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Abstract. This article develops the Pure Logic of Iterated Full Ground (PLIFG), a logic of
ground that can deal with claims of the form “φ grounds that (ψ grounds θ)”—what we call iterated
grounding claims. The core idea is that some truths � ground a truth φ when there is an explanatory
argument (of a certain sort) from premisses � to conclusion φ. By developing a deductive system that
distinguishes between explanatory and nonexplanatory arguments we can give introduction rules for
operators for factive and nonfactive full ground, as well as for a propositional “identity” connective.
Elimination rules are then found by using a proof-theoretic inversion principle.

§1. Introduction. Fine (2012a,b), Correia (2010, 2014), Schnieder (2011), and
Poggiolesi (2016, 2018) have developed logics of ground where ground is treated as a
sentential operator (to be read: “BECAUSE”). All of these logics, however, have been logics
of “simple” ground: they have nothing to say about claims of the form “φ grounds that (ψ
grounds θ )”—what we may call iterated grounding claims. In the metaphysics literature,
on the other hand, Bennett (2011), deRosset (2013a), and Dasgupta (2014b) have given
accounts of iterated ground, but their accounts were not accompanied by logics of ground.
This is perhaps not surprising—and not only because developing such a logic is a nontrivial
matter. While one might accept that true grounding claims themselves need to be grounded,
one might think that it is a substantive matter what the grounds of grounding claims are: if
so, one has no right to expect a logic of iterated ground.

In previous work (Litland, 2017b) I argued that by linking ground to a type of “ex-
planatory argument” one naturally arrives at a logic of iterated ground. The key upshot of
the proposed logic was that true nonfactive grounding claims are zero-grounded in Fine’s
sense. Unfortunately, the resulting logic was not satisfactory by its own lights. The problem
is that what the connection between ground and explanatory argument gives us is not just
that true nonfactive grounding claims are zero-grounded, it gives us the stronger claim that
the only ground they have is the empty ground. The system proposed in (Litland, 2017b)
does not allow us to derive this stronger claim.

In this article I rectify these shortcomings by developing the Pure Logic of Iterated Full
Ground, or PLIFG.1 In PLIFG we can prove that the unique ground for true nonfactive
grounding claims is the empty ground. Here is the plan. In §2 I describe the basic connec-
tion between ground and explanatory arguments. In §3 I lay down the structural constraints
on explanatory arguments. In §4 I show how to give introduction rules for grounding
operators. §5 is a philosophical interlude concerned with what it means to give a real
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natural deduction.
1 A pure logic of ground has no logical operators apart from the grounding operators; an impure

logic of ground also deals with other operators (e.g., conjunction, disjunction, and negation).
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definition of the grounding operators. §6 uses an inversion principle to derive elimination
rules for the grounding operators. In §7 I define PLIFG and show how to derive basic results
about iterated ground. In §8 I compare PLIFG to Fine’s Pure Logic of Ground. §9 concludes
with some methodological remarks and open questions.

§2. Ground, explanation, and explanatory arguments.

2.1. Ground. The idea is that some truths � ground another truth φ2 when it is in
virtue of the truths � that it is the case that φ; or one might say that the truths � ground
φ when the obtaining of the first truths make it the case that φ; or one might say that �
grounds φ when its being the case that � accounts for its being the case that φ; or, finally,
one might say that � grounds φ when it is because � that φ. These notions have been with
philosophy since the beginning; what is distinctive of the recent literature on ground—
following the seminal (Fine, 2001)—is that one has eschewed trying to give noncircular
definitions of ground. One has accepted the notion of ground as a primitive, settling for elu-
cidating it by presenting paradigm cases and laying down structural principles governing
it. We will follow suit.

Several notions of ground have been distinguished in the literature; here our focus will be
on strict, full, mediate ground—in both its factive and nonfactive varieties. These notions
have the following features. First, they are left-collective: some propositions φ0, φ1, . . .
may together ground φ, even though no φi by itself grounds φ.3 Second, we are concerned
with full ground: if � grounds φ then no proposition need be added to � in order to
account for why φ is the case: its being the case that � fully accounts for its being the case
that φ. Third, the notion of ground is that of mediate ground: we allow the propositions
�0, �1, . . . , � to ground φ by way of �0’s grounding φ0, �1’s grounding φ1, . . . and
the propositions {φ0, φ1, . . . } ∪ �’s together grounding φ. Fourth, in the factive sense,
if γ0, γ1, . . . ground φ, then each of γ0, γ1, . . . and φ is the case; in the nonfactive sense,
we allow γ0, γ1, . . . to ground φ without any of γ0, γ1, . . . or φ being the case. Fifth, and
finally, ground is strict in the following sense: if � grounds φ then it is impossible for each
of the γ ∈ � to be the case and for φ to contribute to explaining any γ ∈ �.4 We will use
< as a sentential operator for factive ground and ⇒ as a sentential operator for nonfactive
ground. For now assume that they have the following grammar: they take any number of
sentences on the left and a single sentence on the right.

2.2. Explanation and explanatory arguments. Most philosophers working on ground
have accepted that there is an intimate connection between ground and explanation. Fine,
e.g., holds that the grounds explain the grounded in the sense

that there is no stricter or fuller account of that in virtue of which the
explanandum holds. If there is a gap between the grounds and what is
grounded, then it is not an explanatory gap. (Fine, 2012a, 39)

2 In the interest of readability we will be abusing the use/mention distinction throughout. This
should cause no confusion.

3 Dasgupta (2014a) has suggested that the basic notion of ground is bicollective: some propositions
γ0, γ1, . . . may ground some propositions δ0, δ1, . . . without any of the δi being grounded in any
subcollection of γ0, γ1, . . . . I believe it is possible to extend the present framework to deal with
iterated bicollective ground, but this is not something I will pursue here. (For some attempts to
model noniterated bicollective ground, see (Litland, 2016, 2018).)

4 This formulation of strictness is more careful than usual; see 3.1.1. for the reasons why.
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Philosophers have, however, differed on what the intimate connection grounding and ex-
planation is. Here we develop the consequences of assuming that the connection is the
tightest possible: the claim that � grounds φ simply is the claim that � explains φ, in this
special, “tightest” sense of explanation.5 While this view hardly is uncontroversial6 here
we will simply assume this conception of ground and will not argue against other views on
the relation between ground and explanation.7

What, then, is explanation? There is a long tradition connecting explanation in general
with explanatory arguments. (This is the deductive-nomological model of explanation.)
The idea in (Litland, 2017b) was to use this connection to throw light on ground. The
ideas, in brief, were as follows:8

First, there is a connection between ground and explanatory arguments: � nonfactively
grounds φ if there is a certain type of explanatory argument from premisses (exactly) � to
conclusion φ. (� factively grounds φ if in addition � is the case.) Second, to determine the
grounds of a grounding claim like � ⇒ φ or �<φ we have to determine what explanatory
arguments end with those conclusions: the premisses of an explanatory argument ending
in � ⇒ φ will be the grounds of � ⇒ φ (and similarly for � < φ). Third, the basic
notion of ground is nonfactive: the immediate grounds for a factive grounding claim � <
φ are � and � ⇒ φ taken together. Fourth, given the connection between ground and
explanatory arguments this means that there is an explanatory argument from premisses
(all and only) �, (� ⇒ φ) to conclusion �<φ. Fifth, we should understand the nonfactive
grounding operator ⇒ as follows: for � ⇒ φ to be the case simply is for there to be an
explanatory argument from premisses (all and only) � to conclusion φ. Sixth, this suggests
the following introduction rule for ⇒:

1
�
E
φ

1, ⇒-I
� ⇒ φ

(Here E is an explanatory argument and � are all and only the premisses on which φ
depends; in passing to the conclusion � ⇒ φ we discharge all the premisses.) Seventh,
just like there are arguments from the empty set of premisses to some conclusion, there
might be explanatory arguments from the empty set of premisses to some conclusion.
Eight, if there is an explanatory argument to φ from the empty set of premisses this shows
that φ is grounded: it is zero-grounded in the sense of (Fine, 2012a, 47–48). Ninth, and
this is the crucial move, an argument ending with an application of ⇒-introduction is itself
explanatory.

5 If � < φ, then a full explanation of φ is simply �; � does not need to be supplemented with the
fact that � < φ in order to fully explain φ. (There may, however, be some special cases where
� < φ is a separate ground for φ—see (Litland, 2017a).)

6 Dasgupta (2014b) explicitly endorses it. Audi (2012, 687–688) and Schaffer (2012, 122)
explicitly reject it.

7 For more discussion of the issues at stake here see (Bliss & Trogdon, 2016, §4).
8 Others have also noted the connection between ground and explanatory arguments. deRosset

(2013a, 12–13) comes very close to the present ideas, but he focuses on factive ground and
is not (there) trying to develop a logic of iterated ground. Poggiolesi (2018) proposes that we
link ground to what she calls “complete and immediate formal explanations”. For some further
remarks on Poggiolesi’s approach, see footnote 12. A deductive-nomological conception of
ground has also been explored by Wilsch (2015a,b).
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Suppose now that we have concluded � ⇒ φ by an application of ⇒-introduction. Since
an application of ⇒-introduction discharges all the premisses on which the subconclusion
φ depends this means that � ⇒ φ is the conclusion of an explanatory argument from the
empty collection of premisses. In other words, � ⇒ φ is zero-grounded.

