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Abstract

The amphinomid fireworm Hermodice carunculata is a potentially invasive species reported
throughout the subtropical Atlantic Ocean and the Mediterranean Sea, which is known as a
generalist predator and opportunistic feeder. The ongoing climate changes and seawater
warming may favour fireworm poleward range expansions and density increases. Our results
provide the first investigation into a population which has purportedly been spreading widely
in the Salento Peninsula (Apulia, Italy). The specimens were analysed using allometric vari-
ables and molecular markers. The best morphometric parameters to estimate individual size
were determined as key information for future studies on fireworm population dynamics. To
phylogeographically characterize the Apulian population, sequences of the mitochondrial COI
and 16S rDNA regions were obtained from a pool of individuals and treated together with
those of Atlantic specimens retrieved from GenBank. The estimates of genetic variability
for Apulian population were consistent with those recently reported in the literature.
Inferences on demographic history analysis confirmed a recent expansion event in Apulia,
as has been recounted by fishermen and scuba divers during recent years. Overall, these results
constitute a crucial step in the characterization of present-day H. carunculata populations, and
provide greater insight into fireworm population ecology.

Introduction

Polychaetes are dominant components of marine macrobenthos (Grassle & Maciolek, 1992;
Ward & Hutchings, 1996), can withstand a wide range of environmental parameters and suc-
ceed in colonizing a great variety of habitats (Díaz-Castañeda & Reish, 2009). Despite their
dominance and contribution to marine ecosystem processes, the ecology of several genera
still needs closer examination to establish relationships among genetic divergence, speciation
and the influences of individual size variation on population dynamics (Occhioni et al., 2009).

Although numerous studies have been done on the identification, abundance and distribu-
tion of several polychaete species, in some cases very little attention has been drawn to their
biometry (Hamdy et al., 2014). Morphometric parameters and body-size relationships are
essential to establish growth patterns and characterize population structure, as well as recruit-
ment. Overall morphological, ecological, genetic and reproductive attributes contribute to spe-
cies characterization, while examination of morphometric parameters is fundamental to
studies of individual size, population dynamics and interpopulation variation (Rice et al.,
2008; Garraffoni et al., 2010; Pardo et al., 2010; Hamdy et al., 2014). This is especially true
for cosmopolitan species which are widely distributed, at least occurring in both major
ocean basins (i.e. Pacific and Atlantic) (Hutchings & Kupriyanova, 2018). In particular,
cosmopolitan marine species with high dispersal capabilities and gene flow tend to be highly
subdivided, as revealed by morphological, life-history or genetic studies in which multiple
cryptic species are often present (Maltagliati et al., 2000; Martin et al., 2003; Rice et al.,
2008; Barroso et al., 2010; Borda et al., 2013). Within this context, study of the geographic sub-
division of species and the estimation of gene flow between them provide important steps lead-
ing to deep insights into questions concerning species level population ecology (Grosberg &
Cunningham, 2001).

The amphinomid polychaete Hermodice carunculata (Pallas 1766) (Figure 1A, B) is wide-
spread throughout the Atlantic Ocean and the Mediterranean and Red Seas (Fishelson, 1971;
Ahrens et al., 2013). It is commonly known as the ‘bearded fireworm’, due to tufts of white,
sharp and venomous chaetae, which cause a painful burning sensation on contact (Schulze
et al., 2017). Recently, its among-population differentiation was investigated to assess the
potential presence of cryptic species. Yáñez-Rivera & Salazar-Vallejo (2011) allometrically
compared numerous morphological characters of different populations and proposed the
existence of two species, one distributed in the Caribbean and West Atlantic (H. carunculata
sensu stricto) and one in the East Atlantic, including the Mediterranean Sea (H. nigrolineata).
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The difference between these two species ultimately rested on the
number of branchial ramifications (or ‘branchial filaments’,
Figure 1C) and the shape of the anal lobe.

