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Ruelle predicted that the maximal amplification of perturbations in homogeneous
isotropic turbulence is exponential exp(σ

√
Re t) (where σ

√
Re is the maximal Lyapunov

exponent). In our earlier works, we predicted that the maximal amplification of
perturbations in fully developed turbulence is faster than exponential and is given by
exp(σ

√
Re

√
t + σ1t) where σ

√
Re

√
t is much larger than σ

√
Re t for small t. That is, we

predicted superfast initial amplification of perturbations. Built upon our earlier numerical
verification of our prediction, here, we conduct a large numerical verification with
resolution up to 20483 and Reynolds number up to 6210. Our direct numerical simulation
here confirms our analytical prediction. Our numerical simulation also demonstrates
that such superfast amplification of perturbations leads to superfast nonlinear saturation.
We conclude that such superfast amplification and superfast nonlinear saturation of
ever existing perturbations suggest a mechanism for the generation, development and
persistence of fully developed turbulence.

Key words: homogeneous turbulence, transition to turbulence

1. Introduction

Exponential growth of perturbations has been the classical belief of what is happening
in turbulence. In the linear hydrodynamic instability theory, exponential growth of
perturbations is the main idea for the explanation of transition from laminar to turbulent
flow. Recent rigorous mathematical results show that the linear approximation in inviscid
hydrodynamic instability theory fails (Li 2013, 2018). Thus linear inviscid hydrodynamic
instability cannot provide a good approximation for the amplification of perturbations.
This suggests that amplification of perturbations in turbulence may be a more complicated
matter than previously thought. Indeed, based on rigorous mathematical analysis
(Li 2014, 2017; Inci 2015; Inci & Li 2019), we predicted that the growth of perturbations

† Email address for correspondence: liyan@missouri.edu
‡ Present address: Marian Smoluchowski Institute of Theoretical Physics, Jagiellonian University,

Lojasiewicza 11, 30-348 Krakow, Poland.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

71
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-9586-0577
mailto:liyan@missouri.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2020.715&domain=pdf
https://doi.org/10.1017/jfm.2020.715


904 A27-2 Y. C. Li, R. D. J. G. Ho, A. Berera and Z. C. Feng

in fully developed turbulence is faster than exponential, and the aim of the current paper
is to numerically verify our prediction. With the development of chaos theory, chaos
was thought to be what is happening in turbulence (Ruelle & Takens 1971). Chaos
theory is based on exponential growth of perturbations. Chaos is often in the form of
a strange attractor which is characterized by exponential amplifications of perturbations
within the attractor, with the coefficient of the exponent being the so-called Lyapunov
exponent. On the other hand, fully developed turbulence behaves very differently from
low-dimensional chaos, the onset of fully developed turbulence is more abrupt, and fully
developed turbulence is more violent than low-dimensional chaos. When viewed in phase
spaces, the projection of fully developed turbulence onto low-dimensional subspace does
not seem to have the recurrence property of chaos.

Ever since Ruelle and Takens introduced the idea of chaos for understanding the
mechanism of turbulence (Ruelle & Takens 1971), there has been constant effort in
validating the idea (Bohr et al. 2005). At moderate Reynolds number, some features of
chaos are indeed embedded in transient turbulence (Kawahara & Kida 2001; Viswanath
2007; Gibson, Halcrow & Cvitanović 2008; van Veen & Kawahara 2011; Kawahara,
Uhlmann & van Veen 2012; Kreilos & Eckhardt 2012; Lucas & Kerswell 2015). A key
measure of chaos is the Lyapunov exponent. Ruelle predicted that the maximal Lyapunov
exponent in homogeneous isotropic turbulence is proportional to the square root of the
Reynolds number σ

√
Re (Ruelle 1979; Crisanti et al. 1993; Aurell et al. 1996, 1997;

