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Transient dispersion regimes
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Characterizing scalar dispersion is a key concern in a wide variety of applications,
including both steady-state and time-dependent studies of wastewater outfalls, salinity
distribution in estuaries, and the spreading of pollutants from industrial spills. As the
size of a scalar plume grows with respect to the size of the containing water body,
the effective dispersion varies, from the well-known σ 2

x ∼ t3 behaviour for a plume
enveloped in a region of linear shear, to the σ 2

x ∼ t behaviour at the limit of a laterally
well-mixed plume. We introduce an additional regime in which the plume extends
across the full range of the available shear, but is not significantly affected by the
lateral bounds of the water body. Through an analytic treatment we show that this
regime exhibits a σ 2

x ∼ t2 behaviour, independent of lateral mixing coefficient. Particle
tracking results in an idealized, tidal channel–shoal basin demonstrate this regime as
particle clouds straddle the channel–shoal interface. Quantitative analysis of spatial
moments as plumes transition between regimes show good correlation between the
observed parameters and parameters predicted by the analytic framework.
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1. Introduction
Scalar dispersion, in the most general sense, describes any of a numerous set of

physical processes by which features of the flow lead to the spreading out of a
scalar species. When considered in Fickian terms the effective dispersion rate is often
much greater than the molecular diffusion rate. This rate of spreading is often of
fundamental interest in a wide range of applications. In environmental flows, questions
related to spatial distributions of nutrient abundance, the spreading of algal blooms,
larval transport, and the zone of influence of engineered sources such as wastewater
treatment outfalls all trace back to questions of scalar dispersion. In ocean flows
dispersion rates are essential for understanding the mixing effects of eddies, formation
and breakdown of patches of heightened biological activity, and the mixing action of
passing and breaking internal waves (Young, Rhines & Garrett 1982).

Of particular relevance to riverine and estuarine environments is the case of linear
shear dispersion, also known as Taylor dispersion due to the first mathematical
analysis of Taylor (1953). Given the primary application to estuarine and riverine
systems, we will use the term longitudinal to refer to the along-flow axis of the
domain (x), and the term lateral to refer to the perpendicular horizontal axis (y).
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Transient dispersion regimes 131

Taylor demonstrated that lateral gradients in the longitudinal velocity interacting with
lateral diffusion leads to Fickian longitudinal dispersion, albeit with a highly amplified
dispersion coefficient. Though the original analysis was targeted at laminar pipe flow,
subsequent work in Taylor (1954) and Aris (1956) expanded the analysis to cover
a broad range of domains under both laminar and turbulent conditions, summarized
in Fischer et al. (1979). Central to Taylor’s analysis and many subsequent works is
the description of dispersion in terms of the growth of the second central moment of
the tracer distribution, σ 2

x , equivalently labelled the spatial variance. In the common
Fickian model in which scalar flux is proportional to the concentration gradient,
σ 2

x grows with a linear dependence in time σ 2
x ≈ 2Kxt, with longitudinal dispersion

coefficient Kx.
Scalar dispersion in environmental flows may result from the combined action of

multiple dispersive processes, such as turbulent mixing, flow asymmetries giving
rise to tidal pumping (Stommel & Farmer 1952), tidal trapping (Okubo 1973), and
various interactions of velocity shear in one direction with dispersion in an orthogonal
direction. The mixing due to these often complex dispersive processes is at least
superficially similar to the homogenizing effects of Fickian diffusion, and Fickian
models are often used to describe the bulk mixing effects. However, the underlying
processes do not necessarily obey a Fickian model (Feng, Cheng & Xi 1986), and
at short time scales plume spreading may significantly depart from the Fickian
description. These departures from the Fickian model are often termed anomalous
diffusion, and when considered in terms of a power law relating tracer variance and
time, σ 2

x ∼ tβ ; the term subdiffusion indicates β < 1 and superdiffusion indicates β > 1
(Young & Jones 1991).

Aris (1956) presented a general framework for evaluating shear dispersion, showing
that lateral diffusion coupled with lateral shear in the longitudinal velocity leads to
longitudinal dispersion with a Fickian behaviour at asymptotically long time scales.
Saffman (1962) extended the analysis of Aris to the case of a plume released at
ground level into a semi-infinite shear layer above the plane of the ground, showing
that in such a case the variance grows with a cubic dependence on time compared
to the linear dependence of Taylor’s and Aris’ scenarios. Barton (1983) refined the
analysis of Aris, clarifying the mathematical assumptions of the analysis, and for a
broad subset of flows presented a method for distilling the partial differential equations
(PDEs) into a simpler set of ordinary differential equations (ODEs). Solving the
more tractable set of ODEs leads to analytic solutions, valid at all time scales, for
the moments of a scalar cloud. In introducing considerable mathematical rigour, the
approaches of Barton become difficult to apply to environmental flows. For example,
while scaling analyses may easily reach the results of Saffman (1962), a semi-infinite
flow is incompatible with the approach of Barton (1983), such that one could not
arrive at a relationship directly describing the cubic time dependence in unbounded,
constant-shear cases. Scaling laws and corresponding qualitative regimes are quite
helpful and broadly applied in understanding environmental flows where the precise
global flow field may not be known, which in turn motivates the more schematic
methods described below. Other recent dispersion mechanism studies include Spydell
& Feddersen (2012), considering shear dispersion in a laterally bounded flow but with
a non-zero Lagrangian time scale, demonstrating that a non-zero Lagrangian time scale
can increase the dispersion coefficient.

The present work is concerned with three regimes of shear dispersion in
environmental flows and the transitions there between. For simplicity, the analysis
is focused on cases of constant diffusivity, though preliminary investigation of cases
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132 R. C. Holleman and M. T. Stacey

with variable diffusivity have found similar behaviours to the constant-diffusivity case.
The initial shear dispersion regime is essentially that described by Saffman (1962),
among others, in which a constant-shear velocity profile completely envelops the scalar
plume. As the plume expands laterally the range of velocities sampled by the parcels
within the plume also increases, leading to an ever-increasing velocity scale associated
with the longitudinal dispersion. The straining of the plume by this ever-increasing
velocity scale has been shown to result in cubic-in-time variance growth, σ 2

x ∼ t3, and
will generally be referred to as the ‘cubic’ regime.

