can be used to solve the issue of task assign-
ment. The structure of SOM is shown in Figure 2. The SOM neural network is a network
consisting of two layers. The input layer is the location coordinate of the target. The output
layer is the location coordinate of the AUV, and each neuron in the output layer connects
through the weight vector to neurons in the input layer. According to the SOM algorithm,
the task allocation problem is divided into several sub-problems including the selection
of the winning neuron, the definition of the neighbourhood function and the update of the
weight vector.

First, the weight vector is used to select the winning neuron, and the neighbour neu-
rons are decided by the neighbourhood function. Then, the winner and neighbour neurons
move to the target. When (in this case) the target has been accessed by an AUV, that AUV
becomes free for re-assignment. When all the targets have been accessed, the task allocation
and path planning are completed.

3.1.1. Winner. The selection of the winner is defined as follows (Zhu et al., 2012):

[Pj ] ⇐ min{Dkjl, k = 1, 2, . . . , K ; j = 1, 2, . . . J ; l = 1, 2, . . . , L} (1)
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Figure 2. Structure of the SOM algorithm.

where
[
Pj

]
represents that the j th neuron from the kth group is the selected winner to the

lth input node. Dkjl is a value related to the Euclidean distance between the AUV and the
target. The selection of the winner depends on the definition of the Dkjl. The Euclidean
distance is expressed as:

∣∣Tl − Rjk
∣∣ =

√(
xl − wjkx

)2 +
(
yl − wjky

)2 +
(
zl − wjkz

)2 (2)

Tl = (xl, yl, zl) , which is the lth target’s coordinate, is the location of the lth target in the
three-dimensional workspace. Rjk =

(
wjkx, wjky , wjkz

)
, which is the coordinate of the AUV

in real time, is the location of the j th neuron from the kth group. Due to the limited energy
available, the parameter P is used to adjust the energy consumption of the AUV. P is
defined as:

W =
Pj − W̄
S + W̄

(3)

S is the safe distance, where the navigational energy consumption of an AUV is less than
the amount of energy it carries. W̄ is the average moving length of a team of AUVs in a
certain task. Pj is the actual navigation length of the AUV. Dkjl is defined as:

Dkjl =

⎧⎨
⎩

∣∣Tl − Rjk
∣∣ 0 ≤ Pj ≤ S∣∣Tl − Rjk
∣∣ (1 + W) S ≤ Pj ≤ Smax

∞ Pj ≥ Smax

(4)

Here, the maximal length of a single AUV navigational is represented by Smax. There are
three different cases in Equation (4). First, 0 ≤ Pj ≤ S, where the actually navigation dis-
tance is less than the safe distance, does not need W to adjust the energy consumption.
Second, W is used to adjust the energy consumption in a case where the actual navigation
distance is greater than the safe distance. Finally, when the actual navigation distance is
greater than the maximum navigation length, an AUV cannot be assigned to the target.

3.1.2. Neighbourhood function. The weights of winner and neighbour neurons are
dependent on the neighbourhood function. The neighbour neurons are calculated as
follows:

f (dm, g) =
{

e−d2
m/g2(t), dm < λ

0, others
(5)

Radius λ represents the neighbour scope where the centre is the winning neuron. dm =∣∣Nm − Nj
∣∣ denotes the distance between the mth AUV and the winning neuron. The function
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Figure 3. Flow chart of the SOM algorithm.

g2(t) is defined as follows:

g2(t) = (1 − ∂)tgo (6)

∂ is a fixed learning rate and ∂ < 1. The calculation time is decreased as the ∂ increases.
The update rule is defined as:

Rjk(t + 1) =
{

Tl, Dkjl ≤ Dmin
Rjk(t) + ∂ × f (dm, g) × (Tl − Rjk(t)), Dkjl > Dmin

(7)

In one case, where Dmin, which represents the termination condition of iterations, is greater
than Dkjl, the weight is replaced by the target coordinate. In another case, the weight’s
adjustment depends on the learning speed ∂ , neighbourhood function f (dm, g) and the
location of the winner and neighbours.

A flow chart of the SOM algorithm is presented in Figure 3. First, it initialises the
location coordinates of the AUV and targets. Second, the location coordinates of the targets
are input into the input layer and the location coordinates of the AUV are input into the
output layer. According to the Euclidean distance, the winning neuron is selected through
competition. Then the method calculates the neighbourhood function and adjusts the weight
vectors. If the weight vectors change, the AUV moves towards the target point. When the
weight vectors do not change, the task assignment and path planning are complete.
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Figure 4. Flow chart of the CSOM algorithm.