Boffetta et al. 2002; Boffetta & Musacchio 2017; Berera & Ho 2018). Extensive numerical
studies on Ruelle’s prediction have been conducted over the years (Crisanti et al. 1993;
Aurell et al. 1996, 1997; Boffetta et al. 2002; Boffetta & Musacchio 2017; Berera & Ho
2018). Ruelle’s prediction is obtained via dimensional analysis under the assumption that
the maximal Lyapunov exponent is the inverse of the Kolmogorov time scale which makes
numerical resolution a challenging problem. We predicted that the maximal amplification
of perturbations in fully developed turbulence is faster than exponential (Li 2014, 2018),
and is given by

exp(σ
√

Re
√

t + σ1t), (1.1)

where σ and σ1 = √
(e/2)σ are two positive constants that are determined by the temporal

maximum of the Sobolev norm of the base solution where the perturbations are added
to, and the base solution approaches the corresponding solution of Euler equations as
Re → ∞ on any finite time interval of existence. As Re → ∞, σ and σ1 approach finite
positive values. This maximal amplification estimate is rigorously derived as an upper
bound on the solutions to the linear Navier–Stokes equations without any assumption
(Li 2014) (see appendix A). The linear Navier–Stokes equations are the governing
equations of the linear evolution of the perturbations. We use functional analysis tools
to achieve an upper bound on the solutions to the linear Navier–Stokes equations.
The σ

√
Re

√
t-term in the estimate is a result of the interaction between viscosity and

nonlinearity. It is obtained from a Gronwall inequality estimate on the variation of
parameters form of the linear Navier–Stokes equations. Unlike in finite dimensions, the
maximal growth of perturbations here is the supremum (not maximum) of all growths
of perturbations. In finite dimensions, the maximum can be achieved by a specific
perturbation. In infinite dimensions, the supremum cannot be achieved by any specific
perturbation. But the supremum can be approached by different perturbations, for more
details see (Feng & Li 2020) where a sequence of perturbations with greater and greater
growth can be constructed from two perturbations. On the other hand, as shown below
and in Feng & Li (2020), the

√
t-nature in the exponent of the estimate is observed for

generic perturbations in fully (and non-fully) developed turbulence for various values of
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the constant σ , and the
√

Re-nature in the exponent of the estimate is also observed for
generic perturbations in fully developed turbulence for various values of the constant σ .
The σ1t-term in the exponent of the estimate represents a Lyapunov exponential growth,
but unlike Ruelle’s assumption, the Lyapunov exponent σ1 approaches a finite positive
value rather than infinity like

√
Re as Re → ∞. When studying the unstable eigenvalues

(realizations of σ1) of steady states in two-dimensional Kolmogorov flow, we indeed
found analytically that the unstable eigenvalues approach finite positive values which
are the corresponding inviscid unstable eigenvalues (Li 2005). The σ

√
Re

√
t-term in the

exponent of the estimate is the newly discovered growth rate. Unlike Ruelle’s prediction
of σ

√
Re t, it is σ

√
Re

√
t. In general, the linear temporal evolution of a perturbation

as a solution to the linear Navier–Stokes equations is a function of time. There is no
reason that the temporal growth of perturbations has to be exponential in time. Here,
we predict that it is exponential in the square root of time. We envision that this square
root of time nature corresponds to the abrupt onset and violent nature of fully developed
turbulence in contrast to low-dimensional chaos. When the time t is small,

√
t is much

bigger than t. Thus we predicted that initial stage maximal amplification of perturbations
is superfast (much faster than exponential). Together with the large Reynolds number
in the fully developed turbulence regime, such superfast amplification of perturbations
will quickly reach nonlinear saturation during which time the second exponent term
σ1t is much smaller than the first term σ

√
Re

√
t. After the nonlinear saturation, the

linear Navier–Stokes equations are no longer a good approximation on the evolution of
perturbations, nonlinearity takes over, the size of the perturbations already reaches order
one in comparison with the base flow, and the growth estimate (1.1) does not apply
anymore, in fact, the perturbations will stay bounded afterwards as discussed in next
section on nonlinear amplification of perturbations.

We have conducted an extensive low resolution numerical verification on our prediction
(Feng & Li 2020). Our low resolution numerical simulations were not able to get into fully
developed turbulence regime. On the other hand, that numerical investigation showed that
our analytical prediction applies to a wide regime beyond fully developed turbulence.
Built upon our earlier numerical verification (Feng & Li 2020), here, we conduct a
large numerical verification with resolution up to 20483 and Reynolds number up to
6210. We carry out direct numerical simulations on the three-dimensional Navier–Stokes
equations in the homogeneous isotropic turbulence regime. It is in such a fully developed
homogeneous isotropic turbulence regime that our analytical prediction is most likely to
be accurate. Our numerical results here indeed confirm our analytical prediction. Our
numerical simulation also demonstrates that such superfast amplification of perturbations
leads to superfast nonlinear saturation. We conclude that such superfast amplification and
superfast nonlinear saturation of ever existing perturbations suggest a mechanism for the
generation, development and persistence of fully developed turbulence.