The existence of two Hermodice species was not supported by
subsequent genetic analyses employing sequences of the COI and
16S rDNA mitochondrial regions (Ahrens et al., 2013). In par-
ticular, genetic analyses highlighted the occurrence of a clade
with only Mediterranean specimens (a small sample collected
from Malta and Crete) and a larger clade containing specimens
from the Atlantic Ocean plus some from Malta and Crete
(Ahrens et al., 2013). However, the average inter-clade genetic dis-
tance was much lower than those observed between cryptic spe-
cies, including those detected in the amphinomid Eurythoe
complanata (Barroso et al., 2010). On the other hand, the occur-
rence of a significant difference in the number of branchial fila-
ments between Atlantic and Mediterranean populations of H.
carunculata was confirmed. This difference was mainly attributed
to the higher concentration of dissolved oxygen in Mediterranean
seawater (Ahrens et al., 2013).

Recently, increasing numbers of fireworms have been reported
along South Italian coasts, that may potentially impact the struc-
ture and functioning of benthic communities. Hermodice carun-
culata may display an opportunistic feeding habit, as well as
extremely efficient predatory strategies on several marine inverte-
brates, including keystone species (Simonini et al., 2017, 2018).
This means that Mediterranean fireworms may persist following
radical changes in prey community composition (Simonini
et al., 2018), and retain their invasive potential as reported for
other amphinomids (Cosentino & Giacobbe, 2011; Arias et al.,
2013).

In the framework of ongoing environmental changes, seawater
warming could favour the poleward expansion of thermophilic spe-
cies such as H. carunculata (Schulze et al., 2017). This expansion
may contribute to the ‘meridionalization’ of the northern
Mediterranean (Coll et al., 2010) and lead to rises in species density
where fireworms already exist. However, no such population has yet
been characterized and the use of allometric variations has never
been considered in an attempt to elucidate the current status of
this species in the Mediterranean. To date, the only genetic and
morphological data available derive from the few specimens from
Malta and Crete that were analysed by Ahrens et al. (2013),
where the total number of chaetigers and the number of dorsal
branchial filaments at chaetiger 10 were the only traits examined.
Otherwise, such data for Italian coastal fireworms have relied on
estimates of body length based on underwater observations or
digital images. Most of the specimens reported are 20–30 cm in
length (Simonini et al., 2017). The lack of any other biometric infor-
mation represents amajor source of uncertainty in the characteriza-
tion of Mediterranean fireworm populations and their dynamics.

In this study, we investigated a peripheral population of H. car-
unculata from the Salento Peninsula (Ionian Sea, Central
Mediterranean). The indexed literature did not report fireworms
on these hard bottom environments until 2001 (Corriero et al.,
2004), while they have recently become extremely common
(Simonini et al., 2017). The specimens collected were studied
using morphological/allometric traits and molecular markers to
characterize this Ionian population, verify the presence of mor-
phological differences between Atlantic and Mediterranean speci-
mens and infer possible population size changes.

Materials and methods

Sampling

Fireworms were collected in summer 2016 at Porto Cesareo (40°
16′N 17°54′E Apulian coast, Italy), about 800 and 1200 km from

Malta and Crete, respectively. Specimens of H. carunculata were
collected by scuba divers in infralittoral rocky habitats at 0.5–
18 m depth. After collection, the fireworms were transported to
the Laboratory of Ecology at the University of Modena and
Reggio Emilia (Italy) and kept for 3–7 days in an aquarium system
under controlled conditions (temperature: 24–25°C; photoperiod:
16 h light/8 h dark; salinity: 32–36; total volume: 600 l).

Species morphology and morphometric data

Hermodice carunculata can reach 30–60 cm in length. The homo-
nomous body may include up to about 130 chaetigers
(Figure 1A). Segments are each highlighted by a dorsal transverse
yellow intersegmental line (hereafter referred to as ‘yellow line’;
Figure 1A, B). Dorsal parapodia (notopodia) bear tufts of gills
and urticating chaetae. Branchiae may vary in colour from orange
to red or brown. Two pairs of branchiae are present. Each arises
from a separate base on either side of a notofascicle. The medial
branchia is largest, its enlarged common base (trunk) displays an
inner segmental pair of large dichotomous medial trunk-like
branches (Figure 1C) (Marsden, 1966; Barroso & Paiva, 2007;
Yáñez-Rivera & Salazar-Vallejo, 2011).

The morphometric data related to body length, width, weight
and total number of chaetigers were analysed to characterize the
population from Porto Cesareo. The medial branchia at chaetiger
10 was employed to assess relationships between the number of
branchial filaments at chaetiger 10 and the total number of chae-
tigers. This information was compared with those available in the
literature (Ahrens et al., 2013) to investigate morphological differ-
ences between Atlantic and Mediterranean specimens.

