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This paper describes a new model of internal hydraulic jumps in two-layer systems
that places no restrictions (such as the Boussinesq approximation) on the densities of
the two fluids. The model is based on that of Borden and Meiburg (J. Fluid Mech.,
vol. 276, 2013, R1) for Boussinesq jumps, and has the appropriate behaviour in
various limits (single-layer, small amplitude, Boussinesq, infinite depth). The energy
flux loss in each layer across the jump is positive for all realistic jumps, reaching a
maximum for the jump with maximum speed. Larger-amplitude jumps are possible,
with decreasing energy loss, down to the ‘conjugate state’ of zero energy loss.
However, it is argued that such states may be difficult to realise in practice, and if
formed, will tend to the jump with maximum speed. The energy loss is mostly in the
contracting layer unless the density there is small. The two-layer model is extended
to incorporate mixing between the layers within the jump, with mixing based on the
Richardson number.

Key words: geophysical and geological flows, hydraulics, stratified flows

1. Introduction
As defined in this paper, hydraulic jumps (or bores – the two terms are equivalent

and used interchangeably here) in two-layer fluids are flow structures that are, in
effect, a transition between two steady two-layer flow states, each consisting of two
layers with uniform velocity and density in each layer. Waves may propagate on
the interface between the layers, but the upper and lower boundaries are rigid. The
properties of the jump are defined by the properties of these two flows. In the cases
considered here, in one of these flows (designated the upstream flow), the velocities
of the two layers are the same, so that in the reference frame of this fluid, the jump is
moving into (or conceivably away from) fluid at rest. The processes that are involved
in this transition are not considered. Such hydraulic jumps may be turbulent and
occupy a limited horizontal space, or they may involve a steady downstream wave
train that causes a loss of energy flux downstream of the leading edge of the jump,
which is ultimately dissipated by friction. In such circumstances, the downstream flow
as defined by the jump is downstream of all this, though a good approximation of
this downstream state may be obtained by taking the mean of the amplitude of the
downstream wave.

The study of the dynamics of internal hydraulic jumps has a long history,
commencing with the work of Yih & Guha (1955), who developed an analytical
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FIGURE 1. Schematic diagram with notation for the model of a two-layer hydraulic jump
between two uniform states of motion. psu, psd, piu, pid denote the pressures at the upper
surface and the interface upstream and downstream respectively, and velocities denote
speeds in a frame of reference moving with the bore.

two-layer model that required the assumption that the flow within the jump be
effectively hydrostatic. Since then, as a result of various laboratory experiments and
numerical studies, a succession of different analytical models have been derived,
though the most recent (and most accurate) models have been restricted by the
requirement to make the Boussinesq approximation, implying that the difference
between the densities of the two fluids involved must be very small.

In this paper, a model is presented that removes this restriction, and is applicable
to two-layer fluids of all stable densities. In the next section the history of models of
two-layer jumps is summarised, culminating in the model of Borden and Meiburg for
Boussinesq fluids. It is then shown how the procedure that they used can be extended
to the non-Boussinesq case, and that the resulting bore structure has all the appropriate
features in terms of energy flux losses and various limits. In particular, for given initial
conditions, as the jump amplitude is increased it reaches a maximum speed, which
coincides with maximum energy flux loss in each layer; for larger amplitude the speed
and energy flux losses decrease. It is argued that these flows with amplitudes beyond
the jump of maximum speed, if they can be generated, are likely to be transient,
unstable structures. The model is also extended to include mixing at the interface,
creating a transition layer downstream, and some results are presented.

The approach here may be contrasted with that of Thorpe (2010) and Thorpe &
Li (2014). The present model takes the simplest possible configuration of hydraulic
jumps in stratified (two-layer) flow, and aims to obtain the correct solution for these
conditions. From this point, generalisations that include mixing can be made, as is
done in § 5. Thorpe’s approach, on the other hand, is to make a different set of
assumptions that include mixing processes and give results that are more complex
but are more immediately applicable to realistic flows. One may anticipate some
convergence between these two approaches.

