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Abstract
We show that a dense subset of a sufficiently large group multiplication table contains either a large part of
the addition table of the integers modulo some k, or the entire multiplication table of a certain large abelian
group, as a subgrid. As a consequence, we show that triples systems coming from a finite group contain
configurations with t triples spanningO(

√
t) vertices, which is the best possible up to the implied constant.

We confirm that for all t we can find a collection of t triples spanning at most t + 3 vertices, resolving the
Brown–Erdős–Sós conjecture in this context. The proof applies well-known arithmetic results including
the multidimensional versions of Szemerédi’s theorem and the density Hales–Jewett theorem.

This result was discovered simultaneously and independently by Nenadov, Sudakov and Tyomkyn
[5], and a weaker result avoiding the arithmetic machinery was obtained independently by Wong [11].

2010 MSC Codes: Primary 05C25; Secondary 05C35, 05C65

1. Introduction
A central open problem in extremal combinatorics is the Brown–Erdős–Sós conjecture [1]. We
say that a subgraph H′ of a hypergraph H is an (r, s)-configuration if |E(H′)| = s and |V(H′)|� r.
The Brown–Erdős–Sós conjecture states that, for any fixed positive integer t� 3, any 3-uniform
hypergraph H on n vertices which does not contain a (t + 3, t)-configuration has at most o(n2)
edges. The number t + 3 cannot be decreased, since random constructions can achieve �(n2)
edges while avoiding any (t + 2, t)-configurations [1]. The conjecture can be generalized to higher
uniformity, but we shall focus on the 3-uniform case in this note.

Since its formulation in 1973 there has been a great deal of work on this problem. Ruzsa
and Szemerédi [7] resolved the first non-trivial case (t = 3), but the conjecture remains open for
all t > 3. The strongest result to date is due to Sárközy and Selkow [8], who showed that any
3-uniform hypergraph which does not contain a (t + 2+ �log2 t�, t)-configuration has at most
o(n2) edges.

When tackling the Brown–Erdős–Sós conjecture, we may additionally assume that the hyper-
graph H is linear (as noted in [9], for example). It is also clear that we may assume that H is
tripartite, since, given a 3-graph H, we may obtain a tripartite 3-graph H′ by taking three copies
of the vertex set ofH and placing edges between these partitions corresponding to the edges ofH.

Given a linear, tripartite, 3-uniform hypergraph H on n+ n+ n vertices we can associate a
partially labelled n× n grid by labelling position (a, b) with label c if (a, b, c) ∈ E(H). Thus the
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Brown–Erdős–Sós conjecture can be formulated in terms of a quasigroup; this is noted in [9] and
[10], for example.

Conjecture 1.1 (Brown–Erdős–Sós). Fix t ∈Z
+ and ε > 0. Then there exists N =N(t, ε) such

that, for any quasigroup G of order n>N and any subset A of the multiplication table of G of
density at least ε, we can find a (t + 3, t)-configuration in A; that is to say, a set of t triples in A
spanning at most t + 3 vertices (i.e. rows, columns or labels).

In light of this formulation, it is natural to ask the same question when G is in fact a group,
as the additional structure might provide greater local density than can be found in random
constructions.

Conjecture 1.2 (Brown–Erdős–Sós for groups). Fix t ∈Z
+ and ε > 0. Then for any sufficiently

large group G and any subset A of the multiplication table of G of density at least ε, we can find a
(t + 3, t)-configuration in A.

Since the Brown–Erdős–Sós conjecture is resolved for t� 3, the first interesting case of
Conjecture 1.2 is t = 4. In 2015, Solymosi [9] resolved this case, showing that Conjecture 1.2 holds
for t = 4.

Recently, Solymosi and Wong [10] showed that much more is true, proving that the Brown–
Erdős–Sós threshold of t + 3 vertices can in fact be surpassed in the groups setting. In particular,
they prove that dense subsets of sufficiently large group multiplication tables contain sets of t
triples in A spanning asymptotically only 3t/4 vertices. Since their result concentrates on the case
of large t, they do not match Conjecture 1.2 for small t but prove that it holds for infinitely many t.

Given that the Brown–Erdős–Sós threshold can be surpassed in the groups setting, one may
ask what the correct behaviour should be in this case. Since A corresponds to a linear hypergraph,
we cannot find sets of t triples in A spanning fewer than

√
t vertices, but can we approach this

lower bound?

Question 1.3 Let t be a fixed positive integer. What is the smallest number F(t) such that we
are guaranteed to find an (F(t), t)-configuration in a dense subset of a sufficiently large group
multiplication table?

