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We study I(T ), the number of inversions in a tree T with its vertices labelled uniformly

at random, which is a generalization of inversions in permutations. We first show that the

cumulants of I(T ) have explicit formulas involving the k-total common ancestors of T

(an extension of the total path length). Then we consider Xn, the normalized version of

I(Tn), for a sequence of trees Tn. For fixed Tn’s, we prove a sufficient condition for Xn
to converge in distribution. As an application, we identify the limit of Xn for complete

b-ary trees. For Tn being split trees [16], we show that Xn converges to the unique solution

of a distributional equation. Finally, when Tn’s are conditional Galton–Watson trees, we

show that Xn converges to a random variable defined in terms of Brownian excursions. By

exploiting the connection between inversions and the total path length, we are able to give

results that significantly strengthen and broaden previous work by Panholzer and Seitz [46].

2010 Mathematics subject classification: 60C05

1. Introduction

1.1. Inversions in a fixed tree

Let σ1, . . . , σn be a permutation of {1, . . . , n}. If i < j and σi > σj , then the pair (σi, σj)

is called an inversion. The concept of inversions was introduced by Cramer [14] (1750)

due to its connection with solving linear equations. More recently, the study of inversions

has been motivated by its applications in the analysis of sorting algorithms: see e.g. [37,
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Section 5.1]. Many authors, including Feller [21, p. 256], Sachkov [52, p. 29], Bender [7],

have shown that the number of inversions in uniform random permutations has a central

limit theorem. More recently, Margolius [42] and Louchard and Prodinger [39] studied

permutations containing a fixed number of inversions.

The concept of inversions can be generalized as follows. Consider an unlabelled rooted

tree T on node set V . Let ρ denote the root. Write u < v if u is a proper ancestor of

v, that is, the unique path from ρ to v passes through u and u �= v. Write u � v if u is

an ancestor of v, i.e. either u < v or u = v. Given a bijection λ : V → {1, . . . , |V |} (a node

labelling), define the number of inversions:

I(T , λ)
def
=

∑
u<v

1λ(u)>λ(v).

Note that if T is a path, then I(T , λ) is simply the number of inversions in a permutation.

Our main object of study is the random variable I(T ), defined by I(T ) = I(T , λ) where λ

is chosen uniformly at random from the set of bijections from V to {1, . . . , |V |}.
The enumeration of trees with a fixed number of inversions has been studied by

Mallows and Riordan [41] and Gessel, Sagan and Yeh [25] using the so-called inversions

polynomial. While analysing linear probing hashing, Flajolet, Poblete and Viola [23] noticed

that the numbers of inversions in Cayley trees with uniform random labelling converge

to an Airy distribution. Panholzer and Seitz [46] showed that this is true for conditional

Galton–Watson trees, which encompass the case of Cayley trees.

For a node v, let zv denote the size of the subtree rooted at v. The following

representation of I(T ), proved in Section 2, is the basis of most of our results.

Lemma 1.1. Let T be a fixed tree. Then

I(T )
d
=

∑
v∈V

Zv, (1.1)

where {Zv}v∈V are independent random variables, and Zv ∼ Unif{0, 1, . . . , zv − 1}.

We will generally be concerned with the centralized number of inversions, i.e. I(T )−
E[I(T )]. For any u < v we have P{λ(u) > λ(v)} = 1/2. Let h(v) denote the depth of v, i.e.

the distance from v to the root ρ. (The distance from u to v is the number of edges in the

unique path connecting u and v.) It immediately follows that

E[I(T )] =
∑
u<v

E[1λ(u)>λ(v)] =
1

2
Υ(T ), (1.2)

where Υ(T )
def
=

∑
v h(v) is called the total path length (or internal path length) of T .

Let κk = κk(X) denote the kth cumulant of a random variable X (provided it exists);

thus κ1(X) = E[X] and κ2(X) = Var(X) (see [27, Theorem 4.6.4]). We now define Υk(T ),

the k-total common ancestors of T , which allows us to generalize (1.2) to higher cumulants

of I(T ). For k nodes v1, . . . , vk (not necessarily distinct), let c(v1, . . . , vk) be the number of

ancestors that they share, that is,

c(v1, . . . , vk)
def
= |{u ∈ V : u � v1, u � v2, . . . , u � vk}|.
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We define

Υk(T )
def
=

∑
v1 ,...,vk

c(v1, . . . , vk), (1.3)

where the sum is over all ordered k-tuples of nodes in the tree. For a single node v,

h(v) = c(v)− 1, since v itself is counted in c(v). So Υ(T ) = Υ1(T )− |V |; that is, we recover

the usual notion of the total path length.

Theorem 1.2. Let T be a fixed tree. Let κk(I(T )) be the kth cumulant of I(T ). Then

E[I(T )] = κ1(I(T )) =
1

2
Υ(T ) =

1

2
(Υ1(T )− |V |), (1.4)

Var(I(T )) = κ2(I(T )) =
1

12
(Υ2(T )− |V |),

and, more generally, for k � 1,

κ2k+1(I(T )) = 0, κ2k(I(T )) =
B2k

2k
(Υ2k(T )− |V |), (1.5)

where Bk denotes the kth Bernoulli number. Moreover, I(T ) has the moment generating

function

E[etI(T )] =
∏
v∈V

ezvt − 1

zv(et − 1)
, (1.6)

and for the centralized variable we have the estimate

E[et(I(T )−E[I(T )])] � exp

(
1

8
t2

∑
v∈T

(zv − 1)2
)

� exp

(
1

8
t2

∑
v∈T

z2
v

)
= exp

(
1

8
t2Υ2(T )

)
, t ∈ R.

(1.7)

Remark 1.3. Recalling that B1 = −1/2 and B2k+1 = 0 for k � 1, (1.4)–(1.5) can also be

written as

κk(I(T )) =
Bk

k
(−1)k(Υk(T )− |V |), k � 1.

Remark 1.4. Higher moments and central moments can be calculated from the cumulants

by standard formulas [53]. (Note that all odd central moments vanish by symmetry.) For

example, recalling B4 = −1/30, Theorem 1.2 implies that

E[(I(T )− E[I(T )])4] = 3κ2(I(T ))2 + κ4(I(T )) =
1

48
(Υ2(T )− |V |)2 − 1

120
(Υ4(T )− |V |).

Remark 1.5. An inversion is a special case of a pattern in a permutation. Thus, just

as we can study inversions in trees, we can also study other patterns in trees. A recent

paper by Albert, Holmgren, Johansson and Skerman [2] generalizes Theorem 1.2 from

inversions to any fixed patterns.
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1.2. Inversions in sequences of trees

The total path length Υ(T ) has been studied for random trees such as split trees [9] and

conditional Galton–Watson trees [4, Corollary 9]. This leads us to focus on the deviation

Xn =
I(Tn)− E[I(Tn)]

s(n)
,

under some appropriate scaling s(n), for a sequence of (random or fixed) trees Tn, where

Tn has size n.

Fixed trees

Theorem 1.6. Let Tn be a sequence of fixed trees on n nodes. Let

Xn =
I(Tn)− E[I(Tn)]√

Υ2(Tn)
.

Assume that for all k � 1,

Υ2k(Tn)

Υ2(Tn)k
→ ζ2k,

for some sequence (ζ2k). Then there exists a unique distribution X with

κ2k−1(X) = 0, κ2k(X) =
B2k

2k
ζ2k, k � 1,

such that Xn
d−→ X and, moreover, E[etXn ]→ E[etX] < ∞ for every t ∈ R.

Remark 1.7. By Theorem 1.2, Var(Xn) = (Υ2(Tn)− n)/(12s(n)2). Thus, it is natural to

consider

s(n) = Θ(
√

Υ2(Tn)− n) = Θ(
√

Υ2(Tn)),

where we use Υ2(Tn)
def
=

∑
v1 ,v2

c(v1, v2) � n2.

Remark 1.8. The functions ψXn (t)
def
= E[etXn ] and ψX(t)

def
= E[etX] are called moment gen-

erating functions of Xn and X respectively. The convergence ψXn (t)→ ψX(t) < ∞ in a

neighbourhood of 0 implies that Xn
d−→ X and (|Xn|r)n�1 is uniformly integrable for all

r > 0; thus E[|Xr
n|]→ E[|X|r] for all r > 0 and E[Xr

n]→ E[Xr] for all integers r � 1. See

e.g. [27, Theorem 5.9.5].

As simple examples, we consider two extreme cases.

Example 1.9. When Pn is a path of n nodes, we have for fixed k � 1

Υk(Pn) ∼
1

k + 1
nk+1.