Specimens were anaesthetized in 7% MgCl2 until they did not
respond to mechanical stimulation and photographed using a
digital underwater camera (Olympus Tough TG-4). The fresh
weight was recorded using a scale (±0.01 g Acculab ATL) after
blotting each fireworm for 1 min on absorbent paper (Nesto
et al., 2018). Then, the gills at chaetiger 10 of each individual
were removed using tweezers and scissors under a stereomicro-
scope. The medial branchia of the left gill was immersed in dis-
tilled water to favour its swelling and distension and to assess
the number of branchial filaments at chaetiger 10 (thereafter
‘BF10’) (Figure 1C).

The body length (hereafter ‘length’), weight, width and the
total number of chaetigers (hereafter ‘chaetigers’) were derived
from pictures using the software ImageJ (Rasband, 1997–2018).
In particular, the width was estimated both as the dorsal distance
between the left and right notopodia and the length of the yellow
line. The width descriptors were measured at chaetiger 10
(Figure 1B).

The analyses of the relationships among pairs of morpho-
logical and allometric variables were performed on log-
transformed data (Garraffoni et al., 2010; Pardo et al., 2010).
First, the Pearson correlation (r) was calculated among all the
pairs of variables considered (Supplementary Figure S1). Then a
regression analysis was performed on the most relevant traits. A
strong correlation was found between the dorsal distance between
the notopodia and the length of the yellow line (r = 0.91; P <
0.001). Thus, the length of the yellow line was used as descriptor
of H. carunculata width. The body length was correlated with the
weight (r = 0.96; P < 0.001), the chaetigers (r = 0.90; P < 0.001)
and the width (r = 0.76; P < 0.001). A smaller r value was
found between chaetigers and BF10 (r = 0.58; P < 0.001)
(Supplementary Figure S1). The following subset of relationships
was investigated using power regression analyses: length vs weight,
length vs width, length vs chaetigers, width vs weight, chaetigers vs
BF10. In addition, the estimation of the coefficient of
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determination R2, the statistical significance of the regressions,
was evaluated using t tests (α = 0.05).

The dataset containing the morphological and morphometric
information on fireworms collected at Porto Cesareo was inte-
grated with the information published by Ahrens et al. (2013)
on H. carunculata from Malta-Crete (19 specimens) and
Western Atlantic (33 specimens). First, the number of chaetigers
in the three groups was compared by means of one-way ANOVA.
Then, an ANCOVA was applied to compare the relationship
between the number of chaetigers and BF10 among the groups.
Data analyses were performed using the statistic software PAST
(Hammer et al., 2001) and PRIMER (Clarke & Gorley, 2006).

Molecular analyses

The branchiae of chaetiger 10 not used for biometry were
employed for molecular analyses. Two mitochondrial molecular
markers (sequences of COI and 16S rDNA) were used to classify
the Ionian fireworm population into the clades identified by
Ahrens et al. (2013), and assess possible population size changes.
The gills are simple to collect and morphologically well-separated
from the fireworm gut, reducing the risk of microbial contamin-
ation. They were stored at −80°C after collection.

The molecular analyses on frozen gill samples were performed at
the Marine Phylogeography Laboratory of the University of Pisa
(Italy). The DNA extraction was carried out using the GenElute™
Mammalian Genomic DNA Miniprep Kit distributed by
Sigma-Aldrich, following themanufacturer’s instructions. Themito-
chondrial regions 16S and COI were amplified using the primers:
(i) COI- LCO1490 (5′-GGTCAACAAATCATAAAGATATTGG-3′)

and HCO2198 (5′-TAAACTTCAGGGTGACCAAAAAATCA-3′)
(Folmer et al., 1994) andCOID (5′-TCTGGGTGTCCRAARAAYCA
RAA-3′) (Kojima et al., 1997); (ii) 16S- 16SA (5′-CGCCTGTTTAT
CAAAAACAT-3′) and 16SB (5′-CTCCGGTTTGAACTCAGATCA-3′)
(Xiong & Kocher, 1991).

