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SUMMARY
In this work, the elementary task of controlling the contact of
a one degree-of-freedom (dof) robot with a compliant surface
is modeled as a switched system. A position controller is
used for the free motion and a force controller for the contact
task and the goal is to stabilize the robot in contact with the
spring-like environment while exerting a desired force. As
the robot makes or breaks contact, the control law switches
accordingly and the aim is to examine the system’s stability
using ideas from hybrid stability theory. By considering
typical candidate Lyapunov functions for each of the two
discrete system states, conditions on feedback gains are
derived that guarantee Lyapunov stability of the hybrid task.
It is shown that conditions can be decoupled with respect
to the discrete state only when the more general hybrid
stability theorems are used.

KEYWORDS: Hybrid and switched systems; Multiple Lya-
punov functions; Contact stability; Compliant environment;
One D.O.F. robot.

I. INTRODUCTION
In the majority of the literature in robot control, the robot
evolves either in free space (motion control), or remains
in contact with a surface (hybrid force/position control).
Each case has been traditionally considered separately and
several controllers have been proposed. The contact surface
is modeled as either an algebraic equation constraining
the end effector or as a spring like environment with the
assumption that contact is not lost during the task. Some of
the most popular controllers suggested for the constrained
or compliant contact case can be found in1–6. However, real
robotic tasks include phases of transition between free motion
and constrained motion. The transition phase appears to be in
most cases crucial for the system’s stability as for example are
the cases of hopping robots, walking machines and robotic
hand manipulations. Furthermore, it is possible to loose
contact with the surface in a contact task as a result of external
disturbances and/or uncertainties on the constraint surface.
Contact stability problems have been investigated7–10 while
some theoretical and experimental results have been devoted
to impact and force control.11–14 Attempts have also been
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made to model and control the transition phase between free
and constrained motion.15–20

In general, the force controller that is designed to achieve
the contact task will be unsuitable when the robot is in free
motion. One solution to this problem is to use a position
controller for the free motion and a force controller for the
contact task. When the robot makes or breaks contact with
the environment the control law can be switched accordingly.
This type of solution will be analyzed in this paper. An
alternative solution proposed in the literature is to use a
unique control scheme for both free-motion and contact
mode (e.g. as in impedance control5). Most of the work that
has been done in robotics in dealing with the problem of
switching from free motion to contact is mainly experimental
and the problem of contact stability has not been extensively
analyzed yet. A possible explanation for this is the absence,
up to relatively recently, of a “complete” theory for such
systems. However, the well-established Lyapunov stability
theory of non-linear systems has now been extended for the
case of hybrid and switched systems and the idea of multiple
Lyapunov functions has been introduced.21

This work deals with the problem of contact stability of a
one degree-of-freedom manipulator coming into contact with
a compliant surface and exerting a desired force, using the
stability theory of hybrid systems. A simple PD controller is
used for position control in the non-contact phase and a PI
force controller when the system is in contact. It is shown
that when stability theorems for hybrid systems, with strict
conditions, are used, the analysis results in conditions that
depend on the stiffness of the environment. On the other hand,
when more general theorems are used, greater flexibility
for the stability conditions can be obtained. The paper is
organized as follows. In section 2, after a short review of
the models used to describe hybrid and switched systems,
the hybrid model of a one degree-of-freedom robot arm is
given. In section 3, two important theorems for the stability
of hybrid systems are presented. Section 4 is devoted to the
stability analysis and the derivation of sufficient conditions
for the one degree-of-freedom robot contact problem and last,
in section 5, conclusions are drawn and future extensions are
discussed.

II. HYBRID SYSTEM MODEL
A hybrid system can be described as a finite set of discrete
states, with each discrete state corresponding to different
continuous dynamics. The state of a hybrid system is
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therefore composed of discrete and continuous components.
Reviews of formal models for hybrid systems and stability
results can be found in references [22–25]. Typically, a
model is chosen depending on the problem that needs to be
addressed. We will mainly follow the approach in references
[22, 23] where the formal model of a hybrid system is given
as:

ẋ = f(x, m) (1)

where x ∈�n is the continuous state and m ∈ M ={m1,

m2, . . . , mN} is the discrete state that in general and for an
autonomous system depends on the continuous state x and the
previous discrete state m− i.e. m = ϕ(x, m−) where ϕ : M ×
�n → M is a discrete transition. Sometimes (1) is written in
the form

ẋ(t) = fi(x(t)) (2)

which is obtained if (1) is evaluated for mi ∈ M i.e. fi(x(t)) =
f(x, mi).