Thus Υ2k(Pn)/Υ2(Pn)
k → κ2k = 0 for k � 2. So by Theorem 1.6, Xn converges to a normal

distribution, and we recover the central limit law for inversions in permutations. Also, the
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vertices have subtree sizes 1, . . . , n and so we also recover from Theorem 1.2 the moment

generating function
∏n

j=1(e
jt − 1)/(j(et − 1)) [42, 52].

Example 1.10. Let Tn = Sn−1, a star with n− 1 leaves, and denote the root by o. We have

zo = n and zv = 1 for v �= o. Hence, by Lemma 1.1, or directly, I(Sn−1) ∼ Unif{0, . . . , n− 1},
and consequently

(I(Tn)− E[I(Tn)])/n
d−→ Unif

[
−1

2
,
1

2

]
.

This follows also by Theorem 1.6, since Υk(Sn−1) ∼ nk for k � 2 (e.g. by Lemma 2.3 below).

It is straightforward to compute the k-total common ancestors for b-ary trees. Thus our

next result follows immediately from Theorem 1.6.

Theorem 1.11. Let b � 2 and let Tn be the complete b-ary tree of height m with n =

(bm+1 − 1)/(b− 1) nodes. Let

Xn =
I(Tn)− E[I(Tn)]

n
and X =

∑
d�0

bd∑
j=1

Ud,j

bd
,

where (Ud,j)d�0,j�1 are independent Unif[−1/2, 1/2]. Then Xn
d−→ X and E[etXn ]→ E[etX]

< ∞, for every t ∈ R. Moreover, X is the unique random variable with

κ2k−1(X) = 0, κ2k(X) =
B2k

2k

b2k−1

b2k−1 − 1
, k � 1. (1.8)

Random trees. We move on to random trees. We consider generating a random tree Tn
and, conditioning on Tn, labelling its nodes uniformly at random. The relation (1.2) is

maintained for random trees:

E[I(Tn)] = E[E[I(Tn) | Tn]] =
1

2
E[Υ(Tn)].

The deviation of I(Tn) from its mean can be taken to mean two different things. Consider,

for some scaling function s(n),

Xn =
I(Tn)− E[I(Tn)]

s(n)
, Yn =

I(Tn)− E[I(Tn) | Tn]
s(n)

=
I(Tn)− 1

2
Υ(Tn)

s(n)
.

Then Xn and Yn each measure the deviation of I(Tn), unconditionally and conditionally.

They are related by the identity

Xn = Yn +Wn/2, (1.9)

where

Wn =
Υ(Tn)− E[Υ(Tn)]

s(n)
.
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In the case of fixed trees Wn = 0 and Xn = Yn, but for random trees we consider the

sequences separately.

We consider two classes of random trees: split trees and conditional Galton–Watson

trees.

Split trees. The first class of random trees which we study are split trees. They were

introduced by Devroye [16] to encompass many families of trees that are frequently used

in algorithm analysis, e.g. binary search trees [28], m-ary search trees [47], quad trees

[22], median-of-(2k + 1) trees [54], fringe-balanced trees [15], digital search trees [12] and

random simplex trees [16, Example 5].

A split tree can be constructed as follows. Consider a rooted infinite b-ary tree where

each node is a bucket of finite capacity s. We place n balls at the root, and the balls

individually trickle down the tree in a random fashion until no bucket is above capacity.

Each node draws a split vector V = (V1, . . . , Vb) from a common distribution, where Vi
describes the probability that a ball passing through the node continues to the ith child.

The trickle-down procedure is defined precisely in Section 4. Any node u such that the

subtree rooted as u contains no balls is then removed, and we consider the resulting

tree Tn.

In the context of split trees we differentiate between I(Tn) (the number of inversions

on nodes), and Î(Tn) (the number of inversions on balls). In the former case, the nodes

(buckets) are given labels, while in the latter the individual balls are given labels. For balls

β1, β2, write β1 < β2 if the node containing β1 is a proper ancestor of the node containing

β2; if β1, β2 are contained in the same node we do not compare their labels. Define

Î(Tn) =
∑
β1<β2

1λ(β1)>λ(β2).

Similarly define Υ̂(Tn) as the total path length on balls, i.e. the sum of the depth of all

balls. And let

X̂n =
Î(Tn)− E[Î(Tn)]

n
, Ŷn =

Î(Tn)− s0Υ̂(Tn)/2

n
, Ŵn =

Υ̂(Tn)− E[Υ̂(Tn)]

n
. (1.10)

Here s0 is a fixed integer denoting the number of balls in any internal node, and we

have X̂n = Ŷn + s0Ŵn/2 (formally justified in Section 4). The following theorem gives the

limiting distributions of the random vector (X̂n, Ŷn, Ŵn). In Section 4.4 we state a similar

result for (Xn, Yn,Wn) under stronger assumptions. Note that the concepts are identical

for any class of split trees where each node holds exactly one ball, such as binary search

trees, quad trees, digital search trees and random simplex trees.

Let d2 denote the Mallows metric, also called the minimal �2 metric (defined in

Section 4). Let Md
0,2 be the set of probability measures on R

d with zero mean and finite

second moment.

Theorem 1.12. Let Tn be a split tree and let V = (V1, . . . , Vb) be a split vector. Define

μ = −
b∑
i=1

E[Vi lnVi] and D(V) =
1

μ

b∑
i=1

Vi lnVi.
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Assume that P{∃i : Vi = 1} < 1 and s0 > 0. Let (X̂, Ŷ , Ŵ ) be the unique solution in M3
0,2

for the system of fixed-point equations

⎡⎣ X̂Ŷ
Ŵ

⎤⎦ d
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b∑
i=1

ViX̂
(i) +

s0∑
j=1

Uj +
s0

2
D(V)

b∑
i=1

ViŶ
(i) +

s0∑
j=1

(
Uj −

1

2

)
b∑
i=1

ViŴ
(i) + 1 + D(V)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1.11)

Here

(V1, . . . , Vb), U1, . . . , Us0 , (X̂(1), Ŷ (1), Ŵ (1)), . . . , (X̂(b), Ŷ (b), Ŵ (b))

are independent, with Uj ∼ Unif[0, 1] for j = 1, . . . , s0, and (X̂(i)
n , Ŷ

(i)
n , Ŵ

(i)
n ) ∼ (X̂, Ŷ , Ŵ ) for

i = 1, . . . , b. Then the sequence (X̂n, Ŷn, Ŵn) defined in (1.10) converges to (X̂, Ŷ , Ŵ ) in d2

and in moment generating function within a neighbourhood of the origin.

The proof of Theorem 1.12 uses the contraction method, introduced by Rösler [49] for

finding the total path length of binary search trees. The technique has been applied to

d-dimensional quad trees by Neininger and Rüschendorf [44] and to split trees in general

by Broutin and Holmgren [9]. The contraction method also has many other applications

in the analysis of recursive algorithms: see e.g. [45, 50, 51].

Remark 1.13. We assume that s0 > 0, for otherwise we trivially have X̂n = 0 and

Theorem 1.12 reduces to Theorem 2.1 in [9].

Remark 1.14. In a recent paper, Janson [34] showed that preferential attachment trees

and random recursive trees can be viewed as split trees with infinite-dimensional split

vectors. Thus we conjecture that the contraction method should also be applicable for

these models and give results similar to Theorem 1.12.

Remark 1.15. Assume that the constant split vector V = (1/b, . . . , 1/b) is used and each

node holds exactly one ball (a special case of digital search trees: see [15, Example 7]).

Then D(V) = −1 and (1.11) has the unique solution (X̂, Ŷ , Ŵ ) = (X,X, 0), where X has

the limiting distribution for inversions in complete b-ary trees (see Theorem 1.11). This is

as expected, as the shape of a split tree with these parameters is likely to be very similar

to a complete b-ary tree.

Conditional Galton–Watson trees. Finally, we consider conditional Galton–Watson trees

(or equivalently, simply generated trees), which were introduced by Bienaymé [8] and

Watson and Galton [55] to model the evolution of populations. A Galton–Watson tree

starts with a root node. Then recursively, each node in the tree is given a random

number of child nodes. The numbers of children are drawn independently from the same

distribution ξ called the offspring distribution.
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A conditional Galton–Watson tree Tn is a Galton–Watson tree conditioned on having

n nodes. It generalizes many uniform random tree models, e.g. Cayley trees, Catalan trees,

binary trees, b-ary trees and Motzkin trees. For a comprehensive survey, see Janson [32].

For recent developments, see [10, 17, 33, 38].

In a series of three seminal papers, Aldous [3, 4, 5] showed that Tn converges under re-

scaling to a continuum random tree, which is a tree-like object constructed from a Brownian

excursion. Therefore, many asymptotic properties of conditional Galton–Watson trees,

such as the height and the total path length, can be derived from properties of Brownian

excursions [4]. Our analysis of inversions follows a similar route. In particular, we relate

I(Tn) to the Brownian snake studied by Janson and Marckert [36], for example.