A second regime, introduced more fully in § 2, describes the variance growth of
a plume which is not bounded in the lateral direction, but for which the range of
velocities sampled by its parcels is essentially constant in time. Schematically this
could correspond to a narrow (relative to the lateral extent of the plume) shear
layer separating two regions of smaller velocity gradients. Physically, a plume may
experience such a flow when the discrete spatial features leading to velocity gradients
are large compared to plume extent. One particular example is the geometry of
a channel–shoal basin, in which shear is maximal over the sloping region joining
the channel and shoal, with comparatively little shear in the channel or shoals. A
simple scaling approach to this scenario starts with a plume centred on a shear layer
with velocity +U to one side of the shear layer and −U to the other side. The
centroid of the plume is stationary and the longitudinal variance a function of the
typical displacement 1x of a parcel. While on a particular side of the shear layer,
1x ∼ ±Ut and σ 2

x ∼ U2t2. The variance growth is then dσ 2
x /dt ∼ U2t2/T , where T is

the characteristic time for a parcel to return to the shear layer. T scales with the lateral
size of the plume as T ∼ σ 2

y /Ky, and in the absence of lateral boundaries σ 2
y ∼ Kyt,

leading to an overall scaling dσ 2
x /dt ∼ U2t or σ 2

x ∼ U2t2. The application of the Aris
method of moments to this flow in § 2 supports this scaling and provides the exact
coefficients of proportionality.

In the case of a plume subject to shear but also constrained by lateral boundaries,
the variance growth asymptotes to the linear shear dispersion limit σ 2

x ∼ t after a time
sufficient for the plume to become laterally well-mixed. Only in this final regime does
the plume assume a Fickian behaviour.

Section 3 moves to the inverse problem of taking a time series of spatial moments
describing the evolution of a plume and estimating the relative importance and
parameters of each dispersion regime. Following a description of the inverse problem,
idealized flows and plume releases, described in § 4, serve as a test bed for the inverse
problem.

2. Analytic derivation

Following the approach of Aris (1956), the advection–diffusion equation can
be transformed into an evolution equation for the spatial moments of the scalar
distribution. The derivations of this section assume a rectangular channel aligned with
the x-axis, with lateral coordinate y ∈ [−B/2,B/2] and vertical coordinate z ∈ [−H, 0].
Define the pth moment in x for a filament extending along a given line of constant y
and z as cp(y, z, t):

cp(y, z, t)≡
∫ ∞
−∞

xpC(x, y, z, t) dx. (2.1)
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Transient dispersion regimes 133

The pth moment of the overall scalar cloud, mp, is then defined as the integral of cp

over the cross-section of the channel:

mp(t)≡
∫ B/2

−B/2

[∫ 0

−H
cp(y, z, t) dz

]
dy. (2.2)

Assuming a constant but anisotropic diffusivity described completely by the axis-
aligned diffusivities Kx, Ky and Kz, lateral and vertical velocities equal to zero, and
along-channel velocity u= u(y, z), the advection–diffusion equation can be written

∂C

∂t
+ u

∂C

∂x
= Kx

∂2C

∂x2
+ Ky

∂2C

∂y2
+ Kz

∂2C

∂z2
. (2.3)

Equation (2.3) is then multiplied by xp and integrated over x ∈ (−∞,∞) to get∫ ∞
−∞

(
xp ∂C

∂t
+ uxp ∂C

∂x

)
dx=

∫ ∞
−∞

(
Kxx

p ∂
2C

∂x2
+ Kyx

p ∂
2C

∂y2
+ Kzx

p ∂
2C

∂z2

)
dx. (2.4)

Pulling the time derivative outside the spatial integral and rearranging the advection
term leads to

∂

∂t

[∫ ∞
−∞

xpC dx

]
+ u

∫ ∞
−∞

[
∂

∂x
(xpC)− pxp−1C

]
dx

= Kx

∫ ∞
−∞

xp ∂
2C

∂x2
dx+ Ky

∫ ∞
−∞

xp ∂
2C

∂y2
dx+ Kz

∫ ∞
−∞

xp ∂
2C

∂z2
dx. (2.5)

Applying the boundary conditions that C and its derivatives approach zero as
x→ ±∞, (2.5) can be further simplified and expressed in terms of cp, cp−1 and
cp−2 as

∂cp

∂t
− upcp−1 = Kxp(p− 1)cp−2 + Ky

∂2

∂y2
cp + Kz

∂2

∂z2
cp. (2.6)

Define an initial condition for the scalar distribution C(x, t = 0) ≡ C0(x) from which
cp,0(y, z) can be directly evaluated, and Neumann boundary conditions of zero flux at
the y and z boundaries: Kij(∂C/∂xi)n̂j|δΩ = 0, where δΩ denotes the boundaries of
the domain, and n̂ the unit vector normal to the boundary. Over the cross-section, the
lateral and vertical diffusion integrate to zero, such that substituting the definition of
the moment mp, we arrive at an evolution equation for arbitrary moments,

dmp

dt
= pucp−1 + Kxp(p− 1)mp−2, (2.7)

where the overbar denotes integration over the cross-section. As a final step, if we
choose the coordinate reference frame such that m1 = 0 for all time, i.e. the reference
frame of the centroid of the distribution, the longitudinal spatial variance of the plume
may then be described by

dσ 2
x

dt
= 1

m0

dm2

dt
. (2.8)

2.1. Linear and cubic time dependence
Aris (1956) developed the above method and applied it to the case of a channel
with an arbitrary lateral velocity profile u = u(y). Taking the simplest shear velocity
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134 R. C. Holleman and M. T. Stacey

