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Abstract

Methods for efficient variance-based global sensitivity analysis of complex high-dimensional problems are presented and
compared. Variance decomposition methods rank inputs according to Sobol indices that can be computationally expensive
to evaluate. Main and interaction effect Sobol indices can be computed analytically in the Kennedy and O’Hagan framework
with Gaussian processes. These methods use the high-dimensional model representation concept for variance decomposition
that presents a unique model representation when inputs are uncorrelated. However, when the inputs are correlated, multiple
model representations may be possible leading to ambiguous sensitivity ranking with Sobol indices. In this work, we present
the effect of input correlation on sensitivity analysis and discuss the methods presented by Li and Rabitz in the context of
Kennedy and O’Hagan’s framework with Gaussian processes. Results are demonstrated on simulated and real problems
for correlated and uncorrelated inputs and demonstrate the utility of variance decomposition methods for sensitivity analysis.
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1. INTRODUCTION

Designing large complex systems requires a thorough under-
standing of the relative importance of input variables and their
interactions with respect to the desired system outputs. Having
the knowledge of relative sensitivity of input design parameters
or uncertain random variables can help the designers in a num-
ber of ways including accelerating design exploration and rec-
ognizing a set of critical design or uncertain variables that
need more attention, to name a few. Primary methods for sen-
sitivity analysis include screening, local, and global methods as
shown in Figure 1. Screening methods primarily include scat-
ter plots, regression analysis, and correlation coefficients. Such
methods are effective with linear models where only main ef-
fects are desired. Nonlinearity in the models or desire to study
interaction effects raises the need for more sophisticated
methods. One factor at a time and the more specialized Morris
methods can handle nonlinear models but are only suited for
capturing main effects (Iooss & Lemâitre, 2015).

Partial derivatives of the system response with respect to an
input variable averaged in some sense over the whole domain
can provide reasonable metrics for sensitivity analysis. How-
ever, there are two problems with these methods. Unless true
gradients can be computed cheaply for the system response,

partial derivatives have to be computed from a metamodel
emulating the system response. Accuracy of gradients pre-
dicted by metamodels generally cannot be quantified. One
would hope that gradients become increasingly accurate as
the number of training points to build the metamodel in-
crease; however, one cannot be sure on a lower bound on
the number of training points. In addition, averaging a partial
derivative over the entire input domain becomes computa-
tionally expensive as the number of dimensions increases.
Variance-based global sensitivity analysis methods perform
an exhaustive sensitivity analysis capturing main, interaction,
and total effects. However, these methods tend to be compu-
tationally expensive, and over the past decade new methods
have been developed to alleviate this computational burden.
Figure 2 shows a comprehensive review of sensitivity analy-
sis methods with increasing nonlinearity and problem dimen-
sionality. Variance-based methods are clearly more suited to
problems with high-order interactions. Next, we focus on the
variance-based global sensitivity methods and address issues
about nonuniqueness and ambiguity in interpreting results
when correlation is introduced in the input variables. For a
more detailed review of methods, please refer to the refer-
ences (Saltelli et al., 2000; Sudret, 2008; Iooss & Lemâitre,
2015). In Section 2, we present the theoretical details of var-
iance-based global sensitivity analysis methods and discuss
issues in the presence of input correlation. We also present
methods from Li et al. (2010) that reformulate Sobol indices
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to handle input correlation. In Section 3, we present some
simulated examples with and without input correlation, and
finally, sensitivity analysis on a 100-dimensional nonlinear
thermal problem. Section 4 discusses our conclusions.

2. METHODS AND TECHNIQUES

In this section we will focus on variance-based global sensitivity
methods. In Section 2.1, we will first present the variance de-
composition concept and the definition of Sobol indices
followed by the high-dimensional model representation

(HDMR) method in Section 2.2. Then we will focus on the
Kennedy and O’ Hagan framework in Section 2.3 and present
computation of Sobol indices in Section 2.4. We will ad-
dress the effect of correlation on HDMR and the Li–Rabitz
method in Section 2.5. Section 2.6 covers problems with in-
put correlation.

2.1. Variance-based global sensitivity methods

Variance-based global sensitivity analysis investigates how
the uncertainty in the system response of a mathematical/

Fig. 1. Sensitivity analysis methods.

Fig. 2. Review of sensitivity analysis methods with increasing dimensionality and nonlinearity (Iooss & Lemâitre, 2015).
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simulation model of a system can be divided among the dif-
ferent uncertain inputs and their interactions. In this section,
we will go over the foundation of variance decomposition
for sensitivity analysis and high-dimensional model represen-
tation and then present application of these methods for
Gaussian processes in the popular Kennedy and O’Hagan
framework (2001).

In this work, the model of a system could also be an actual
experiment that studies the system with pointwise evalua-
tions. Such methods rank the inputs according to the follow-
ing criteria: if the true value of the uncertain parameters is
known, then how much variance there is in the output can
be reduced. Higher reduction in variance means that the out-
put is more sensitive to that input as shown in Figure 3.

Here it is important to distinguish between polynomial re-
gression-based analysis of variance methods and the generic
variance decomposition methods. Analysis of variance methods
are also variance decomposition methods but specialized for
only polynomial models. In many real problems with sparse
data, polynomial models are insufficient. In addition, regression
coefficients of various responses may not be normalized and
thus may require more sophisticated variance decomposition
methods (Reuter et al., 2011).