In the context of Galton–Watson trees, Aldous [4, Corollary 9] showed that n−3/2Υ(Tn)

converges to an Airy distribution. We will see that the standard deviation of I(Tn)−
1
2
Υ(Tn) is of order n5/4 
 n3/2, which by the decomposition (1.9) implies that n−3/2I(Tn)

converges to the same Airy distribution, recovering one of the main results of Panholzer

and Seitz [46, Theorem 5.3]. Our contribution for conditional Galton–Watson trees is a

detailed analysis of Yn under the scaling function s(n) = n5/4.

Let e(s), s ∈ [0, 1] be the random path of a standard Brownian excursion, and define

C(s, t)
def
= C(t, s)

def
= 2 min

s�u�t
e(u), for 0 � s � t � 1.

We define a random variable (see [31])

η
def
=

∫
[0,1]2

C(s, t)ds dt = 4

∫
0�s�t�1

min
s�u�t

e(u). (1.12)

Theorem 1.16. Suppose Tn is a conditional Galton–Watson tree with offspring distribution

ξ such that E[ξ] = 1, Var(ξ) = σ2 ∈ (0,∞), and E[eαξ] < ∞ for some α > 0, and define

Yn =
I(Tn)− 1

2
Υ(Tn)

n5/4
.

Then we have

Yn
d−→ Y

def
=

1√
12σ

√
η N , (1.13)

where N is a standard normal random variable, independent of the random variable η defined

in (1.12). Moreover, E[etYn ]→ E[etY ] < ∞ for all fixed t ∈ R.

The moments of η and Y are known [35]: see Section 5.

The rest of the paper is organized as follows. In Section 2 we prove Lemma 1.1 and

Theorem 1.2. The results for fixed trees (Theorems 1.6, 1.11) are presented in Section 3.

Split trees and conditional Galton–Watson trees are considered in Sections 4 and 5

respectively. Sections 4 and 5 are essentially self-contained, and the interested reader may

skip ahead.
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2. A fixed tree

In this section we study a fixed, non-random tree T . We begin by proving Lemma 1.1,

which shows that I(T ) is a sum of independent uniform random variables.

Proof of Lemma 1.1. We define Zu =
∑

v:v>u 1λ(u)>λ(v) and note that

I(T )
def
=

∑
u<v

1λ(u)>λ(v) =
∑
u∈V

(∑
v:v>u

1λ(u)>λ(v)

)
=

∑
u∈V

Zu,

showing (1.1). Let Tu ⊆ T denote the subtree rooted at u. It is clear that conditioned on

the set λ(Tu), λ restricted to Tu is a uniformly random labelling of Tu into λ(Tu). Recall

that zu denotes the size of Tu. If the elements of λ(Tu) are �1 < · · · < �zu and if λ(u) = �i,

then Zu = i− 1. As λ(u) is uniformly distributed, so is Zu.

We prove independence of the Zv by induction on V . The base case |V | = 1 is trivial.

Let T1, . . . , Td be the subtrees rooted at the children of the root ρ, and condition on

λ(T1), . . . , λ(Td). Given these sets, λ restricted to Ti is a uniformly random labelling of

Ti using the given labels λ(Ti), and these labellings are independent for different i. So,

conditioning on λ(T1), . . . , λ(Td), the d families (Zv)v∈Ti are independent, and each is

distributed as the corresponding family for the tree Ti.

Hence, by induction, still conditioned on λ(T1), . . . , λ(Td), (Zv)v �=ρ are independent, with

Zv ∼ Unif{0, 1, . . . , zv − 1}. Further, Zρ = λ(ρ)− 1, and λ(ρ) is determined by

λ(T1), . . . , λ(Td) (as the only label not in
⋃d

1 λ(Ti)). Hence the family (Zv)v �=ρ of independent

random variables is also independent of Zρ, and thus (Zv)v∈V are independent. This

completes the induction, and thus the proof.

Our first use of the representation in Lemma 1.1 is to prove Theorem 1.2, which gives

both a formula for the moment generating function and explicit formulas for the cumulants

of I(T ) for a fixed T . The proof begins with a simple lemma giving the cumulants and

the moment generating function of Zv in Lemma 1.1, from which Theorem 1.2 will follow

immediately.

Recall that the Bernoulli numbers Bk can be defined by their generating function

∞∑
k=0

Bk
xk

k!
=

x

ex − 1
(2.1)

(convergent for |x| < 2π): see e.g. [18, (24.2.1)]. Recall also B0 = 1, B1 = −1/2 and

B2 = 1/6, and that B2k+1 = 0 for k � 1.

Lemma 2.1. Let N � 1, and let ZN be uniformly distributed on {0, 1, . . . , N − 1}. Then

E[ZN] = (N − 1)/2, Var(ZN) = (N2 − 1)/12 and, more generally,

κk(ZN) =
Bk

k
(Nk − 1), k � 2, (2.2)

where Bk is the kth Bernoulli number. The moment generating function of ZN is

E[etZN ] =
eNt − 1

N(et − 1)
. (2.3)
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Proof. This is presumably well known, but we include a proof for completeness. The

moment generating function of ZN is

E[etZN ] =
1

N

N−1∑
j=0

ejt =
eNt − 1

N(et − 1)
, (2.4)

verifying (2.3). The function (et − 1)/t is analytic and non-zero in the disc |t| < 2π, and

thus has there a well-defined analytic logarithm

f(t) := log
et − 1

t
, (2.5)

with f(0) = 0. By (2.4) and (2.5), the cumulant generating function of ZN can be written

as

log E[etZN ] = f(Nt)− f(t). (2.6)

Differentiating (2.5) yields (for 0 < |t| < 2π)

f′(t) =
d

dt
(log(et − 1)− log t) =

et

et − 1
− 1

t
=

1

et − 1
+ 1− 1

t
,

and thus, using (2.1),

tf′(t) =
t

et − 1
+ t− 1 =

∞∑
k=0

Bk
tk

k!
− 1 + t =

∞∑
k=2

Bk
tk

k!
+

1

2
t.

Consequently,

f(t) =

∞∑
k=2

Bk

k

tk

k!
+

1

2
t, (2.7)

and thus by (2.6)

log E[etZN ] =

∞∑
k=2

Bk

k
(Nk − 1)

tk

k!
+
N − 1

2
t.

The results on cumulants follow. (Of course, E[ZN] is more simply calculated

directly.)

Remark 2.2. Similarly, using (2.7), or by (2.2) and a limiting argument, if U ∼ Unif[0, 1]

or U ∼ Unif[−1/2, 1/2], then κk(U) = Bk/k, k � 2.

Recall that in the introduction, we defined

c(v1, . . . , vk)
def
= |{u : u � v1, . . . , u � vk}|,

that is, c(v1, . . . , vk) is the number of common ancestors of v1, . . . , vk .

Lemma 2.3. Let zv denote the number of vertices in subtree rooted at v. Then for k � 1,∑
v

zkv = Υk(T )
def
=

∑
v1 ,...,vk

c(v1, . . . , vk).
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Proof. It is easily seen that ∑
u

zu =
∑
u,v

1{u�v} =
∑
v

c(v).

Similarly, ∑
u

z2
u =

∑
u,v,w

1{u�v,u�w} =
∑
v,w

c(v, w).

More generally,

∑
u

zku =
∑
u

k∏
i=1

(∑
vi

1{u�vi}

)
=

∑
v1 ,...,vk

c(v1, . . . , vk).

Remark 2.4. Observe that all common ancestors of the k vertices must lie on a path,

stretching from the last common ancestor to the root. Define a related parameter Υ′k(T )

to be the sum over all k-tuples of the length of this path (rather than number of vertices

in the path). We call this the k-common path length. Now Υ′1(T ) = Υ(T ) and Υ′2(T ) has

appeared in various contexts: see for example [31] (where it is denoted Q(T )). Let v1 ∧ v2
denote the last common ancestor of the vertices v1 and v2. It is easy to see that, with

n = |T |,

Υ′k(T )
def
=

∑
v1 ,...,vk

h(v1 ∧ · · · ∧ vk) =
∑
v1 ,...,vk

(c(v1, . . . , vk)− 1) = Υk(T )− nk,

and by Lemma 2.3, Υk(T ) =
∑

v z
k
v , so Υ′k(T ) =

∑
v �=ρ z

k
v .

Remark 2.5. Let Sk be a star with k leaves �1, . . . , �k and root o. Then Υk(T ) is the

number of embeddings φ : V (Sk)→ V (T ) such that φ(o) � φ(�i) for each i. Similarly the

k-common path-length Υ′k(T ) is the number of such embeddings φ such that φ(o) < φ(�i)

for each i.