2. A brief history of models of two-layer hydraulic jumps
The principal objective is to obtain an expression for the speed of a hydraulic

jump between two two-layer flows in terms of its amplitude. Certain conditions are
assumed, namely (1) the jump is steady in a reference frame moving with it, (2) the
top and bottom surfaces are horizontal through the jump, with no surface stress, and
(3) the layers maintain their identity through the jump, with negligible exchange of
fluid between them. The conventional picture of a two-layer hydraulic jump is given
in figure 1, with two flowing layers with densities ρ1 and ρ2. These densities may
have any value, the only restriction being that ρ2 < ρ1. The flow has a rigid upper
boundary with uniform total depth D, and the jump may be regarded as an essentially
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Two-layer hydraulic jumps 3

turbulent structure (which dissipates energy) between a supercritical upstream flow
state (in which waves cannot propagate upstream, away from the bore) with layer
velocities u1u, u2u and thicknesses d1u, d2u, and a downstream state with velocities
u1d, u2d and thicknesses d1d, d2d (which may be sub- or supercritical, as discussed
in § 4). In principle the upstream flow may have any profile, but the upstream layer
velocities are assumed to be the same in all cases considered here. Assuming that
these flows are steady in the frame of the jump, we have

d1d + d2d =D= d1u + d2u, diduid = qi = diuuiu, i= 1, 2, (2.1a,b)

where qi denotes the volume flux in the ith layer. From assumption (2) we also have
that the momentum flux S must be uniform, so that

S=
∫ D

0
p+ ρu2 dz= constant (2.2)

(where p denotes pressure), which implies

S = psuD+ 1
21ρgd2

1u + ρ1u2
1ud1u + ρ2u2

2ud2u + 1
2ρ2gD2

= psdD+ 1
21ρgd2

1d + ρ1u2
1dd1d + ρ2u2

2dd2d + 1
2ρ2gD2. (2.3)

This equation introduces an additional variable, psu − psd, which needs to be
determined by other considerations. The first attempt at this was by Yih & Guha
(1955), who made the following three additional assumptions about the dynamics
within the jump: (i) interfacial stresses are negligible, (ii) the flow is effectively
hydrostatic, and (iii) the surface pressure ps varies linearly with upper layer thickness
d2. These assumptions lead directly to the relation (Yih & Guha 1955; Baines 1995)

psu − psd = 2ρ2(d2du2
2d − d2uu2

2u)/(d2d + d2u). (2.4)

Writing
ru = d1u/D, rd = d1d/D, (2.5a,b)

and g′ =1ρ/ρ1g= ((ρ1 − ρ2)/ρ1)g, for the jump speed cJ equations (2.1)–(2.5) give

c2
J

g′D
= (ru + rd)/2[

ru

rd
+ ρ2

ρ1

(1− ru)(ru + rd)

(1− rd)(2− ru − rd)

] . (YG) (2.6)

Subsequently, instead of assumptions (ii) and (iii) above, Chu & Baddour (1977)
and Wood & Simpson (1984) made the assumption that all of the energy dissipation
within the jump occurred in the expanding layer (the lower layer in figure 1). For
Wood and Simpson this was suggested (to them) by their experiments, and it implies
that the Bernoulli equation may be applied to the contracting layer. If this is the upper
layer, it implies

psu − psd = 1
2ρ2(u2

2d − u2
2u), (2.7)

and if it is the lower layer, it is

psu − psd = 1
2ρ1(u2

1d − u2
1u)+1ρg(d1d − d1u). (2.8)
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4 P. G. Baines

Using (2.7), with the configuration of figure 1 this gives

c2
J

g′D
= (ru + rd)/2[

ru

rd
+ ρ2

ρ1

ru + rd − 2rurd

2(1− rd)2

] . (WS) (2.9)

The resulting bore speeds between these two expressions are similar unless the
amplitudes are close to the maximum possible.