The traditional SOM method has two limitations in task allocation and path planning, as
explained above, in its inability to solve the problem of accessible order of targets for the
AUV and to take energy consumption into account.

3.2. Classified SOM algorithm. In order to solve the problem of accessible order of
targets for the AUVs and to minimise the total energy consumption of the AUV system,
the classified SOM (CSOM) algorithm is proposed. An algorithm flow chart of the CSOM
method is presented in Figure 4. First, the location coordinates of AUVs and targets are
initialised. According to the K-means algorithm, targets are classified into groups which
are determined by the number of AUVs. The centres of groups are then matched with
AUVs. The SOM algorithm is then used for task allocation and path planning.

3.2.1. Classify the targets. The K-means algorithm is used to classify the targets. The
number of groups depends on the number of AUVs. The flow chart of this method is shown
in Figure 5. First, the location coordinates of centres and targets are initialised. Dkn, which
denotes the distance between centres and targets, is defined as:

Dkn =
√

(Ck − Tn)2 (8)

Ck represents the kth centre and the number of centres depends on the number of AUVs, as
shown in Figure 6. Tn represents the coordinate location of the nth target. Skn is defined as:

Skn ⇐ min{Dkn, k = 1, 2, . . . , K ; n = 1, 2, . . . , N } (9)

Skn belongs to the kth group, because the nth target is the nearest to the kth centre. Then,
according to the location of targets in the group, the method calculates the centre of each
group. When the centres are fixed, the grouping is completed. Ck represents the kth centre
of group. An example is shown in Figure 6, where pink dots represent five AUVs and green
dots represent 20 targets. In this example, based on the number of AUVs, the targets are
classified into five groups.
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Figure 5. Flow chart of K-means.

Figure 6. Classification of targets.

3.2.2. AUVs matched with groups. When the targets have been classified into several
groups, the centres of the groups are matched with AUVs. Mki is defined as:

Mki =
√

(Ck − Ri)2 (10)

where Mki represents the Euclidean distance between the kth centre and theith robot (AUV).
CRki represents the ith robot which is the nearest to the kth centre and is defined as:

CRki ⇐ min{Mki, k = 1, 2, . . . , K} (11)
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Figure 7. AUVs matched with the groups of targets.

An example is shown in Figure 7, where again the pink dots represent five AUVs and green
dots represent 20 targets. Ck represents the kth centre of group. According to the Euclidean
distance between AUVs and centres, AUVs are matched with the centres of the several
groups.

3.2.3. Improved SOM method in task allocation. After the AUVs have been matched
with groups, the improved SOM method is used to allocate tasks to the AUV in each group.
The improved SOM method changes the connected relation between the AUV and targets.
The structure of the improved SOM method is presented in Figure 8. The input layer neuron
is dynamic. A single AUV connects with all targets. The AUV is allocated to the targets
in the group according to the shortest actual navigation distance to each. The target that
represents the minimum navigation distance in the group is the first accessible target of the
AUV. When an AUV accesses a target, the location of the AUV is updated to the location
of that target until all targets in the group have been accessed by the AUV. As shown
in Figure 9, the pink dot represents the AUV and the green dot represents the target. α

represents the angle between the x-axis and the black dotted line that connects the AUV
and the target point at the initial time. θ is the initial orientation of the AUV and r is the
turning radius of the AUV. β is defined as follows:

β = θ − α (12)

The AUV has two turning paths, shown as the red solid line and the red dotted line in
Figure 9. The AUV is steered in the direction of |β| at decreasing distance until β = 0. The
actual path travelled by the AUV is the red solid line plus black line in Figure 9. Duj is
defined as:

Duj = �U +
∣∣Ru − Tj

∣∣ (13)

where Duj represents the actual navigation distance. �U is the turning distance of the uth
AUV when turning to β = 0.

∣∣Ru − Tj
∣∣ is the Euclidean distance between thej th target and
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Figure 8. Structure of the improved SOM algorithm.