W

(a) (b) (c)

(d)

FIGURE 1. Schematic of the three dispersion regimes: (a) unbounded shear; (b) finite shear,
unbounded flow; (c) bounded flow; and (d) the transitions.

profile, a linear profile with constant shear S = ∂u/∂y, u = Sy, with lateral boundaries
at y=±W/2 (illustrated in figure 1c), the spatial variance is described by

dσ 2
x

dt
= W4S2

60Ky
+ 2Kx, (2.9)

where σ 2
x has a linear time dependence: the familiar shear dispersion. If the lateral

boundaries are absent but the constant-shear velocity profile is retained (figure 1a), the
evolving spatial variance is instead described by

dσ 2
x

dt
= 2KyS

2t2 + 2Kx, (2.10)

such that σ 2
x has a cubic time dependence (Saffman 1962).

2.2. Quadratic time dependence
In the linear case described above both the velocity range and the lateral domain
are bounded, leading to a linear growth rate. The cubic case has an unbounded
velocity range as well as a lack of lateral boundaries, and the method of moments
predicts a cubic time dependence. At a qualitative level, a scenario in which exactly
one of the velocity range or lateral boundaries is finite would be expected to yield
a quadratic time dependence. Construction of a finite-width channel with an infinite
range of velocities is distinctly non-physical, but an unbounded channel with finite
shear (figure 1b) is well-posed and potentially physical, such as the limiting case of a
plume which is large relative to local variation in the velocity field but small relative
to the width of the channel. We next apply the method of moments to the scenario of
an infinitely wide domain with a finite velocity range. In order to avoid introducing an
additional length scale into the model corresponding to the thickness of the shear layer,
we impose an infinitely thin shear layer, with velocity field u(y, z)= Usgn(y), where U
is a constant velocity scale.
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Transient dispersion regimes 135

The zeroth per-filament moment c0 is purely a function of lateral diffusion and takes
the form of a simple Gaussian distribution:

c0(y, t)= m0

H
√

4πKyt
exp

(
− y2

4Kyt

)
. (2.11)

Assuming that the plume is vertically well-mixed, solving for the per-filament first
moment requires a solution for c1 satisfying the equation

∂c1

∂t
= Usgn(y)c0 + Ky

∂2c1

∂y2
. (2.12)

We assume a form of c1 = fc0, where f = f (y, t) gives the longitudinal per-filament
centroid location as a function of time and lateral coordinate. Substituting fc0 into the
evolution equation for c1, we get

∂f

∂t
= u+ Ky

∂2f

∂y2
− y

t

∂f

∂y
. (2.13)

This can be further simplified by non-dimensionalizing f by Ut, and assuming a
similarity variable η = y/

√
4Kyt, such that f /Ut = g(η) and the PDE is reduced to a

second-order, variable-coefficient ODE in η:

g+ η
2

g′ − g′′

4
− sgn(η)= 0. (2.14)

By symmetry g(y = 0, t) = 0. As y approaches ±∞ the motion of the centroid is
independent of the shear at y = 0 and carried only by the uniform flow, giving
boundary conditions for f :

lim
y→±∞

f =±Ut (2.15)

or equivalently

lim
η→±∞

g(η)=±1. (2.16)

The solution to (2.14), subject to the constraints at y= 0 and (2.16) is then

g(η)=√πη exp(η2)erfc|η|. (2.17)

While g is both continuous and differentiable at η = 0, the second derivative is
undefined at η = 0. While further manipulations are required to demonstrate that g
is formally a weak solution to (2.14), we observe that g has exactly the expected
behaviour, and precisely matches a numerical integration of (2.14).

Returning to the method of moments,

c1 = c0Utg(η) (2.18)

is substituted back into the cross-sectional integral of (2.7) to obtain an equation for
the evolution of the second moment m2. Applying (2.8), the time dependence of σ 2

x for
the infinite-domain, finite-shear case is reached:

dσ 2
x

dt
= U2t + 2Kx. (2.19)
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136 R. C. Holleman and M. T. Stacey

Integrating in time from an initial point release we confirm the original quadratic
scaling:

σ 2
x = 1

2 U2t2 + 2Kxt. (2.20)

As expected, the time dependence falls between the two previously discussed
cases, with variance growing quadratically in time. Additionally, we observe that
the quadratic case includes no dependence on the lateral dispersion coefficient Ky.

2.3. Transitions
The scaling arguments and results of the method of moments clearly delineate the
behaviour of σ 2

x in the simplified, ‘pure’ scenarios, but for a tracer cloud which passes
through each regime (figure 1d) there is the additional question of how one regime
transitions to the next. On further examination of (2.9), (2.10) and (2.19), we see that
these transitions are characterized by a continuous dσ 2

x /dt.
Examining the evolution of σ 2

x in the cubic case, (2.10), σ 2
y = 2Kyt describes the

lateral variance and σy =
√

2Kyt gives a linear scale for the lateral extent of the
plume. When coupled with the shear this gives a scale for the range of velocities
U(t) ≈ ∂u/∂y

√
Kyt. Equation (2.10) could then be rewritten as dσ 2

x /dt ≈ U2(t)t,
similar to the first term in the quadratic evolution described by (2.19). The transition
from cubic to quadratic is contained in the time dependence of the velocity scale,
where the cubic regime implies a linear growth in U, and as the range of velocities
asymptotes to a constant value the plume moves to the quadratic regime.

The transition from quadratic to linear dispersion can be examined in terms of the
time scale for lateral mixing T ∼ W2/Ky. For t > T , the quadratic regime must be
shut down and the dispersion reverts to the linear regime. Evaluating (2.19) with t = T
returns exactly the linear scaling, implying that the variance growth rate during the
linear regime is also the maximum growth rate achieved by the quadratic regime.