More recently, Klemp, Rotunno & Skamarock (1997) have made the opposite
assumption to that of Wood and Simpson, namely that all of the dissipation occurs in
the contracting layer, at least in the case of a Boussinesq fluid (where the densities
are effectively equal except when multiplied by g). This is approximately consistent
with their own numerical simulations, and with the assumptions of Benjamin (1968)
regarding gravity currents. In the context of figure 1, this implies using (2.8) instead
of (2.6) or (2.7), giving, for the full density range,

c2
J

g′D
= [1− (ru + rd)/2](1− rd)r2

d

(1− rd)[(rd + ru)/2− rurd] + ρ2

ρ1
r2

d(1− ru)
. (KRS) (2.10)

The models are only applicable in situations where hydraulic jumps exist: generally
for ru < 0.5 and a limited range of rd > ru. These three models give different answers,
particularly for small ru. The YG and WS models give similar results but diverge at
large amplitude, with YG the larger. The KRS model gives significantly lower jump
speeds than both, but is believed to be more realistic, at least near the Boussinesq
limit.

From the viewpoint of energy dissipation, there is something wrong with each of
these models. An examination of the YG solution (2.6) shows that there is a net gain
in energy flux in the upper (contracting) layer across the jump (Li & Cummins 1998),
which would seem unphysical. For the other two models, an absence of energy loss
in either layer also cannot be correct in general terms. A numerical study by Borden,
Meiburg & Constantinescu (2012) of conditions in the Boussinesq limit showed that
mixing at the interface could cause a gain of potential energy in the expanding (lower)
layer, and they proposed a new model in this limit that involved the Reynolds and
Schmidt numbers, which they denote as the BMC model.

3. Models based on vorticity generation
Subsequent to all of the above, Borden & Meiburg (2013) proposed a new method

of solving the problem of the unknown surface pressure change across the jump. By
making the Boussinesq approximation, they could write the two-dimensional vorticity
equation for steady flow of incompressible fluids as

u · ∇ω=−g′
∂ρ∗

∂x
+ ν∇2ω, (3.1)

where ω is the vorticity in the y-direction, ρ∗= (ρ(z)− ρ2)/(ρ1− ρ2) and the pressure
term does not appear. By integrating this vorticity equation in a control volume of
fluid that includes the jump, and then employing the Gauss divergence theorem, they
were able to obtain an equation for the vorticity generation within the jump, which
provides a new equation linking upstream and downstream conditions. This provides
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Two-layer hydraulic jumps 5

a new expression for the jump speed in the Boussinesq limit, which Borden and
Meiburg term the vortex sheet (VS) model. It is shown here (and this is the central
point of this paper) that this procedure may be extended to all density ratios, providing
(in particular) a general relation for internal hydraulic jump speeds, as follows.

In general, the steady-state form of the vorticity equation (in the frame of the jump)
has the form

u · ∇ω= 1
ρ2
∇ρ ×∇p=−∇×

(
1
ρ
∇p
)
. (3.2)

We assume that the flow is on a sufficiently large scale so that the viscous term may
be neglected. Since the fluids are incompressible so that ∇ ·u=0, if (3.2) is integrated
over the region of the jump (as represented in figure 1) one obtains for the left-hand
side ∫

A
u · ∇ω dA=

∫
A
∇ · (ωu) dx dz=

∫
ωu · dS, (3.3)

where area A is the region containing the jump as depicted in figure 1, and S denotes
the boundary surfaces of A upstream and downstream. The last term of (3.3) denotes
the flux of vorticity across surface S. For jumps moving into stationary fluid, or fluid
in uniform motion, there is no upstream vorticity. On the downstream side the vorticity
is concentrated in the vortex sheet between the two fluids, and the flux of it is given
by the vortex sheet strength times the mean velocity of the sheet, which is (Saffman
1992; Borden & Meiburg 2013)∫

ωu · dS=−(u2d − u1d)(u2d + u1d)/2=−1
2
(u2

2d − u2
1d). (3.4)

The area integral of the right-hand side of (3.2) may be reduced by Stokes’s
theorem to a line integral around the boundary of area A enclosing the jump

−
∫

A
∇×

(
1
ρ
∇p
)

dA=−
∫ (

1
ρ
∇p
)
· d l, (3.5)

in the anticlockwise sense. Since the density is uniform in each layer, the integral
reduces to

−
∫ (

1
ρ
∇p
)
· d l =

(
1
ρ2
− 1
ρ1

)
(piu − pid), (3.6)

where piu and pid denote the upstream and downstream pressures at the interface
respectively (see figure 1).