A nice feature of this framework is that the seemingly obscure idea of zero-grounding
turns out to be unproblematic. To say that φ is zero-grounded is to say that there is an
explanatory argument from no premisses to φ. The seemingly obscure distinction between
being ungrounded and being zero-grounded—grounded, but in nothing at all!—is an in-
stance of a familiar phenomenon: the distinction between being underivable and being
derivable from the empty collection of premisses.

Another nice feature is that the framework subsumes the “superinternality” account
proposed by deRosset (2013a) and Bennett (2011). Their proposal is that the grounds
ground that the grounds ground the grounded or symbolically: if �<φ, then � < (� <φ).
This claim is derivable in the system of (Litland, 2017b).9

2.3. Problems with Litland’s account. I believe this picture is basically correct, but
the development in (Litland, 2017b) had several shortcomings.

The most serious shortcoming is that what the above picture justifies is not just that true
nonfactive grounding claims like � ⇒ φ are zero-grounded, what it justifies is that they
are solely zero-grounded. In other words, if 	 grounds � ⇒ φ, then 	 in fact has to be
equivalent to the empty ground. The full justification for this claim has to wait until we
have presented the introduction rules for ⇒ and <. For now, just note that the system of
(Litland, 2017b) is incapable of even expressing that claims of the form � ⇒ φ are solely
zero-grounded.

First, the language employed there had no way of expressing identity between proposi-
tions. To remedy this, we introduce a sentential operator ≈ such that if p ≈ q then p can
be substituted for q in any context.10

Second, in order to express that a proposition is identical to the empty ground we need
a way of expressing the empty ground itself. In (Litland, 2017b) the only place the empty
ground could appear was on the left of the grounding operators ⇒ and <. (One could
speak of zero-grounding, but not of the empty ground.) In order to be able to express that a
proposition is equivalent to the empty ground we allow the grounding operators ⇒ and <
to have zero arguments on the right as well as on the left. For notational purposes we adopt
the following grammar for the sentential operators ⇒, <, and ≈. If � is a set of sentences
and 	,� are sets of cardinality at most 1 then � ⇒ 	, � <	, and 	 ≈ � are sentences.
This formalization allows the empty ground to occur both on the left and on the right of
the grounding operators.

Once we allow the empty ground to figure on the right of the grounding operators we
have to make sure that it behaves as intended—in particular, it must be “minimal” in the
sense that for no � do we have � ⇒ ∅. A convenient way of ensuring this is to allow
arguments not just with empty premisses but also with an empty conclusion. Technically,
we deal with this by having arguments be trees where the nodes are labeled with sets of
sentences (the sets being of cardinality at most 1).11 We then impose constraints that ensure
that there are no explanatory arguments with the empty conclusion.

9 It remains derivable in the logic presented here, see Proposition 7.7.4.
10 Since ≈ is a sentential operator it is misleading to speak of it as an identity relation between pro-

positions. But the rules governing ≈ ensure that it behaves like a higher-order analogue of identity.
11 If one wanted to model the bicollective notion of ground mentioned in footnote 3 one would allow

sets of any cardinality.
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§3. Arguments explanatory and plain. The proof system distinguishes between ex-
planatory and plain arguments. If � are the premisses of an explanatory argument with
conclusion φ then � explains φ. If the argument from � to φ is merely plain, on the other
hand, � need not in any way explain φ, though it is the case that if (each member of) � is
true, then φ is true.

While we will not attempt to give a noncircular definition of “explanatory argument” it
might help to think of explanatory arguments as composed of basic explanatory inferences.
Finding out which particular inferences are explanatory is a concern of metaphysics. Logic
is only concerned with which further explanatory arguments are generated from a given
collection of explanatory inferences. As far as the pure logic of ground is concerned
there might be no basic explanatory inferences. This would be no problem for the logic
of ground—though it would obviously detract from its interest.

That being said, the following are plausible cases of explanatory inference: conjunction-
introduction, disjunction-introduction (though note (Fine, 2010; Krämer, 2013; Litland,
2015)), and the inference from a is F to a is G where F is a determinate of the determinable
G. In general, if one thinks that � immediately strictly grounds φ, we would hold that the
inference from � to φ is an explanatory inference.12

Let us make this precise. An argument is a rooted labeled tree (of height at most ω)
that is equipped with a discharge function. More specifically, an argument is a quadruple
〈T, L ,≤, D〉. Here T is the set of nodes of the tree and ≤ is the tree-order. We write

t0 t1 . . .
s

if t0, t1, . . . are all and only the nodes immediately above s. L is a function assigning sets
of formulae to the nodes of T . We demand that L(s) is of cardinality at most 1 and allow
L(s) = ∅. D : T → P(T ) is a function taking a s ∈ T and giving us a set of nodes. We
use the function D to keep track of which premisses are discharged in the course of an
argument. Intuitively, the propositions labeling D(s) are the propositions upon which L(s)
depends. The discharge function satisfies the following natural constraints.

12 I would be remiss if I did not say something about the recent attempt by Poggiolesi (2016, 2018)
at defining a notion immediate ground. Central to her approach is a syntactically defined notion
of complexity (“g-complexity”). Roughly, she says that � grounds φ iff φ is derivable from �
and � is immediately less g-complex than φ. (Her actual account is more involved, but the
same points will apply.) I believe that no attempt along the lines she proposes can work. Any
attempt at defining complexity syntactically will founder on cases where we have ground but no
increase—or even: decrease—in complexity. Cases like these are the grounding of facts involving
determinables in facts involve determinates—e.g., the ball’s being red is grounded in its being
crimson—or the grounding of the fact that the sentence denoted by S is true in the fact that
the sentence denoted by S means that there are ω-many Woodin cardinals with a measurable
above, together with the fact that there are ω-many Woodin cardinals with a measurable above.
(The point here is just that, syntactically, the claim that the sentence S is true is atomic; the set-
theoretic statement, on the other hand, is very complicated.) One could argue that this criticism
is unfair since Poggiolesi is only interested in capturing the notion of “formal” (or “logical”)
ground. (She follows Correia (2014) in drawing a distinction between logical, conceptual, and
metaphysical ground.) One could then claim that both the determinate/determinable case and the
truth-ascription cases are not cases of formal ground. I am skeptical whether there is an interesting
distinction between formal and metaphysical ground—as opposed to just a distinction in subject
matter—but even assuming that there is an interesting notion of formal ground, it is doubtful
whether she succeeds in defining it. The problem is that she does not give a general definition, but
only gives a definition for a particular choice of logical constants: at best she defines the notion
of formal ground for propositions formed using that particular collection of constants.
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1. If s ∈ T is a top node in T then D(s) = {s}.
2. If t0 t0 . . .

s then D(s) ⊆ D(t0) ∪ D(t1) ∪ · · · .

If s ≤ t and t is a top node, but t /∈ D(s) we say that t has been discharged.
We use E,D, . . . (possibly with subscripts) as variables for arguments. When we write

�
E
φ

we normally mean that E is an argument where the undischarged top nodes are labeled with
exactly the formulae in � and the conclusion node is labeled with φ. We occasionally use
this notation also to mean that � are amongst the labels of the undischarged top nodes.
(What we mean will be clear from context.) When φ labels the root node s, we will
typically write D(φ) instead of D(s).

We use the following notation to indicate discharge.

0
φ0

1
φ1

2
φ2 . . .

E
φ

0, 1, 2, . . .
ψ

This is to be read as follows. The conclusion φ of the subargument E depends on
φ0, φ1, . . . . In passing to the conclusion ψ we can discharge the top nodes that are labeled
with the φi .

When � = {γ0, γ1, . . . } and we are considering an inference where all the γi are
discharged, we typically write:

1
�
E
ψ

1
θ

For any sets of arguments 〈Ee,Ep〉 such that Ee ⊆ Ep we define the collection of
explanatory and plain arguments over 〈Ee,Ep〉 as the least 〈E′

e,E
′
p〉 such that Ee ⊆ E′

e
and Ep ⊆ E′

p and such that 〈E′
e,E

′
p〉 is closed under the rules in Figure 1. It is helpful to

think of 〈Ee,Ep〉 as the basic explanatory and plain arguments.
The constraints in this figure require explanation. In what follows we will use E(e), and

E(p) to indicate that the argument E is, respectively, explanatory or plain.
(Assumption) is straightforward. We get to write down any assumption φ we like. The

result is a plain argument with conclusion φ, where the conclusion depends on φ. As a
degenerate case we allow the empty argument that has one node labeled with the empty
set.