In this note we answer this question up to a constant factor, and resolve Conjecture 1.2. By
applying machinery from arithmetic combinatorics, including the multidimensional Szemerédi
theorem and a multidimensional variant of the density Hales–Jewett theorem, we prove that any
dense subset of a sufficiently large group multiplication table contains a large subgrid belonging
to one of two families: either the subgrid matches part of the multiplication table of a cyclic group,
or the subgrid matches the entire multiplication table of Fm

p for some small prime p and large m.
A precise statement appears in Theorem 2.2 following some notation.

This reduces Question 1.3 to a discrete optimization problem, in which wemust find configura-
tions with t edges spanning few vertices in each of the two cases resulting from our main theorem.
We tackle this optimization problem in Section 4, showing that F(t)=O(

√
t) and resolving

Conjecture 1.2 for all t.

2. Notation and statements
We write Zn for the group of integers modulo n under addition and we write [k] for the set
{0, 1, . . . , k− 1}. We begin with some definitions.
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Definition. By the multiplication table of a group G= (G, ◦) we mean the collection of triples
(a, b, a ◦ b) for a, b ∈G. The vertex set will be given by three disjoint copies of G called the row
vertices, column vertices and label vertices. We shall refer to the triples as the edges or faces of the
corresponding tripartite 3-uniform hypergraph. Typically, we will represent this as a labelled grid,
with entry (a, b) given label a ◦ b. In the case that G= (G,+) is an abelian group, we will usually
call the multiplication table an addition table.

Definition. By a subgrid of a labelled grid, we mean the labelled grid contained in the intersection
of some subset of the rows and columns.

Definition.We say that a labelled grid A is isomorphic to another labelled grid B if we can biject
the row sets, column sets and label sets of A and B in such a way that the resulting map is a graph
isomorphism between the corresponding 3-graphs.

Using this notation we reformulate Question 1.3 in a precise way.

Question 2.1 Let t be a fixed positive integer and ε > 0. Let F(t) be minimal such that, given
any subset A of density at least ε of a sufficiently large (in terms of t and ε) group multiplication
table, we may find an ( F(t), t)-configuration in A. How does F(t) grow with t? Is F(t)� t + 3 for
all t?

In order to answer this question, we prove the following structural result.

Theorem 2.2 Fix k,m ∈Z
+ and ε > 0. Then there exists N =N(k,m, ε) such that, for any group

G of order n>N and any subset A of the multiplication table of G of density at least ε, A contains
either a subgrid isomorphic to the addition table of [k] as a subset of ZK for some K � k, or a subgrid
isomorphic to the addition table of Zm

p for some p< k prime.

Remark. This result is ‘best possible’ in terms of finding configurations with many edges spanned
by few vertices, since if A is simply taken to be the addition table of [n/2] as a subset of Zn, say,
then any subgrid of A is isomorphic to part of a larger addition table and we cannot improve on
the first case of the theorem. Similarly, if A is simply the addition table of Zt

p for small p and large
t, then we cannot improve on the second case.

3. Proof of Theorem 2.2
We start by introducing the arithmetic machinery that we use later. We begin with a multidimen-
sional version of Szemerédi’s theorem [3].

Theorem 3.1 (multidimensional Szemerédi theorem). Let k, t ∈Z
+ and let ε > 0. Then there

exists N =N(ε, k, t) such that, for any n>N and any A⊂Z
t
n of density at least ε, we can find

a1, a2, . . . , at , d ∈Zn such that
(a1 + i1d, a2 + i2d, . . . , at + itd) ∈A

for each ij ∈ {0, . . . , k− 1}. In other words, A contains the Cartesian product of t arithmetic
progressions of length k with the same common difference.

We shall also need a multidimensional version of the density Hales–Jewett theorem [4]. We
recall the definition of a combinatorial line.
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Definition. A combinatorial line in Z
n
m is a set U of the form

U = {(x1, . . . , xn) | xi constant on I, xj = zj for j 	∈ I}
for some indexing set I ⊂ {1, . . . , n} and some z ∈Z

n
m. A combinatorial subspace of dimension k is

a set U of the form

U = {(x1, . . . , xn) | xi constant on each Is, xj = zj for j 	∈ ∪sIs}
for some collection of k disjoint indexing sets Is ⊂ {1, . . . , n}, and some z ∈Z

n
m.