PCR amplifications were carried out in 20 µl solutions includ-
ing a buffer to obtain a final concentration of 1 × 3.5 mM of
MgCl2, 0.2 mM of each dNTP, 0.2 µM of each primer, 1 U of
DreamTaq DNA polymerase (Thermo Scientific) and ∼2.5 ng of
template DNA. A negative control was included for each reaction.
For both 16S and COI, the PCR profile was set as follows: initial
denaturing step at 94°C for 4 min; 40 cycles of denaturing at 94°
C for 3 s; annealing at 40°C for 30 s; extending at 65°C for 2 min.

To evaluate the presence of PCR products, 5 µl of amplified
material was electrophoresed on 1.2% agarose gel with a constant
potential difference of 100 V and using TAE 1× (1 mM EDTA,
40 mM Tris-acetate) as a buffer. After 10 min in TAE containing
ethidium bromide (10 mgml−1), the products of the amplifica-
tions were visualized using an ultraviolet light trans-illuminator
and photographed. PCR products were precipitated with sodium
acetate and absolute ethanol and delivered to GATC Biotech
(Konstanz, Germany) for sequencing.

The quality of the sequences from each gene was checked using
Chromas v. 2.6.2 (Technelysium Pty Ltd) and compared with
sequences available in GenBank (Benson et al., 2012). The
sequences were aligned by using ClustalX 2.1 (Larkin et al.,
2007) with those by Ahrens et al. (2013). The final alignment
was edited in BioEdit v. 7.2.5 (Hall, 1999). All the sequences
obtained in this work were submitted to GenBank (accession
numbers in Appendix).

Fig. 1. Hermodice carunculata Pallas, 1766: (A) dorsal view of a fireworm and main morphological features of the species; (B) morphological and morphometric
traits measured at chaetiger 10: branchial filaments (black arrow), width as length of the yellow line (black line), width as distance between notopodia (dashed
line); (C) anterior dorsal view of the medial branchia of the left gill at chaetiger 10 with distended branchial filaments in distilled water.
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The best substitution model for our sequence dataset was cho-
sen using the program jModelTest 2.1.6 (Darriba et al., 2012),
based on the Bayesian Information Criterion. The haplotype
diversity (h) and nucleotide diversity (π) were calculated with
DnaSP 5.10 (Rozas et al., 2003). These estimators were calculated
on both the 16S and on the COI sequences from Porto Cesareo,
and on the sequences downloaded from GenBank (Ahrens
et al., 2013).

We used 168 sequences of 397 bp for 16S and 137 sequences of
639 bp for COI. These sequences included specimens from Porto
Cesareo and those downloaded from GenBank (Ahrens et al.,
2013; Supplementary Table S2). Analyses on 16S, COI and the
concatenated marker sequences were performed using MrBayes
3.2 (Huelsenbeck & Ronquist, 2001). The Bayesian consensus
phylogenetic trees were obtained from two replicate runs with a
total of three Markov chains per run for 8 × 106 generations.
Three replicate runs were carried out with a total of four
Markov chains per run for 2 × 107 generations. In all instances,
the chains were sampled every 200 generations and the initial
25% was discarded as a burn-in phase. The convergence of the
Bayesian analyses was checked using the standard deviation of
split frequencies, which should reach a value <0.01 at the end
of the analysis (Ronquist et al., 2012).

The demographic history of the population from Porto Cesareo
was inferred by mismatch distribution analysis, as implemented in
Arlequin v. 3.5.1.2 (Excoffier et al., 2005). The fit of our data with
both Rogers & Harpending’s (1992) model of sudden population
expansion and Excoffier’s (2004) model of spatial expansion was
assessed using Schneider & Excoffier’s (1999) approach, using the
sum of squared deviations (SSDs) between the expected and
observed mismatch distribution. In addition, Harpending’s
(1994) raggedness statistic (r), Fu’s (1997) FS, and Ramos-Onsins
& Rozas’s (2002) R2 were computed using DnaSP (Rozas et al.,
2003) in order to assess for past population expansions and tested
using coalescent simulations with 10,000 replicates.