More broadly, we can consider the generic scaling

dσ 2
x

dt
∼ U2(t)τ (t), (2.21)

where U(t) is a velocity scale describing the range of velocities sampled by the plume
and τ(t) is a time scale describing how long it takes for a parcel to sample that range
of velocities. The three regimes can then be categorized by the time dependence in
U(t) and τ(t). In the cases where the lateral extent of the plume is not constrained
by domain boundaries, the lateral mixing time grows with the plume size such that
τ(t) ∼ t, but as the plume becomes large enough to ‘feel’ the constraints of the
boundaries the time scale τ asymptotes to a constant value W2/Ky, where W is the
width of the domain. During periods when the plume has not yet sampled the full
range of velocities in the flow, the lateral spreading and an assumed linear shear
profile lead to U2(t) ∼ t. However, any finite flow has a finite range of velocities such
that eventually U must also asymptote to a constant value. Combining the velocity
and time scales, the resulting evolution of σ 2

x is then clearly continuous, with time
dependence ranging from t2 when neither U nor τ have reached their asymptote, to a
constant value in the linear shear dispersion limit of a constant U and τ .

2.4. Effects of bathymetry
In physical shoal–channel flows, as well as the example flow considered in § 4 below,
lateral variation of the velocity field is typically correlated to depth variations. Sloping
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x
z

y

(a) (b)

FIGURE 2. Schematic of plume interaction with bathymetry variability: (a) shelf bathymetry;
(b) channel–shoal bathymetry.

regions of the lateral bathymetry profile act as partial lateral boundaries, and a scalar
plume which extends over sloping areas would be partially bounded at depth. In
this partially bounded state we might assume that the realized growth of σ 2

x is best
described by a combination of regimes. For the specific case of a vertically mixed
plume centred on a break in the lateral bathymetry, such as in figure 2(a), the growth
of variance is observed to remain purely quadratic in time. The quadratic growth
scales in the same way as the flat-bottomed case, except with an attenuation factor
which is a function of the ratio between the two depths. The derivation of this
behaviour relies on an approximation that when the plume is centred on the step then
solutions for the per-filament moments cp are the same as for the flat-bottom case.
The major difference from the flat-bottom case is that, with more tracer mass on the
deeper side, the centroid is no longer stationary. To quantify, the plume variance c1

is amended to described the per-filament first moment about the centroid rather than
about the origin. Defining the centroid of the plume as µx = m1/m0, this leads to an
expression for the evolution of the variance,

dσ 2
x

dt
=
[

4α

(α + 1)2

]
U2t + 2Kx, (2.22)

where α ≡ Hs/Hc, the ratio of the two depths. In essence the step bathymetry leads
to an attenuated quadratic dispersion, where the attenuation factor is a function
of the ratio between the two depths. In this special case of a plume centred on
the bathymetric break and dispersed laterally by a constant eddy diffusivity, (2.22)
compares favourably with particle tracking simulations. This case may be broadened
slightly to also include a lateral variation in the lateral diffusion coefficient. In order
for the plume to remain centred on y = 0 (i.e. c0 has its maximum at y = 0), the
distribution of mass must be asymmetric, with more mass and a broader lateral
distribution on the side with higher lateral diffusivity. The effect is much the same
as deepening one side, with an asymmetry in the mass distribution and a centroid
which is no longer stationary. Pursuing the same approximate analysis, the combined
effect falls into the same form as (2.22):

dσ 2
x

dt
=
[

4α
√
β

(α
√
β + 1)

2

]
U2t + 2Kx, (2.23)

where β ≡ Kys/Kyd, the ratio of the two lateral diffusion coefficients. In the general
case, though, a plume offset from the break in bathymetry would then encounter
that bathymetry as a partial boundary and the effective dispersion would be a mix
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of regimes. Variation in the lateral diffusion coefficient that does not coincide with
a maximum in c0 would also cause a departure from this simplified case. Beyond
the variation in lateral diffusion coefficient, deeper regions would also presumably
see an increase in the longitudinal diffusion coefficient. This increase stems both
from the simple increase in longitudinal turbulent mixing and from the variation in
vertical shear dispersion between shallow and deep regions. In these more complex
and physically realistic cases the dispersive behaviour is likely to be beyond the
descriptive capacity of the present analytic solutions.

The numerical experiments of § 4 explore the dispersive behaviour of a range of
plume releases in an idealized channel–shoal basin (figure 2b). In cases where the
plume is initially positioned over the slope region, the above analysis suggests that
once the plume expands beyond the shear region of the slope, σ 2

x would grow with t2.
These numerical cases, though, include both sides of the channel. With sufficient time
the plume will interact with both slopes, and proceed through a combination of linear
and quadratic regimes and asymptote to a linear dispersion. We note, however, that
just because a plume is not perfectly centred on a shear region does not mean that the
quadratic regime is lost entirely. Rather, as long as there is a separation in time from
when the plume mixes across a shear zone to the time that it encounters some feature
bounding the lateral expansion, we expect a degree of quadratic growth.

3. Estimation of regimes and parameters
We next consider a number of particle plumes released in an idealized flow and

analysed through the lens of the regimes discussed above. By careful evaluation of
the time series of spatial moments we aim to discern: (i) the relative importance
of each regime; and (ii) the degree to which the parameters of the simulated flow
predict the evolution of the plume. The goal is then to describe the evolution of
σ 2

x (t) in terms of the three regimes and the relevant parameters, including the shear
S, finite velocity range U, and lateral dispersion coefficient Ky. While the parameters
of the regimes are generally changing in time, both due to the changing plume size
and the local hydrodynamics driving the dispersion, the problem is simplified by
considering the parameters to be constant over short windows of time. For each time
window we expect that the time rate of change of the variance can be described by a
second-degree polynomial

dσ 2
x

dt
≈ α2t2 + α1t + α0 (3.1)

with the three coefficients corresponding conceptually to the three dispersion regimes.
The presence of t and t2 in (3.1) implies a time origin for the cubic and quadratic
regimes. Since the plume behaviour should not depend on the choice of an absolute
time origin, we must assume that t is instead relative to one or more time origins
related to the plume state. One possible choice is to take all times relative to some
ty at which σ 2

y = 0. However, as a plume shifts between regimes the x–y covariance
of the plume may not evolve in lockstep with the lateral variance σ 2

y and, as will
be shown below, the covariance plays a key role in the time dependence of variance
evolution.