Theorem 3.2 (density Hales–Jewett). Fix m ∈Z
+ and let ε > 0. Then there exists N =N(ε,m)

such that, for any n>N and any A⊂Z
n
m of density at least ε, we can find a combinatorial line

inside A.

The density Hales–Jewett theorem easily implies its own multidimensional variant; for a proof,
see [2], for example.

Corollary 3.3 (multidimensional density Hales–Jewett). Let m, k be fixed positive integers and
let ε > 0. There exists N =N(ε,m, k) such that, for any n>N and any A⊂Z

n
m of density at least ε,

we can find an entire combinatorial subspace of dimension k inside A.

We will need a further variant of density Hales–Jewett, which follows easily from Corollary 3.3
by applying the same idea used to extend from Theorem 3.2 to Corollary 3.3.

Corollary 3.4 Let k, t be fixed positive integers, p a fixed prime, and let ε > 0. There exists N =
N(ε, p, k, t) such that, for any n>N and any A⊂ (Zn

p)t of density at least ε, we can find a subspace
� of dimension k and a1, . . . , at ∈Z

n
p such that

(a1 + �)× (a2 + �)× · · · × (at + �)⊂A.

Proof. We simply identify (Zn
p)t with Z

n
pt in the obvious way. We can then apply Corollary 3.3

to find a combinatorial subspace of dimension k inside A, which gives us an affine subspace of
dimension k. The result follows by translating back to (Zn

p)t .

Lastly, we will need Pyber’s theorem [6], which provides us with a large abelian subgroup of G.

Theorem 3.5 (Pyber’s theorem). There is a universal constant c> 0 such that any group G of
order n contains an abelian subgroup of order at least ec

√
log (n).

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. We begin by applying Theorem 3.5, which states that G contains an
abelian subgroup G′ of order at least exp (c

√
N) for some absolute constant c> 0. In particular,

N′ = |G′| tends to infinity with N.
Note that the multiplication table of G can be partitioned into the Cartesian products of left

cosets of G′ with right cosets of G′. Since A has density at least ε in the full multiplication table
G×G, we know that there exists r, s ∈G such thatA has density at least ε in the Cartesian product
rG′ ×G′s. The part of the multiplication table corresponding to this Cartesian product is isomor-
phic to the addition table of G′. Let A′ =A∩ (rG′ ×G′s) be the subset of rG′ ×G′s of density at
least ε obtained from A. Note that G′ is a finite abelian group, and can therefore be written as a
direct product of cyclic groups of prime power order.
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Suppose thatG′ has a cyclic factorZT . Then, as above, we can find a subsetA′′ which has density
at least ε in a Cartesian product of two cosets of ZT inG, and this Cartesian product is isomorphic
to the addition table of ZT . Thus A′′ corresponds to a subset of the T × T addition table of density
at least ε. By Theorem 3.1, if T > T(k, ε) is sufficiently large then we can find a Cartesian product
of two arithmetic progressions (a, a+ d, . . . , a+ (k− 1)d) and (b, b+ d, . . . , b+ (k− 1)d) inA′′.
The labels in this subgrid belong to the set {a+ b, a+ b+ d, . . . , a+ b+ 2d}. Indeed, this subgrid
is isomorphic to the addition table {0, . . . , k− 1} × {0, . . . , k− 1} ⊂Z

2 and so we are in the first
case of the statement of the theorem.

So we are done if G′ contains a cyclic factor ZT with T > T(k, ε). Therefore we may assume
that all factors of G′ are cyclic groups with bounded (prime power) order. Since |G′| tends to
infinity withN, we see that for any positive integerM, ifN is sufficiently large we may find (by the
pigeonhole principle) a cyclic factor Zpa which appears to the powerM. In particular, G′ contains
Z
M
p as a subgroup.
As above, we note that this means that we may find A′′ ⊂A which has density at least ε in the

Cartesian product of two cosets of ZM
p inside G, and this product is isomorphic to the multipli-

cation table of ZM
p . If M is sufficiently large in terms of m, then by Corollary 3.4 we can find the

complete Cartesian product of a+Z
m
p and b+Z

m
p inside A′′. This complete Cartesian product is

isomorphic to the addition table of Zm
p . If p� k then we can find the addition table of Zp and we

are in the first case of the theorem, and otherwise we have p< k and are in the second case.

We now see how Theorem 2.2 simplifies Question 2.1. We let f (t) be minimal such that we
can find an ( f (t), t)-configuration in the addition table of [k]⊂ZK for any K � k sufficiently
large compared to t. Similarly, for each prime p we let gp(t) be minimal such that we can find
an ( gp(t), t)-configuration in the addition table of Zm

p for any sufficiently large m (in terms of t
and p).