Unlike the Lagrangian approach which tracks the trajectories of individual fluid
particles, here we use the Eulerian approach which tracks the evolution of the entire fluid
field starting from an initial condition of the fluid field. We will add a perturbation to the
initial condition and track the evolution of the perturbation either nonlinearly or linearly.
By subtracting the two fluid fields, we are tracking the evolution of the perturbation
nonlinearly. By subtracting the Navier–Stokes equations along the two fluid fields, we get
the governing equations of the nonlinear evolution of the perturbation. By dropping the
nonlinear terms of the perturbation, we get the governing equations of the linear evolution
of the perturbation, i.e. the linear Navier–Stokes equations and by solving which we track
the evolution of the perturbation linearly.
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2. The results

We conduct direct numerical simulations on the three-dimensional Navier–Stokes
equations under periodic boundary condition of period (2π)3 with a de-aliased
pseudo-spectral code (Yoffe 2012)

∂tu + u · ∇u = −∇p + νΔu + f , ∇ · u = 0, (2.1a,b)

where u is the velocity field, p is the pressure, ν is the viscosity and f is the external
forcing. The external forcing will only force low wavenumbers (large scales), and the
Fourier transform f̃ of f is given by Machiels (1997)

f̃ (k, t) =

⎧⎪⎨⎪⎩
εf

2Ef
ũ(k, t), if 0 < |k| < kf ,

0, otherwise,
(2.2)

where ũ(k, t) is the Fourier transform of the velocity field u, Ef is the kinetic energy
restricted to the forcing band, Ef = 1

2

∑
0<|k|<kf

|ũ(k, t)|2, and one can view the external
forcing as an energy pumping through the low wavenumbers with the energy pumping
rate εf , from the following energy equation

d
dt

∑
k

|ũ|2 = −ν
∑

k

|kũ|2 + εf . (2.3)

Here, the first term on the right-hand side is the turbulence energy dissipation rate.
Through such energy pumping that balances the energy dissipation, one can drive the
turbulence into a statistically steady state of homogeneous isotropic turbulence. The
external forcing here has been well tested by other researchers (Kaneda & Ishihara
2006; Linkmann & Morozov 2015). For our numerical simulations here, we choose
kf = 2.5 and εf = 0.1. The Reynolds number is specifically defined by Re = VL/ν,
where V is the root-mean-square velocity, and L is the integral length scale L =
(3π/8E)

∑
k(|ũ(k)|2/|k|), where E is the kinetic energy. The large eddy turnover time is

given by T0 = L/V . In our simulations, the large eddy turnover time is approximately 2. All
our direct numerical simulations are well resolved to scales smaller than the Kolmogorov
scale. We also test resolution to scales much smaller than the Kolmogorov scale to make
sure our resolution is statistically sufficient.

After we run our direct numerical simulation to a statistically steady state of
homogeneous isotropic turbulence, we introduce a perturbation by first making a copy of
the velocity field at a time step and then not calling the external forcing at that time step for
one copy of the velocity field. Thus the perturbation will be in the band of wavenumbers
of the external forcing (2.2), 0 < |k| < kf . After that time step, both fields will call the
external forcing normally. We can then track the nonlinear or linear evolution of the
perturbation as described before. We denote the nonlinear evolution of the perturbation
by Δu(x, t), the linear evolution of the perturbation by δu(x, t) and their energy norms by
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Δ(t) = Δu(t) and δ(t) = δu(t)

Δ(t) = Δu(t) =
(∑

k

|Δ̃u(k, t)|2
)1/2

, (2.4)

δ(t) = δu(t) =
(∑

k

|δ̃u(k, t)|2
)1/2

. (2.5)