Sobol indices are defined as in Eq. (1):

Sp ¼
Var (E)
Var ðYÞ : (1)

Here Y is the system response and X is the input variable.
Var[.] and E[.] are the variance and expectation operators, re-
spectively. Similarly, Sobol indices for two-way and high-
order interactions can be written as in Eq. (2):

Sij ¼
VarðEðY jxijÞÞ

VarðYÞ � Si � Sj

Sn ¼
VarðEðY jxnÞÞ

VarðYÞ � Sn�1 � Sn�2 � . . .� S2 � S1: (2)

Here n refers to multi-index high-order notation ranging from
n ¼ 1, 2, 3, n ¼ 1, 2, 4, . . . , n ¼ 1, 2, d and so on to n ¼

1, 2, . . . , d, where d is the number of dimensions. Total effect
of an input Xp is defined as the sum of all partial sensitivities
involving the input Xp, or in other words, the sum of the main
and interaction indices for a particular input. For example,

total sensitivity Sobol index of input Xi can be written as

Xd

i¼1
Si þ

Xi, j¼1:d

Sij þ � � � þ S12���d ¼ 1,

Stotal
i ¼ 1� S�i: (3)

The Sobol indices are known to be good descriptors of the
sensitivity of the model to its input parameters, as they do not
suppose any kind of linearity or monotonicity in the model.
The above expressions for Sobol indices can be estimated di-
rectly with a model that is relatively inexpensive to evaluate.
However, in reality, simulation models or physical experi-
ments are rarely inexpensive. In such problems, metamodels
such as artificial neural networks, radial basis functions, and
Gaussian processes are of use as they can be evaluated mil-
lions of times to estimate Sobol indices given in Eq. (1).

Even though metamodels replace the black box simulation
models, computation of Sobol indices by directly sampling a
metamodel becomes computationally expensive quickly as
the number of dimensions increase. Variance of the system re-
sponse Var[Y ] and Var[E(YjXi)] are high-dimensional inte-
grals that are computationally prohibitive to estimate both
by Monte Carlo sampling or sparse grid-based quadrature.
Special methods discussed later are needed to tackle this com-
putational cost.

2.2. High-dimensional model representation

We can certainly estimate the Sobol indices using a metamodel
y(x). Sobol decomposition of y(x) is written uniquely as an
HDMR representation in Eq. (4) if the inputs x are uncorrelated:

y(x) ¼ z0 þ
Xd

i¼1
zi(xi)þ

Xi, j¼1:d

zij(xi, xj)þ � � � þ z12...d: (4)

Here, the effect functions zi(xi) are given as in Eq. (5) (Oakley
& O’Hagan, 2004):

z0 ¼ E½Y �,
zi ¼ E½Y jxi� � E½Y�,
zij ¼ E½Y jxi, xj� � zi(xi)� zj(xj)� E½Y �,

zijk ¼ E½Y jxi, xj, xk� � zi(xi)� zj(xj)� zk(xk)� zij(xi, xj)

� z jk(xj, xk)� zik(xi, xk)� E½Y�: (5)

Fig. 3. Variance decomposition.
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It is important to note that by construction E[zi]¼ 0, E[zij]¼ 0
and E[zijk] ¼ 0. Finally, Sobol indices are given by

Si ¼
Var zi½ �
Var½Y� and Sij ¼

Var zij

� �
Var½Y� :

2.3. Kennedy and O’Hagan framework

Kennedy and O’Hagan (2001) presented a framework to ac-
complish a variety of tasks such as building metamodels, per-
forming probabilistic calibration of simulation parameters with
respect to observed data, and building a metamodel for the dis-
crepancy between a calibrated simulation model and observed
data. Researchers at the Los Alamos National Lab first released
a Matlab implementation of this framework in the gpmsa soft-
ware package. At GE Global research Center, we have built the
GE Bayesian hybrid modeling framework as shown in Figure 4
with some core components from gpmsa and several signifi-
cant enhancements developed in-house at GE. For more de-
tails, please refer to Wang et al. (2011), Chennimalai Kumar
et al. (2012), Subramamiyan et al. (2012), and Chennimalai
Kumar et al. (2013). Borrowing notation from Oakley and Ha-
gan (2004), we will first describe the Kennedy and O’Hagan
theoretical framework and then delve into computation of So-
bol indices with GPs in this framework. In this figure, uj repre-
sents any calibration parameters a simulation may have. In the

Kennedy and O’Hagan framework, sensitivity analysis is done
both on input variables and calibration parameters.

Input Data: Let X : Training data with m rows and d input
dimensions and Y be the output data. Here ji represents the
ith vector of X.

Prior GP : Nð0,s2cðx, �xÞÞ
Posterior GPh(x) : Nðm*(x),s2c*ðx, �xÞÞ

m*(x) ¼ t(x)T A�1Y

c*(x, �x) ¼ c(x, �x)� t(x)T A�1t(�x): (6)

Here, t(x)T ¼ [c(x, j1), c(x, j2), . . . , c(x, jm)] and

A ¼

c(j1, j1) c(j1, j2) � � � c(j1, jm)
c(j2, j1) c(j2, j2) � � � c(j2, jm)

..

. ..
. . .

. ..
.

c(jm, j1) c(jm, j2) � � � c(jm, jm)

2
6664

3
7775, (7)

c(x, �x) ¼ 1
lz

Yp

i¼1

exp½�bijxi � �xij2� þ
1

lWS
: (8)

Here b, 1/lz, and 1/lWS are parameters that need to be esti-
mated. In the Kennedy and O’Hagan framework, they are es-
timated with a Markov chain Monte Carlo method.