(Inclusion) works in the obvious way, ensuring that explanatory arguments are also plain.
The two chaining principles tell us how grounding works. Clearly, chaining together

plain arguments will result in a plain argument. It is more contentious that the result of
chaining together explanatory arguments yields an explanatory argument. In what follows
I will simply assume that since we are dealing with full ground there is no problem here.13

13 We thus follow Litland (2013) and Raven (2013) in rejecting the counterexamples to transitivity
proposed by Schaffer (2012).
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(Assumption) 	 is a plain argument for all 	 of cardinality ≤ 1.

(Inclusion) If E is an explanatory argument, then E is a plain argument.

(Chaining) If
φ0, φ1, . . . , �

E
φ

is an explanatory argument and

	i

Ei

φi

is an explanatory

argument for each i , then

	0

E0

φ0

	1

E1

φ1
... . . . �

E
φ

is an explanatory argument.

(Plain Chaining) If
φ0, φ1, . . .

E
φ

is a plain argument and

	i

Ei

φi

is a plain argument for each

i , then

	0

E0

φ0

	1

E1

φ1
... . . .

E
φ

is a plain argument.

(Noncircularity) If E is an explanatory argument from premisses δ0, δ1, . . . to 	 ⊆
{δ0, δ1, . . . }, and Di is a plain argument from 	i to δi for each i then the
following is a plain argument for any ψ

	0

δ0

	1

δ1 . . .

E
	
ψ

Fig. 1. Explanatory and plain arguments.

3.1. Noncircularity. (Noncircularity) requires more extensive comment. The main idea
is that explanatory arguments correspond to strict ground in the sense that �<φ is the case
iff � is the case and there is an explanatory argument from � to φ. Since strict ground is
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irreflexive in the sense noted in §2.1 there can be no 	 such that φ,	,� are all the case
and there is an explanatory argument from φ,	 to φ.14

However, it will not do simply to say that there are no explanatory arguments from	,φ
to φ, for any 	: this tells us nothing about what happens under the supposition that φ
(partly) strictly grounds itself and we need to know what follows from this supposition.
This no idle worry: in the course of reasoning about what grounds what we often end up
with subordinate derivations where we have an explanatory argument from φ (and some
other premisses) to φ itself.15

(Noncircularity) gets around this problem by expressing the asymmetry of ground as a
closure-condition on the classes of explanatory and plain arguments. If, per impossibile,
φ did contribute to explaining φ, then we can conclude anything whatsoever—albeit only
plainly.

Note that (Noncircularity) does not simply take the form:

�, φ

E(e)
φ

Noncircularity*
ψ

For suppose there is an explanatory argument from φ (and some further premisses to φ
itself). Suppose further that φ follows plainly from 	. We ought to be able to conclude
anything from 	,�. But since the argument from 	 to φ is merely plain if we first use
(Plain Chaining) to get the argument

	
φ �

E(e)
φ

we only get a plain argument and so we cannot apply Noncircularity*. The rule of (Non-
circularity) gets around this by building some chaining into the rule of (Noncircularity).

Since arguments with the empty conclusion are allowed we count the following as an
instance of (Noncircularity):

	
E(e)
∅ Noncircularity
ψ

In Proposition 7.7.2 we rely on such instances of (Noncircularity) to establish that the
empty ground is minimal.

One might worry about this reliance on arguments with the empty conclusion: can we
really make sense of this? We can, of course, always fall back on treating this as a merely

14 It is, of course, true that the idea that ground has to be irreflexive has come under attack on various
grounds—see, e.g., (Jenkins, 2011; Bliss, 2014; Wilson, 2014; Krämer, 2013; Correia, 2014).
Here we will just assume that none of the reasons for rejecting irreflexivity are compelling. And
even if irreflexivity fails for some notion of ground it is in any case possible to introduce a natural
notion of ground that does satisfy (Noncircularity). (Fine, 2010, 105) indicates how this might be
done for a notion of partial ground; and (Litland, 2015) shows how it can be done for full ground.

15 Compare: it does not suffice to say that there are no derivations of the absurdity constant ⊥. In
subordinate derivations we often end up deriving ⊥: we need to know what we can conclude in
those circumstances.
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PURE LOGIC OF ITERATED FULL GROUND 419

technical trick that is required to make the empty ground behave properly. But I think we
can do a bit better than that. First, there is no problem making sense of a plain argument
with the empty conclusion. If we read the conclusion of an argument conjunctively what a
plain argument with conclusion ∅ and premisses � commits us to is that if all the ψ ∈ �
are true then all the δ ∈ ∅ are true. We have no problem making sense of this.

What we should say about explanatory arguments with the empty conclusion is this:
there are no such arguments. But—just as it is not enough to say that there are no ex-
planatory arguments from φ (and some other premisses) to φ itself—saying just this is
not enough since this does not tell us what happens under the supposition that we have an
explanatory argument with the empty conclusion. By formulating (Noncircularity) so that
we can conclude anything from an explanatory argument with the empty conclusion we
get around this problem.

3.1.1. Nonfactive noncircularity? There is a final, more philosophical, issue with the
formulation of (Noncircularity). Note that we do not demand that if � grounds φ then it is
impossible for φ to contribute to grounding some γ ∈ �. The reason we do not demand
this is cases like the following. Suppose that a is part of b but it is possible that b instead is
part of a. (Imagine, e.g., that a and b are two organisms and that a came to enter b’s body
and that a now plays an important role in keeping b alive; but if things had gone ever so
slightly differently it would be b that had entered a’s body and b that would have played
an important role in keeping a alive.) Then, while the existence of a plausibly (partly)
strictly grounds the existence of b, it is possible that the existence of b (partly) strictly
grounds the existence of a. Cases like this show that (partial) nonfactive ground is not—in
general—asymmetric.16

Given the connection between ground and explanatory arguments there are, then, some
propositions � such that there is an explanatory argument from the proposition that a
exists together with � to the conclusion that b exists. There are also some propositions
	 such that there is an explanatory argument from 	 together with the proposition that
b exists to the conclusion that a exists. In other words, there are explanatory arguments
from some proposition φ (together with some auxiliary premisses) to the proposition φ
itself. The strictest we can expect ground to be, then, is that if there is an explanatory
argument from �, φ to φ, then it is impossible for �, φ to be jointly true. This is exactly
what (Noncircularity) ensures.

I should note that if one is not convinced by the above case one can strengthen (Noncir-
cularity) to allow discharge of any of the premisses on which φ depends. We thus get:

0
	0

D0

δ0

1
	1

D1

δ1 . . .

E
	 0, 1, . . . Nonfactive noncircularity
ψ

§4. Introduction rules. The introduction rules for nonfactive (⇒) and factive ground
(<) as well as for propositional equivalence (≈) are depicted in Figure 2. The introduction

16 If such cases are possible then the logic for nonfactive ground proposed by Correia (2017) is
incorrect.
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1
�

E
φ

1, ⇒-I
� ⇒ φ

� � ⇒ φ
<-I

� < φ
≈-I

φ ≈ φ

Fig. 2. Introduction rules for ⇒,<, and ≈.

rule for < says that we can infer � < φ from � together with � ⇒ φ. The introduction
rule for ⇒ says that we can infer � ⇒ φ when we have an explanatory argument from
premisses exactly � to conclusion φ. Since we distinguish between explanatory and plain
arguments we have to specify whether the resulting arguments are explanatory or merely
plain. We take the introduction rules for ⇒ and < to result in explanatory arguments. (We
justify this in §5.) We also have to specify how the discharge function works. For the <-I
rule we set D({γ0, γ1, . . . }< φ) = D({γ0, γ1, . . . } ⇒ φ) ∪ D(γ0) ∪ D(γ1) ∪ · · · . For the
⇒-rule we set D(� ⇒ φ) = ∅.

The rules for ≈ must ensure that ≈ behaves like identity. The introduction rule is then
clear enough: we can assert every instance of the reflexivity of identity: φ ≈ φ. I have
written down the reflexivity principle not as an axiom but rather as a rule of inference,
where we can infer φ ≈ φ from the empty collection of premisses. It is tempting to take
this inference to be explanatory, in which case all true (propositional) identities are zero-
grounded (see Proposition 7.3.4). But I will not argue explicitly for this view.

Since we have taken the introduction rules for ⇒ and < to generate explanatory ar-
guments we now know what grounds claims of ground. We illustrate this for the case of
nonfactive ground. Let E be an explanatory argument from � to φ. Then the following
argument shows that � ⇒ φ is zero-grounded:

1
�

E(e)
φ

1, ⇒-I
� ⇒ φ ⇒-I⇒ (� ⇒ φ)

<-I
<(� ⇒ φ)

Introduction rules are not enough, of course: we need to find matching elimination rules.
But before we do that a philosophical interlude is in order.

§5. Philosophical interlude: Real definition of operators. We stipulated that intro-
duction rules result in explanatory arguments: what justifies this? For the purposes of
defining and studying a logic there is, of course, no need to answer this question. But
if PLIFG is to have any philosophical significance—in particular, if it is to help with the
problem of “grounding ground”—this needs to be justified.