Results

Allometric traits and number of branchial filaments

A total of 106 specimens of H. carunculata from Porto Cesareo
was analysed. The weight ranged from 0.46 to 45.58 g (11.83 ±
8.96 g, mean ± SD). The length ranged from 3.28 to 28.41 cm
(15.81 ± 5.26 cm) and the width from 0.24 to 0.95 cm (0.58 ±
0.16 cm) (Supplementary table S3). About 70% of the specimens
was 10–20 cm in length and 0.4–0.7 cm in width. The gills pre-
sented from 11 to 86 filaments (37.3 ± 16.8). All the individuals
featured from 37 to 128 chaetigers (81.1 ± 15.7) (Table 1). This
chaetiger range was comparable with the specimens from
Malta-Crete and the Atlantic Ocean (Table 1). However, one-way
ANOVA revealed significant differences between the fireworms
from Porto Cesareo, Malta-Crete and the Atlantic Ocean (F =
14.16, P < 0.001). The differences were particularly pronounced

between the Porto Cesareo and Malta-Crete populations
(Tukey’s Post Hoc tests, Q = 7.33 and 4.77 respectively; P < 0.001).

The relationships between weight and length, weight and
width, and length and chaetigers were fitted by a power regression
(Figure 2). The regression analyses revealed strong relationships
between almost all the traits examined. Length was a good
proxy for weight (R2 = 0.92, t = 33.69; P < 0.001) and chaetigers
(R2 = 0.82, t = 21.67; P < 0.001) (Figure 2A, C). High coefficients
of determination were calculated for width/weight (R2 = 0.70, t
= 15.43; P < 0.001) and length/width relationships (R2 = 0.58, t
= 12.00; P < 0.001) (Figure 2B, D). The power regression between
the BF10 and the chaetigers yielded the lowest R2 (R2 = 0.33, t =
7.22; P < 0.001) (Figure 2E).

The slopes of the regression curves between BF10 and chaeti-
gers were not significantly different among groups (F = 0.79; P >
0.46). The intercepts were significantly different, indicating that,
for each group, a fireworm with a given number of chaetigers pre-
sented a different BF10. In particular, branchial ramifications
were reduced in the fireworms from Malta and Crete (MC) and
higher in those from the Atlantic Ocean (AO), while the Porto
Cesareo (PC) specimens exhibited intermediate values
(ANCOVA, Origin: F = 59.26, P < 0.001; pair-wise tests: tPC−MC

= 4.55, P < 0.001; tPC−AO = 7.95, P < 0.001; tMC−AO = 10.52,
P < 0.001).

Molecular and phylogenetic analyses

A total of 28 specimens of H. carunculata from Porto Cesareo was
analysed for 16S and 11 of them for both COI and 16S. The best
fitting nucleotide substitution model was GTR + G (Tavarè, 1986)
for both 16S and COI. The haplotype diversity and nucleotide
diversity were higher for COI (h = 0.945 ± 0.066; π = 0.0165 ±
0.0030) than for 16S (h = 0.680 ± 0.100; π = 0.0035 ± 0.0009)
(Table 1). The estimates of genetic variability obtained for the
Porto Cesareo population were consistent with those reported
for Ahrens et al.’s (2013) populations (Table 2). An exception
was represented by the 16S haplotype diversity, which exhibited
a lower value, consistent with the Ahrens et al. (2013) population
from Crete (Table 2). The phylogenetic analyses on 16S, COI and
concatenated sequences provided trees that consistently showed
two main clades (Figure 3). In particular, the phylogenetic tree
from concatenated dataset (1125 bp for 126 individuals) showed
the presence of a well-supported clade (Clade I; posterior prob-
ability PP = 1) including the majority of the Mediterranean speci-
mens (18/24) and a larger clade (Clade II; PP = 1) with all the
Atlantic specimens and some from the Mediterranean
(Figure 3A). Of note, most of the specimens from Porto
Cesareo clustered in Clade I and to a lesser extent (i.e. PC11,
PC28, PC81) with the Atlantic specimens in Clade II
(Figure 3A). A similar pattern was observed for the specimens
from Malta and Crete analysed by Ahrens et al. (2013). The exist-
ence of the two clades was further supported by single-marker
phylogenetic reconstructions (Figure 3B, C).