The upstream pressure at the interface is equal to psu + gρ2(D − d1u) and the
corresponding downstream pressure is psd + gρ2(D − d1d). Putting these terms into
(3.6) and equating it with (3.4) gives

1
2
(u2

2d − u2
1d)=

(
1
ρ2
− 1
ρ1

)
[psu − psd + ρ2g(d1d − d1u)] = 1ρ

ρ1

psu − psd

ρ2
+ g′(d1d − d1u).

(3.7)
This is the same expression as that derived by Borden and Meiburg, except that it
has the additional term containing the difference in surface pressure, which would be
discarded in taking the Boussinesq approximation. For previous models the difference
in surface pressure was an unknown quantity, but (3.7) provides a value for it that
may be combined with the value obtained from the conservation of momentum flux S
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6 P. G. Baines

in (2.4). Eliminating psu − psd from these two equations gives the expression for the
jump speed cJ (which in present notation is equal to u1u and u2u) in terms of its
amplitude, which takes the form

c2
J

g′D
=

r2
d(1− rd)

2

[
1+

(
ρ1

ρ2
− 1
)

rd + ru

2

]
[

rd + ru

2
− rurd +

(
ρ1

ρ2
− 1
)

rurd(1− rd)
2 −
(

1− ρ2

ρ1

)
r2

d(1− ru)(1− rd)

] .
(3.8)

This model may be termed the ‘full vortex sheet (FVS)’ model. If ρ2 = ρ1 in this
expression, giving the Boussinesq limit, it reduces to (2.9) of Borden and Meiburg for
their ‘vortex sheet (VS)’ model. It also satisfies other required limits, as follows.

If rd→ ru : c2
J→ c2

0 ≡
1ρg

ρ1

d1u
+ ρ2

d2u

, (3.9)

where c0 is the linear long-wave speed.

If ρ2→ 0 : c2
J→

gd1d

2

(
1+ d1d

d1u

)
, (3.10)

which is Rayleigh’s relation for single-layer jumps (see Baines 1995, § 2.3.1).

If D→∞: c2
J→

2g′d2
1d

d1u + d1d
. (3.11)

None of the previous models (YG, WS and KRS) listed in § 2 conforms with all of
these limits.

For some purposes it useful to compare the jump speed with the linear wave speed
c0 in (3.9), and (3.8) then becomes

c2
J

c2
0
=

r2
d(1− rd)

2

[
1− ru

(
1− ρ2

ρ1

)] [
1+

(
ρ1

ρ2
− 1
)

rd + ru

2

]
ru(1− ru)

[
rd + ru

2
− rurd +

(
ρ1

ρ2
− 1
)

rurd(1− rd)
2 −
(

1− ρ2

ρ1

)
r2

d(1− ru)(1− rd)

] .
(3.12)

Some representative results for wave speeds from this model up to the point of
maximum speed are shown in figure 2 for a range of density ratios, for ru = 0.1, 0.2
and 0.35. For ρ2/ρ1 = 0.99 the results are very similar to those from the Boussinesq
model of Borden and Meiburg and the KRS model. For ρ2/ρ1 = 0.79 the results
may be compared with the observations of Baines (1984) with water and kerosene.
Comparisons are shown in figure 3 for r = ru = 0.035, 0.1 and 0.2, which give a
reasonable fit to the data, significantly better than those with the model of Yih and
Guha, with which the comparisons were presented in 1984.

The upper limit of ru values for which upward jumps may occur is 0.5 for the
Boussinesq limit, which is also observed numerically for ρ2/ρ1 = 0.99. However, for
smaller values of ρ2/ρ1 this limit increases, and it reaches 0.75 for ρ2/ρ1 = 0.1. As
the upper layer density vanishes, jumps (of modest sizes) are possible for ru values
approaching unity. Downward hydraulic drops are possible for ru values ranging
from 0.5 to 1 in the Boussinesq limit (and ρ2/ρ1 = 0.99), but as ρ2/ρ1 decreases the
range shortens, to 0.54:1 for ρ2/ρ1 = 0.79, 0.765:1 for ρ2/ρ1 = 0.1, and it vanishes
as ρ2/ρ1→ 0.
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Two-layer hydraulic jumps 7