In my view we can justify this by holding that the explanatoriness of the rules in Figure 2
are definitional of the operators ⇒ and <. The operator ⇒ is that operator such that
arguments ending with ⇒-I are explanatory. This is reminiscent of Gentzen’s famous
remark:

the introductions represent, as it were, the “definitions” of the symbols
concerned, and the eliminations are no more, in the final analysis, than
the consequences of these definitions. (Gentzen 1969, 80)

This “inferentialist” idea is often given both a meaning-theoretic and an epistemic spin.
(One knows the meaning of a sentential operator when one knows in what epistemic
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positions one can canonically verify sentences with that operator dominant, taking the
introduction rules to specify the shape of canonical verifications.) But the idea can also
be given a metaphysical spin: the introduction rules for an operator specify the immediate
strict full (nonfactive) grounds for any proposition with that operator dominant.

We are claiming, then, that the rules define the operators themselves and not the signs
denoting the operators. The introduction rules provide a real and not merely a nominal
definition. In the recent literature on real definition the focus has been on explicit real
definition,17 but to hold that the rules governing the grounding operators provide real
definitions we have to countenance implicit real definition. Very little has been said about
this (though see Yablo & Rosen, forthcoming). While this is not the place to flesh out and
defend an account of implicit real definition, some points should be made.

First, one becomes, in effect, committed to a comprehension principle for operators. We
can loosely put this as follows.18

(Comprehension) For any set of introduction rules R there is an operator λR such that
for all propositions φ0, φ1, . . . , . . . if {φ0, φ1, . . . } are of the right cardi-
nality for λR then there exists a unique proposition λR(φ0, φ1, . . . ) such
that the immediate strict full grounds of λR(φ0, φ1, . . . ) are exactly the
undischarged premisses of an application of rules in R.

Second, and relatedly, the questions “are the above rules for the grounding operators
correct?” is in a sense misguided. The above rules define some operators—some operators,
moreover, that can be used to express claims of ground. Are there different operators that
can be used to express claims of ground? There are clearly operators for various notions of
partial ground; but there are also alternative ways of dealing with full factive ground. For
instance, one might give introduction rules for a notion of full factive mediate ground <∗
as follows:

�
E
φ

<∗-I
�<∗ φ

This rule is like the rule for ⇒ except that � is not discharged. The difference between
� < φ and � <∗ φ is that � ⇒ φ is a partial ground for the former but not for the latter.19

Third, if we are to define λR by giving its introduction rules no prior assumptions can be
made about propositions of the form λR(φ0, φ1, . . . ). To see this, consider a simple case.
Suppose that we instead of trying to define an operator are trying to define a property. We
could try to give a real definition of the property being a brother by stipulating what are to
be the immediate strict grounds for propositions of the form x is a brother. If we assume
that propositions of the form x is a brother already stand in some grounding relationships
it is not safe to stipulate that a proposition of the form x is a brother is to have certain
immediate grounds: if we stipulate the wrong grounds we might end up with a circle of
ground. For instance, if we stipulate that a proposition x is brother is to be immediately

17 For some examples see (Rosen, 2015), (Fine, 1994a,b), (Rayo, 2013) and (Dorr, 2016).
18 “Loosely”. In order to state such a principle rigorously one would have to develop a higher-

order logic of ground: in stating the principle one would have to quantify over both propositions
and operators. (Or perhaps better: one would have to quantify into both sentence and sentential
operator position.)

19 The rules for the<∗-operator results in the view of iterated ground advocated by deRosset (2013a)
and Bennett (2011).
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strictly fully grounded in the propositions x is a sibling, x is male this would lead to a
circle of ground if there is a prior assumption that propositions of the form x is a brother
(partly) ground propositions of the form x is a sibling.

Fourth, one might worry that while it is plausible to take the introduction rules for
conjunction, disjunction and the existential quantifier to result in explanatory arguments,
it is not at all plausible to say the same about the (standard) introduction rules for the
conditional, negation and (arguably) the universal quantifier. Is this not a serious problem
for the present approach? No: for while we are committed to holding that by taking a set
of introduction rules as explanatory we thereby define some operator, this does not commit
us to holding that by taking the standard introduction rules for, say, the conditional to be
explanatory we thereby have succeeded in defining the conditional.

(Admittedly, this leaves us with a challenge. For if the standard introduction rules for the
conditional—taken as explanatory—do not specify the immediate strict full grounds of a
conditional proposition one had better be able to find some explanatory introduction rules
that do specify the immediate strict full grounds of conditional propositions. The challenge
is serious. To meet it one would have to show that the present framework can be used to
develop an impure logic of ground. While I am hopeful that this can be done this is not the
place to go into detail.20)

Fifth, for any of this to work we have to be able to find appropriate elimination rules. I
have been somewhat rash in saying that a set of introduction rules R suffices to define an
operator λR . A set of introduction rules R defines an operator λR when the set R tells us
how propositions of the form λR(φ0, φ1, . . . ) are (immediately) grounded. But no set of
introduction rules R can do that by itself: we need in addition that R are all the introduction
rules that govern λR . For if there is a way of explanatorily inferring a proposition of the
form λR(φ0, φ1, . . . ) that is not captured by the rules R then there is a way for propositions
of the form λR(φ0, φ1, . . . ) to be grounded that is not captured by R—in which case R does
not define λR .

It is the elimination rules for λR that ensure that the introduction rules for λR specify the
only ways in which propositions of the form λR(φ0, φ1, . . . ) can be grounded. It is here
that the treatment in (Litland, 2017b) is deficient: the elimination rules given there fail to
ensure that the introduction rules specify the sole ways in which propositions formed using
⇒ and < are grounded.

§6. Elimination rules.

6.1. Inversion. We want the elimination rules to ensure that the introduction rules for
λR represent all and only the ways of explanatorily inferring propositions of the form
λR(φ0, φ1, . . . ). To find elimination rules doing this we turn to a proof-theoretic inversion
principle.21 The rough idea is that the elimination rule(s) for an operator λR should be
such that, for all propositions of the form λR(ψ0, ψ1, . . . ), if θ follows from each of the
immediate grounds of λR(ψ0, ψ1, . . . ), then θ should follow from λR(ψ0, ψ1, . . . ) by an
elimination rule. And conversely, if θ follows from λ(ψ0, ψ1, . . . ) by an elimination rule,
then θ has to follow from each of the immediate grounds for λR(ψ0, ψ1, . . . ).

Let us see how this plays out in the case of <.

20 Thanks to an anonymous reviewer for probing comments on this issue.
21 For a statement of the inversion principle, see, e.g., (Read, 2010).
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6.2. <-Elimination. Applied to < one might think that the inversion principle gives
us something similar to the (generalized) elimination rule for conjunction.

� < φ

1
�

2
� ⇒ φ

E
θ

1,2: <-Elimination
θ

This is to be read as follows. If E is an argument to conclusion θ and we, in the course of
E , have used the assumptions � and � ⇒ φ some number of times, we can conclude θ
from � < φ, discharging any number of the assumptions � and � ⇒ φ.

Note here that we allow both vacuous and multiple discharge. That is, one can apply
<-elimination even if one has relied on no occurrences of (say) � ⇒ φ in the subordinate
derivation; and if one has used more than one application of � ⇒ φ one can discharge any
number of those occurrences.

These were the elimination rules given in (Litland, 2017b). Unfortunately, the above
rules for < do not ensure that the only (immediate) grounds for � < φ are �, (� ⇒ φ)
(taken together). The rules ensure that if � < φ is the case then � and � ⇒ φ are the
case; but it is left open that � < φ might have other, different immediate grounds. Since
the introduction rules for < are meant to specify all and only the immediate grounds for
propositions formed using < the elimination rules have to ensure that the only immediate
grounds for � < φ are � and � ⇒ φ taken together.

For now, note the problem and consider what the elimination rule for ⇒ should look
like.

6.3. ⇒-Elimination: Hypothetical arguments. The introduction rule for ⇒ tells us
that we are entitled to assert � ⇒ φ if there is an explanatory argument with premisses
� and conclusion φ. So anything which follows from the existence of such an argument
should follow from � ⇒ φ. How can we make sense of assuming and discharging argu-
ments?

In (Litland, 2017b) I introduced the notion of a hypothetical argument to deal with this.22

Let us use � �e,p φ to refer to the argument �
φ

, where the subscript indicates whether

we think of the argument as explanatory or merely plain. We will call expressions of the
form � �e,p φ “hypothetical arguments”. Recall that we have defined the explanatory and
plain arguments over 〈Ee,Ep〉 for any arguments 〈Ee,Ep〉 such that Ee ⊆ Ep. In assuming
the hypothetical argument � �e φ we consider the explanatory and plain arguments over
〈Ee ∪ {� �e φ} ,Ep ∪ {

� �p φ
}〉. (And analogously for � �p φ.)