Consider a pair of particles, such as in figure 3, in the finite shear flow of the
quadratic regime, where one particle ⊕ is in the y > 0 half-plane and advected with a
velocity +U, and the other, 	, is in the y < 0 half-plane advected with velocity −U.
Ignoring for the moment effects of Kx and Ky, the longitudinal separation between
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FIGURE 3. Accumulation of strain by a plume in the finite-shear, infinite-domain case.

the particles is then expected to evolve as 1x = 2U(t − tc), where tc indicates the
time when the particles are aligned across the flow (and more generally the time at
which the covariance is zero). In the quadratic and cubic cases the particles are free to
diffuse laterally without limit and on average never mix back across the shear region,
which allows the approximation σx ≈1x/2 (as opposed to the laterally bounded, linear
regime where particles are periodically mixed back to the centre of the domain and
this scaling does not hold). The variance then evolves as the square of time, and the
time rate of change goes as dσ 2

x /dt ∼ U2(t − tc). Combining the tc dependence from
the present scaling argument with (2.19), we proceed with an adjusted form for the
evolution of the variance,

dσ 2
x

dt
≈ U2(t − tc). (3.2)

In order to understand the independent effects of ty and tc in the cubic regime, we
return to the method of moments. The previous analysis is modified in the choice of
initial conditions for c0, which now describes a laterally spreading Gaussian plume for
which σ 2

y (t = ty)= 0,

c0(y, t)= m0

H
√

4πKy(t − ty)
exp

(
− y2

2Ky(t − ty)

)
. (3.3)

For ty = tc = 0, (3.3) reduces to (2.11), the lateral mass distribution in both the cubic
and quadratic analyses. The longitudinal concentration distribution is also modified
such that covxy(t = tc) = 0. Condition ty < tc indicates an offset in time between the
start of lateral spreading and the start of straining. Subject to the initial and boundary
conditions, and satisfying (2.6), the per-filament centroid is described by

c1(y, t)= c0Sty

2

(
1+ tc − ty

t − ty

)
. (3.4)
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u

t

ty

FIGURE 4. Relationship between σ 2
x and the time origins for covariance and lateral variance

in the case of infinite shear.

Applying (2.7), the evolution of the longitudinal variance is then given by

dσ 2
x

dt
= 2KyS

2(t − tc)(t − 2ty + tc)+ 2Kx. (3.5)

The schematic of figure 4 depicts the relationship among tc, ty, covxy, σ 2
y and σ 2

x .
Conceptually, σ 2

y (t = tc) dictates the initial range of velocities sampled by the plume
and the covariance reflects an accumulation of strain in the plume, the same role as in
the quadratic analysis above.

In moving from the pure, analytic cases of § 2 to the present forms which aim to
be applicable to transitional states, it also becomes necessary to distinguish between
the internal mixing of parcels within the plume, given by the dispersion coefficient
Ky, and the lateral spreading of the plume, dσ 2

y /dt. In the unbounded case these are
related by a factor of two, but as a plume becomes partially bounded or in the linear
limit fully constrained by lateral boundaries dσ 2

y /dt and Ky diverge. Ky continues to
describe mixing within the plume but dσ 2

y /dt tends towards zero. In the infinite-shear
case we note that it is the lateral spreading of the plume which is relevant, and which
should be attenuated when lateral boundaries play a role. Combining the time origins
and replacing Ky with the more directly descriptive dσ 2

y /dt, we assume a form for the
infinite-shear regime of

dσ 2
x

dt
≈
(
∂u

∂y

)2 dσ 2
y

dt
(t − tc)(t − 2ty + tc). (3.6)

In the case of linear shear dispersion, for which the plume is laterally well-
mixed, the lateral variance is by definition constant. The covariance in the linear
dispersion case also asymptotes to a constant value with a time scale proportional
to the lateral mixing time, after which the straining action of the shear is balanced
by the homogenizing effect of lateral diffusion, shown schematically in figure 5.
Corresponding to the lack of any evolving state in the linear case other than σ 2

x , there
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u

covxy

t

(a)

(b)

(c)

FIGURE 5. Asymptotic behaviour and lack of accumulated state for linear shear dispersion.
(a) A sample tracer distribution, with corresponding time series of covariance (b) and
longitudinal variance (c).

is no additional time dependence and no need to include tc or ty at times beyond the
lateral mixing time, and the evolution of σ 2

x remains

dσ 2
x

dt
≈ U2W2

γKy
, (3.7)

where γ is a constant related to the specific velocity profile.
The simplest representation of the combined effects of the three regimes is then a

simple summation of the individual contributions, taking into account the time origins
for the higher-order regimes:

dσ 2
x

dt
≈
(
∂u

∂y

)2 dσ 2
y

dt
(t − tc)(t − 2ty + tc)+ U2(t − tc)+ U2W2

γKy
. (3.8)

In order to make meaningful comparisons between observed coefficients of a
polynomial fit as in (3.1) and (3.8) it becomes necessary to estimate tc and ty.
Considering the effect of the time origins on each term, we connect the terms of (3.8)
with the polynomial coefficients of (3.1). The highest order coefficient is unaffected by
the time origins: (

∂u

∂y

)2 dσ 2
y

dt
≈ α2. (3.9)

Taking into account the time origins of the cubic dispersion term, the coefficient for t
can then be approximated by[

U2 − 2
(
∂u

∂y

)2 dσ 2
y

dt
ty

]
≈ α1. (3.10)

Similarly, time origins for both the cubic and quadratic dispersion terms are relevant
for the constant term of (3.1):

U2W2

γKy
− U2tc +

(
∂u

∂y

)2 dσ 2
y

dt
(2tcty − t2

c)≈ α0. (3.11)
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FIGURE 6. Bathymetry profiles for the two idealized domains. Horizontal dashed lines
bracketing z= 0 denote the range of the tidal boundary condition. Vertical dotted lines denote
particle release locations. (a) Narrow channel; (b) wide channel.