Figure 9. Actual navigation distance of AUV.

the uth turning AUV. The accessible order of targets to the AUV depends on the [Ai]. The
selection of the nearest target is defined as

[Ai] ⇐ min{Duj , j = 1, 2, . . . J } (14)

where [Ai] represents the nearest target to the uth AUV. J is the number of targets in the
corresponding group. The method then calculates the neighbourhood function and adjusts
the weight vectors. If the weight vectors are changed, the AUV moves towards the target
point. When the location of the AUV is updated to the location of the target, the AUV
becomes free and the remaining targets are input into the input layer. When all targets have
been accessed by the AUV, the task allocation and path planning are completed for that
group.

4. SIMULATION. Due to random errors in the position, speed, angle and turning radius
of AUVs, the error datum are processed with extended Kalman filter (Loebis et al., 2004;
Wu et al., 2019). For example, in Figure 10, the black line represents the actual value of the
AUV, the blue line represents the measured value and the red line represents the extended
Kalman filter estimated value. To increase the accuracy of the error datum, all datum are
processed with the extended Kalman filter.

4.1. Two-dimensional plane simulation results. The study of the three-dimensional
algorithm is based on the study of the two-dimensional algorithm. The simulation results
of the two-dimensional algorithm reflect the effectiveness more intuitively. The location
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Figure 10. Extended Kalman filter algorithm.

coordinates of AUVs are set to random number seed 5. The location coordinates of targets
are set to random number seed 15. The turning radius of the AUV is 0·8 and its running
speed is 1·5 m/s. For R1, the angle between R1 and the x-axis is θ1 and θ1 is 150◦. The
angles of R2 and so on are shown in Figures 11 and 12. The traditional SOM is presented
in Figure 11. There are 25 targets (green dots) and five AUVs (R1 . . . R5) (pink dots) in
the workspace. Due to the problem of the input order in the traditional method, when the
target is input in the input layer, the winner (AUV), which is the nearest to the target, is
selected for the target. Although the target is allocated to the nearest AUV, another target,
which is not allocated, is nearer to the AUV. This can cause more energy consumption for
the AUV. For example, R1 is nearest to T1, but R1 accesses T3 first. The accessible order
of targets for R1 clearly causes more energy consumption. The total distance travelled by
the AUVs (as a proxy for energy consumption) is 725·6460 m in the traditional method.

In Figure 12, the location coordinates of the five AUVs (pink dots) and targets are the
same as in Figure 11. Based on the number of AUVs, the targets are now divided into five
groups. The green dots are allocated to R1, the blue dots are allocated to the R2, the black
dots are allocated to the R3, the yellow dots are allocated to the R4, and the red dots are
allocated to the R5. For example, T11, T13 and T14 are allocated to R2. According to the
actual navigation distance between the AUV and the target, the CSOM method can give the
most efficient accessible order of targets for the AUV. The total distance travelled by the
AUVs is 599·9616 m in the CSOM method. The accessible order of targets to the AUVs
is more efficient in the CSOM than the traditional SOM, and the CSOM method can also
save energy consumption by reducing the distance travelled by the AUVs.

Figures 13 and 14 illustrate the effects on energy consumption in terms of distance
travelled. In Figure 13 the x-axis represents the number of targets and the y-axis repre-
sents the total energy consumption of the AUVs. The red line represents the total energy
consumption of the CSOM method and the black line represents that of the SOM method.
There is an intersection of the two lines and the abscissa of the intersection is seven. When
the number of targets is more than seven, the total energy consumption in the CSOM is
less than in the traditional SOM. When the number of targets is less than seven, the total
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Figure 11. The traditional SOM method.

Figure 12. The CSOM method.

energy consumption in the traditional SOM is less than in the CSOM. Because there are
three AUVs in the workspace, there is no need to classify targets because the number of
AUVs is close to the number of targets. As the number of targets increases, the energy
consumption gap between the CSOM method and the traditional SOM method increases.
In Figure 14, the x-axis represents the number of AUVs and the y-axis represents the total
energy consumption. The red line represents the total energy consumption of the CSOM
method and the black line represents that of the traditional SOM method. There are 40 tar-
gets and some AUVs in the workspace environment. In Figure 14, as the number of AUVs
increases, the total energy consumption in the CSOM is less than the SOM.
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Figure 13. Total energy consumption of AUVs by number of targets (Tnum = 0–45).

Figure 14. Total energy consumption of AUVs by number of AUVs (Rnum = 5–10).