Discharge of hypothetical arguments is understood as follows. An inference rule that
discharges a hypothetical argument � �e φ is of the form:

	

1
� �e φ

D
θ

1σ

What this means is that for all 〈Ee,Ep〉, if the subordinate argument D is amongst the
explanatory and plain arguments over 〈Ee ∪ {� �e φ} ,Ep ∪ {

� �p φ
}〉, then the whole

22 A more general notion of “rules which discharge rules” is developed by Schroeder-Heister (1984).
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argument is amongst the explanatory and plain arguments over 〈Ee,Ep〉. (And similarly
for � �p φ.)

An intuitive way of thinking about this is to think of � �e,p φ as a rule of inference. We

can then introduce the following piece of notation: � � �e,p φ
φ

. Think of this as saying

that by using the rule of inference � �e,p φ we infer φ (explanatorily or plainly) from

�. (Officially, what is said is that �
φ

is amongst the explanatory (plain) arguments over

〈Ee ∪ {� �e φ} ,Ep ∪ {
� �p φ

}〉.)
Using the notion of a hypothetical explanatory argument, (Litland, 2017b) offered the

following elimination rule for ⇒.

� ⇒ φ

1
� �e φ

E
θ

1, ⇒-E
θ

This elimination rule allows us to prove that the nonfactive grounding claims are zero-
grounded (if true).

� ⇒ φ

1
�

[� � φ]2
φ

1, ⇒-I
� ⇒ φ ⇒-I∅ ⇒ (� ⇒ φ)

<-I∅< � ⇒ φ
2, ⇒-E∅< (� ⇒ φ)

The problem with this rule is the same as with the <-rule. If the ⇒-I rule is to define
the ⇒-operator the only ground for (true) propositions of the form � ⇒ φ should be the
empty ground; but this version of the elimination rule is not strong enough to ensure this.

6.4. ≈-Elimination. Before we show how to remedy this problem let us show how
hypothetical arguments allow us to give elimination rules for the ≈-operator. What is
characteristic of identity is that it satisfies Leibniz’s Law. If φ ≈ ψ then any role that
is played by φ can be played by ψ (and vice versa). In particular, we should be able to
substitute φ for ψ in any argument, preserving the explanatory status of the argument.
If θ is any formula let us, ambiguously, write θ [ψ/φ] for any result of replacing some
occurrences of φ in θ with ψ . (We do not demand that we replace every occurrence of φ
with ψ .) Similarly, we write �[ψ/φ] for the result of replacing some occurrences of φ in
the γ ∈ � with ψ .

What we want to express, then, is that if φ ≈ ψ and we have an argument E from
some premisses � to θ then we can assume a hypothetical argument �[ψ/φ] �e,p θ [ψ/φ],
where the hypothetical argument is explanatory if E is explanatory, otherwise it is plain.
We thus arrive at the following elimination rule for ≈.

φ ≈ ψ

1
�
E
θ

2
�[ψ/φ] �e,p θ [ψ/φ]

D
σ

1,2, ≈-Eσ
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6.5. Explanatory elimination. The key to finding sufficiently strong elimination rules
for ⇒ and < is to observe that if the only way of arriving at propositions of the forms
	 ⇒ φ and 	 < φ is by means of arguments ending with ⇒-I or <-I, then we should
have two types of elimination rule. In one—given above in 6.2, 6.3, and 6.4—the formula
to be eliminated is the conclusion of a merely plain argument; in the other, the formula to
be eliminated is the conclusion of an explanatory argument. Let us call the former “plain
elimination” and the latter “explanatory elimination”.

To see how this works consider first the case of ⇒-E. Suppose we have an explanatory
argument E from � = {γ0, γ1, . . . } to 	 ⇒ φ. Then this argument E must end with an
application of ⇒-I. Since ⇒-I discharges all the premisses on which φ depends, � has to
be identical to the empty ground. The explanatory elimination rule then has to look like
this:

aγ0, γ1, . . .

E(e)
	 ⇒ φ

0
γ0 ≈ ∅ 1

γ1 ≈ ∅ . . .
b

	 �e ∅
D
σ

a, b, 0, 1, . . . , ⇒-Eσ

Note that {γ0, γ1, . . . } itself is discharged. In proving that any ground for 	 ⇒ φ is
identical to the empty ground we will need this feature (see Proposition 7.7.2). But allowing
each of γ0, γ1, . . . to be discharged is well-motivated: if each of the γ ∈ {γ0, γ1, . . . }
is identical to the empty ground, then—since the empty ground always obtains—each
γ ∈ {γ0, γ1, . . . } always obtains.

The <-E rule is more cumbersome to state. Let �,	, and 	 ⇒ φ be given. Write
{	 ⇒ φ} ∪ 	 = {

σ j : j ∈ J
}
. A J -cover of � is a collection C = {

� j : j ∈ J
}

of
subsets of � such that

⋃
j∈J � j = �. (Note that several of the � j can be ∅.) When J

is clear from context we just refer to the covers of �. We can enumerate the covers of �

as {Ci : i ∈ I } where each Ci is of the form
{
�i

j : j ∈ J
}

. For each i ∈ I , an i-cover-

story is a set
{
�i

J Ri
jσ j : j ∈ J

}
where each Ri

j is either �e or ≈. For each i , we can

enumerate the i-cover-stories as
{
Ci,k : k ∈ Ki

}
. The totality of ways in which � can be

the premisses of an explanatory argument with conclusion 	 < φ is then represented by{
Ci,k : i ∈ I, k ∈ Ki

}
—the set of cover stories.

If � are the premisses of an explanatory argument with conclusion 	 < φ, and σ is a
consequence of any cover story Ci,k , then σ should follow from 	< φ by the explanatory
elimination rule. We are thus led to the following rule.

�
E

	< φ

i, k
. . . Ci,k . . .

Di,k

. . . σ . . .
i ∈ I, k ∈ Kiσ

Finally, if we take the ≈-I rule to be explanatory we must also give an explanatory ≈-E
rule. By now this is straightforward:

1
�
E

φ ≈ ψ

2
	
D
θ

3
	[ψ/φ] �e,p θ [ψ/φ]

4
� ≈ ∅

F
σ

1,2,3,4, ≈-Eσ

This rule is exactly like the plain elimination rule except that we can assume that � (that
is, each γ ∈ �) is equivalent to the empty ground.
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λR(φ0, φ1, . . . )

ψ

�(φ0, φ1, . . . )

�������������

��

Fig. 3. Elimination rules are plain.

6.6. E-rules are plain. Just as we have to decide whether the introduction rules result
in explanatory or merely plain arguments we have to decide whether applications of the
E-rules result in explanatory or plain arguments. Intuitively, it is clear that the E-rules
result in plain arguments: it is not plausible that the elimination rules given above specify
the conditions that make it the case that their conclusions obtain.23

While this is no doubt correct it is problematic to rely on this if we take the introduction
rules to define the grounding operators: it should then follow from the operators being so
defined that the elimination rules lead to merely plain arguments. Fortunately, we can argue
that this is indeed so.

Explanatory arguments induce an explanatory order, with the premisses of explanatory
arguments being strictly lower in the explanatory order than their conclusions. Let λR be
an operator defined by the introduction rules R. The introduction rules R for λR allow us to
conclude λR(φ0, φ1, . . .)when one of the conditions�i (φ0, φ1, . . .) on φ0, φ1, . . . , i ∈ I is
met. Since the introduction rules are explanatory λR(φ0, φ1, . . .) is strictly higher than each
�i (φ0, φ1, . . .) in the explanatory order. The elimination rules for λR allow us to conclude
ψ if ψ follows from every condition �i from which we can conclude λR(φ0, φ1, . . .) by a
rule in R. Precisely because λR(φ0, φ1, . . .) is strictly higher than each such condition �i

we simply have no information about how ψ stands to λR(φ0, φ1, . . .) in the explanatory
order. Figure 3 makes this clear (here the arrows indicate location in the explanatory order):
even if ψ is strictly above �(φ0, φ1, . . .) this gives us no information about its relation to
λR(φ0, φ1, . . .).24

§7. The pure logic of iterated full ground. We can finally define the Pure Logic of
Full Ground (PLIFG). For definiteness, the rules governing the operators <,⇒, and ≈ are
repeated in Figure 4. (For simplicity, we only list the explanatory elimination rules.)

We need one final piece in order to define PLIFG: the infinitary discharge convention.
This convention allows us to apply infinitely many elimination rules simultaneously.

DEFINITION 7.1 (Discharge Convention). Let φ0, φ1, . . . be some formulae. Suppose that

0
0,

0
1, . . . 

1
0,

1
1, . . .

E
ψ

is an argument such that for each i

23 Thanks to an anonymous reviewer on this point.
24 As an example, the immediate ground of both φ ∨ φ and φ ∧ φ is φ, but, plausibly, φ ∧ φ and
φ ∨ φ are not comparable in terms of ground.

https://doi.org/10.1017/S1755020317000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000211


PURE LOGIC OF ITERATED FULL GROUND 427

1
�

E
φ

1, ⇒-I
� ⇒ φ

aγ0, γ1, . . .

E(e)
	 ⇒ φ

0
γ0 ≈ ∅ 1

γ1 ≈ ∅ . . .
b

	 �e ∅
D
σ

a, b, 0, 1, . . . , ⇒-Eσ

� � ⇒ φ
<-I

� < φ

�

E
	< φ

i, k
. . . Ci,k . . .