We notice that the nonlinear amplification Δu(t) is bounded in time. Under inviscid
dynamics, the kinetic energies of both the base solution and the perturbed solution (i.e.
base solution plus a perturbation) are conserved, and this leads to the kinetic energy of
the perturbation being bounded by the kinetic energy of the base solution and the initial
kinetic energy difference between the base solution and the perturbed solution. Since the
forcing in the Navier–Stokes equations is balanced by the viscous dissipation in order to
maintain a statistically steady state (homogeneous isotropic turbulence), the kinetic energy
of the perturbation is still bounded under viscous dynamics (see also the supplementary
material of Berera & Ho 2018). On the other hand, the above argument does not apply to
the linear evolution of the perturbation, which is governed by the linearized Navier–Stokes
equations along the base solution. The linear amplification δu(t) is unbounded in time.
Our prediction (1.1) is for the linear amplification δu(t). During the early stage (small
time) amplification, the linear amplification δu(t) is a good approximation of the nonlinear
amplification Δu(t), and our prediction (1.1) also applies to the nonlinear amplification
Δu(t). Then the linear amplification and the nonlinear amplification are going to diverge,
that is the transition to nonlinear saturation, and the linear amplification is not a good
approximation of the nonlinear amplification anymore. We want to emphasize that the
nonlinear amplification is what is happening in reality. We are interested in the initial stage
amplification until the nonlinear saturation. Of course, the nonlinear saturation depends
on the initial energy norm of the perturbation Δu(0), but it also depends on the Reynolds
number. In figure 1, we show the nonlinear saturation for an initial perturbation with the
energy norm Δu(0) = δu(0) = 0.01 and the Reynolds number Re = 230. Divergence of
the linear and nonlinear amplifications happens around t = 10 which is approximately
5 large eddy turnover time 5T0, when nonlinear saturation sets in. After the nonlinear
saturation, nonlinearity takes over, and the nonlinear evolution of the perturbation stays
bounded (its magnitude actually fluctuates around a constant value), while the linear
evolution of the perturbation continues amplifying. We also observed that increasing the
Reynolds number will drastically reduce the nonlinear saturation time, and increasing the
energy norm of the initial perturbation of course will also reduce the nonlinear saturation
time. In the exponent of the estimate (1.1), the σ

√
Re

√
t term dominates (is greater than)

the σ1t term when t ∈ [0, (σ/σ1)
2Re]. In figure 1, the length of this dominance interval

[0, (σ/σ1)
2Re] is about 170, while the nonlinear saturation sets in at approximately t = 10

(where the ratio of the σ1t term to the σ
√

Re
√

t term is approximately 1 to 4). When we
increase Re, the dominance interval [0, (σ/σ1)

2Re] increases, but the nonlinear saturation
time decreases. Thus before nonlinear saturation, the σ1t term is much smaller than the
σ
√

Re
√

t term. So when the Reynolds number is large, we have a superfast nonlinear
saturation. Such superfast nonlinear saturation is of course caused by the superfast
amplification of the perturbation due to the σ

√
Re

√
t term.

In figure 1, we fit the linear amplification with the fitting curve 0.9
√

t + 0.34t which is
of the type in the exponent of our estimate (1.1). The fitting curve fits well before t = 20.
Around t = 20, the fitting curve diverges from the linear amplification. Notice that the base
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FIGURE 1. The divergence of the linear amplification and the nonlinear amplification of a
perturbation with initial energy norm Δu(0) = δu(0) = 0.01 (2.4) and (2.5) and the Reynolds
number Re = 230. The vertical axis symbol r(t) represents either Δu(t)/Δu(0) or δu(t)/δu(0).
Divergence and nonlinear saturation happens around t = 10 which is approximately 5 large eddy
turnover times 5T0. The inset zooms in the time interval t ∈ [0, 6]. The dashed line is the fitting
curve 0.9

√
t + 0.34t of the type in the exponent of our estimate (1.1).

solution is turbulent, so the solution to the linearized equations can be very complicated
in t (in short time, it can be approximated by the difference of two turbulent solutions). In
principle, δu(t) can take any shape. Expecting

δu(t) ∼ δu(0) exp(c1
√

t + c2t) (2.6)

for all time, is unrealistic. Notice also that our estimate is on the maximal amplification of
perturbations at any time in fully developed turbulence (see appendix A). If an individual
perturbation amplification gets close to the maximal amplification at one time, then at
another time it may be far away from the maximal amplification. Once again, expecting an
individual perturbation amplification to follow (2.6) for all time is unrealistic.