Proof of Theorem 1.2. Since cumulants are additive for sums of independent random

variables, an immediate consequence of Lemmas 1.1 and 2.1 is that

κk(I(T )) =
Bk

k

∑
v∈V

(zkv − 1) =
Bk

k
(Υk(T )− |V |), k � 1.

where the last equality follows from Lemma 2.3. The fact that E[I(T )] = 1
2
Υ(T ) was

noted already in (1.2).

Similarly, (1.6) follows from Lemma 1.1 and (2.4).

For the estimate (1.7), note first, e.g. by Taylor expansions, that cosh x � ex
2/2 for every

real x. It follows that if U is any symmetric random variable with |U| � a, then

E[etU] = E[cosh(tU)] � ea
2t2/2. (2.8)

https://doi.org/10.1017/S0963548318000512 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000512


346 X. S. Cai, C. Holmgren, S. Janson, T. Johansson and F. Skerman

(See [29, (4.16)] for a more general result.) Lemma 1.1 thus implies, applying (2.8) to each

Zv − E[Zv],

E[et(I(T )−E[I(T )]] =
∏
v

E[et(Zv−E[Zv])] �
∏
v

et
2(zv−1)2/8 = et

2
∑

v(zv−1)2/8,

which yields (1.7), using also Lemma 2.3.

3. A sequence of fixed trees

In this section, we study

Xn =
I(Tn)− E[I(Tn)]

s(n)
,

where Tn is a sequence of fixed trees and s(n) is an appropriate normalization factor. We

start by proving Theorem 1.6, a sufficient condition for Xn to converge in distribution

when s(n) =
√

Υ2(Tn).

Proof of Theorem 1.6. First κ1(Xn) = E[Xn] = 0. For k � 2, note that shifting a random

variable does not change its kth cumulant. Also note that

Υk(Tn)
def
=

∑
v1 ,...,vk

c(v1, . . . , vk) � nk.

Therefore, it follows from Theorem 1.2 that

κk(Xn) =
κk(I(Tn))

(Υ2(Tn)− n)k/2
=
Bk

k

Υk(Tn)− n
(Υ2(Tn)− n)k/2

∼ Bk

k

Υk(Tn)

Υ2(Tn)k/2
, k � 2.

Recall that all odd Bernoulli numbers except B1 are zero. Thus letting ζk = 0 for all odd

k, the assumption that Υ2k(Tn)/Υ2(Tn)
k → ζ2k for all k � 1 implies that

κk(Xn)→
Bk

k
ζk, k � 1.

Since every moment can be expressed as a polynomial in cumulants, it follows that every

moment E[Xk
n ] converges, k � 1. Thus to show that there exists an X such that Xn

d−→ X,

it suffices to show that the moment generating function E[etXn ] stays bounded for all small

fixed t; we shall show that this holds for all real t. In fact, using Lemma 2.3,∑
v

(zv − 1)2 �
∑
v

(z2
v − 1) = Υ2(Tn)− n � Υ2(Tn).

Hence, (1.7) yields

E[etXn] � exp

(
1

8
(t/

√
Υ2(Tn))

2
∑
v

(zv − 1)2
)

� exp

(
1

8
t2

)
, t ∈ R.

This and the moment convergence imply the claims in the theorem.
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3.1. The complete b-ary tree

We prove Theorem 1.11, which asserts that for complete b-ary trees the limiting variable

of Xn is the unique X for which

κk(X) =
Bk

k

bk−1

bk−1 − 1

for even k � 2 and zero for odd k. Fix b � 2. In the complete b-ary tree of height m, each

node v at depth d ∈ {0, 1, . . . , m} has subtree size zv = am,d
def
= (bm−d+1 − 1)/(b− 1). Hence

Lemma 1.1 implies that Xn =
∑m

d=0

∑bd

j=1 Zd,j/n, where

Zd,j ∼ Unif

{
−am,d − 1

2
,−am,d − 2

2
, . . . ,

am,d − 2

2
,
am,d − 1

2

}
are independent random variables. Let Ud,j be independent Unif[−1/2, 1/2]. Approx-

imating Zd,j ≈ Ud,jam,d and noticing that n/am,d ≈ bd, intuitively we should have for

large n,

Xn =

m∑
d=0

bd∑
j=1

am,d

n
· Zd,j
am,d
≈

∑
d�0

bd∑
j=1

Ud,j

bd
def
= X. (3.1)

It is not difficult to show this rigorously by truncating the sums. Also, it is not difficult

to prove Theorem 1.11 by showing that E[etXn ]→ E[etX] for all t ∈ R and checking the

cumulants of X, using Remark 2.2. But instead we choose the route of computing the

k-total common ancestors of b-ary trees and then applying Theorem 1.6.

Lemma 3.1. Assume b � 2. Let Tn be the complete b-ary tree on n = (bm+1 − 1)/(b− 1)

nodes. Then

Υ1(Tn) ∼ n logb n, Υk(Tn) ∼
bk−1

bk−1 − 1
nk, k � 2.

Proof. The height of Tn is m ∼ logb n. It follows from Lemma 2.3 that

Υ1(Tn) =
∑
v

zv =

m∑
d=0

bd × am,d =
bm+1

b− 1

m∑
d=0

(
1− 1

bm+1−d

)
=
bm+1

b− 1
(m+ O(1)) ∼ n logb n.

Similarly, for any fixed k � 2,

Υk(Tn) =
∑
v

zkv =

m∑
d=0

bd × akm,d =
b(m+1)k

(b− 1)k

m∑
d=0

1

bd(k−1)

(
1− 1

bm+1−d

)k

∼ nk bk−1

bk−1 − 1
.

Proof of Theorem 1.11. Let X ′n = (I(Tn)− E[I(Tn)])/
√

Υ2(Tn). By Lemma 3.1, for fixed

k � 1,

Υ2k(Tn)

Υ2(Tn)k
∼
n2k b2k−1

b2k−1 − 1(
n2

b

b− 1

)k
=

b2k−1

b2k−1 − 1

(
b− 1

b

)k

.
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By Theorem 1.6, there exists a unique distribution X ′ such that

κ2k−1(X
′) = 0, κ2k(X

′) =
B2k

2k

b2k−1

b2k−1 − 1

(
b− 1

b

)k

, k � 1;

moreover, E[etX
′
n]→ E[etX

′
] < ∞ for every t. Recall that, using Lemma 3.1 again,

Xn
def
=
I(Tn)− E[I(Tn)]

n
= (1 + o(1))

(
b

b− 1

)1/2

X ′n.

Let X ′′ = (b/(b− 1))1/2X ′; then E[etXn ]→ E[etX
′′
] for every real t and X ′′ has cumulants

κ1(X
′′) = 0, κk(X

′′) =
Bk

k

bk−1

bk−1 − 1
, k � 2,

as in (1.8). It is not difficult to show that X ′′ has the same distribution as X defined in

(3.1) by checking the cumulants of X, using Remark 2.2.

3.2. Balanced b-ary trees

We call a b-ary tree balanced if all but the last level of the tree is full and vertices at the

last level take the leftmost positions. A simple example of a balanced binary tree is Tn,

in which both the left and right subtrees are complete b-ary trees but the left subtree has

one more level than the right subtree. Since the left subtree is of size about 2n/3, and the

right subtree is of size about n/3, Theorem 1.11 and Lemma 1.1 imply that

Xn =
I(Tn)− E[I(Tn)]

n

d−→ U +
2X ′

3
+
X ′′

3
,

where U ∼ Unif[−1/2, 1/2] and X ′, X ′′ are independent copies of X. The three terms in

the limit correspond to inversions involving the root, inversions in the left subtree and

inversions in the right subtree.

The above example shows that the limit distribution of Xn in a balanced b-ary tree

in which each subtree of the root is complete should be U plus a linear combination of

independent copies of X. We formalize this observation in the following corollary.

Corollary 3.2. Let Tn be a balanced b-ary tree. Let Xn and X be as in Theorem 1.11. Let

{x} def
= x− �x�. Assume that

{logb((b− 1)n)} = logb

(
1 +

b− 1

b
i

)
+ o

(
1

log n

)
, (3.2)

where i ∈ {0, . . . , b} is a constant. We have

Xn
d−→ U +

i∑
j=1

b

b+ i(b− 1)
X(j) +

b∑
j=i+1

1

b+ i(b− 1)
X(j) def

= X(b, i),

where U ∼ Unif[−1/2, 1/2], X(j) ∼ X are all independent. Moreover, E[etXn ]→ E[etX(b,i)]

for all t ∈ R.
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Remark 3.3. Condition (3.2) is equivalent to saying that all the b subtrees of the root of

Tn except one (either the ith or the (i+ 1)th) are complete b-ary trees and the exceptional

subtree differs from a complete b-ary tree in size by at most o(n/ log(n)).