Corollary 3.6 We have that F(t)=maxp ( f (t), gp(t)).

Proof. Clearly F(t)�maxp ( f (t), gp(t)). For the other direction, we apply Theorem 2.2 for choices
of k andm sufficiently large in terms of t. Given a subsetA of density at least ε of themultiplication
table of some sufficiently large group G, we may therefore find a subgrid isomorphic to the entire
addition table of [k] as a subset of ZK for some K � k, or a subgrid isomorphic to the entire
addition table of Zm

p for some p< k prime. If k and m are chosen large enough (in terms of t
only), we deduce that A contains either an ( f (t), t)-configuration or a ( gp(t), t)-configuration and
so F(t)�maxp ( f (t), gp(t)).

We have thus reduced Question 2.1 to the problem of finding f (t) and gp(t). We will devote
the next section to tackling this discrete optimization problem; providing an exact, closed form
answer for all t is tricky because of certain divisibility considerations.

4. Finding locally dense configurations
In order to keep the note brief, we will not attempt to give the best possible bounds.Wewill instead
show that F(t)=O(

√
t), and, because of the connection with Conjecture 1.1, we will separately

confirm that F(t)� t + 3 for all t.
For the analysis of the discrete optimization problem arising from Corollary 3.6, it simplifies

the calculations to try and maximize the number of faces induced by a fixed number v of vertices
rather than minimize the number of vertices spanned by a fixed number t of faces. Thus we let
f ′(v) be the maximal number of faces that can be spanned by a set of v vertices in the addition
table of [k]⊂ZK for any K � k sufficiently large compared to v, and observe that if f ′(v)� t then
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f (t)� v. Similarly, we let g′
p(v) be the maximal number of faces that can be spanned by a set of v

vertices in the addition table of Zm
p for any m sufficiently large in terms of v and p, and observe

that if g′
p(v)� t then gp(t)� v.

Proposition 4.1 We have that f ′(v)� (1+ o(1))v2/12, and therefore f (t)� (
√
12+ o(1))

√
t.

Proof. We work in the addition table of [k]⊂ZK for K � k� v. Given r rows and r columns,
we can optimize the density of our configuration by including the s most numerous labels. The
labels in the addition table are constant along falling diagonals. In the worst case, each falling
diagonal corresponds to a different label, in which case the most numerous label occurs r times,
the next two most numerous labels occur r − 1 times each, etc. Therefore, by including the smost
numerous labels, we include a total of at least

r + (r − 1)+ (r − 1)+ (r − 2)+ (r − 2)+ · · · + (r − �(s− 1)/2)= sr − s(s− 1)/4− 1
2
�s/2�

different faces. The total number of vertices is 2r + s, so we seek to maximize this expression with
respect to the constraint that 2r + s� v. Taking r = �v/3� and s= �v/3, and noting that f ′(v) is
an increasing function of v, the proposition follows.

Proposition 4.2 We have that g′
p(v)� (1+ o(1))v2/49 for all p, and therefore gp(t)� (7+

o(1))
√
t.

Proof. We work in the addition table T of Zm
p for m large. If p� v/3 then the construction in

the proof of Proposition 4.1 finds a configuration in the addition table of Zp with (1+ o(1))v2/12
faces and so we are done.

Otherwise, let l be minimal such that 3pl+1 > v. For m sufficiently large, T contains a subgrid
isomorphic to the multiplication table of Zl+1

p . We can partition this multiplication table into the
Cartesian products of the cosets of Zl

p. These Cartesian products can be arranged into a p× p grid
of blocks (pl × pl subgrids) corresponding to entries of the addition table Zp ×Zp.

We form our configuration by taking a union of these blocks. Let v= λpl, and so λ ∈ [3, 3p).
The number B of blocks that we can use is precisely the maximum number of faces induced by
�λ� vertices in the addition table of Zp. The number of vertices in the resulting configuration will
be at most v, and the number of edges will Bp2l = Bv2/λ2.

Since p> λ/3 we could use the construction idea from Proposition 4.1. Unfortunately, we can-
not assume that λ is large (in which case we could take approximately λ2/12 blocks and therefore
approximately v2/12 faces) and the worst cases for this construction will in fact be decided by the
best options for small λ.

In order to minimize the calculation, we will instead simply take an a× a grid of these blocks,
and we shall choose amaximal subject to our constraint on the number of vertices.