Fig. 4. Bayesian hybrid modeling framework. GEBHM, Bayesian hybrid model implementation at GE that is the in-house implementation
of Kennedy and O’Hagan framework.
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2.3.1. Deriving effect functions analytically for Gaussian
process models in the Kennedy and O’Hagan framework

From Oakley and O’Hagan’s 2004 paper, the posterior
mean of any linear functional of a GP, such as an integral,
is also a GP. Using this principle, Oakley and O’Hagan derive
linear functionals for a GP with a polynomial mean function.
In the rest of this work, the posterior mean and variance of a
GP are given by E*[] and Var*[], respectively. Simplifying
those expressions for a zero mean GP and the covariance ker-
nel used in Eq. (8), we get

E½Y � ¼
ð

X
h(x)dG(x) ¼ TA�1Y : (9)

Here T is an integral computed over all d dimensions for each
of the m input data points. For the BHM GP, all inputs are as-
sumed to be uniformly distributed and scaled between [0, 1].
For the kth row of the input data T[jk ] is given as

T jk½ � ¼
Yd

i¼1

ð1

0
c(xi, jk)dxi

¼
Yd

i¼1

ð1

0

1
lz

exp½�bijxi � jkj2� þ
1

lWS
dxi: (10)

Applying the transformation (please note, here y represents
the transformed variable only, whereas Y in the paper repre-
sents the system response or output in question),

y ¼
ffiffiffiffiffi
bi

p
jxi � jki,

dy ¼
ffiffiffiffiffi
bi

p
dxi,

T jk½ � ¼
1
lz

Yd

i¼1

ðb

a
exp½�y2� dyffiffiffiffiffi

bi
p þ 1

lWS
,

a ¼
ffiffiffiffiffi
bi

p
jki,

b ¼
ffiffiffiffiffi
bi

p
j1� jkij, (11)

and b ¼ ffiffiffiffiffi
bi
p j1� jki;

T jk½ � ¼
1
lz

Yd

i¼1

ffiffiffiffiffi
p

bi

r
½Fð

ffiffiffiffiffiffiffi
2bi

p
ð1� ji

kÞÞ �Fð
ffiffiffiffiffiffiffi
2bi

p
ji

kÞ�: (12)

Finally, from Eqs. (11) and (12) we can compute E[h(x)].
F(x) is the norm cdf function. Here c3 is a m�p matrix where
c3[i, j] is the jth component of T[ji] given as

T jk½ � ¼
1
lz

Yd

i¼1

c3(ji
k ,bi)þ

1
lWS

: (13)

Next, we focus on the computation of E[Yjxp] given by

E½Y jxp� ¼
ð

X�p

h(x)dG�pjpðx�pjxpÞ: (14)

Here, X2p means integration over all dimensions except the pth
dimension, and G2pjp (x2p jxp) represents the product of input
probability distributions of all the inputs except the pth input.

From Oakley and O’Hagan (2004), the posterior mean of
E[Yjxp] is given as

E½Y jxp� ¼
ð

X�p

hðE*½E½Y jxp�� ¼ Tp(xp)A�1Y: (15)

This would yield the main effect function as zi ¼ [Ti(xi) 2 T ]
A21 Y. Similarly, zij ¼ [Tij(xij) 2 zi(xi) 2 zj(xj) 2 T ]A21Y. Fol-
lowing Eq. (12), Tp(xp) can be written as

Tp jk½ � ¼
1
lz

exp½�bpjxp � j
p
k j

2�
Yd

i¼1, i=p

c3(ji
k,bi)þ

1
lWS

: (16)

It is important to note here that in the computation of the
effect functions zi(xi) the 1/lWS term cancels out. In general,
1/lWS is usually close to zero, and in most problems it is ac-
ceptable to ignore it.

Oakley and O’Hagan (2004) also give expressions for pos-
terior variance of E[Yjxp], which when simplified for a zero
mean GP is given as

Var*½EðY jxpÞ� ¼ Up � Tp(xp)A�1TpðxpÞT , (17)

where Up is the second-order integral of the covariance kernel
c(x, �x) and is given as

Up ¼
1
lz

Yd

i¼1, i=p

c3(xi,bi)d(xi)þ
1

lWS
: (18)

2.4. Computation of Sobol indices

Revisiting Eqs. (1) and (2), we need to compute E*
[Var(E(Yjxp))], E*[Var(E(Yjxij))], and E*[Var(Y )]. Using
the identitity Var(Y ) ¼ E(Y2) 2 E(Y )2, decomposing the nu-
merator as [say, a ¼ E(Yjxp)], E*[Var(a)] ¼ E*[E(a2)] 2

E*[E(a)2] ¼ E*[E(E(Yjxp)2)] 2 E*[E(Y )2] as E(E(Yjxp)) ¼
E(Y ). From Oakley and O’Hagan paper (2004),

E*½EðEðYjxpÞ2Þ� ¼ Up � tr(A�1Pp)þ tr(eT Ppe): (19)

Here, e¼A21 Y Up ¼ 1=lz
Qd

i¼1, i=p c1(bi), and Pp is given by

Pp ¼
ð

Xp

ð
X�p

ð
X�p

t(x)tðxÞT dG�pjpðx�pjxpÞdG�pjpð�x�pjxpÞdGp(xp),

(20)

where Pp is an m�m matrix and is given as

Pp½ji, jj� ¼
1

l2
z

ð
Xp

ð
X�p

ð
X�p

Yd

k¼1

exp ½�bkjxk � ji
kj

2�

� exp ½�bkj�xk � j
j
kj

2�dG�pjpðx�pjxpÞ
� dG�pjpð�x�pjxpÞdGp(xp), (21)
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which can be simplified as below