0.1 0.2 0.3 0.4 0.5 0.6
1.0
1.2
1.4
1.6
1.8
2.0
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2.6
2.8
3.0
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0.5

0.79

0.79

0.79

0.99

0.99
0.99

FIGURE 2. (Colour online) Hydraulic jump speeds cJ for the FVS model, for ρ2/ρ1 =
0.1, 0.5, 0.79 and 0.99 as a function of amplitude rd = d1d/D for initial layer thickness
ru = d1u/D (given by the starting value of rd). cJ has been scaled with the linear wave
speed c0.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8 YG

YG

FVS

FVS

FVSYG

FIGURE 3. FVS model jump speeds for ru = 0.035, 0.1 and 0.2 compared with
experimental observations from Baines (1984) made with water and kerosene (ρ2/ρ1 =
0.79). The results obtained with the Yih–Guha (YG) model are also shown, and the FVS
model is clearly a better fit.

4. Jump amplitudes, speeds and energy losses

The results shown in figure 2 have been terminated at the point of maximum speed
of the hydraulic jumps. This is not the limit of the formal solutions for such jumps,
as the solutions continue for larger amplitude, but at decreasing jump speed. These
solutions are theoretically possible, but have lesser significance for two reasons, as
given below. Examples are shown in figure 4 for ru = 0.035 and 0.2, and in figure 5
for ru=0.965, 0.9, 0.8 and 0.65, where the jumps are downward (sometimes known as
‘hydraulic drops’). In these figures the extensions at larger amplitude and lower speed
beyond the point of maximum speed are shown as dashed. Figure 6 shows the losses
in the energy flux in each layer for ru= 0.035, 0.2, 0.8 and 0.965. Here one notes that
the energy flux loss in each layer is everywhere positive, that both rise to a maximum
at a common point, and then decrease to zero, again terminating at a common point.
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FIGURE 4. (Colour online) Hydraulic jump speeds cJ scaled with c0 as in figure 2 but
for the full range to the point of zero energy loss, for ru = 0.035 and 0.2. Amplitudes
greater than those for maximum speed are shown dashed.

0.5 0.6 0.7 0.8 0.9 1.0
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8
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0.99

0.79
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0.5
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0.2

0.2

0.2

0.1

0.1

FIGURE 5. (Colour online) Hydraulic jump (hydraulic drop) speeds cJ scaled with c0 as
in figure 4 for ru= 0.65, 0.8, 0.9 and 0.965. Amplitudes greater than those for maximum
speed are shown dashed.

In each case, the point of the double maximum coincides with the maximum in the
jump speed, and the speed curves in figures 4 and 5 are terminated at the point of
zero loss of energy flux.

The termination point represents a transition through the jump to a two-layer
flow state with the same energy fluxes in each layer (and zero loss through the
jump), which is described as a flow state that is ‘conjugate’ to the original upstream
state (Benjamin 1966; Lamb & Wan 1998). Solutions of (3.8) and (3.12) for larger
amplitudes are possible but are essentially unphysical, since they would require a
gain in energy flux within the jump. Hence the conjugate flow state represents the
maximum jump amplitude.

The criterion for maximum speed of the hydraulic jump coincides (or very nearly
coincides) with another property, namely that where the flow downstream of the jump
becomes critical, in the frame of the jump. Figure 7 shows a representative example
of this for ru = 0.1, where the upper curves show the jump speeds, and the lower
dashed curves the speeds of leftward-propagating waves (relative to the jump) on the
downstream side. The zeros for these downstream wave speeds occur at rd values very
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Two-layer hydraulic jumps 9
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(a) (b)

(c) (d)
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FIGURE 6. (Colour online) Energy flux losses for each layer within the hydraulic jump
for (a) ru = 0.035, (b) ru = 0.2, (c) ru = 0.965 and (d) ru = 0.8, for ρ2/ρ1 = 0.1, 0.2, 0.5,
0.79 and 0.99. The solid lines denote the upper layer, the dashed lines the lower layer.
Note that the upper layer is contracting in (a,b), but the lower layer is contracting in (c,d),
which show results for hydraulic drops.