If we take the bottom left a× a grid of these Cartesian products we obtain a configuration with
apl rows, apl columns and at most (2a− 1)pl labels. The configuration has a2p2l faces. Taking a
maximal so that 4a− 1� v/pl = λ, we obtain a configuration C with at most v vertices.

By the maximality of a we see that a= �λ/4+ 1/4�, so in particular a�max (1, λ/4− 3/4).
The number of faces of the configuration C is a2p2l, which is therefore at least

max
(
v2

λ2
,
(λ − 3)2

16λ2
v2

)
,

which takes its minimal value of v2/49 when λ = 7.
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Remark. It is not hard to show that Proposition 4.1 is in fact best possible, and 1/12 is the correct
constant in the limit. On the other hand, Proposition 4.2 does not give the correct constant. As
mentioned in the proof, combining the construction in Proposition 4.1 with a careful analysis
of small λ would allow improvements to be made quite easily. We can also make use of leftover
vertices (when λ is not an integer, a union of blocks uses only �λ�pl < v vertices, leaving some
unused) to interpolate between the constructions for integer values of λ. Using these techniques
we can improve the constant from 1/49 to 5/64. However, the calculations are quite involved and
the result would still not be the best possible, so we have tried to find a compromise between giving
the best bounds that we can and providing a streamlined result.

Combining Propositions 4.1 and 4.2 with Corollary 3.6 gives the following result.

Corollary 4.3 F(t)=O(
√
t) (in fact, F(t)� (7+ o(1))

√
t).

Therefore, the Brown–Erdős–Sós threshold of (t + 3, t) is far below what can be found given
the extra group structure. Nevertheless, we will now confirm that we do indeed prove the Brown–
Erdős–Sós conjecture in the context of group multiplication tables, which essentially involves
checking that sufficiently dense configurations exist for the small values of t, as well as for large t
as verified by Corollary 4.3.

Proposition 4.4 We have that F(t)� t + 3 for all t� 3.

Proof. Althoughmuch better bounds than t + 3 are possible for large t, it will be most convenient
simply to find (t + 3, t)-configurations in the addition table of [k]⊂ZK for K � k large, and also
in the addition table of Zm

p form large. The result will then follow by Corollary 3.6.
For the first case, working in the addition table of [k]⊂ZK , we note that taking the points in

positions (0, 0), (0, 1) and (1, 0) gives the configuration

1
0 1

which has six vertices spanning three faces. Next, we can include the point in position (1, 1),
which introduces one new vertex (a new label, 2) and one new face. Then the point in position
(2, 0) introduces one new vertex (a new column) and one new face, and then the point in posi-
tion (2, 1) introduces one new vertex (a new label) and one new face. Continuing, we introduce
the points in positions (i, 0) and (i, 1) for each i until we have t faces. At this point we have a
configuration with t faces spanning t + 3 vertices.

In the second case, we are working in the addition table of Zm
p for m large. We can use the

above argument to find an (r + 3, r)-configuration for r up to 2p− 1 by taking the bottom two
rows, minus the final face, of the multiplication table of some copy of Zp. When we add in the
final point in position (p− 1, 1) we re-use the label in position (0, 0) so we get an (r + 2, r)-
configuration. We can then start again in a new copy of Zp, including the corresponding points
one by one in the same order as before. Our first point introduces two new vertices (a new row
and new column) for just one more face, but since we are adding it to an (r + 2, r)-configuration
we get back to an (r + 3, r)-configuration. Thereafter we add at most one new vertex with every
new face. Once we finish the bottom two rows of the next copy of Zp we can start again in
another copy, and we can continue until we have t faces. At that point we will span at most t + 3
vertices.

Conjecture 1.2 follows immediately from Proposition 4.4.
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5. Concluding remarks
We have shown that the Brown–Erdős–Sós conjecture is true for hypergraphs with an underlying
group structure, and in fact a much stronger result is possible. We give a bound of O(

√
t) on

the minimum size of a collection of vertices spanned by t edges, which is tight up to the implied
constant. Theorem 2.2 provides an explanation for this local density by showing that bounded-
size subgrids manifesting an abelian group structure can be found in any dense subset of a group
multiplication table.

It is natural to wonder if the ability to find many configurations with density beating the
Brown–Erdős–Sós threshold is in some way connected to group-like structure. Are there inter-
esting structural constraints weaker than the group axioms that still provide local density beyond
the Brown–Erdős–Sós threshold? Or does the existence of many (r, s)-configurations with r
sufficiently small in terms of s require an underlying group structure?
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