Di,k
. . . σ . . .

i ∈ I, k ∈ Kiσ

≈-I
φ ≈ φ

1
�

E
φ ≈ ψ

2
	

D
σ

3
	[ψ/φ] �e,p θ[ψ/φ]

4
� ≈ ∅

F
σ

1,2,3,4, ≈-Eσ

Fig. 4. Rules for PLIFG.

φi

[0]i , [1]i , . . .

E
ψ

i , φi -elimination
ψ

is a valid argument. (φi -elimination is λi -elimination where λi is the dominant operator in
φi .) We then allow simultaneous application of all the elimination rules for the principal
operator in each φi . That is,

φ0 φ1 . . .

[0
0](0,0), [0

1](0,1), . . . , [1
0](1,0), [1

1](1,1), . . .

E
ψ

(0, 0), (0, 1), . . . , (1, 0), (1, 1), . . . ; φ0-E, φ1-E, . . .
ψ

is to be a valid argument.

We need this convention because there are situations where we must apply infinitely many
elimination rules. Since the argument trees are converse well-founded this cannot be done
in succession but rather has to be done simultaneously.

Let Ee,Ep be some arguments. The arguments over 〈Ee,Ep〉 is the closure of 〈Ee,Ep〉
under the rules in Figures 1 and 4 in accordance with the Discharge Convention. The
arguments of PLIFG are the arguments over 〈∅, ∅〉. The provability relation � of PLIFG

is defined as follows. � � φ iff there is a PLIFG-argument E with conclusion φ such that
the undischarged premisses of E are a subset of �.

We now prove some basic results in PLIFG.

7.1. Basic results in PLIFG.

PROPOSITION 7.2 (Left and right factivity).

1. 	< φ � φ.

2. 	< φ � δ for each δ ∈ 	.

Proof. We prove Proposition 7.2.2. Note that we require vacuous discharge.

δ0, δ1, . . . < φ
i

δi i , <-E
δi

�
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The following results ensure that ≈ behaves like identity.

PROPOSITION 7.3.

1. � φ ≈ φ, for each φ.

2. φ ≈ ψ � ψ ≈ φ.

3. φ ≈ ψ,ψ ≈ θ � φ ≈ θ .

4. If the ≈-I rule is explanatory, φ ≈ ψ � ∅ ⇒ (φ ≈ ψ).

5. If we have the explanatory ≈-I and ≈-E rules, � ⇒ (φ ≈ ψ) � � ≈ ∅.

Proof. We prove the middle three claims. The following establishes symmetry.

φ ≈ ψ
≈-I

φ ≈ φ
[∅ � ψ ≈ φ]1

ψ ≈ φ
1, ≈-E

ψ ≈ φ

The third-most subargument is obtained by replacing the left occurrence of φ in φ ≈ φ
with ψ .

Transitivity is established similarly.

φ ≈ ψ
≈-I

φ ≈ φ

ψ ≈ θ
[∅ � φ ≈ ψ]1

φ ≈ ψ
[∅ � ψ ≈ θ ]2

φ ≈ θ
2, ≈-E

φ ≈ θ
1, ≈-E

φ ≈ θ

The following establishes that all propositional equivalences are zero-grounded.

φ ≈ ψ
≈-I

φ ≈ φ

[∅ �e φ ≈ ψ]1
φ ≈ ψ ⇒-I∅ ⇒ (φ ≈ ψ)

1, ≈-E∅ ⇒ (φ ≈ ψ) �

PROPOSITION 7.4 (Noncircularity). 	,φ < φ � ψ , for all ψ .

Proof.

	,φ < φ

0
	,φ ⇒ φ

1
	,φ

[	,φ �e φ]2
φ

Noncircularity
ψ

2, ⇒-E
ψ

0,1, <-E
ψ �

As a special case of Proposition 7.4 we have that the null ground is minimal in the sense
that

φ0, φ1, . . . < ∅ � ψ, for each ψ.

We can however establish that the null ground is minimal in a stronger sense:

PROPOSITION 7.5. � ⇒ ∅ � ψ , for all ψ .

Proof. We first establish that � ⇒ ∅ � � ≈ ∅.
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� ⇒ ∅

1
�

[� �e ∅]2∅ 1, ⇒-I
� ⇒ ∅ ⇒-I∅ ⇒ (� ⇒ ∅)

3
�

[� �e ∅]2∅
[∅ �e � ⇒ ∅]4

� ⇒ ∅ 5
� ≈ ∅ 3, 5,⇒-E

� ≈ ∅
4, ⇒-E

� ≈ ∅ 2, ⇒-E
� ≈ ∅

To establish Proposition 7.5 it then suffices to show that � ⇒ ∅, � ≈ ∅ � ψ , for all ψ .
The following proof witnesses that

� ⇒ ∅
� ≈ ∅

1
�

[� �e ∅]2∅ Noncircularity
ψ

[∅ �p ψ]3
ψ

1,3, ≈-E
ψ

2, ⇒-E
ψ �

We have the following Cut-Principles.

PROPOSITION 7.6.

1. 	0 ⇒ φ0,	1 ⇒ φ1, . . . , (φ0, φ1, . . . , � ⇒ φ) � 	0,	1, . . . , � ⇒ φ.

2. 	0 < φ0,	1 < φ1, . . . , (φ0, φ1, . . . , � < φ) � 	0,	1, . . . , � < φ.

Proof. We prove Proposition 7.6.1; Proposition 7.6.2 follows easily. Note the need for
applying the infinitary discharge convention.

	0 ⇒ φ0,	1 ⇒ φ1, . . . , (φ0, φ1, . . . , � ⇒ φ)

0a
	0

[	0 �e φ0]0b

φ0

1a
	1

[	1 �e φ1]1b

φ1 . . .
c

�
[φ0, φ1, . . . , � �e φ]d

φ
0a, 1a, . . . , c, ⇒-I

	0,	1, . . . , � ⇒ φ
0b, 1b, . . . , d , ⇒-E

	0,	1, . . . , � ⇒ φ

�
The next results establish how iterated ground works; the key result is that the empty

ground is the unique (immediate) full ground of the nonfactive grounding claims. Note
how we require the explanatory elimination rules.

PROPOSITION 7.7.

1. 	 ⇒ φ � ∅ ⇒ (	 ⇒ φ).

2. � ⇒ (	 ⇒ φ) � ∅ ≈ �.

3. � < φ � (�, (� ⇒ φ)) < (� < φ).

4. � < φ � � < (� < φ).
5. (� ⇒ ψ) ⇒ (	 ⇒ φ) � θ , for any θ .

Proof. We only prove a few of the cases. The following establishes Proposition 7.7.2.
Note how we first use the plain ⇒-E rule to get a hypothetical explanatory argument from
� to 	 ⇒ φ. We then use the explanatory elimination rule to conclude that � ≈ ∅.

� ⇒ (	 ⇒ φ)

1
�

[� �e (	 ⇒ φ)]3
	 ⇒ φ

2
� ≈ ∅

1,2, ⇒-E
� ≈ ∅

3, ⇒-E
� ≈ ∅
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The following establishes Proposition 7.7.4.

� < φ

1
� ⇒ φ

2
�

3
�

4
�

[� �e φ]5
φ

4, ⇒-I
� ⇒ φ

<-I
� < φ

3, ⇒-I
� ⇒ (� < φ)

<-I
� < (� < φ)

5, ⇒-E
� < (� < φ)

1,2, <-E
� < (� < φ)

The following establishes Proposition 7.7.5.

(� ⇒ ψ) ⇒ (	 ⇒ φ)

1
� ⇒ ψ

[(� ⇒ ψ)�e 	 ⇒ φ]0

	 ⇒ φ

1
� ⇒ ψ

2∅ ≈ (� ⇒ ψ)

3
�

[� �e ψ]4

ψ
3, ⇒-I

� ⇒ ψ

[∅ �e ∅]5

∅
Noncircularity

θ
5, ≈-E

θ
4, ⇒-E

θ
1,2, ⇒-E

θ
0, ⇒-E

θ

�

REMARK 7.8. Proposition 7.7.4 is the superinternality claim defended by deRosset and
Bennett. The interpretation of this claim is, however, different in PLIFG. It is natural to take
them to be committed to holding that the immediate ground for 	<φ is just 	.25 But that
is not correct according to PLIFG: the immediate grounds for 	 < φ are 	 and 	 ⇒ φ
(taken together).

REMARK 7.9. Proposition 7.7.5 is of some philosophical interest. In connection with
the problem of grounding ground several authors (e.g., Dasgupta 2014b, 566n18) have
suggested that if φ grounds ψ and ψ grounds θ , then φ’s grounding ψ together with ψ’s
grounding θ might ground φ’s grounding θ . Proposition 7.7.5 rules this out.