From now on, we will mainly focus on the time before nonlinear saturation when
the linear amplification is a good approximation of the nonlinear amplification of
perturbations to verify our prediction (1.1), and all the rest of the numerical simulations
are presented with the nonlinear amplifications of perturbations unless specifically noted.
Since the initial perturbations are called at somewhat random time steps, the sizes of initial
perturbations in all our numerical simulations here are not exactly the same, but they are
all approximately 0.01.

In figure 2, we show the nonlinear amplifications of perturbations for the Reynolds
numbers Re = 130, 805, 1450, 2520, 6210 before their nonlinear saturations so that the
linear amplifications are good approximations of the nonlinear amplifications. Our goal
is twofold: first verify the

√
t-nature in the exponent of our prediction (1.1) for the

linear amplifications, and second, to show that, in reality, we can observe this
√

t-nature
for the nonlinear amplifications before the nonlinear saturations. When Re = 130, the
nonlinear saturation is around t = 20. As the Reynolds number increases, the nonlinear
saturation time decreases. When Re = 2520, the nonlinear saturation is around t = 1,
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Δ
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Δ
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Re = 805
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FIGURE 2. The nonlinear amplifications of perturbations for different Reynolds numbers Re =
130, 805, 1450, 2520, 6210 before their nonlinear saturations. The case for Re = 6210 is shown
in the upper left corner inset. Here, Δ(t) is the energy norm defined in (2.4). The horizontal
portions of the curves represent amplifications of ec

√
t in t as we predicted in (1.1).

and when Re = 6210, the nonlinear saturation is around t = 0.5. Except in t → 0+

limit, we clearly observed the amplifications of ec
√

t in t as we predicted in (1.1). We
use c to represent a generic constant in this paper. Since the 1/

√
t factor is already

incorporated into the vertical axis, the horizontal portion of each curve corresponds to
the amplification of ec

√
t. As the Reynolds number increases, we can see clearly the trend

of the curves going horizontal in the plotted time interval. Each curve goes through the
same process of superfast amplification and superfast nonlinear saturation as in figure 1.
When the Reynolds number is larger, the nonlinear saturation sets in much earlier. As
discussed earlier in the Introduction, no specific perturbation can achieve the maximal
amplification (1.1), nevertheless here for the perturbations that are somewhat randomly
called inside the homogeneous isotropic turbulence, we still observe the

√
t-nature in the

exponent of the estimate (1.1) even though the constant c does not reach the maximal
value of σ

√
Re in (1.1). The

√
t-nature in the exponent turns out to be generic with

respect to the perturbations and the base solutions that we numerically tested. We also
tested white noise perturbations, and we observe the same

√
t-nature. Figure 3 shows a

sample of 20 simulations with white noise initial perturbations and their average with an
average Reynolds number Re = 230 (see appendix B for a longer time simulation). Our
base solutions here are the random ensemble realizations in the homogeneous isotropic
turbulence. The

√
t-nature does not depend on which realization. In our earlier low

resolution numerical simulations (Feng & Li 2020), we tested extensively other types
of base solutions and perturbations, and we always observed the same

√
t-nature, even

for non-fully developed turbulence. In the t → 0+ limit, numerical resolution can never
be sufficient and generates false results, as shown by an explicit example in Li (2017)
and Feng & Li (2020). In Li (2017), we found a family of exact solutions, in the Fourier
series form, to the unforced two-dimensional Kolmogorov flow. Each of the solutions can
be viewed as a base solution. The perturbation that we were able to study is from one
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0.8

1.0

1.2

1.4

0 0.5 1.0 1.5 2.0

[l
n(

δ(
t)

/δ
(0

))
]t

−1
/2

t

FIGURE 3. A sample of 20 simulations with white noise initial perturbations (thin red curves)
with an average Reynolds number Re = 230. The ensemble average is the thick black curve.
These simulations are conducted on the linear evolutions of the perturbations. δ(t) is the energy
norm defined in (2.5). We observe the same behaviour as in figure 2.

solution to another solution, i.e. the perturbation is within the family of solutions. We can
calculate explicitly that the fastest amplifying Fourier mode of the perturbation is given by
k ∼ 1/

√
t. As t → 0+, k → ∞. Thus when t → 0+, numerical finite Fourier truncations

will always miss the fastest amplifying Fourier mode of the perturbation, and produce
much lower false growth. In Feng & Li (2020), we carefully verified this. No matter
how many Fourier modes were included in the numerical simulations, the numerically
calculated growth of the perturbation was always lower than the analytical lower bound of
the growth of the perturbation as t → 0+ – a false result! For turbulence, we surely do not
expect numerical simulations can do better than for the simple explicit example.