Table 1. Hermodice carunculata from Porto Cesareo. Total number of chaetigers and number of branchial filaments at chatiger 10 measured in individuals from
Porto Cesareo compared with those reported by Ahrens et al. (2013)

Total number of chaetigers BF10

Populations N Mean ±SD Min Max Mean ±SD Min Max

Porto Cesareo 106 81.1 15.7 37 128 37.3 16.8 11 86

Malta and Crete* 19 62.4 25.5 36 123 17.3 13.0 8 54

Altlantic Ocean* 33 73.4 16.0 34 103 58.9 25.3 18 137

BF10, branchial filaments at chatiger 10; N, number; SD, standard deviation; Min, minimum; Max, maximum. *Data from Ahrens et al. (2013).

1572 Sara Righi et al.

https://doi.org/10.1017/S002531541900064X Published online by Cambridge University Press

https://doi.org/10.1017/S002531541900064X


The mismatch distributions of 16S and COI sequences did not
deviate significantly from the curves expected from the models of
both demographic and spatial expansion of populations (Figure 4;
Table 3). This result was corroborated by the significance of r, FS
and R2 indices for both molecular markers (Table 3).

Discussion

Morphometric traits have been employed to characterize some
polychaete species belonging to different families such as eunicids
(Fauchald, 1992; Costa-Paiva & Paiva, 2007), nereidids (Omena &
Amaral, 2001; Coutinho et al., 2015) and amphinomids (Barroso
et al., 2010; Yáñez-Rivera & Brown, 2015). The evaluation of
worm morphology and size is fundamental in studies of popula-
tion ecology, taxonomy, growth and secondary production, where
total length, weight, appendages and length at chaetiger 10 are

among the most reliable parameters to clarify several aspects of
polychaete biology (Omena & Amaral, 2001; Coutinho et al.,
2015; Nesto et al., 2018). However, little is known about the
reproductive biology and population dynamics of H. carunculata
and no studies have yet analysed the interpopulation variations
based on morphometric variables. Our results indicated the exist-
ence of close relationships between the allometric traits examined
(Figure 2). Of note, body length, number of chaetigers and the
yellow line are strongly related with each other and could be con-
sidered reliable descriptors of fireworm size. In particular, body
length, the most easily measurable trait, is useful to investigate
fireworm population structure and productivity, given its relation-
ship with fireworm weight. In addition, the yellow line length can
be used as a proxy for potential size in fragmented or regenerating
fireworms, or in images showing only the anterior portion of the
body. This situation is quite common when large fireworms are

Fig. 2. Plot of power regression curves and allometric equations between: (A) length and weight; (B) width and weight; (C) width and length; (D) chaetigers and
number of branchial filaments at chaetiger 10 (BF10); (E) chaetigers and length.

Table 2. Hermodice carunculata. Estimates of 16S and COI genetic variability (± SD) in the populations from Porto Cesareo (in bold) and those analysed by Ahrens
et al. (2013). Only population datasets with N > 10 were considered, with the exception of Malta

16S COI

N Nh h π N Nh h π

Porto Cesareo 28 12 0.680 ± 0.100 0.0035 ± 0.0009 11 10 0.982 ± 0.002 0.0150 ± 0.0029

Malta 7 6 0.952 ± 0.096 0.0046 ± 0.0010 6 5 0.933 ± 0.122 0.0134 ± 0.0176

Crete 11 5 0.618 ± 0.164 0.0041 ± 0.0013 15 13 0.981 ± 0.031 0.0111 ± 0.0030

Rocas Atoll 19 12 0.936 ± 0.037 0.0047 ± 0.0009 15 13 0.981 ± 0.031 0.0100 ± 0.0013

St. Peter and St. Paul – – – – 17 10 0.875 ± 0.070 0.0072 ± 0.0014

Bocas del Toro 18 10 0.889 ± 0.053 0.0041 ± 0.0007 16 16 1.000 ± 0.022 0.0102 ± 0.0010

Panama City 10 7 0.867 ± 0.107 0.0058 ± 0.0014 – – – –

Brewers Bay 10 5 0.800 ± 0.100 0.0024 ± 0.0005 – – – –

Curaçao 10 5 0.800 ± 0.100 0.0035 ± 0.0012 – – – –

N, sample size; Nh, number of haplotypes; h, haplotype diversity; π, nucleotide diversity.
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photographed in rocky habitats with many crevices (Simonini
et al., 2017).