4. A sequence of split trees

We will now define split trees introduced by Devroye [16]. The random split tree Tn has

parameters b, s, s0, s1,V and n. The integers b, s, s0, s1 are required to satisfy the inequalities

2 � b, 0 < s, 0 � s0 � s, 0 � bs1 � s+ 1− s0. (4.1)

and V = (V1, . . . , Vb) is a random non-negative vector with
∑b

i=1 Vi = 1. We define Tn
algorithmically. Consider the infinite b-ary tree U , and view each node as a bucket with

capacity s. Each node u is assigned an independent copy Vu of the random split vector

V . Let C(u) denote the number of balls in node u, initially setting C(u) = 0 for all u. Say

that u is a leaf if C(u) > 0 and C(v) = 0 for all children v of u, and internal if C(v) > 0

for some proper descendant v, i.e. v < u. We add n balls labelled {1, . . . , n} to U one by

one. The jth ball is added by the following ‘trickle-down’ procedure.

(1) Add j to the root.

(2) While j is at an internal node u, choose child i with probability Vu,i, where (Vu,1, . . . , Vu,b)

is the split vector at u, and move j to child i.

(3) If j is at a leaf u with C(u) < s, then j stays at u and we set C(u)← C(u) + 1.

If j is at a leaf with C(u) = s, then the balls at u are distributed among u and its

children as follows. We select s0 � s of the balls uniformly at random to stay at u.

Among the remaining s+ 1− s0 balls, we uniformly at random distribute s1 balls to

each of the b children of u. Each of the remaining s+ 1− s0 − bs1 balls is placed at a

child node chosen independently at random according to the split vector assigned to

u. This splitting process is repeated for any child which receives more than s balls.

For example, if we let b = 2, s = s0 = 1, s1 = 0 and V have the distribution of (U, 1−U)

where U ∼ Unif[0, 1], then we get the well-known binary search tree.

Once all n balls have been placed in U , we obtain Tn by deleting all nodes u such

that the subtree rooted at u contains no balls. Note that an internal node of Tn contains

exactly s0 balls, while a leaf contains a random amount in {1, . . . , s}. We assume, like

previous authors, that P{∃i : Vi = 1} < 1. We can assume V has a symmetric (permutation

invariant) distribution without loss of generality, since a uniform random permutation of

subtree order does not change the number of inversions.

An equivalent definition of split trees is as follows. Consider an infinite b-ary tree U .

The split tree Tn is constructed by distributing n balls (pieces of information) among

nodes of U . For a node u, let nu be the number of balls stored in the subtree rooted at

u. Once nu are all decided, we take Tn to be the largest subtree of U such that nu > 0

for all u ∈ Tn. Let the split vector V ∈ [0, 1]b be as before. Let Vu = (Vu,1, . . . , Vu,b) be the

independent copy of V assigned to u. Let u1, . . . , ub be the child nodes of u. Conditioning

on nu and Vu, if nu � s, then nui = 0 for all i; if nu > s, then

(nu1
, . . . , nub ) ∼Mult(n− s0 − bs1, Vu,1, . . . , Vu,b) + (s1, s1, . . . , s1),
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where Mult denotes multinomial distribution, and b, s, s0, s1 are integers satisfying (4.1).

Note that
∑b

i=1 nui � n (hence the ‘splitting’). Naturally for the root ρ, nρ = n. Thus the

distribution of (nu,Vu)u∈V (U ) is completely defined.

4.1. Outline

In this section we outline how one can apply the contraction method to prove Theorem 1.12

but leave the detailed proof to Sections 4.2 and 4.3. In Section 4.4 we state and outline the

proof of the corresponding theorem for inversions on nodes under stronger assumptions.

Recall that in (1.10) we define

X̂n =
Î(Tn)− E[Î(Tn)]

n
, Ŷn =

Î(Tn)− s0Υ̂(Tn)/2

n
, Ŵn =

Υ̂(Tn)− E[Υ̂(Tn)]

n
.

Let n = (n1, . . . , nb) denote the vector of the (random) number of balls in each of the b

subtrees of the root. Broutin and Holmgren [9] showed that, conditioning on n,

Ŵn
d
=

b∑
i=1

ni

n
Ŵni +

n− s0
n

+ D̂n(n), D̂n(n)
def
= − E[Υ̂(Tn)]

n
+

b∑
i=1

E[Υ̂(Tni )]

n
. (4.2)

We derive similar recursions for X̂n and Ŷn. Conditioning on n, Î(Tn) satisfies the

recursion

Î(Tn)
d
= Ẑρ +

b∑
i=1

Î(Tni ),

where Ẑρ denotes the number of inversions involving balls contained in the root ρ.

Therefore, still conditioning on n, we have

X̂n
d
=

b∑
i=1

ni

n
X̂ni +

Ẑρ

n
− E[Î(Tn)]

n
+

b∑
i=1

E[Î(Tni )]

n

=

b∑
i=1

ni

n
X̂ni +

Ẑρ

n
− s0

2

E[Υ̂(Tn)]

n
+
s0

2

b∑
i=1

E[Υ̂(Tni )]

n

=

b∑
i=1

ni

n
X̂ni +

Ẑρ

n
+
s0

2
D̂n(n), (4.3)

where we use that

E[Î(Tn) | Tn] =
s0

2
Υ̂(Tn). (4.4)

(See the proof of Lemma 4.2.) It follows also from (4.4) that X̂n = Ŷn + (s0/2)Ŵn and

Ŷn
d
=

b∑
i=1

ni

n
Ŷni +

Ẑρ

n
− s0

2

n− s0
n

. (4.5)

In Lemma 4.3 below, we show that

Ẑρ

n

L2

−→ U1 + · · ·+Us0 ,
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where U1, . . . , Us0 are independent and uniformly distributed in [0, 1]. Broutin and

Holmgren [9] have shown that D̂n(n)
a.s.−→ D(V), where

μ = −
b∑
i=1

E[Vi lnVi] and D(V) =
1

μ

b∑
i=1

Vi lnVi. (4.6)

Together with (n1/n, . . . , nb/n)
a.s.−→ (V1, . . . , Vb) (by the law of large numbers), we arrive at

the following fixed-point equations (already presented in Theorem 1.12):

⎡⎣ X̂Ŷ
Ŵ

⎤⎦ d
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b∑
i=1

ViX̂
(i) +

s0∑
j=1

Uj +
s0

2
D(V)

b∑
i=1

ViŶ
(i) +

s0∑
j=1

(
Uj −

1

2

)
b∑
i=1

ViŴ
(i) + 1 + D(V)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.7)

For a random vector X ∈ R
d, let ‖X‖ be the Euclidean norm of X. Let ‖X‖2

def
=√

E[‖X‖2]. Recall that Md
0,2 denotes the set of probability measures on R

d with zero

mean and finite second moment. The Mallows metric on Md
0,2 is defined by

d2(ν, λ) = inf{‖X − Y ‖2 : X ∼ λ, Y ∼ ν}.

Using the contraction method, Broutin and Holmgren [9] proved that Ŵn

d2−→ Ŵ , the

unique solution of the first equation of (4.7) in M1
0,2.

We can apply the same contraction method to show that the vector (X̂n, Ŷn, Ŵn)
d2−→

(X̂, Ŷ , Ŵ ), the unique solution of (4.7) in M3
0,2. But we only outline the argument here

since we will actually use a result by Neininger [43] which gives us a shortcut. Assume

that the independent vectors (X̂(i), Ŷ (i), Ŵ (i)), i = 1, . . . , b share some common distribution

μ ∈M3
0,2. Let F(μ) ∈M3

0,2 be the distribution of the random vector given by the right-

hand side of (4.7). Using a coupling argument, we can show that for all ν, λ ∈M3
0,2,

d2(F(ν), F(λ)) < cd2(ν, λ),

where c ∈ (0, 1) is a constant. Thus F is a contraction and by Banach’s fixed point theorem,

(4.7) must have a unique solution (X̂, Ŷ , Ŵ ) ∈M3
0,2. Finally, we can use a similar coupling

argument to show that (X̂n, Ŷn, Ŵn)
d2−→ (X̂, Ŷ , Ŵ ).

4.2. Convergence in the Mallows metric

Lemma 4.1. Let (X̂n, Ŷn, Ŵn) and (X̂, Ŷ , Ŵ ) be as in Theorem 1.12. Then

d2((X̂n, Ŷn, Ŵn), (X̂, Ŷ , Ŵ ))→ 0.