Note that (3.1), while including terms quadratic, linear and constant in time, does
not map directly to the cubic, quadratic and linear shear dispersion regimes due to
the time origins tc and ty. To more cleanly separate the influence of each regime,
(3.9)–(3.11) are used to define a set of coefficients α∗i , in terms of αi, which describe
the role of each individual regime:

α∗2 = α2 ≈
(
∂u

∂y

)2 dσ 2
y

dt
, (3.12)

α∗1 = α1 + 2α2ty ≈ U2, (3.13)

α∗0 = α0 + α∗1 tc − α∗2(2tcty − t2
c)≈

U2W2

γKy
. (3.14)

With the effects of the time origins removed from each coefficient, we are left with
a series of coefficients with one-to-one relationships with the three dispersion regimes
and a prediction of each based on parameters of the flow.

4. Tidally forced channel–shoal domain
In a step towards applying the above analysis to real-world conditions we consider

here a more realistic but still idealized flow. Two domains are utilized, both 100 km
long and 20 km wide, varying in the lateral bathymetry profile as shown in figure 6.
The x = 0 end of the channel is forced by 12 h periodic tides, with a peak-to-peak
amplitude of 1.0 m, while at x = 100 km the landward end of the channel is closed.
The hydrodynamic simulations utilize the SUNTANS RANS model (Fringer, Gerritsen
& Street 2006), run in 2-D mode. The primary goal of these simulations is to drive
a moderately complex but tractable two-dimensional flow field in which the three
dispersion regimes may be simultaneously observed. Dimensions of the basin, tidal
amplitudes and the lateral bathymetry profile fall within the range of typical physical
values. We focus on the subtidal dispersion caused by interaction of the subtidal flow
field with shorter-time-scale turbulent mixing and tidal stirring. The residual flow field
is essentially the landward portion of the flow described by Li & O’Donnell (2005),
in which the channel carries a residual landward flow and the shoals have a residual
seaward flow.

4.1. Particle tracking model
We use FISH-PTM (Gross et al. 2011) to simulate the transport and dispersion of
passive particles by the predicted hydrodynamic flow field output by SUNTANS.
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This particle tracking model includes both deterministic transport by the Eulerian
velocity field and a non-deterministic parameterization of turbulent dispersion. The
non-deterministic component, a carefully formulated random walk, is calculated at
each time, for each particle, according to the method of LaBolle et al. (2000), with
a constant eddy diffusivity of K0 = 0.1 m2 s−1. The diffusivity has been chosen to
be relatively small so that transitions between regimes are sufficiently separated in
time to allow a detailed analysis of each regime. We note that while the particle
tracking model employs a constant eddy diffusivity, spatially varying dispersion within
a tidal cycle (e.g. intratidal shear dispersion) is effectively a variable diffusivity at
subtidal time scales. Though in the present cases we impose a constant, uniform and
isotropic diffusivity, the method of LaBolle et al. (2000) allows for a simple treatment
variable and discontinuous diffusivities, enabling simulation of the scenario discussed
in § 2.4 in which the centre of the domain has both a break in bathymetry and a
discontinuity in the diffusivity. The particle locations are updated via the following
three-step process:

Xn+1/2 = Xn + u(Xn)1t, (4.1)

X∗ = bounce{Xn+1/2,R
√

2r−1K0(Xn+1/2)1t}, (4.2)

Xn+1 = bounce{Xn+1/2,R
√

2r−1K0(X∗)1t}, (4.3)

where Xn is a vector describing the particle location at step n, u(X) is the velocity
from the hydrodynamic model, interpolated in time and space as needed, R is a
random vector with components evenly distributed over [−1, 1], and r = 1/3. To
ensure that particles remain within the domain and do not accumulate at boundaries,
they are reflected back into the domain, denoted by the bounce{X, d} operator. If the
segment X(X + d) intersects the boundary, then we define s ∈ [0, 1] as the fraction of
the original step before the first boundary collision: X + sd ∈ δΩ . Then

bounce{X, d} =
{
X + sd + (1− s)(d − 2n̂(d · n̂)) if collision
X + d if path is free,

(4.4)

where n̂ is the inward-facing normal of the boundary face at X + sd . The bounce
method is applied iteratively to allow a single diffusion step to generate multiple
boundary collisions and reflections, subject to the total length of the path with bounces
being the same as the length of the original straight line path. Both the advective step
and the diffusive step are subcycled as needed. The advective step is subcycled as
particles cross an edge into a new cell of the hydrodynamic grid, and the diffusive step
is subcycled according to the time-step constraints detailed in Ross & Sharples (2004).

Particle clouds are released, evenly distributed in the vertical, at several locations in
both the lateral and longitudinal directions, shown in figures 6 and 7. The initial lateral
position of the plume ranges from the centre of the channel to halfway between the
channel centre and the lateral boundary of the domain. Each plume is tracked over
100 tidal periods. At the start of each tidal cycle the first and second moments are
calculated as

µj(t)= 1
N

N∑
p=1

rp,j(t) (4.5)
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FIGURE 7. Plan view of the central portion of the wide channel idealized domain. Locations
of particle plume releases are shown by empty circles, and the Lagrangian residual field is
shown by arrows. Depth indicated by greyscale with breaks shown at depths of 11, 15 and
19 m.
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FIGURE 8. (Colour online) Instantaneous plume distributions after 0 (grey online), 7 (blue
online), 20 (green online), 50 (orange online) and 100 (red online) tidal periods. Greyscale
depth breaks at 11, 15, and 19 m, with the lower portion of the plot falling within the
channel region and the upper half in the shoal region. Ellipses are drawn according to the 2-D
covariance matrix.

and

σjk(t)= 1
N

N∑
p=1

[rp,j(t)− µj(t)][rp,k(t)− µk(t)], (4.6)

where rp,j(t) is the position of particle p along axis j at time t, N is the total number
of particles and the indices j and k range over the coordinate axes x and y. With these
definitions, σ 2

x ≡ σxx, σ 2
y ≡ σyy and covxy ≡ σxy.