Pp ji, jj

� �
¼ 1

l2
z

Yd

k¼1

c3 bk , ji
k

� �
c3 bk , jj

k

� �

�
ð

Xp

exp½�bpjxp � ji
pj

2�exp½�bkjxp � jj
pj

2�dGp(xp): (22)

The integral in the above equation can be solved by first con-
sidering the transformation

y ¼ xp �
xip þ x jp

2
¼ xp � mp

and

dp ¼
xip � x jp

2
:

This transformation would simplify the above integral as

C2 ¼
ð1�mp

�mp

exp½�bpjy� dpj2�exp½�b pjyþ d pj2�dy, (23)

which would yield:

C2 ¼
ffiffiffiffiffiffiffiffi
2bp

q
exp½�bp(2d2

p)�

� 2F
1� mpffiffiffiffiffi

bp

p
 !

þ 2F
mpffiffiffiffiffi
bp

p
 !

e� 2

" #
: (24)

Now to compute the numerator of the Sobol index we need to
compute E*[E(Y )2], which can be decomposed as

E*½E(YÞ2� ¼ Var* EðYÞ½ � þ ðE*ðEðYÞÞÞ2: (25)

From the computation of posterior variance of effect function
we have

Var* EðYÞ½ � ¼ 1
lz

Yd

i¼1

c1(bi)� TA�1TT : (26)

and

�
E*(EðYÞÞ

�2 ¼ ðTA�1yÞT (TA�1y) ¼ yT A�1T TT TA�1y: (27)

Thus, finally, we have

e2 ¼ ðE*(EðYÞÞÞ2 ¼ 1
lz

Yd

i¼1

c1(bi)

� 1

l2
z

tr½TTðA�1 � A�1yyT A�1TÞ�: (28)

This gives us the final expression for the numerator of the
Sobol index as

E*½VarðEðY jxpÞÞ� ¼
1
lz

Yd

i¼1, i=p

c1(bi)� tr Var f � Q½ � � e2: (29)

Now, to complete calculation of the Sobol index, we need to
compute the posterior expectation of the total variance of Y
given as

E*½VarðYÞ� ¼ E*½E(Y2)� � E*½EðYÞ2�
¼ E*½E(Y2)� � e2: (30)

The first term in the above Eq. is given in (24):

E*½E(Y2)� ¼ yT A�1PpA�1yþ ½1� tr(A�1Pp)�

¼ 1
lz
� 1

l2
z

tr½Var f � Q�: (31)

The expressions derived above take into account the predic-
tion uncertainty of the GP as well. It is relatively easier to de-
rive the integrals based on the mean function of the effect
function GP only, but they might give incorrect results. Oak-
ley and O’Hagan (2004) suggest, var[E*fzi(xi)g] is not the
same as E*[varfzi(xi)g]. Here, the term var[E*fzi(xi)g] is ba-
sically variance of only the mean function of the effect func-
tion GP, and the latter term E*[varfzi(xi)g] is the posterior ex-
pectation of the variance of the effect function and includes
the GP prediction uncertainty. In other words, the second
term on the right-hand side is usually not zero, which makes
it essential to include GP prediction uncertainty when calcu-
lating Sobol indices:

E* Var zi(xi)f g½ � ¼ Var E* zi(xi)f g½ � þ E Var* zi(xi)f g½ �: (32)

To summarize, Sobol indices from a Gaussian process
model in the Kennedy and O’Hagan framework are given
as below. Up, Pp, and e2 are defined in Eqs. above.

Sp ¼
E*½VarðEðYjxpÞÞ�

E* VarðYÞ½ �

¼ Up � tr(A�1Pp)þ tr(eT Ppe)� e2
yT A�1PpA�1yþ ½1� tr(A�1Pp)� � e2

: (33)

2.5. Derivation of higher order interaction effects

For two factor interactions, zi j ¼ E(Yjxi, xj) 2 zi(xi) 2 zj(xj)
2 E(Y ), and the variance can be broken down as

Var(zij) ¼ VarðEðY jxi, xjÞÞ þ Var(zi)þ Var(zj)

þ 2CovðEðYjxi, xjÞ, ziÞ þ 2CovðEðYjxi, xjÞ, zjÞ
þ 2Cov(zi, zj): (34)

In the above equation covariance terms, Cov(E(Y ), zi) ¼ 0,
and assuming inputs are uncorrelated, we can safely assume
Cov(zi, zj) ¼ 0 and 2Cov(E(Yjxi, xj), zi) terms can be
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broken down as

2CovðEðY jxi, xjÞ, ziÞ ¼ 2Cov(zij � zi � zj � EðYÞ, zi)

¼ 2Cov(zij, zi)� 2Cov(zi, zi)� 2Cov(zj, zi)

� 2Cov(EðYÞ, zi): (35)

Again Cov(E(Y ), zi)¼Cov(E(Y ), zj)¼ 0, and assuming inputs
are uncorrelated Cov(zj, zi)¼Cov(zij, zi)¼Cov(zij, zj)¼ 0. This
leaves us with 2Cov(E(Yjxi, xj), zi)¼ 2Cov(zi, zi)¼ 2Var(zi)
and 2Cov(E(Yjxi, xj), zj)¼ 2Var(zj) which gives us