In figure 4, we show the dependence of the nonlinear amplifications of perturbations up
to the time t = 0.3T0 on the Reynolds number, where T0 is the large eddy turnover time
which is around 2. The data fit well with ec

√
Re as we predicted in (1.1). Our numerical

experiments show that this
√

Re-nature is generic with respect to the perturbations and
the base solutions in homogeneous isotropic turbulence. Thus both the

√
t and the

√
Re

features in the exponent of our prediction (1.1) are verified here in homogeneous isotropic
turbulence regime.

3. Conclusion

In conclusion, built upon our earlier low resolution numerical simulations of our
prediction (1.1) on the maximal amplification of perturbations in fully developed
turbulence (Feng & Li 2020), here, we conduct large direct numerical simulations with
sufficient resolutions on fully developed homogeneous isotropic turbulence, and we have
verified our prediction (1.1). In particular, our numerical simulations show that the
amplification of perturbations behaves as ec

√
t in t and ec

√
Re in Re as we predicted in

(1.1). These features are generically observed with respect to perturbations and base
solutions. Thus amplifications of perturbations in fully developed turbulence are much
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0.3
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0.7
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3.0

104103102

ln
(Δ

(0
.3

T 0)
/Δ

(0
))

Re

∼ Re0.38

∼ Re1/2

FIGURE 4. The Reynolds number dependence of the nonlinear amplifications of perturbations
up to the time t = 0.3T0, where T0 is the large eddy turnover time which is around 2. Here, Δ(t)
is the energy norm defined in (2.4). The dashed curve is a fit to ∼√

Re, and the red curve is a fit
to ∼Re0.38. Both the horizontal and vertical axes are in logarithmic scales.

faster than exponential in contrast to the exponential amplifications of perturbations in
chaos. This suggests that the onset of fully developed turbulence should be more abrupt
than low-dimensional chaos, and fully developed turbulence should appear more violent
than low-dimensional chaos. Such superfast amplifications of perturbations naturally
lead to superfast nonlinear saturation, and we have demonstrated that the nonlinear
saturation is indeed superfast. Our results suggest that fully developed turbulence is
generated, developed and maintained by such constant superfast amplifications and
superfast nonlinear saturation of ever existing perturbations. We believe that this theory
better explains what is observed in fully developed turbulence than the chaos theory.

We believe that our discovery here will better guide turbulence engineering, design and
predictions such as ensemble weather forecasting in meteorology.
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Appendix A

In this appendix, we give a brief description on the derivation of the maximal
amplification estimate (1.1) obtained in Li (2014). Starting from the Navier–Stokes
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equations

ut + 1
Re

Δu = −∇p − u · ∇u,

∇ · u = 0,

⎫⎬⎭ (A 1)

where u is the d-dimensional fluid velocity (d = 2, 3), p is the fluid pressure and Re is the
Reynolds number. Applying the Leray projection, one gets

ut + 1
Re

Δu = −P (u · ∇u) . (A 2)

The Leray projection is an orthogonal projection in L2(Td), given by

Pg = g − ∇Δ−1∇ · g. (A 3)

Applying the method of variation of parameters, one converts the Navier–Stokes equation
(A 2) into the integral equation

u(t) = exp((t/Re)Δ)u(0) −
∫ t

0
exp(((t − τ)/Re)Δ)P (u · ∇u) dτ. (A 4)

Taking the differential in u(0) (which is the initial infinitesimal perturbation), one gets the
differential form

du(t) = exp((t/Re)Δ) du(0) −
∫ t

0
exp(((t − τ)/Re)Δ)P (du · ∇u + u · ∇ du) dτ. (A 5)

First, we will derive the following inequality which will be used in estimating the above
differential form

‖ exp((t/Re)Δ)u‖n ≤
(

1√
2e

√
Re
t

+ 1

)
‖u‖n−1, (A 6)

where ‖ ‖n represents the Sobolev Hn norm. Notice that using the Fourier coefficients uk
of u, we have