Allometric relationships of polychaetes are often fitted by
power curves (e.g. Nesto et al., 2018) and generally growth in
body size occurs by increasing the total numbers of chaetigers
(Omena & Amaral, 2001; Costa-Paiva & Paiva, 2007). In H. car-
unculata, the results of the regression analysis pointed out that
increases in length and numbers of chaetigers corresponded to
similar changes in weight and width, indicating that individuals
elongate until they attain medium-sized bodies, after which bio-
mass increases predominantly occur through an enlargement of
existing segments. This pattern of growth was also observed in
nereidids and eunicids (Omena & Amaral, 2001; Costa-Paiva &
Paiva, 2007).

Ahrens et al.’s (2013) analyses on the relationship between the
total number of chaetigers and the number of branchial filaments
at chaetiger 10 highlighted significant differences in intercepts
between fireworms collected from the Atlantic Ocean and the
Mediterranean. Their study included specimens collected from
different sites, including some separated by large distances, but
interpopulation differentiations were not considered, perhaps
because of the scant number of specimens available for each
site. For instance, in the case of Malta and Crete, morphological
data were available for only 5 and 14 specimens, respectively.
However, our analysis included large numbers of fireworms
from Porto Cesareo, which allowed us to highlight a higher degree

of branchial ramification compared with other Mediterranean
populations. We therefore conclude that the number of branchial
filaments is best considered a plastic trait that varies relative to
local environmental conditions or other unknown factors (e.g.
fireworm reproductive status, ‘health’). Ahrens et al. (2013) sug-
gested that branchial filament abundance may be related to oxy-
gen saturation in the environment. Increased gill surface area
allows higher oxygen uptake and may occur as an adaptation to
enhance oxygen acquisition (Decelle et al., 2010). Similar varia-
tions in respiratory structures in response to hypoxic conditions
have been observed in other families of polychaetes (e.g.
Spionidae, Cossuridae and Paraonidae; Lamont & Gage, 2000),
shrimps and crabs (Decelle et al., 2010). However, experimental
studies are necessary to clarify the occurrence of a direct relation-
ship between fireworm branchial filament abundance and sea-
water oxygenation.

Peripheral populations may exhibit lower estimates of genetic
diversity as a consequence of smaller effective population sizes
and isolation (reviewed in Eckert et al., 2008). The peripheral
population of H. carunculata from Porto Cesareo represents an
exception to this statement, since the values of genetic variability
estimated were high, especially for COI (Table 2). The ‘rostraria’
seems to be the representative larva of Amphinomida, although
confirmation that it actually is remains pending on the successful
lab culture and description of its life cycle. This planktotrophic
larva is characterized by a high potential for dispersal

Fig. 3. (A) Bayesian tree obtained from the concatenated 16S and COI sequences of specimens from Porto Cesareo (PC, branches coloured in red), and those col-
lected by Ahrens et al. (2013) in Malta-Crete (MA and CR, branches coloured in blue) and in the Atlantic Ocean (for Atlantic local abbreviations used in the tree, refer
to Supplementary Table S2). Branch support values (Bayesian inference) are displayed for high supported clades (P > 0.9). Clade I represents a distinct lineage
containing only H. carunculata individuals from the Mediterranean. Clade II results as a larger separate lineage mainly constituted by Atlantic individuals and
some from the Mediterranean (both from Porto Cesareo, Malta and Crete); 16S (B) and COI (C) Bayesian unrooted trees constructed on separated 16S and COI
sequences (Porto Cesareo specimens are coloured in red, Malta and Crete in blue).
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(Kudenov, 1974; Schulze et al., 2017) that may account for the
high degree of connectivity between the peripheral Porto
Cesareo population and the other Ionian populations. Larval dis-
persal ability is a key factor in moulding the genetic structure of
marine invertebrates with long planktonic larval stages and
often leads to a significant degree of genetic homogeneity, even
among distant populations (Grosberg & Cunningham, 2001).
Indeed, genetic divergence among populations of high-dispersing
species may be set by restrictions to connectivity and gene flow,
due to physical, ecological or ethological barriers (Palumbi,
1994; Swearer et al., 1999; Luttikhuizen et al., 2003; Taylor &
Hellberg, 2003; Maltagliati et al., 2004; Kesäniemi et al., 2012).
Our phylogenetic analyses corroborated the lack of a genetic sep-
aration between the Mediterranean and Atlantic populations.
Porto Cesareo, Malta and Crete are mainly characterized by a
Mediterranean private lineage (Clade I) and to a lesser extent