§8. Amalgamation, weak ground, and the pure logic of ground. In this section
we compare PLIFG with Fine’s Pure Logic of Ground (PLG). Since PLG contains various
operators for partial ground the right system to which to compare PLIFG is the full fragment
PLFG—the rules of which are depicted Figure 5. In PLFG the notion of weak full ground
plays an important role. Unlike strict ground weak ground is reflexive. While we have
not employed a primitive notion of weak ground, in the present framework it is easy to
introduce such a notion.26

Say that 	 weakly nonfactively grounds φ—	 ⇒w φ—iff either 	 ≈ φ (where this
means that δ ≈ φ, for each δ ∈ 	)—or 	 strictly fully nonfactively grounds φ. We

25 I hasten to add that they do not explicitly claim this; but this does seem to be the natural way of
developing their views.

26 This, I hasten to add, is not the notion of weak ground that Fine works with. Fine’s notion of weak
ground has come in for a fair amount of criticism—see, e.g., deRosset (2013b, 2014). To my
mind Fine’s notion arises naturally in the framework of truthmaker semantics, but that framework
yields a more coarse-grained notion of ground than what we are interested in here. Our definition
of weak ground also differs from the one given by Correia (2017); what corresponds to his notion
is our notion of distributive weak ground.
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	< φ
Subsumption

	≤ φ
Identity

φ ≤ φ
	, φ < φ

Noncircularity⊥

	0 ≤ φ0 	1 ≤ φ1 . . . φ0, φ1, . . .≤ φ
Cut

	0,	1, . . .≤ φ

φ0, φ1, . . .≤ φ (φ0, �0 < ψ0), (ψ0,0 ≤ φ) (φ1, �1 < ψ1), (ψ1,1 ≤ φ) . . .
Reverse Subsumption

φ0, φ1 . . . < φ

Fig. 5. Pure logic of ground.

introduce a factive weak ground operator ≤ in the obvious way. The (plain) introduction
and elimination rules for ⇒w and ≤ are given in Figure 6.

With this treatment of weak ground, it turns out that the Cut principle for weak ground is
not valid in PLIFG. For suppose there is an explanatory argument from	 to φ, and suppose
	 is the case. Then the introduction rules for ⇒w and ≤ ensure that φ≤ φ and	≤ φ. But
we have no guarantee that	,φ≤φ. Since φ, φ≤φ is the same formula as φ≤φ this gives
us a counterexample to Cut (for ≤).

Another difference is that the principle of (Strict) Amalgamation is valid in PLFG but
not in PLIFG.

	0 < φ 	1 < φ . . .
Amalgamation

	0,	1, . . . < φ

We give an informal counterexample. Suppose disjuncts ground disjunctions, and that
disjunctions have no other immediate grounds. Then we have an explanatory argument
from p to p ∨ q and an explanatory argument from p ∨ q to (p ∨ q) ∨ r . But we do not
have an explanatory argument from p together with p ∨ q to (p ∨ q) ∨ r , and so strict
Amalgamation fails.

To get around this problem we introduce the notions of distributive weak and strict
ground.27 We say that � ≤d {δi : i ∈ I } iff � = ⋃

i∈I �i and �i ≤ δi for each i ∈ I . (We
give the analogous definition for <d—strict distributive ground.) The introduction rule for
weak distributive ground is given in Figure 6. The elimination rule is to be understood
as follows. Let {φi : i ∈ I } be an indexed collection of formulae. An I -covering of � is a
collection of sets of formulae {�i ≤ φi : i ∈ I } such that

⋃
i∈I �i = �. Let J index the

I -coverings of �. We then write
{
�

j
i ≤ φ

j
i : i ∈ I j

}
, for the I -covering with index j ∈ J .

The elimination rule for ≤d then says that if θ follows no matter which I -covering of � we
choose, then θ follows from � ≤d {φi : i ∈ I }. The introduction and elimination rules for
distributive strict ground are exactly parallel.

Let PLIFG+W be PLIFG augmented with the rules for weak ground and distributive
weak and strict ground. One reason for introducing PLIFG+W is that it allows one to state
important facts about iterated factive ground, like the following:28

� < (	 < φ) � � ≤d {	 ⇒ φ} ∪	

27 Another, perhaps more satisfactory, way around the problem would be to let the grounding
operators take multisets on the left (and right).

28 Compare the elimination rules for conjunction and disjunction in (Fine, 2012a, 63–67).
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� ⇒ φ ⇒w -I
� ⇒w φ

� ≈ φ ⇒w -I
� ⇒w φ

� ⇒w φ

1
� ⇒ φ

E
θ

2
� ≈ φ

D
θ

1,2, ⇒w -E
θ

� ⇒w φ � ≤-I
� ≤ φ

� ≤ φ

1
� ⇒w φ

2
�

E
θ

1,2, ≤-E
θ

	0 ≤ φ0 	1 ≤ φ1 . . . ≤d -I
	0,	1, . . . ,≤d {φ0, φ1, . . . }

	≤d {φi : i ∈ I }

j0{
	

j0
i ≤ φi : i ∈ I

}

E j0

θ

j1{
	

j1
i ≤ φi : i ∈ I

}

E j1

θ . . .
j0, j1, . . . , ≤d -E

θ

Fig. 6. Weak ground rules.

But the main point of introducing the notions of distributive ground is that all principles of
PLFG hold in PLIFG+W for distributive ground. Consider the following translation of the
language of PLFG into the language of PLIFG+W. We translate a sequent �≤φ of PLFG by
the formula �≤d φ of PLIFG+W; and we translate a sequent �<φ by the formula �<d φ.
We then have the following.

THEOREM 8.1. The translation of every theorem of PLFG is a theorem of PLIFG+W.

Proof. We prove the stronger claim that there is a valid PLIFG+W argument from the
(translation of the) premisses of every PLFG rule of inference to the (translation of the)
conclusion of that inference. The only interesting case is Reverse Subsumption. We reason
informally; the reader should have no problem transforming the informal reasoning into a
proof in PLIFG+W. Suppose we have

{
φ j : j ∈ J

} ≤d φ. Then one possibility is that we
have

{
φ j : j ∈ J

} ≤d φ because
{
φ j : j ∈ J

} = ⋃
i∈I �i and �i <d φ for each i ∈ I . In

this case clearly
{
φ j : j ∈ J

}
<d φ.

The only other possibility is that φ j0 ≈ φ, for some j0 ∈ J . The application of Reverse
Subsumption then has some premisses φ j0 , � j0 <d ψ j0 and ψ j0 , j0 ≤d φ. We then have
φ j0 , �

′
j0
<ψ j0 for some �′

j0
⊆ � j0 . We also have ψ j0 ,

′
j0

≤φ, for some′
j0

⊆  j0 . One
possibility is that′

j0
, ψ j0 ≈ φ. In that case, application of the ≈-rules give us φ j0 , �

′
j0
<φ.

The other possibility is that ψ j0,
′
j0
< φ. In that case Cut gives us φ j0 , �

′
j0
,′

j0
< φ.

So it suffices to show that we can derive
{
φ j : j ∈ J

}
<d φ from φ ≈ φ j0 together

with φ j0 , �
′
j0
,′

j0
< φ and also from φ ≈ φ j0 together with φ j0 , �

′
j0
< φ. The following

argument establishes the former claim. (The other claim is established similarly.)

φ j0 , �
′
j0
,′

j0
< φ

1
φ j0 , �

′
j0
,′

j0
⇒ φ

φ ≈ φ j0

2
φ j0 , �

′
j0
,′

j0
[φ j0 , �

′
j0
,′

j0
�e φ]3

φ

4
φ j0 , �

′
j0
,′

j0
[φ j0 , �

′
j0
,′

j0
�e φ j0 ]5

φ j0
Noncircularity{

φ j : j ∈ J
}
<d φ

2,5, ≈-E{
φ j : j ∈ J

}
<d φ

3, ⇒-E{
φ j : j ∈ J

}
<d φ

1,4, <-E{
φ j : j ∈ J

}
<d φ

�
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§9. Conclusion: Open questions and methodological remarks. This article has
shown how one, by tying ground to explanation, can rigorously develop a pure logic of
iterated ground. There is obviously much more to be done—of both a philosophical and of
a technical nature—fully to defend this conception of ground.

Perhaps the most important task is to extend the framework to give a logic of immediate
ground. The natural thought is that just as mediate ground corresponds to explanatory
arguments, immediate ground corresponds to explanatory inferences. It is then natural to
take explanatory inference as a primitive notion. But this raises a technical difficulty. It is
natural to think that mediate ground is the closure of immediate ground. If that is so an
explanatory argument must be the result of chaining together some explanatory inferences.
The technical problem is how to capture this in the formal system. Somehow we have to
be able to represent that when we have a hypothetical explanatory argument from � to φ,
then this explanatory argument is the composition of some explanatory inferences.

A second important question is whether there is a natural semantics with respect to
which PLIFG is sound and complete. If one is just interested in PLIFG it is routine to show
that the graph-theoretical semantics sketched in Litland (2017b) can be extended to do the
work. But that semantics is somewhat artificial, and it is not obvious how to make it work
for iterated immediate ground.