‖ exp((t/Re)Δ)u‖2
n =

∑
k∈Z3

(1 + |k|2 + · · · + |k|2n) exp(−(2t/Re)|k|2)|uk|2

=
∑
k∈Z3

[exp(−(2t/Re)|k|2) + exp(−(2t/Re)|k|2)|k|2(1 + |k|2

+ · · · + |k|2(n−1))]|uk|2

≤
∑
k∈Z3

[1 + exp(−(2t/Re)|k|2)|k|2(1 + |k|2

+ · · · + |k|2(n−1))]|uk|2. (A 7)

Now we estimate exp(−(2t/Re)|k|2)|k|2. Define

f (ξ) = exp(−(2t/Re)ξ)ξ, ξ ∈ [0,+∞). (A 8)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

71
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.715


Superfast amplification and superfast nonlinear saturation 904 A27-11

The critical point of f (ξ) is given by

d
dξ

f (ξ) = exp(−(2t/Re)ξ)

(
1 − 2t

Re
ξ

)
= 0. (A 9)

Thus

ξ = Re
2t

(A 10)

is the critical point. Since

lim
ξ→+∞

f (ξ) = 0, f (0) = 0, (A 11a,b)

the critical point is a maximal point. Thus

f (ξ) ≤ f
(

Re
2t

)
= 1

e
Re
2t

, ξ ∈ [0,+∞). (A 12)

Using this fact in (A 7), we get

‖ exp((t/Re)Δ)u‖2
n ≤

∑
k∈Z3

[
1 + 1

e
Re
2t

(1 + |k|2 + · · · + |k|2(n−1))

]
|uk|2

≤
(

1 + 1
e

Re
2t

)∑
k∈Z3

(1 + |k|2 + · · · + |k|2(n−1))|uk|2

=
(

1 + 1
e

Re
2t

)
‖u‖2

n−1. (A 13)

Thus

‖ exp((t/Re)Δ)u‖n ≤
(

1 + 1√
2e

√
Re
t

)
‖u‖n−1, (A 14)

which is the inequality (A 6). With this inequality, we can estimate the Sobolev Hn norm
of the integrand in (A 5). For example,

‖ exp(((t − τ)/Re)Δ)P(du · ∇u)‖n ≤
(

1√
2e

√
Re

t − τ
+ 1

)
‖P(du · ∇u)‖n−1. (A 15)

It is easy to see that
‖P(du · ∇u)‖n−1 ≤ 2‖(du · ∇u)‖n−1. (A 16)

In our specific setting,

‖(du · ∇u)‖n−1 ≤ c‖du‖n−1‖∇u‖n−1 ≤ c‖du‖n‖u‖n, (A 17)

where c only depends on n and the spatial domain. Collecting all these estimates, one gets

‖du(t)‖n ≤ ‖du(0)‖n + 4c max
τ∈[0,T]

‖u(τ )‖n

∫ t

0

(√
Re√
2e

1√
t − τ

+ 1

)
‖du(τ )‖n dτ. (A 18)
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FIGURE 5. The longer time simulation of figure 3 with a sample of 11. The vertical axis is in
log scale.

Applying the Gronwall’s inequality, one gets the estimate

‖du(t)‖n ≤ exp(σ
√

Re
√

t + σ1t)‖du(0)‖n, (A 19)

where

σ = 8c√
2e

max
τ∈[0,T]

‖u(τ )‖n, σ1 = 4c max
τ∈[0,T]

‖u(τ )‖n =
√

2e
2

σ. (A 20a,b)

Thus,

sup
du(0)

‖du(t)‖n

‖du(0)‖n
≤ exp(σ

√
Re

√
t + σ1t), (A 21)

which is the maximal amplification estimate (1.1).

Appendix B

In this appendix, we show the longer time simulations of figure 3. In order to run for a
longer time, we conduct a sample of 11 instead of 20 simulations in figure 5. Using a log
scale for the vertical axis, we can see that, around t = 10, the exponential growth rate is
approximately 0.6 which is close to the value 0.59 obtained in Berera & Ho (2018) (when
using our current setting). Around t = 35, the exponential growth rate is approximately
0.031.
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