by other lineages occurring in the Atlantic (Clade II) (Figure 3).
These results are consistent with the hypothesis of high connect-
ivity existing between the Atlantic and the Mediterranean (Ahrens
et al., 2013). Gene flow may be due to the unidirectional dispersal
of larvae (and/or juvenile/adult oceanic rafting) through the Strait
of Gibraltar since multiple human-mediated passive transport
(for instance via ballast water) seems unlikely due to the absence
of clade I individuals outside the Mediterranean (see Ahrens et al.,
2013). Even the presumed introduction of clade II individuals in
the Mediterranean due to the aquarium trade is improbable.
While both the dumping of Caribbean live rocks or aquarium ani-
mals by recreational aquarists has occurred at multiple locations
and times, more than 95% of European imports are from the
Indo-Pacific (Fiji, Sri Lanka and Indonesia; Leal et al., 2016),
where H. carunculata has not yet been reported.

Our molecular-based demographic history analyses on the
Porto Cesareo population were consistent with a recent past
demographic and/or spatial expansion in Apulia. In particular,
the surface circulation dynamic in the Mediterranean basin and
the surmised high dispersal capacity of H. carunculata larvae sug-
gest that a spatial expansion of populations from the south-
eastern Adriatic and Ionian Sea has occurred (Hamad et al.,
2005; Belmonte et al., 2006; Poulain et al., 2013; Mikac, 2015).
Seawater warming and the constant gene flow could favour fire-
worms’ northward spreading and density increases in their native
ranges. This scenario would corroborate the recent rise in H. car-
unculata in the central Mediterranean as a first step towards
future population expansions.

Considering fireworms’ invasive potential and their predatory
and opportunistic feeding habits, a detailed reconstruction of their
distribution on a fine scale in the central Mediterranean is strictly
necessary. Integration of the historical records of H. carunculata
with its recent occurrence will allow us to identify and characterize
the potentially expanding populations. Analysis of these popula-
tions could provide deeper knowledge on their present and future
responses to climate change and effects on benthic assemblages.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S002531541900064X.
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Appendix

GenBank accession numbers (16S and COI) for H. carunculata specimens from Porto Cesareo.

GenBank 16S GenBank COI

BankIt2178143 PC1_16S MK355397 BankIt2179392 PC1_COI MK355425

BankIt2178143 PC2_16S MK355398 BankIt2179392 PC3_COI MK355426

BankIt2178143 PC3_16S MK355399 BankIt2179392 PC2_COI MK355427

BankIt2178143 PC9_16S MK355400 BankIt2179392 PC24_COI MK355428

BankIt2178143 PC11_16S MK355401 BankIt2179392 PC37_COI MK355429

BankIt2178143 PC15_16S MK355402 BankIt2179392 PC9_COI MK355430

BankIt2178143 PC24_16S MK355403 BankIt2179392 PC15_COI MK355431

BankIt2178143 PC27_16S MK355404 BankIt2179392 PC81_COI MK355432

BankIt2178143 PC28_16S MK355405 BankIt2179392 PC11_COI MK355433

BankIt2178143 PC32_16S MK355406 BankIt2179392 PC28_COI MK355434

BankIt2178143 PC37_16S MK355407 BankIt2179392 PC32_COI MK355435

BankIt2178143 PC48_16S MK355408

BankIt2178143 PC50_16S MK355409

BankIt2178143 PC53_16S MK355410

BankIt2178143 PC55_16S MK355411

BankIt2178143 PC57_16S MK355412

BankIt2178143 PC60_16S MK355413

BankIt2178143 PC61_16S MK355414

BankIt2178143 PC68_16S MK355415

BankIt2178143 PC69_16S MK355416

BankIt2178143 PC72_16S MK355417

BankIt2178143 PC74_16S MK355418

BankIt2178143 PC75_16S MK355419

BankIt2178143 PC76_16S MK355420

BankIt2178143 PC78_16S MK355421

BankIt2178143 PC79_16S MK355422

BankIt2178143 PC80_16S MK355423

BankIt2178143 PC81_16S MK355424
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