Var(zij) ¼ VarðEðY jxi, xjÞÞ � Var(zi)� Var(zj): (36)

Thus, finally Sobol indices for two-way interactions are given by

Sij ¼
E*½VarðEðY jxijÞÞ�

E* VarðYÞ½ � � Si � Sj: (37)

Similarly a higher order interaction Sobol index can be de-
fined as

Sijk ¼
E*½VarðEðY jxijkÞÞ�

E* VarðYÞ½ � � Sij � Sjk � Sik � Si � Sj � Sk: (38)

To complete the calculation of Sijk , we need to compute only
E*[Var(E(Yjxijk))] as E*[Var(Y )] has already been computed.
We can extend the expression for E*[Var(E(Yjxp)] in [Eq.
(27)] as

E*½VarðEðY jxijkÞÞ� ¼ Uijk � tr(A�1Pijk)þ tr(eT Pijke)� e2: (39)

In the above equation, A21, e, and e2 do not change for the
higher order interactions. The terms Uijk

p and Pijk
p can be rede-

fined as

Uijk ¼
1
lz

Yd

i¼1, i=i, j, k

c3(xi,bi)d(xi)þ
1

lWS
: (40)

Pijk ji, jj

� �
¼ 1

l2
z

Yd

k¼1

c3
�
bk , ji

k

�
c3
�
bk , jj

k

�

�
ð

Xi

exp½�bijxi � ji
ij

2�exp½�bijxi � j
j
ij

2�dGi

�
ð

Xj

exp½�bjjxj � ji
jj

2�exp½�bjjxj � j
j
jj

2�dGj

�
ð

Xk

exp½�bkjxk � ji
kj

2�exp½�bkjxk � j
j
kj

2�dGk:

(41)

This term can easily be computed as

Pijk ji, jj

� �
¼ 1

l2
z

Yd

k¼1

c3(bk , ji
k)c3(bk, jj

k)C2(i)C2(j)C2(k), (42)

where C2 is given in Eq. (24).

2.6. Problem with input correlation

The work discussed in the previous sections assumes that the
inputs are uncorrelated. This assumption renders unique
HDMR of the underlying function with orthogonal effect
functions. Orthogonality of effect functions allows computa-
tion of each Sobol index independently without worrying
about the covariance of the different effect functions. In the
presence of input correlation, sampling has to be done from
joint distributions, which increases computational burden.
Use of copulas and sampling strategies such as the replicated
Latin hypercube sampling can be used to alleviate computa-
tional burden to an extent; however, the effect of input corre-
lation on variance decomposition has a more critical effect on
sensitivity analysis and is discussed here. Saltelli and Taran-
tola (2002) give the following specific example. If Y ¼ x1 þ
x2 þ a23 x2 x3 and x2 and x3 are correlated, Var(E[Yjx1]) will
be a function of the correlation between x2 and x3. In other
words, if we compute Sobol indices assuming x2 and x3 are
uncorrelated, it would lead to an erroneous calculation if
a23 is nonzero. Saltelli and Tarantola and other authors
have described this effect to be carried over due to correlation
and stress the need to be careful when making conclusions
with Sobol indices when inputs are correlated.

Xu and Gertner (2008) developed an approach for linear
models by splitting the contribution of an individual input
to the uncertainty of the model output into two components:
the correlated contribution and the uncorrelated one. Li et al.
(2010) extended the work of Xu and Gertner (2008) with a
relaxed HDMR concept to compute variance contribution
due to correlation and problem structure for nonlinear mod-
els. Similarly, Chastaing et al. (2014) used the hierarchical
orthogonality of component functions and the traditional
Gram–Schmidt method to develop a hybrid method for var-
iance decomposition. Finally, Caniou and Sudret (2010)
used polynomial chaos expansions with copula methods to
model the dependence structure. Next, we discuss the Li–
Rabitz framework in a little more detail.

Li and Rabitz relax this orthogonality condition by enforc-
ing orthogonality with only nested lower order component
functions. This is also referred to as hierarchical orthogonal-
ity in the literature. In other words, zij(xi, xj) is only required to
be orthogonal to zi(xi) and zj(xj) and not to any other compo-
nent functions. Using the hierarchical orthogonality condi-
tion, Li et al. (2010) and Li and Rabitz (2012) decompose
the output variance as in

Var½Y � ¼
X2d�1

i¼1
Var z pi

� �
þ Cov z pi ,

Xk¼2d�1

k¼1, k=i
z pk

 !
(43)

Here pi is the multi-index representing the different interac-
tion terms p1, p12, p123, . . . , p12 ��� d. Using this decomposition,
Li et al. (2010) define three sensitivity indices, total (Spj ),
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structural (Sa
pj

), and correlative (Sb
pj

) as

Sa
pj
¼

Var z pj

� �
Var½Y � , (44)

Sb
pj
¼

Cov zpi ,
Xk¼2d�1

k¼1, k=i zpk

� �
Var½Y � , (45)

S pj ¼ Sa
pj
þ Sb

pj
: (46)

It is important to note here that the total index (Spj ) is not
representative of the total effect, but is only a sum of the
structural and correlative contribution. For problems with
correlated input variables, the component functions are non-
unique, and multiple solutions are possible as long as they sat-
isfy Eq. (4). In other words, as explained by Li et al. (2010)
and Li and Rabitz (2012), the component functions cannot
be estimated independently of each other in the presence of
input correlation. They suggest that Sobol indices need to
be estimated simultaneously with a back-fitting method (Has-
tie et al., 2001) for additive models.