Moving beyond the pure logic of ground, one key question is to characterize the ex-
planatory arguments ending with logically complex propositions. The difficult cases here
are negation and the conditional. As one deals with the impure logic of ground one even-
tually has to deal with the “puzzles of ground” introduced in (Fine, 2010), and one has to
determine whether the present framework deals with the puzzles in an adequate way.

Let us end on some methodological remarks.
Ground is all the rage; but why care about the logic of ground? Apart from its inherent

interest, an important reason for being interested in the logic of ground is the still significant
skepticism about ground (see, e.g., Daly, 2012; Hofweber, 2009; Wilson, 2014, 2016).
Some of this skepticism is driven by a suspicion that there is not one thing that talk about
ground latches onto. (Such worries are hardly allayed by the tendency to take ground as a
primitive!) Developing logics of ground provides one way of allaying such fears. However,
the logics of ground require certain features if they are to play this role.

One should certainly not subscribe to the view that merely by creating a consistent
formal system to govern a primitive notion one dispels the worry that there is no unique
notion of ground. After all, even if there is a multiplicity of different notions of ground,
it may be that no contradiction arises from the supposition that there is a unique one.
(This is one reason why just axiomatizing a grounding relation, in the obvious way, is so
unsatisfactory.)

A logical system plays an important role in making us comfortable with a primitive
notion when (some of) the following desiderata are met. 1. The principles—or most of
the principles—of the logic flow naturally from a guiding conception; 2. the guiding con-
ception allows us to discover new—and somewhat surprising—principles governing the
primitive notion; 3. the logic allows us to draw distinctions that we were previously unable
to draw but that appear correct on reflection.

PLIFG meets these desiderata to a considerable degree. First, the principles of PLIFG flow
naturally from the conception of ground as metaphysical explanation. Second, taking seri-
ously the idea of ground as explanation gives us principles for iterated ground. Third, the
notion of the zero-grounding is demystified by its connection with explanatory arguments
from no premisses and it turns out that there is a wide class of zero-grounded truths.

https://doi.org/10.1017/S1755020317000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000211


434 JON ERLING LITLAND

§10. Acknowledgments. Material from this article was presented at the Munich Cen-
ter for Mathematical Philosophy and the University of Nottingham. Thanks to the audi-
ences at both places. Thanks to Jönne Kriener, Michaela McSweeney, Sam Roberts, and
Øystein Linnebo for many conversations about ground in Oslo. Thanks to Kit Fine for
some very helpful suggestions which allowed me greatly to simplify the presentation of
the logic. Thanks to Louis deRosset for very helpful comments on earlier versions of this
material. Thanks are especially due to an anonymous referee for extremely helpful and
detailed comments on earlier versions of this article and to the editors of this journal for
their patience.

BIBLIOGRAPHY

Audi, P. (2012). Grounding: Towards a theory of the in virtue of relation. Journal of
Philosophy, 109(12), 685–711.

Bennett, K. (2011). By our bootstraps. Philosophical Perspectives, 25(1), 27–41.
Bliss, R. (2014). Viciousness and circles of ground. Metaphilosophy, 45(2), 245–256.
Bliss, R. & Trogdon, K. (2016). Metaphysical grounding. In Zalta, E. N., editor.

The Stanford Encyclopedia of Philosophy (Winter 2016 edition). Available at
https://plato.stanford.edu/archives/win2016/entries/grounding/.

Correia, F. (2010). Grounding and truth-functions. Logique et Analyse, 53(211), 251–279.
Correia, F. (2014). Logical grounds. Review of Symbolic Logic, 7(1), 31–59.
Correia, F. (2017). An impure logic of representational grounding. Journal of

Philosophical Logic, 46(5), 507–538.
Daly, C. (2012). Scepticism about grounding. In Correia, F. and Schnieder, B., editors.

Metaphysical Grounding. Cambridge: Cambridge University Press, pp. 81–100.
Dasgupta, S. (2014a). On the plurality of grounds. Philosophers’ Imprint, 14(20), 1–28.
Dasgupta, S. (2014b). The possibility of physicalism. Journal of Philosophy, 111(9/10),

557–592.
deRosset, L. (2013a). Grounding explanations. Philosophers’ Imprint, 13(7), 1–26.
deRosset, L. (2013b). What is weak ground? Essays in Philosophy, 14(1), 7–18.
deRosset, L. (2014). On weak ground. Review of Symbolic Logic, 7(4), 713–744.
Dorr, C. (2016). To be F is to be G. Philosophical Perspectives, 30, 39–134.
Fine, K. (1994a). Essence and modality. Philosophical Perspectives, 8, 1–16.
Fine, K. (1994b). Senses of essence. In Raffman, D., Sinnott Armstrong, W., and Asher,

N., editors. Modality, Morality, and Belief: Essays in Honor of Ruth Barcan Marcus.
Chicago: University of Chicago Press, pp. 53–73.

Fine, K. (2001). The Question of realism. Philosophers’ Imprint, 1(1), 1–30.
Fine, K. (2010). Some puzzles of ground. Notre Dame Journal of Formal Logic, 51(1),

97–118.
Fine, K. (2012a). Guide to ground. In Correia, F. and Schnieder, B., editors. Metaphysical

Grounding. Cambridge: Cambridge University Press. pp. 37–80.
Fine, K. (2012b). The pure logic of ground. The Review of Symbolic Logic, 5(1), 1–25.
Gentzen, G. (1969). The Collected Papers of Gerhard Gentzen. Amsterdam: North-

Holland.
Hofweber, T. (2009). Ambitious, yet modest, metaphysics. In Chalmers, D., Manley,

D., and Wasserman, R., editors. Metametaphysics: New Essays on the Foundations of
Ontology. New York: Oxford University Press, pp. 269–289.

Jenkins, C. (2011). Is metaphysical dependence irreflexive? The Monist, 94(2), 267–276.
Krämer, S. (2013). A simpler puzzle of ground. Thought, 2(2), 85–89.

https://doi.org/10.1017/S1755020317000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000211


PURE LOGIC OF ITERATED FULL GROUND 435

Litland, J. E. (2013). On some counterexamples to the transitivity of grounding. Essays in
Philosophy, 14(1), 19–32.

Litland, J. E. (2015). Grounding, explanation, and the limit of internality. Philosophical
Review, 124(4), 481–532.

Litland, J. E. (2016). Pure logic of many-many ground. Journal of Philosophical
Logic, 45(5), 531–577.

Litland, J. E. (2017a). Could the grounds’s grounding the grounded ground the grounded?
Analysis, 78(1), 56–65.

Litland, J. E. (2017b). Grounding ground. Oxford Studies in Metaphysics, 10, 279–316.
Litland, J. E. (forthcoming). Bicollective ground: Towards a (hyper)graphic account. In

Bliss, R. and Priest, G., editors. Reality and Its Structure: Essays in Fundamentality.
New York: Oxford University Press, pp. 140–163.

Poggiolesi, F. (2016). On defining the notion of complete and immediate formal grounding.
Synthese, 193(10), 3147–3167.

Poggiolesi, F. (2018). On constructing a logic for the notion of complete and immediate
formal grounding. Synthese, 195(3), 1231–1254.

Raven, M. J. (2013). Is ground a strict partial order. American Philosophical
Quarterly, 50(2), 191–199.

Rayo, A. (2013). The Construction of Logical Space. Oxford: Oxford University Press.
Read, S. (2010). General-elimination harmony and the meaning of the logical constants.

Journal of Philosophical Logic, 39(5), 557–576.
Rosen, G. (2015). Real definition. Analytic Philosophy, 56, 189–209.
Schaffer, J. (2012). Grounding, transitivity, and contrastivity. In Correia, F. and Schnieder,

B., editors. Metaphysical Grounding. Cambridge: Cambridge University Press, pp. 122–
138.

Schnieder, B. (2011). A Logic for “Because”. Review of Symbolic Logic, 4(3), 445–465.
Schroeder-Heister, P. (1984). A natural extension of natural deduction. Journal of Symbolic

Logic, 49, 1284–1300.
Wilsch, T. (2015a). The deductive-nomological account of metaphysical explanation.

Australasian Journal of Philosophy, 94(1), 1–23.
Wilsch, T. (2015b). The nomological account of ground. Philosophical Studies, 12(172),

3293–3312.
Wilson, J. M. (2014). No work for a theory of grounding. Inquiry, 57(5–6), 535–579.
Wilson, J. M. (2016). Grounding-based formulations of physicalism. Topoi,

https://doi.org/10.1007/s11245-016-9435-7.
Yablo, S. & Rosen, G. (forthcoming). Solving the caesar problem—with metaphysics. In

Miller, A., editor. Logic, Language and Metaphysics. Essays in Honor of Crispin Wright.
Oxford: Oxford University Press.

DEPARTMENT OF PHILOSOPHY
UNIVERSITY OF TEXAS AT AUSTIN

STOP C3500
TX 78712, AUSTIN

E-mail: jon.litland@austin.utexas.edu

https://doi.org/10.1017/S1755020317000211 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000211