slightly smaller (∼0.1 %) than those for maximum jump speed. Similar diagrams can
be derived for other ru values. This means that, for jump amplitudes smaller than that
for maximum speed, disturbances downstream of the jump are able to propagate up
to the jump, and potentially affect it by increasing or decreasing its amplitude. For
larger jump amplitudes with lower jump speeds, the downstream flow is supercritical
(relative to the jump), and disturbances from downstream cannot propagate to the jump
and influence it. This means, in particular, that jumps with amplitudes larger than
jumps with maximum speed cannot be created by forcing from downstream, whereas
smaller-amplitude jumps can. This applies to upstream jumps that are forced by flow
over topography either by a slow increase in the flow or by an obstacle of slowly
increasing height. This implies that it may be difficult to realise these larger-amplitude
jumps.

Further, if jumps with magnitudes greater than that for maximum jump speed
(and dissipation) are formed, they are probably unstable. This is because, if the
amplitude of the leading part of such a jump is decreased slightly, it will travel faster,
and the larger-amplitude component will lag behind. Conversely, an increase in the
jump amplitude will cause it to travel more slowly, and again the highest part will
lag behind. For these two reasons – difficulty of generation and inherent instability
– the practical relevance of the jumps with speeds greater than the maximum is
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FIGURE 7. (Colour online) Hydraulic jump speeds cJ scaled with c0 as in figures 2 and 4
for ru = 0.1, together with (leftward-propagating) linear wave speeds (in the frame of the
jump) on the downstream side. The flow is subcritical (wave speeds are negative, towards
the jump) for jump heights less than the value for maximum speed, and supercritical (wave
speeds are positive) for jump heights greater than this value.

doubtful, although, like the conjugate states, there may be special situations where
they may be formed and sustained. Dam-break flows are one situation in which
the large-amplitude jumps may be formed, but they would then be subject to the
instability that would lead to a jump of maximum speed followed by a wave field.
Numerical results by White & Helfrich (2014) of jumps formed (by dam-break) in
Boussinesq near-two-layer continuous stratification show maximum jump amplitude
coinciding with maximum jump speed and zero energy loss for ru = 0.1 and 0.2, but
not for 0.4. There is scope for further work to resolve these details.

In figure 6, (a,b) are for hydraulic jumps and (c,d) are for hydraulic drops. The
energy flux losses (notionally due to turbulent dissipation) show that, if the densities
of the two layers are comparable, most of the energy flux is lost in the contracting
layer. As the relative density of the upper layer decreases, the energy flux loss there
decreases in proportion, as may be seen in figure 6(b). In (c,d), the contracting lower
layer dominates the energy flux loss regardless of the density difference. As ρ2/ρ1→1
in (a,b) the energy loss of the lower layer becomes small but not zero: the dissipation
rates shown for ρ2/ρ1 = 0.99 are very close to the limiting values (ρ2/ρ1 = 0.999
gives the same result). This provides some justification for the KRS approximation
and Borden and Meiburg’s VS Boussinesq model when ρ2/ρ1 is close to unity, but
the results are not precise. For larger ru, relatively more dissipation occurs in the lower
layer: for ru = 0.2, the changeover occurs near ρ2/ρ1 = 0.25.

5. Profiles with a diffuse or mixing interface
In their study of Boussinesq internal bores, Borden and Meiburg extended their

model to include a mixing layer between the two fluids by assuming a linear variation
in both the density and velocity in place of a sharp interface. This may also be done
here for the general case, but of course it only applies if the fluids are miscible.
There are several options. One may regard the mixing as a process occurring within
the hydraulic jump with an upstream two-layer flow as described above and a
downstream flow with a mixed layer. Alternatively, one may also have a mixed layer
in the upstream flow, whether or not the velocities in the two layers are the same.
The analysis below covers both of these cases.
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Two-layer hydraulic jumps 11

z

D

FIGURE 8. Definition sketch (similar to figure 1) for a hydraulic jump with a linear
transition region between the upper and lower layers, both upstream and downstream.
Velocities are given in the frame of the jump.