In addition to tracking the evolution of each plume, the particle tracking model is
also used to estimate a residual Lagrangian velocity field. This field is estimated by
releasing particles on a uniform, 200 m grid throughout the domain, and extracting the
displacement of each particle after being advected for exactly one tidal period with
the dispersive random walk disabled. The displacements define the residual Lagrangian
velocity, anchored in space at each respective initial position. The residual velocity
field for the wide channel domain is shown by the arrows in figure 7 domain.

A sample plume trajectory is shown in figure 8, showing the interaction of the
plume with slope-generated residual shear. The initial release is within the channel,
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FIGURE 9. Cumulative growth of σ 2
x for the same particle cloud as depicted in figure 8. The

time series of σ 2
x has been partitioned into the cumulative contributions of the three shear

dispersion regimes, based on the observed values for α∗i , plus the constant contribution of the
imposed K0.

close to the edge of the slope region. The initial residual transport carries the
plume towards the closed end of the domain, while a mix of dispersion and lateral
advection leads to a growing portion of the plume which samples the slope and shoal
regions. Straining of the plume across the slope region leads to a significant quadratic
growth in the variance. The time series of σ 2

x is shown in figure 9, partitioned into
contributions from the three dispersion regimes as well as the constant contribution
from the imposed background dispersion rate K0. The partitioning is shown as a
stacked sum, corresponding to the terms of the summation

σ 2
x (t)=

∫ t

0
α∗2(τ − tc)(τ − ty) dτ (4.7)

+
∫ t

0
α∗1(τ − tc) dτ (4.8)

+
∫ t

0
α∗0 dτ (4.9)

+
∫ t

0
2K0 dτ, (4.10)

where α∗i , tc and ty are taken as constants within each of the three analysis windows
(tidal periods 0–30, 30–60 and 60–90). From figure 9 one can see that the contribution
from the cubic regime is relatively small, accumulated only in the very early spreading
of the plume. The quadratic contribution is initially small, but between 30 and 90 tidal
cycles this term contributes enough to variance growth to account for slightly over half
the total variance growth. Only after 60 tidal cycles does the linear regime contribute
significant variance, and ultimately accounts for ∼40 % of the total variance growth.
The imposed internal mixing due to K0 is a negligible source of longitudinal variance
growth.

4.2. Comparison of fit parameters to direct estimates
In order to assess the relevance of the analytic regime descriptions to cases where
the net dispersion is an evolving combination of multiple regimes, we compare
the adjusted observed polynomial coefficients α∗i with predicted quantities according
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FIGURE 10. Correlation between predicted and observed growth coefficients. Diagonals
show the 1:1 lines and grey perpendiculars intersect at (0, 0). Panels show correlation for
(a) the infinite-shear regime, (b) the finite-shear/unbounded regime, and (c) the linear, Fickian
limit of bounded-shear dispersion. Correlation coefficients are R= 0.890, 0.877 and 0.565 for
α∗2 , α∗1 and α∗0 , respectively.

to (3.12)–(3.14). The predicted quantities depend on approximations of parameters
describing the subset of the flow sampled by the plume during each time window.
Within a single tidal cycle the internal dispersion is dominated by the imposed K0

and for the estimates in this section we assume Kx = Ky = K0. While the particle
tracking results include tidal variations, we consider only the subtidal signals, obtained
by extracting parameters only at integer tidal periods tn = nT where T = 12 h is the
tidal period. The width scale W(tn) is approximated by σy(tn). The velocity scale
U(tn) is extracted from the residual Lagrangian velocity field by taking the standard
deviation σu of the residual along-channel velocity at each particle location at time tn.
Per-window quantities W and U are then taken as averages of W(tn) and U(tn) over all
tn in the time window. For the case of the quadratic coefficient in (3.12), we further
simplify the approximation to a direct estimate of the rate of change of the range of
velocities sampled by the plume. Assuming a uniform, constant shear ∂u/∂y in the
vicinity of the plume (the base assumption for the cubic regime),(

∂u

∂y

)2 dσ 2
y

dt
= d

dt

(
∂u

∂y
σy

)2

= dσ 2
u

dt
, (4.11)

where the right-hand side is evaluated by fitting a line to the time series of σ 2
u within

each time window. The time origins tc and ty are estimated by a least-squares linear
fit to time series of both covxy and σ 2

y over the time window and solving for the time
when the line crosses zero. In evaluating the polynomial fit (3.1) we further require
that the leading quadratic coefficient be non-negative. While it is possible for a plume
to exhibit growth described by a negative coefficient on t2, the scaling relationships
discussed here are not applicable to such flows. Flow features including longitudinal
convergence or mean vorticity which rotates longitudinal variance into the lateral axis
could lead to decreasing σ 2

x but are beyond the present analysis.
A comparison of the measured α∗i and corresponding predicted coefficients is shown

in figure 10. Since the velocity shape factor γ is not one of the estimated parameters,
for the purposes of the plotting we assume a nominal value of 25 but note that the
slope of the correlation in figure 10(c) is arbitrary. The comparison for α∗2 (figure 10a)
shows good agreement for larger observed values, but significant clustering around
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0, largely due to the limitation that α2 is required to be non-negative. Windows for
which α2 would have been negative if not constrained are most often times when
the plume encounters some longitudinal variation in the flow. For example, plumes in
the centre of the channel move slowly to the closed end of the basin and eventually
encounter a significant longitudinal convergence, ∂u/∂x < 0, compressing the plume
and decreasing σ 2