3. ANALYTICAL EXAMPLES

In this section, we will present comparison of sensitivities
given by Gaussian process models in the Kennedy and O’Ha-
gan framework on toy examples where Sobol indices can be
computed analytically.

3.1. Uncorrelated example: Polynomial model

Consider the following polynomial model, for 0 � x1, x2 � 1:

y(x1, x2) ¼ 1
22

(3x2
1 þ 1)(3x2

2 þ 1): (47)

Here, E[y] ¼ 1 and the effect functions are given as

z1(x1) ¼ 1
2

(3x2
1 þ 1)� 1, (48)

z2(x2) ¼ 1
2

(3x2
2 þ 1)� 1, (49)

z12(x1; x2) ¼ 1
22

(3x2
1 þ 1)(3x2

2 þ 1)� z1(x1)� z2(x2)� 1: (50)

Sobol indices can be computed analytically for this problem
and are given as below. j pj¼ 1 if p¼ 1 or p¼ 2 and j pj¼ 2 if
p ¼ 1, 2.

Sp ¼
5�jpj

6=5ð Þd�1
: (51)

Figure 5 shows comparison of the main and interaction effect
functions generated by BHM GP, and Figure 6 shows a com-
parison of the Sobol indices. The model was built with 125
Latin hypercube simulation DOE.

Fig. 5. Comparison of main and interaction effect functions generated by Bayesian hybrid model Gaussian process.
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3.2. Uncorrelated example: Ishigami function

Generate Sobol indices for the following Ishigami function
with 2p � x1, x2, x3 � pi and a ¼ 0.7, b ¼ 0.1.

y ¼ sin(x1)þ a sin2(x2)þ bx4
3sin(x1): (52)

As described previously, Sobol indices can be computed as
ratios of the following analytically computed variances (Su-
dret, 2008):

D ¼ a2

8
þ bp4

5
þ b2p8

18
þ 1

2
,

D1 ¼
bp4

5
þ b2p8

50
þ 1

2
,

D2 ¼
a2

8
,

D3 ¼ 0,

D12 ¼ D23 ¼ 0,

D13 ¼
8b2p8

225
,

D123 ¼ 0: (53)

For sensitivity analysis on this problem, a BHM model was
built with 300 points. Figure 7 shows accurate computation
of main, second, and higher order interaction Sobol indices
for the Ishigami problem.

3.3. Uncorrelated example: Sobol function

Generate Sobol indices for the following Sobol function (Su-
dret, 2008) with 0 � x1, x2, . . . , xq � 1 and q ¼ 0.7:

y ¼
Yq

i¼1

k4xi � 2k þ ai

1þ ai
: (54)

Sobol indices can be computed as ratios of the following ana-
lytically computed variances (Sudret, 2008):

D ¼
Yq

i¼1

ðDi þ 1Þ � 1,

Di ¼
1

3ð1þ aiÞ2
,

Si1i2 ...is ¼
1
D

Ys

i¼1

Di: (55)

For sensitivity analysis on this problem, a BHM model was
built with 300 points. Only main and two-way interactions
are presented. Figure 8 shows accurate computation of
main, second, and higher order interaction Sobol indices.

3.4. Correlated example: Linear function with equal
structural contributions and correlated inputs

Consider the following example:

Y ¼ X1 þ X2 þ X3 þ X4 þ X5: (56)

Here the inputs are drawn from a multivariate normal distribu-
tion of with mean of 0.5 in each dimension and a covariance

Fig. 6. Comparison of analytical main, interaction, and total sensitivity indices with Bayesian hybrid modeling for the polynomial
problem.
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matrix
P

of

X
¼

1:0 0:6 0:2 0:0 0:0
0:6 1:0 0:2 0:0 0:0
0:2 0:2 1:0 0:0 0:0
0:0 0:0 0:0 1:0 0:2
0:0 0:0 0:0 0:2 1:0

2
66664

3
77775:

(57)

To build BHM models, 500 samples were randomly gener-
ated from the above multivariate random distribution. If

inputs were uncorrelated, all main effect Sobol indices would
be equal to 0.2 and BHM would reproduce this result as we
have shown consistently in the previous section. However,
in this section the correlation structure hidden in the 500 train-
ing points BHM results in different Sobol indices shown in
Table 1. Table 1 presents the structural, correlative, and total
indices presented in Li et al. (2010) and their comparison with
BHM assuming uncorrelated inputs. Interpretation with sepa-
rated structural and correlative contributions is less ambigu-
ous because as expected structural contributions from all

Fig. 8. Comparison of analytical main, and interaction sensitivity indices with Bayesian hybrid modeling for the Sobol problem. The first
eight indices are main effects, and the rest are two-way interaction effects.

Fig. 7. Comparison of analytical main, interaction, and total sensitivity indices with Bayesian hybrid modeling for the Ishigami problem.
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inputs are equal. In addition, the correlative contribution
shows how strongly the inputs are correlated. This can be es-
pecially helpful if sensitivity analysis is needed to be done in
early design stages and is used to guide future tests. The cor-
relative contribution also suggests which inputs need to be
varied in groups. It is clear that when planning experiments,
the inputs X1 and X2 should be sampled together as they have
equally high correlative contributions that should not be ig-
nored. In contrast, correlative contributions of X4 and X5

are equal and small, which means their correlation can be ig-
nored. It is important to note here that to compute structural
and correlative contributions in the Li–Rabitz framework, a
priori knowledge of the covariance structure is not needed.