We will apply Theorem 4.1 of Neininger [43], which summarizes sufficient conditions

for the contraction method outlined in the previous section to work. Since the statement
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of the theorem is rather lengthy, we do not repeat it here and refer the readers to the

original paper.

Neininger’s theorem [43] implies that (X̂n, Ŷn, Ŵn)
d2−→ (X̂, Ŷ , Ŵ ) if the following three

conditions are satisfied:

(
Ẑρ

n
,
n1

n
, . . . ,

nb

n
, D̂n(n)

)
d2−→

( s0∑
j=1

Uj, V1, . . . , Vb, D(V)

)
, n→∞, (4.8)

b∑
i=1

E[V 2
i ] < 1, (4.9)

E

[
1[ni��]∪[ni=n]

(
ni

n

)2]
→ 0, n→ ∞, (4.10)

for all � � 1 and i = 1, . . . , b. (The three conditions correspond to (11), (12) and (13) in

[43].)

Condition (4.9) is satisfied by the assumption that P{∃i : Vi = 1} < 1. Since we assume

that s0 > 0, the event ni = n cannot happen. So the expectation in (4.10) is at most

(�/n)2 → 0 and this condition is also satisfied. The last condition (4.8) follows from the

next two lemmas.

Lemma 4.2. We have D̂n(n)
L2

−→ D(V) and supn�1 D̂n(n) is bounded deterministically.

Proof. We first derive an expression for the expected number of inversions. Any internal

node contains s0 balls, so any ball at height h has s0 × h ancestral balls. Let B(Tn) be the

set of balls in Tn. Conditioning on Tn, we have

E[Î(Tn) |Tn] = E

[ ∑
β∈B(Tn)

|{β′ : β′ < β, λ(β′) > λ(β)}|
∣∣∣∣Tn] =

∑
β∈B(Tn)

s0

2
h(β) =

s0

2
Υ̂(Tn).

Thus by Broutin and Holmgren [9, Theorem 3.1],

E[Î(Tn)] =
s0

2
E[Υ̂(Tn)] =

s0

2

[
1

μ
n ln n+ n�(ln n) + o(n)

]
, (4.11)

with μ as in (4.6), where � is a continuous function of period d = sup{a � 0 :

P{lnV1 ∈ aZ} = 1}. In particular, � is constant if lnV1 is non-lattice, meaning that

d = 0.

The convergence of the toll function can now be deduced from the same result on

the total path length from [9], but we include the short argument for completeness.

Conditioning on the split vector of the root (V1, . . . , Vn) and noting that (n1/n, . . . , nb/n)
a.s.−→
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(V1, . . . , Vb), we have from (4.2), (4.11),

D̂n(n) = −1

μ
ln n− �(ln n) +

b∑
i=1

(
1

μ

ni ln ni
n

+
ni

n
�(ln ni)

)
+ o(1)

=

( b∑
i=1

1

μ

ni

n
ln
ni

n

)
+

( b∑
i=1

ni

n
�(lnVi + ln n)

)
− �(ln n) + o(1)

=
1

μ

b∑
i=1

Vi lnVi + o(1),

where we use that � is continuous and has the same period as lnVi. So we have

D̂n(n)
a.s.−→ D(V)

def
=

1

μ

b∑
i=1

Vi lnVi,

without conditioning on (V1, . . . , Vb). Note that since for x1, . . . , xb � 0 with
∑b

i=1 xi = 1,

we have
∑b

i=1 xi ln(xi) � − ln b [13, Theorem 3.1], both D̂n(n) and D(V) are bounded

deterministically. Thus D̂n(n)
L2

−→ D(V) by the dominated convergence theorem.

Lemma 4.3. For i = 1, . . . , s0, let Ui be a Unif[0, 1] random variable independent of all

other random variables. Then there exists a coupling such that Ẑρ/n
L2

−→
∑s0

i=1Ui.

Proof. We have Ẑρ =
∑s0

i=1(λi − i), where λ1 < λ2 < · · · < λs0 are the labels for the balls

in the root, chosen uniformly at random from [n] without replacement. Indeed, the ball

with label λi forms an inversion with the balls with labels {λ : λ < λi, λ �= λj ∀j < i}, a set

of size λi − i.
Let λ′i = �nUi� for i = 1, . . . , s0. Then λ′1, . . . , λ

′
s0

are chosen independently and uniformly

at random from {1, . . . , n}. Define Ẑ ′ρ =
∑s0

i=1(λ
′
i − i). We couple Ẑ ′ρ to Ẑρ by setting

Ẑρ = Ẑ ′ρ whenever all λ′i are distinct, and otherwise setting Ẑρ =
∑s0

i=1(λi − i) for some

distinct {λ1, . . . , λs0} chosen uniformly at random. The probability that λ′i = λ′j for some

i �= j is O(1/n). (See the famous birthday problem [20, Example 3.2.5].) Since Ẑρ � s0n

and Ẑ ′ρ � s0n,

E

[(
Ẑρ

n
−
Ẑ ′ρ
n

)2]
� P{∃i �= j : λ′i = λ′j}

4s20n
2

n2
= O

(
1

n

)
.

As |λ′i/n−Ui| � 1/n, it is clear that Ẑ ′ρ/n =
∑s0

i=1(λ
′
i − i)/n converges in the second

moment to
∑s0

j=1Uj . By the triangle inequality, this is also true for Ẑρ/n.

Since (n1/n, . . . , nb/n)
a.s.−→ (V1, . . . , Vb) and ni/n � 1 for all i = 1, . . . , b, the convergence

is also in L2. This together with Lemma 4.2 and 4.3 implies (4.8). Therefore, it follows

from Theorem 4.1 of Neininger [43] that (X̂n, Ŷn, Ŵn)
d2−→ (X̂, Ŷ , Ŵ ).
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4.3. Convergence in moment generating function

To finish the proof of Theorem 1.12, it remains to show the following lemma.

Lemma 4.4. There exists a constant L ∈ (0,∞] such that for all fixed t ∈ R
3 with ‖t‖ < L,

E[exp(t · (X̂n, Ŷn, Ŵn))]→ E[exp(t · (X̂, Ŷ , Ŵ ))] < ∞,

where · denotes the inner product. If we further assume that P{∃i : Vi = 1} = 0, then L = ∞.

Remark 4.5. The condition P{∃i : Vi = 1} = 0 is necessary for L = ∞. Assume the op-

posite. By (4.7), for all t ∈ R,

E[etX̂] � E

[
t

( b∑
i=1

Ui +

b∑
i=1

ViX̂
(i) +

s0

2
C(V)

)∣∣∣∣∃i : Vi = 1

]
P{∃i : Vi = 1}

= E[et
∑ b

i=1 Ui ]P{∃i : Vi = 1}E[etX̂],

where Ui are independent Unif[0, 1]. This implies that E[etX̂] = ∞ if we choose t large

enough such that E[et
∑ b

i=1 Ui ]P{∃i : Vi = 1} > 1.

The proofs of the next two lemmas are similar to Lemma 4.1 by Rösler [49], which deals

with the total path length of binary search trees. However, we have extended the result to

cover general split trees. Moreover, Lemma 4.7 can be applied not only to inversions and

the total path length, but also to any properties of split trees that satisfies the assumptions.

Lemma 4.6. Let C1 > 0 be a constant. There exists a constant L such that for all t ∈
(−L,L), there exists Kt � 0 such that

E[exp{C1|t|+ t2KtUn}] � 1, for all n ∈ N, (4.12)

where

Un
def
= − 1 +

b∑
i=1

(
ni

n

)2

.

If we further assume that P{∃i : Vi = 1} = 0, then L = ∞.

Proof. Let p = P{∃i : Vi = 1}. Recalling the assumption that p < 1, we can choose a

constant δ ∈ (0, 1− p). Then, for ε small enough,

P

{
−1 +

b∑
i=1

V 2
i � −ε

}
� P{∃i : Vi = 1}+ δ

2
= p+

δ

2
.

Since Un
a.s.−→ −1 +

∑b
i=1 V

2
i , there exists n0 ∈ N such that

P{Un � −ε} � P

{
−1 +

b∑
i=1

V 2
i � −ε

}
+
δ

2
� p+ δ < 1, for all n � n0.
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Together with Un � 0, the above inequality implies that for all n � n0, t ∈ (−L,L), and

Kt ∈ R,

E[1[Un�−ε] exp(C1|t|+ t2KtUn)] � eC1L(p+ δ) < 1, (4.13)

if L is small enough. On the other hand, we may assume that t �= 0 and then

E[1[Un<−ε] exp(C1|t|+ t2KtUn)] � exp(C1|t| − t2Ktε) < 1− eC1L(p+ δ), (4.14)

if Kt is large enough. Together (4.13) and (4.14) imply (4.12). Note that if p = 0, then L

can be arbitrarily large.