We consider the general case with jump structure as shown in figure 8, with a
linear transition in both density and velocity between the upper and lower layers,
both upstream and downstream. The notation is the same as in figure 1, except for
the additional layer and the fact that the velocities and thicknesses of the upper and
lower layers are denoted by dashes, to distinguish them from the case of figure 1.
The central layer has the thickness δu upstream and δd downstream, and if z∗ is the
vertical coordinate within the central layer the velocity and density there (in a frame
of reference moving with the jump) have the form

u(z∗)= u′1u +
z∗

δu
(u′2u − u′1u), ρ(z∗)= ρ1 − z∗

δu
(ρ1 − ρ2), 0< z∗ < δu, (5.1a,b)

u(z∗)= u′1d +
z∗

δd
(u′2d − u′1d), ρ(z∗)= ρ1 − z∗

δd
(ρ1 − ρ2), 0< z∗ < δd, (5.2a,b)

where the first equation applies upstream and the second downstream. We also have

d′1u + d′2u + δu =D, d′1d + d′2d + δd =D. (5.3a,b)

As before, our objective is to obtain expressions for the flow downstream of the jump
in terms of the flow properties upstream. Since the fluids are incompressible, volume
conservation gives the equation

u′1ud′1u + u′2ud′2u + (u′1u + u′2u)
δu

2
= u′1dd′1d + u′2dd′2d + (u′1d + u′2d)

δd

2
, (5.4)

and similarly mass conservation gives

u′1ud′1u +
ρ2

ρ1
u′1ud′1u +

δu

6

[
u′1u

(
2+ ρ2

ρ1

)
+ u′2u

(
1+ 2

ρ2

ρ1

)]
= u′1dd′1d +

ρ2

ρ1
u′1dd′1d +

δd

6

[
u′1d

(
2+ ρ2

ρ1

)
+ u′2d

(
1+ 2

ρ2

ρ1

)]
. (5.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

66
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.662


12 P. G. Baines

The remaining equation is the conservation of momentum flux (2.2); inserting the
hydrostatic pressure as before, one obtains for the downstream side

S = 1
2
ρ2gd2 + psd + 1

6
g(ρ1 − ρ2)[(D− d′2d)

2 + d′1d(D− d′2d)+ d′22d] + ρ1d′1du′21d

+ ρ2d′2du′22d +
δd

12
[u′21d(3ρ1 + ρ2)+ u′22d(ρ1 + 3ρ2)+ 2u′1du′2d(ρ1 + ρ2)], (5.6)

which is equal to the corresponding expression (with subscript ‘u’ replacing subscript
‘d’) on the upstream side.

As before, we need an expression for the difference in surface pressure psu − psd,
and this is again obtained from the vorticity balance which, in the same manner as
in § 3, yields

1ρ

ρ1

psu − psd

ρ2
= 1

2
(u′22d − u′21d)−

1
2
(u′22u − u′21u)−

1ρg
ρ1

(d′1d − d′2d − d′1u + d′2u). (5.7)

Substituting this into (5.5) gives the fourth equation for the downstream flow. If δd
and δu have prescribed values, (5.2)–(5.6) may be solved numerically to determine
the jump speed and downstream conditions in terms of those upstream, as in § 3.

It remains to determine appropriate values of the intermediate layer thickness, δd
and δu. The value of δu will be dependent on processes upstream of the jump, and we
assume it to be zero here. If we restrict consideration to the case where the upstream
flow has uniform speed with no mixing layer (i.e. δu= 0, with u2u= u1u), for miscible
fluids the thickness δd will be determined by mixing processes within the jump. In
a general sense, these may be related to shear instability within the jump, which
is governed by the Richardson number Ri, defined by Ri = N2/(du/dz)2, where the
buoyancy frequency N is given by N2 = −(g/ρ)dρ/dz. On the downstream side of
the jump, this gives

Ri(z∗)= ρ1 − ρ2

(u′2d − u′1d)
2

(
ρ1 − z∗

δd
(ρ1 − ρ2)

) , (5.8)

which has maximum and minimum values at the top and bottom (respectively) of the
central layer, with values

Rimax = 1ρgδd

ρ2(u′2d − u′1d)
2
, Rimin = 1ρgδd

ρ1(u′2d − u′1d)
2
. (5.9a,b)