Interpreting Sobol indices with BHM is quite ambiguous
as it clearly shows that X1 and X4 are much more sensitive
and there is no physical evidence that X4 would be more sen-
sitive even if we know the correlation structure of the inputs
beforehand. In addition, there are no signs that can signify
that our initial assumption of independent inputs is invalid.
The joint Sobol indices by BHM are zero as expected and
are not presented here. Even though the main effect indices
shown by BHM sum up to unity, it does not mean that the
sensitivity indices are accurate.

3.5. Correlated example: Linear function with distinct
structural contributions and correlated inputs

Consider the following example:

Y ¼ 5X1 þ 4X2 þ 3X3 þ 2X4 þ X5: (58)

Here the inputs are drawn from a multivariate normal distribu-
tion of with mean of 0.5 in each dimension and a covariance
matrix

P
of

X
¼

1:0 0:6 0:2 0:0 0:0
0:6 1:0 0:2 0:0 0:0
0:2 0:2 1:0 0:0 0:0
0:0 0:0 0:0 1:0 0:2
0:0 0:0 0:0 0:2 1:0

2
66664

3
77775:

(59)

To build BHM models, 500 samples were randomly gener-
ated from the above multivariate random distribution. Table 2
presents the structural, correlative, and total indices presented
in Li et al. Rabitz (2010) and their comparison with BHM as-
suming uncorrelated inputs. Interpretation with separated
structural and correlative contributions is again less ambigu-
ous because as expected structural contributions are decreas-
ing SX1 . SX2 . SX3 . SX4 . SX5 . Sobol indices predicted
by BHM are inaccurate as it clearly shows that X2 is more sen-
sitive than X1 when it should clearly be the other way around.
The joint Sobol indices by BHM are zero as expected and are
not presented here. Although not precise, the sensitivities
computed by BHM accurately identify the most sensitive pa-
rameters to be X1 and X2 and X4, X5 to be the least sensitive
parameters with X3 falling in the middle of the sensitivities
on a relative scale. In practical applications, this kind of rela-
tive ranking is valued highly because critical dimensions can
be narrowed very quickly.

3.6. Correlated example: Portfolio model

Munoz Zuniga et al. (2013) presented the following example
for sensitivity analysis with dependent inputs in four
dimensions:

Y ¼ X1X3 þ X2X4: (60)

Here the inputs are drawn from a multivariate normal distri-
bution of N(m,

P
) with m ¼ [00m3m4]

X
¼

s2
1 s12 0 0

s12 s2
2 0 0

0 0 s2
3 s34

0 0 s34 s2
4

2
664

3
775: (61)

The following analytical expressions for Sobol indices were
provided by the authors:

Table 1. Differences between the structural, correlative, and
total indices according to Li et al. (2012) and their comparison
with BHM, assuming uncorrelated inputs

Variable Structural Correlative Total BHM

X1 0.13 0.11 0.24 0.24
X2 0.13 0.11 0.25 0.18
X3 0.13 0.06 0.19 0.18
X4 0.13 0.03 0.16 0.24
X5 0.13 0.03 0.15 0.15

Sum 0.65 0.34 0.99 1.00

Note: BHM, Bayesian hybrid modeling.

Table 2. Differences between the structural, correlative and
total indices according to Li et al. (2012) and their comparison
with BHM, assuming uncorrelated inputs

Variable Structural Correlative Total BHM

X1 0.28 0.16 0.44 0.41
X2 0.17 0.16 0.33 0.49
X3 0.10 0.06 0.16 0.10
X4 0.04 0.03 0.07 0.00
X5 0.02 0.00 0.02 0.00

Sum 0.61 0.41 1.02 1.00

Note: BHM, Bayesian hybrid modeling.
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S1 ¼
s2

1 m3 þ m4r12
s2

s1

	 

D

,

ST
1 ¼

s2
1

�
1� r2

12

��
s2

3 þ m2
3

�
D

,

S2 ¼
s2

2 m4 þ m3r12
s1

s2

	 

D

,

ST
2 ¼

s2
2

�
1� r2

12

��
s2

4 þ m2
4

�
D

,

S3 ¼ 0,

ST
3 ¼

s2
1s

2
3ð1� r2

34Þ
D

,

S4 ¼ 0,

ST
4 ¼

s2
2s

2
4ð1� r2

34Þ
D

,

rij ¼
sij

sisj
,

D ¼ s2
1

�
s2

3 þ m2
3

�
þ s2

2

�
s2

4 þ m2
4

�
þ 2s12

�
s34 þ m3m4

�
: (62)

The authors used the following values, which we have also
used:

m3 ¼ 250,

m4 ¼ 400,

s2
1 ¼ 16,

s12 ¼ 2:4,

s2
2 ¼ 4,

s2
3 ¼ 4� 104,

s2
4 ¼ 9� 104,

s3s4 ¼ �1:8e4:

To build BHM models, 500 samples were randomly gener-
ated from the above multivariate random distribution. Table 3
presents the analytical sensitivity indices presented by Munoz
Zuniga et al. (2013) and their comparison with BHM assum-
ing uncorrelated inputs. Table 3 clearly shows that, assuming
the inputs to be independent can give erroneous sensitivity in-
dices. Again, although the absolute values of the sensitivity
are inaccurate, the relative ordering of variables (as seen by

the % contributions) is preserved. The relative ordering of
variables can be very useful in engineering design problems.