Lemma 4.7. Let (Jn)n�1 be a sequence of d-dimensional random vectors. Let (J(i)
n )n�1 for

i = 1, . . . , b be independent copies of (Jn). Let A(i)
n be a diagonal matrix with ni/n on its

diagonal. Let (Bn)n�1 be a sequence of random N
b → R

d functions. Assume that conditioning

on n,

Jn
d
=

b∑
i=1

A(i)
n J

(i)
ni

+ Bn(n).

Further assume that supn�1‖Bn(n)‖ < C1 and ‖J1‖ < C2 deterministically for some constants

C1, C2 and that s0 > 0. Then there exists a constant L ∈ (0,∞], such that for all t ∈ R
d with

‖t‖ < L, there exists Kt � 0, such that

E[exp(t · Jn)] � exp(‖t‖2Kt), for all n ∈ N. (4.15)

Moreover, if Jn
d−→ J∗, then for all t ∈ R

d with ‖t‖ < L,

E[exp(t · Jn)]→ E[exp(t · J∗)] < ∞. (4.16)

If we further assume that P{∃i : Vi = 1} = 0, then L = ∞.

Proof. It follows from Lemma 4.6 that there exists an L ∈ (0,∞], such that for all t with

‖t‖ < L, there exists Kt � 0, such that

E[exp(C1‖t‖+Kt‖t‖2Un)] � 1. (4.17)

Now we use induction on n. Since ‖J1‖ < C2, we can increase Kt such that (4.15) holds

for n = 1. Assuming that it holds also for all Jn′ with n′ < n, we have

E[exp(t · Jn)] = E

[
exp(t · Bn(n) + t ·

b∑
i=1

A(i)
n J

(i)
ni

)

]

� eC1‖t‖E

[ b∑
i=1

Kt

(
‖t‖ni

n

)2]
= eKt‖t‖

2

E[exp(C1‖t‖+Kt‖t‖2Un)] � eKt‖t‖
2

,

where we use (4.17) and that ni < n for i = 1 . . . , b (since s0 > 0). The above inequality

implies that (et·Jn )n�1, are uniformly integrable (see [27, Theorem 5.4.2]). Therefore Jn
d−→

J∗ implies (4.16) (see [20, Theorem 5.5.2]).
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Proof of Lemma 4.4. Let Jn = (X̂n, Ŷn, Ŵn). Then (4.3), (4.5), (4.2) can be written as

Jn
d
=

b∑
i=1

A(i)
n J

(i)
ni

+ Bn(n),

where A(i)
n for i = 1, . . . , b are as in Lemma 4.7 and

Bn(n) =

[
Ẑρ

n
+
s0

2
D̂n(n),

Ẑρ

n
− s0

2

n− s0
n

,
n− s0
n

+ D̂n(n)

]T

,

where T denotes the transposition of a matrix. By Lemma 4.1, Jn converges in distribution

to (X̂, Ŷ , Ŵ ). Note that ‖Bn(n)‖ is bounded. Therefore Lemma 4.7 implies that there exists

an L ∈ (0,∞] such that for all t ∈ R
3 with ‖t‖ < L, E[et·Jn ]→ E[et·(X̂,Ŷ ,Ŵ )] < ∞.

4.4. Split tree inversions on nodes

We turn to node inversions in a split tree. The main challenge in this context is that the

number N of nodes is random in general. Thus we will limit our analysis to split trees

satisfying the two assumptions

N

n

L2

−→ α (4.18)

and

E[Υ(Tn)] =
α

μ
n ln n+ n�(ln n) + o(n), (4.19)

for some constant α ∈ (0, 1] and some continuous periodic function � with period

d = sup{a � 0 : P{lnV ∈ aZ} = 1}

(constant if d = 0), with μ = −
∑

E[V1 lnV1].

These two conditions are satisfied for many types of split trees. Holmgren [30] showed

that if lnV1 is non-lattice, i.e. d = 0, then E[N]/n = α+ o(1) and furthermore (4.18) holds.

However, in the lattice case, Régnier and Jacquet [48] showed that, for tries (split trees

with s0 = 0 and s = 1) with a fixed split vector (1/b, . . . , 1/b), E[N]/n does not converge.

Thus (4.18) cannot be true for these trees.

Condition (4.19) has been shown to be true for many types of split trees including

m-ary search trees [6, 11, 19, 40]. More specifically, Broutin and Holmgren [9] showed

that in the non-lattice case, if E[N]/n = α+ O(ln−1−ε n) for some ε > 0, then (4.19) is

satisfied. However, Flajolet, Roux and Vallée [24] showed that even in the non-lattice

case, there exist tries with some very special parameter values where E[n]/n− α tends to

zero arbitrarily slowly.

We have the following theorem, which is similar to Theorem 1.12.

Theorem 4.8. Assume the split tree Tn satisfies (4.18) and (4.19), and define

Xn =
I(Tn)− E[I(Tn)]

n
, Yn =

I(Tn)− 1
2
Υ(Tn)

n
, Wn =

Υ(Tn)− E[Υ(Tn)]

n
.
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Assume that P{∃i : Vi = 1} < 1. Let D(V) be as in (4.6). Let (X,Y ,W ) be the unique solution

in M3
0,2 for the system of fixed-point equations

⎡⎣XY
W

⎤⎦ d
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b∑
i=1

ViX
(i) + αU0 +

α

2
D(V)

b∑
i=1

ViY
(i) + α

(
U0 −

1

2

)
b∑
i=1

ViW
(i) + α+ αD(V)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here

(V1, . . . , Vb), U0, (X(1), Y (1),W (1)), . . . , (X(b), Y (b),W (b))

are independent, with U0 ∼ Unif[0, 1] and (X(i)
n , Y

(i)
n ,W

(i)
n ) ∼ (X,Y ,W ) for i = 1, . . . , b. Then

(Xn, Yn,Wn)
d2−→ (X,Y ,W ). If s0 > 0, then (Xn, Yn,Wn) also converges to (X,Y ,W ) in mo-

ment generating function within a neighbourhood of the origin.

The convergence in the Mallows metric again follows from Neininger [43, Theorem 4.1].

We leave the details to the reader as it is rather similar to inversions on balls. However,

we emphasize that the assumption (4.19) is needed to argue that

Dn(n)
def
= − E[Υ(Tn)]

n
+

1

n

b∑
i=1

E[Υ(Tni)]
L2

−→ α

μ

b∑
i=1

Vi lnVi = αD(V).

For convergence in moment generating function, note that s0 > 0 implies N � n and

Zρ/n � 1. Therefore, we can again apply Lemma 4.7 as in Section 4.3.

5. A sequence of conditional Galton–Watson trees

Let ξ be a random variable with E[ξ] = 1, Var ξ = σ2 < ∞, and E[eαξ] < ∞ for some

α > 0, (The last condition is used in the proof below, but is presumably not necessary.)

Let Gξ be a (possibly infinite) Galton–Watson tree with offspring distribution ξ. The

conditional Galton–Watson tree Tξ
n on n nodes is given by

P{Tξ
n = T } = P{Gξ = T | Gξ has n nodes}

for any rooted tree T on n nodes. The assumption E[ξ] = 1 is justified by noting that

if ζ is such that P{ξ = i} = cθiP{ζ = i} for all i � 0, then Tξ
n and Tζ

n are identically

distributed; hence it is typically possible to replace an offspring distribution ζ with an

equivalent one with mean 1: see [32, Section 4].

We fix some ξ and drop it from the notation, writing Tn = Tξ
n .

In a fixed tree T with root ρ and n total nodes, for each node v �= ρ let Qv ∼
Unif(−1/2, 1/2), all independent, and let Qρ = 0. For each node v define

Φv
def
=

∑
u�v

Qu, and let J(T )
def
=

∑
v∈T

Φv.
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In other words, Φu is the sum of Qv for all v on the path from the root to u. For each

v �= ρ also define Zv = �(Qv + 1/2)zv�, where zv denotes the size of the subtree rooted at

v. Then Zv is uniform in {0, 1, . . . , zv − 1}, and by Lemma 1.1, the quantity

I∗(T )
def
=

∑
v �=ρ

(Zv − E[Zv])

is equal in distribution to the centralized number of inversions in the tree T , ignoring

inversions involving ρ. The main part (1.13) of Theorem 1.16 will follow from arguing

that for a conditional Galton–Watson tree Tn,

J(Tn)

n5/4

d−→ Y
def
=

1√
12σ

√
ηN . (5.1)

Indeed, under the coupling of Qv and Zv above,

J(Tn) =
∑
v

Φv =
∑
v

∑
u:u�v

Qu

=
∑
u

Qu
∑
v:u�v

1 =
∑
u

Quzu

�
∑
u�=ρ

(
Zu −

zu

2
+ 1

)
< n+ I∗(Tn),

and similarly J(Tn) > I∗(Tn)− n. As ρ contributes at most n inversions to I(Tn), it follows

from the triangle inequality that |J(Tn)− (I(Tn)− Υ(Tn)/2)| � 2n = o(n5/4). Thus (5.1),

once proved, will imply that

Yn
def
=
I(Tn)− Υ(Tn)/2

n5/4
= o(1) +

J(Tn)

n5/4

d−→ Y .