Table 1. Initial orientation of the robot (AUV) in three-dimensional plane.

Robot Angle between robot and x-axis Angle between robot and z-axis

R1 −20◦ 15◦
R2 −60◦ 10◦
R3 −120◦ −20◦
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Figure 15. The traditional SOM method in three-dimensional plane.

Figure 16. The CSOM method in three-dimensional plane.

The CSOM method can save energy in the case where the number of targets is much
greater than the number of AUVs, and it can also give a more efficient accessible order of
targets than in the traditional SOM method.

4.2. Three-dimensional plane simulation results. The location coordinates of AUVs
are set to random number seed 8. The location coordinates of targets are set to random
number seed 4. The turning radius of the AUV is 0·8 and its running speed is 1·5. The
initial angles of the AUVs (R1–R3) are illustrated in Table 1. The traditional SOM is
presented in Figure 15. There are 12 targets (green dots) and three AUVs (pink dots) in
the workspace. With SOM, the same problem exists in the three-dimensional plane as in
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Figure 17. Total energy consumption of AUVs by number of targets (Tnum = 0–70).

Figure 18. Total energy consumption of AUVs by number of AUVs (Rnum = 2–14).

the two-dimensional plane. For example, R3 is nearest to T11, but it accesses T10 first,
which clearly causes more energy consumption. The total distance travelled by the AUVs
is 631·0219 m in the traditional SOM method. In Figure 16, the location coordinates of
AUVs and targets are the same as in Figure 15. The pink dots represent AUVs and the other
coloured dots represent targets. Based on the number of AUVs, the targets are now divided
into three groups. The blue target dots are allocated to R1, the green target dots are allocated
to R2, and the red target dots are allocated to R3. For example, T11, T12 and T9 are allo-
cated to R3. The total distance travelled by the AUVs is 440.3366 m in the CSOM method.
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Figure 19. CSOM method where number of targets greatly exceeds number of AUVs: two-dimensional plane (left) and three-dimensional plane (right).
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4.3. Large number simulation results. Further simulations were conducted with
larger numbers of AUVs and targets to justify the methodology proposed. Figures 17
and 18 illustrate the energy consumption. Figure 19 models the CSOM method where the
number of targets (40) greatly exceeds number of AUVs (5) in two and three dimensions.
In Figure 17 the x-axis represents the number of targets (0–70) and the y-axis represents
the total energy consumption of the AUVs in terms of distance travelled. The red line rep-
resents the total energy consumption of the CSOM method and the black line represents
that of the SOM method. There is an intersection of the two lines and the abscissa of the
intersection is 10. When the number of targets is more than 10, the total energy consump-
tion in the CSOM is less than that in the SOM. When the number of targets is less than
10, the total energy consumption in the SOM is less than that in the CSOM. If there were
five AUVs and 10 targets in the workspace, it would not be necessary to classify the targets
because the number of AUVs would be close to the number of targets. As the number of
targets increases, the energy consumption gap between the CSOM method and the SOM
method increases. In Figure 18, the x-axis represents the number of AUVs (2–14) and the
y-axis represents the total energy consumption in terms of distance travelled. The red line
represents the total energy consumption of the CSOM method and the black line represents
the total energy consumption of the SOM method. There are 40 targets and some AUVs
in the workspace environment. In Figure 18, as the number of AUVs increases, the total
energy consumption in the CSOM becomes less than that in the SOM.

The concrete analyses are the same as in Figures 12 and 16. As the gap between
the number of AUVs and the number of targets increases, the different levels of energy
consumption are illustrated in Figures 13, 14, 17 and 18.

5. CONCLUSION. In this paper, a classified SOM algorithm is proposed. The CSOM
algorithm not only gives a more efficient accessible order of targets for the AUVs than
the SOM method, but it can also reduce energy consumption. Given that each AUV car-
ries a limited supply of energy for each mission, the CSOM method can enable AUVs to
access more targets than the SOM method in the same environment. Future research will
explore the effect of ocean currents on the task assignment problem for AUV systems.
An ocean current is described by its velocity and direction in the actual underwater envi-
ronment. By measuring the ocean current in a certain period of time, the ocean current
average is obtained. The ocean current average is used as the constant ocean current for
modelling the underwater working environment. The CSOM method can thus be extended
to the ocean environment. It can also be extended to cases where targets have different
priorities.
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