3.7. Convergence of Sobol indices

One of the real advantages of computing probabilistic sensi-
tivities with the Kennedy and O’Hagan framework is that it
can estimate Sobol indices accurately with only a small num-
ber of data points. This is especially useful in high-dimen-
sional complex problems where each pointwise evaluation
of the underlying function is costly. In the literature, the only
other method that can estimate Sobol indices analytically is
the polynomial chaos expansion method. However, these
methods require a large number of data points to achieve accep-
table accuracy in the Sobol indices, which can be unrealistic for
many problems. We use the Ishigami function to demonstrate
convergence of main, interaction, and total Sobol indices as the
number of training points increase. Figure 9 shows conver-
gence of the absolute error in the main interaction and total sen-
sitivity indices predicted by BHM as the number of data points
increase. The indices converge at 300 points. It is also impor-
tant to note here that even regression-based polynomial chaos
expansion sensitivity indices for the Ishigami problem pre-
sented by Sudret (2008) takes more number of points to esti-
mate the indices accurately with a ninth-degree polynomial.

3.8. Nonlinear thermal model

In this section, we present sensitivity analysis on a system-
level thermal model of an aircraft engine component. This
problem consisted of 100 calibration parameters, and twenty
outputs. The calibration parameters included heat transfer
coefficients, temperatures, flow rates, and so on. The outputs
were the temperatures at several locations in the component.
Only 148 simulation data were available from a nonlinear
thermal finite element model. Details of the BHM model
for this application can be found in Chennimalai Kumar
et al. (2012). Variance-based sensitivity analysis is really
helpful in such a high-dimensional problem as we need to
know which calibration parameters can be fixed without los-
ing output variability. Below we present sensitivity analysis
for the first output only assuming that the calibration param-
eters are independent. Figures 10 and 11 show the first 25
main and total effects in descending order corresponding to
the first output. Looking at these figures, it is clear that�35
is the most sensitive calibration parameter. The top five inputs
according to the main and total effect Sobol indices differ in
ranking, which means there is significant interaction between
the calibration parameters. Ranking of the total Sobol indices
can be used to discard the lower ranked inputs as they account
for both the main and interaction effects. These main and total
indices were computed within minutes by the Kennedy and
O’Hagan framework even for this 100-dimensional problem.

In this problem there are 4950 two-way interaction effects,
and it would be computationally prohibitive to estimate all the
interactions. We selected the following inputs with high total

Table 3. Differences between the analytical sensitivity indices
according to Munoz Zuniga et al. (2013) and their comparison
with BHM, assuming uncorrelated inputs

Analytical BHM

Variable Abs % Abs %

X1 0.51 56 0.16 59
X2 0.40 44 0.10 37
X3 0.00 0 0.01 4
X4 0.00 0 0.00 0

Note: BHM, Bayesian hybrid modeling.
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Fig. 9. Convergence of main interaction and total sensitivity indices predicted by Bayesian hybrid modeling as the number of data points
increases.

Fig. 10. First 25 main effect Sobol indices for the first output in a 100-dimension nonlinear thermal calibration problem.
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effect (�35,�76,�5,�78,�39,�34,�77,�1,�20,�13) and
computed two-way interactions only among those variables.
Figure 12 shows the top 25 two-way interaction indices,
and Fig. 13 shows the percentage contribution of main and in-
teraction effects to the total output variance of output 1.

Clearly, the interaction between variables�76 and�78 dom-
inates the two-way interactions. In the pie chart, the blue color
is the main effect contribution, the green color represents con-
tribution due to 45 two-way interaction effects among the top
10 most sensitive inputs, and finally, the orange color repre-

Fig. 11. First 25 total effect Sobol indices for the first output in a 100-dimension nonlinear thermal calibration problem.

Fig. 12. First 25 two-way interaction effect Sobol indices for the first output in a 100-dimension nonlinear thermal calibration problem.
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sents the contribution due to the rest of the terms that include
the other 4905 two-way interaction terms and other higher or-
der effects.

Although separating the sensitivities into structural and
correlation elements yields accurate sensitivity measures, it
is seldom practical in real-world applications. This is mainly
because the correlations of the input variables are generally
unknown and the number of dimensions is large. Sobol in-
dices computed through GEBHM and other metamodel
approximations provide a viable solution for computing sen-
sitivities albeit with inaccuracies. In many cases, if the corre-
lated inputs do not participate in a strong interaction effect
function, the ranking from the Sobol indices are accurate.
Only when the correlated inputs also participate in a strong
interaction is the relative ranking is put in question. Thus,
we contend that for a wide range of practical problems, the
proposed technique provides accurate engineering estimates
of sensitivities.

4. CONCLUSIONS

In this work we present variance-based global sensitivity
analysis methods that are an important part of design and ex-
ploring engineering science of complex high-dimensional
systems. We present the Kennedy and O’Hagan framework
and computation of probabilistic sensitivities with Gaussian
processes. Following results in Figures 5–13, we show that
this method is extremely efficient and very accurate when in-
put variables are uncorrelated. However, due to the traditional
HDMR formulation, the sensitivity indices can be inaccurate

when input variables are correlated. We present a literature
survey of methods that address the issue of correlated vari-
ables and discuss the Li and Rabitz framework in detail.
We explore these concepts on a number of simulated prob-
lems. Finally, we present application of variance-based sensi-
tivity on a 100-dimensional nonlinear thermal model. It is
shown that for many engineering applications with and with-
out correlated inputs, the variance-based global sensitivity
method augmented with metamodels yields efficient and ac-
curate results for high-dimensional nonlinear responses.
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