x . A similar process occurs for plumes in the shoals which advect far
enough towards to the open end of the domain to encounter the ‘null’ in the residual
field. Both cases fall outside the range of regimes covered by the method of moments
as applied in § 2, and a broader, fully two-dimensional approach would be required
to adequately treat these cases. The lower correlation for α∗0 (figure 10c), relative to
α∗2 and α∗1 (figure 10a,b), is due in part to variability of the velocity profile which is
not captured by the constant value of γ . The fact that α∗0 relies on all three values of
αi, as well as linear and nonlinear terms in tc and ty undoubtedly contributes to the
higher error relative to the higher-order α∗2 and α∗1 . Nonetheless, all three coefficients
are significantly correlated to the predicted values, and the higher-order coefficients α∗2
and α∗1 are both well correlated and show good agreement in magnitude.

5. Discussion
The flows presented here have been purposely distilled down to cases where higher-

order dispersive regimes may be observed and quantified. In observations or physically
realistic simulations a broad range of processes leads to a more complex picture.
In particular, varying bathymetry and velocity shear lead to temporal and spatial
variability of Ky and Kx. The numerical simulations above employed a constant
diffusivity in an effort to find reasonably complex flows which are not too far
removed from the assumptions the analytic framework. The importance of these
variations of course depends on the specifics of a particular domain and the time
scales of interest to a particular application. In the context of subtidal dispersion,
these dispersion coefficients parameterize the combined effects of numerous processes
including turbulent mixing, longitudinal–vertical shear dispersion, tidal stirring and
lateral–vertical shear dispersion. Variations in bathymetry undoubtedly contribute to
variations in the turbulent mixing and vertical shear dispersion. Additionally, regions
of high shear may have large-scale, semi-organized eddy structures with complex
dispersive effects (Spydell & Feddersen 2012). We expect that the quadratic regime
would be most evident in cases where the extent of regions of high variability
(in bathymetry or eddy diffusivity) is small compared to the extent of the plume.
Preliminary simulations and analysis in cases of simple variations in Ky show that
the regime descriptions may still apply. However, with increasing heterogeneity in the
diffusivity field we expect that transitions between regimes will become overlapped.
With the diffusivities sampled by the plume changing in time, it may become difficult
to isolate a particular regime and its parameters. Additional non-Fickian processes
may also contribute to the overall plume dynamics, including residual density-driven
transport in both longitudinal and lateral axes. Depending on the time scales involved,
these processes may add to or mask high-order dispersion regimes. Further exploration
of plume dispersion in physically realistic models, and with relaxed assumptions of
variable diffusion, is necessary to better quantify the emergence and interaction of
different dispersion regimes. However, there remains the fundamental notion that
the velocity scale U present in shear dispersion relations cannot be assumed to
asymptote to a constant value in the same time period as the lateral extent of the
plume asymptotes to a constant value.
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Saltwater
Fresh water

x

Residual transport

FIGURE 11. Flux view of quadratic dispersion in an estuarine reach which is not laterally
well-mixed. Significant salt flux occurs even though gradients in the cross-sectionally
averaged salinity 〈s〉 are negligible.

We note that the quantitative estimates for the importance of quadratic dispersion
do not necessarily exclude periods of cubic dispersion, which when observed for
a short period may exhibit a quadratic time dependence. Further examination of
periods of significant quadratic dispersion, however, show little correlation between
the measured quadratic and cubic terms, suggesting that dispersion in these periods is
best classified as quadratic. Specifically, comparing α∗2 and α∗1 we find a correlation
coefficient R = −0.07. A similar comparison, but between the predicted coefficients,
shows a correlation coefficient of R= 0.20. Both comparisons reinforce the conceptual
model of a plume quickly growing beyond the lateral scale of the shear and then
reverting to a quadratic dispersion regime.

Of particular interest in the high-order regimes is that the overall dispersion, in
terms of cross-sectionally averaged gradients and fluxes, is not Fickian. Operational
one-dimensional models (e.g. Salah-Mars & McCann 2007) must make many
simplifying assumptions, and the use of Fickian dispersion coefficients is one of
them. While Fickian dispersion is easily expressed in terms of either plume growth
(σ 2 ≈ 2Kt) or a differentially defined flux (F ≈ −K(∂C/∂x)), high-order dispersion
regimes cannot be expressed in terms of local gradients. For the simplest, infinitely
long, steady-state case one can argue that all time scales for lateral mixing are
achieved and all dispersion reverts to linear Taylor dispersion. In more realistic
applications, though, embayments are finite and often exhibit significant variation
along the axis. One can imagine a situation such as figure 11 where a residual
circulation transports salt through the embayment. In terms of a one-dimensional salt
balance, though, gradients of the cross-sectionally averaged salinity 〈s〉 are negligible,
even though the salt flux is quite significant. This situation is analogous to the
quadratic dispersion regime in the sense that straining of the concentration field
leads to significant dispersion or flux before lateral mixing is able to homogenize
the cross-section.

6. Conclusions
Motivated by the structure of environmental flows, we have introduced a dispersion

regime with quadratic dependence on time, to augment the previously studied cubic
and linear dispersion regimes. This regime may be prevalent in flows where the lateral
extent of the velocity shear is smaller than the lateral extent of the domain, such as
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channel–shoal systems in which the slope features are narrow compared to the width
of the channel or the total width of the basin. A plume with a lateral length scale
falling between the width of the shear and the width of the domain is expected to
evolve according to this quadratic regime. While simple scaling arguments quickly
arrive at this behaviour, a more rigorous and precise description is obtained by way
of the method of moments. In a suitably constructed idealized flow we find that all
three regimes occur and that the net evolution of the plume variance can reasonably be
predicted by parameters extracted from the flow.
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