The quantity J(Tn) and the limiting distribution (5.1) have been considered by several

authors. In the interests of keeping this section self-contained, we will now outline the

proof of (5.1) which relies on the concept of a discrete snake, a random curve which under

proper rescaling converges to a Brownian snake, a curve related to a standard Brownian

excursion. This convergence was shown by Gittenberger [26], and later in more generality

by Janson and Marckert [36], whose notation we use.

Define f : {0, . . . , 2(n− 1)} → V by saying that f(i) is the location of a depth-first search

(under some fixed ordering of nodes) at stage i, with f(0) = f(2(n− 1)) = ρ. Also, define

Vn(i) = d(ρ, f(i)) where d denotes distance. The process Vn(i) is called the depth-first walk,

the Harris walk or the tour of Tn. For non-integer values t, Vn(t) is given by linearly

interpolating adjacent values. See Figure 1.

Finally, define Rn(i)
def
= Φf(i) to be the value at the vertex visited after i steps. For non-

integer values t, Rn(t) is defined by linearly interpolating the integer values. Further, define

R̃n(t) by R̃n(t)
def
= Rn(t) when t ∈ {0, 1, . . . , 2n}, and

R̃n(t)
def
=

{
Rn(�t�) if Vn(�t�) > Vn(�t�),
Rn(�t�) if Vn(�t�) < Vn(�t�).
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ρ

v1 v2

v11 v12 v21

v121

1 8

2 3 4 7

5 6

9 12

10 11

(a)

Vn(t)

t

v11

v121

v1

v21

v2

(b)

Figure 1. The depth-first walk Vn(t) of a fixed tree.

In other words, R̃n(t) takes the value of node f(�t�) or f(�t�), whichever is further from

the root. We can recover J(Tn) from R̃n(t) via

2J(Tn) =

∫ 2(n−1)

0

R̃n(t)dt.

Indeed, for each non-root node v there are precisely two unit intervals during which R̃n(t)

draws its value from v, namely the two unit intervals during which the parent edge of v

is being traversed. Now, since Qv ∼ Unif(−1/2, 1/2) we have |Rn(i)− Rn(i− 1)| � 1/2 for

all i > 0 and

J(Tn)

n5/4
=

1

2n5/4

∫ 2(n−1)

0

R̃n(t)dt =
1

2n5/4

∫ 2(n−1)

0

Rn(t)dt+ O(n−1/4) =

∫ 1

0

rn(s)ds+ o(1),

where rn(s)
def
= n−1/4Rn(2(n− 1)s). Also normalize vn(s)

def
= n−1/2Vn(2(n− 1)s). Theorem 2 of

[36] (see also [26]) states that (rn, vn)
d−→ (r, v) in C[0, 1]× C[0, 1], with r, v to be defined

shortly.

Before defining r and v, we will briefly motivate what they ought to be. Firstly, as the

offspring distribution ξ of Tn satisfies E[ξ] = 1, we expect the tour Vn to be roughly a

random walk with zero-mean increments, conditioned to be non-negative and return to

the origin at time 2(n− 1), and the limiting law v ought to be a Brownian excursion (up

to a constant scale factor). Secondly, consider a node u and the path ρ = u0, u1 . . . , ud = u,

where d is the depth of u. We can define a random walk Φu(t) for t = 0, . . . , d by Φu(0) = 0

and Φu(t) =
∑t

i=1 Qui for t > 0, noting that Φu = Φu(d). Under rescaling, the random walk

Φu(t) will behave like Brownian motion. For any two nodes u1, u2 with last common

ancestor at depth m, the processes Φu1
,Φu2

agree for t = 0, . . . , m, while any subsequent

increments are independent. Hence Cov(Φu1
,Φu2

) = cm for some constant c > 0. Now,

for any i, j ∈ {0, . . . , 2(n− 1)}, the nodes f(i), f(j) at depths Vn(i), Vn(j) have last common
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ancestor f(k), where k is such that Vn(k) is minimal in the range i � k � j. Hence r(s)

should be normally distributed with variance given by v(s), and the covariance of r(s), r(t)

proportional to mins�u�t v(u).

We now define r, v precisely. If Var ξ = σ2, then v(s)
def
= 2σ−1e(s), where e(s) is a standard

Brownian excursion, as shown by Aldous [4, 5]. Conditioning on v, we define r as a centred

Gaussian process on [0, 1] with

Cov(r(s), r(t) | v) =
1

12
min
s�u�t

v(u) =
1

12σ
C(s, t), s � t.

The constant 1/12 appears as the variance of the random increments Qv . Again, Theorem 2

of [36] states that (rn, vn)
d−→ (r, v) in C[0, 1]2. We conclude that

lim
n→∞

J(Tn)

n5/4
=

∫ 1

0

rn(t)dt+ o(1)
d−→

∫ 1

0

r(t)dt
def
= Y .

This integral is the object of study in [35], wherein it is shown that

Y
def
=

∫ 1

0

r(t)dt
d
=

1√
12σ

√
η N ,

where N is a standard normal variable, η is given by

η =

∫
[0,1]2

C(s, t)ds dt,

and η,N are independent. The odd moments of Y are zero, as this is the case for N , and

by [35, Theorem 1.1], for k � 0,

E[Y 2k] =
1

(12σ)k
(2k!)

√
π

2(9k−4)/2Γ((5k − 1)/2)
ak,

where a1 = 1, and for k � 2,

ak = 2(5k − 4)(5k − 6)ak−1 +

k−1∑
i=1

aiak−i.

In particular ([35, Theorem 1.2]),

E[Y 2k] ∼ 1

(12σ)k
2π3/2β

5
(2k)1/2(10e3)−2k/4(2k)(3/4)·2k,

as k →∞, where β = 0.981038 . . . . Further analysis of the moments of η and Y , including

the moment generating function and tail estimates, can be found in [35].

Remark 5.1. Conditioning on the value of η, the random variable Y has variance

η/(12σ). The random variable η can be seen as a scaled limit of the second common

path length Υ2(Tn), which appeared in our earlier discussion on cumulants. Indeed, recall

that Υ2(Tn)
def
=

∑
u,v∈Tn c(u, v), where c(u, v) denotes the number of common ancestors

of u, v.
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5.1. Convergence of the moment generating function

The last part of Theorem 1.16 that remains to be proved is that E[etYn ]→ E[etY ] for all

fixed t ∈ R. Since we have already shown Yn
d−→ Y , we can apply the Vitali convergence

theorem once we have shown that the sequence etYn is uniformly integrable. This follows

from the next lemma.

Lemma 5.2. For all n ∈ N and t ∈ R, there exist positive constants C1 and c1 which do not

depend on n such that

E[etYn ] � C1e
c1t

4

.

Proof. Conditioned on Tn, we have by (1.7)

E[etYn | Tn] � exp

(
1

8

(
t

n5/4

)2

Υ2(Tn)

)
= exp

(
t2

8
· Υ2(Tn)

n5/2

)
.

By (1.3), we have

Υ2(Tn) =
∑
u,v∈Tn

c(u, v) � n2(Hn + 1),

where Hn denotes the height of Tn. It follows that

E[etYn ] � E

[
exp

(
Υ2(Tn)

n5/2
t2

)]
� E

[
exp

(
Hn + 1√

n
t2

)]
� et

2

E

[
exp

(
Hn√
n
t2

)]
.

The random variable Hn has been well-studied. In particular, Addario-Berry, Devroye and

Janson [1] showed that there exist positive constants C2 and c2 such that

P{Hn > x} � C2 exp

(
−c2

x2

n

)
,

for all n ∈ N and x � 0. Therefore, we have

E

[
exp

(
Hn√
n
t2

)]
= 1 +

∫ ∞

0

exP

{
Hn√
n
t2 > x

}
dx � 1

+

∫ ∞

0

exC2 exp

(
−c2

x2

t4

)
dx � 1 + C1t

2ec3t
4

for some positive constants c3 and C1. (For the equality in the above computation, see

[20, p. 56].) Thus the lemma follows.
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