If Ri > 1/4 in a density-stratified shear flow, internal waves may propagate through it,
but if Ri < 1/4 they cannot. The instability of this shear layer depends on the mutual
interaction of waves propagating on the vorticity interfaces at the top and bottom of
the layer, and wave propagation in the fluid between them disrupts this process. Hence,
if Rimin > 1/4 the flow will be stable, but if Rimax < 1/4 it will be unstable. Here we
base the value of δd on the second criterion, and obtain

∆d = δd/D= ρ2(u′2d − u′1d)
2

1ρgD
. (5.10)

(This choice is, to some extent, arbitrary, and may underestimate δd, but the scaling is
robust.) To compute these values numerically for increasing values of r′d = d′1d/D, one

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

66
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.662


Two-layer hydraulic jumps 13

0.1 0.2 0.3 0.4 0.5 0.6
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

0.2

0.5
0.79

0.99

0.5
0.79

0.99

0.99
0.79

FIGURE 9. (Colour online) Comparisons of jump speeds between flows without a mixed
transition layer, as previously (solid curves), and flows with a downstream transition layer
(dashed curves) with thickness derived via (5.10), for some representative cases. The
abscissa is rd for the solid curves, r′d +∆d/2 for the dashed curves.
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FIGURE 10. (Colour online) The thickness ∆d = δd/D obtained from (5.10) for the cases
with jump speeds as given in figure 9.

takes δd = 0 for the initial increment and uses the values from the previous increment
to give the next value of δd; the error involved is negligible if the increments are
sufficiently small.

Some representative results from such calculations are shown in figures 9 and 10.
Figure 9 shows comparisons between jump speeds for ru = 0.1 and 0.2 between
cases with no (partially) mixed layer (solid lines) and flows with a downstream
mixed layer (dashed curves) as defined in (5.10). Here the jump speeds with mixing
are less than those without, except when ρ2/ρ1 is small. Thicknesses of the mixed
layer for the same parameter values are shown in figure 10. It is seen that, even
with the conservative estimate of (5.10), the transition layer thickness becomes quite
substantial with increasing jump amplitude.

6. Conclusions
I have described a new model for the properties of hydraulic jumps between two

uniform states of two-layer flow, covering the complete range of densities from a
single layer to the Boussinesq limit. The procedure is an extension of the VS model
of Borden & Meiburg (2013), and is based on the generation of vorticity within the
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14 P. G. Baines

jump, as determined by the differing upstream and downstream flows. Unlike previous
models, it does not require any assumptions about the internal dynamics (hydrostatic
flow in YG) or energy losses within the jump (CBWS, KRS), and may be termed the
full vortex sheet (FVS) model. The main point is that the vorticity produced by the
jump is contained in the downstream flow: its generation depends only on the pressure
field across the jump, which is determined from (3.2).

This model is consistent with all the expected limits, and is in good agreement
with experimental observations of jump speeds, over a range of parameters for which
comparisons can be made (Baines 1984). Energy dissipation (or energy flux loss)
within the jump is always positive for each layer, and is largest for the contracting
layer, except when it is the upper layer and the density of the latter is relatively
small. Maximum energy loss in each layer coincides with maximum jump speeds.
For jumps with amplitudes larger than that of maximum speed, the energy losses of
both layers decrease with increasing amplitude, to the limit of the ‘conjugate state’
of zero energy loss.

The flow downstream of a jump is subcritical (in the frame of the jump) for
jump amplitudes less than that for maximum speed, which means that waves from
downstream may approach and influence the jump. For jumps with larger amplitude,
the lee-side flow is supercritical and downstream waves cannot approach it (the
critical condition does not coincide with the maximum speed, but occurs very slightly
before it). This has implications for jumps formed upstream of topography, for
example. Further, it is argued that the jumps with amplitudes larger than that for
maximum speed are unstable, since a small decrease in their height will cause them
to travel faster.

If the fluids in the two layers are immiscible, mixing between them cannot occur.
But if they are miscible, then a mixing layer may form downstream of the jump, with
(approximately) linear profiles in density and velocity. Such mixing is governed by
shear instability and the Richardson number in the central layer. Equations governing
this situation are presented, with some representative results for downstream conditions
and central layer thicknesses.
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