The evolution of the continuous state of the hybrid system
(1) can be described in the following way. Starting at (x0, mi)
at time t0, the continuous trajectory evolves according to
ẋ = f(x, mi). Let us assume that at time t1, x reaches a
value x1 that triggers a discrete state change from mi to mj;
then, the process continues according to ẋ = f(x, mj). Here,
we consider hybrid systems for which the continuous state
does not change during switching and therefore the hybrid
state (x1, mi) becomes (x1, mj) at switching. The changes of
discrete states are formally described by switch sets

Si,j = {x ∈ �n|mj = ϕ(x, mi)} (3)

that are typically given by hyper-surfaces of the state space
e.g. sij(x) = 0 and result in a state space partition.

If for each x ∈ �n, only one mi ∈ M is possible then the
system is called a switched system. However if there are
some x ∈�n for which several discrete states are possible
then the system is called a hybrid system.

The evolution of the discrete state of the hybrid system (1)
from an initial state (x0, mi) can be described by a switching
sequence of

�(x0,mi) = (µ0, t0), (µ1, t1), . . . µk ∈ M (4)

where tk < tk+1 and µ0 = mi. The notion (µk, tk) means that
ẋ(t) = f(x, µk) for tk ≤ t < tk+1.

An existence and uniqueness theorem for hybrid systems
with a finite number of discrete states is given in references
[26–27]. Each vector field is assumed to be globally Lipschitz
and the switch sets Si,j, are assumed to satisfy certain
properties. For instance, it is assumed that Si,j ∩ Sj,i =∅, i �= j,
which implies that no sliding motion occurs. Furthermore,
it is assumed that Si,j ∩ Si,k =∅, i �= j �= k such that the next
discrete state is uniquely defined. Under these conditions, it is
shown that there exist a unique continuous function x(t) and
a switching sequence m(t) satisfying the dynamics (1) almost
everywhere (except at switching points). Furthermore, it is
also guaranteed that there will be finitely many switching
points in finite time.

Similarly to nonlinear systems, an important concept in
hybrid systems is that of equilibrium points. A hybrid state
(xeq, meq) is said to be a hybrid equilibrium of (1) (or simply
an equilibrium state) if it has the property that whenever
the hybrid state starts at (xeq, meq) it will remain there for all
future time. A continuous equilibrium state xeq is also defined
as the continuous state that whenever the hybrid system starts
at xeq for some discrete state, it will remain there for all future
time. As in autonomous differential equations, the hybrid
equilibrium points may be obtained by finding the states
satisfying.

f(x, m) = 0 (5)

Obviously, all continuous states satisfying (5) are
continuous equilibrium points xeq. However, not all solutions
of (5) are hybrid equilibriums because there may be not
possible hybrid states. For example, one solution of (5)
(xeq, mi) may not be possible in the sense that xeq is not
contained in that region of the state space that is associated
with the discrete state mi. In some systems xeq is possible
for all discrete states in M but this is limited to special
cases; for example in the linear hybrid system in which
f(x, mi) = A(m)x = 0 despite the value of m.

As for nonlinear systems, it is possible to transform hybrid
systems (with nonlinear vector fields) such that a specific
continuous equilibrium point xeq is at the origin of the
continuous state space.28,29

We will use hybrid system stability in order to investigate
the contact stability problem in robotics. We will analyze
a simple but significant example that can be considered as
a simplified representation of the more complex mechanical
system of a multi degree of freedom robot. Consider a simple
one degree-of-freedom robot with rigid end-point that is
initially at non-contact with a compliant surface. Our control
objective is to establish contact with the surface in a stable
way and apply a constant desired force. This objective implies
robot motion both in free space while moving towards the
surface and in contact with the surface while trying to push
against it with the desired force.

If friction and gravity are neglected the equivalent
mechanical model is that of a mass moving horizontally
under the action of a command force u towards the surface
that is here modeled by a spring (figure 1). The spring can
be considered linear with stiffness k > 0 and being at rest
at x = 0. The position of the mass is given by x(t). We
distinguish two discrete states in this system. The contact
state where the applied force is given by f = kx for x ≥ 0 and

Fig. 1. Controlled mass establishing contact with an elastic surface.
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the non-contact state where f = 0 for x < 0. The system can
therefore be cast as a hybrid system with two discrete states.

Many efficient control laws have been proposed in the
past for each of the discrete states of free motion and force
control. It is reasonable to use a position controller for the free
space motion and a force controller for the contact problem,
particularly if the surface compliance is uncertain. In our case
we utilize a simple PD position controller for the non-contact
state with a position reference inside the surface in order to
achieve the contact, and a PI force controller for the contact
state in order to apply the desired force.

The closed loop dynamics of the one dof robot for the
non-contact case are

mẍ = u1 (6)

where

u1 = −Kv1ẋ − Kp1�xint, �xint = x − xint, xint > 0

is the PD controller used to establish contact with the surface.
This can be achieved by choosing a reference position xint > 0
i.e. any point inside the surface.

For the contact phase the closed loop dynamics of the robot
are

mẍ = u2 − f (7)

where

u2 = fd − Kv2ẋ − Kf�f − KI

∫ t

tk

�fdξ, �f = f − fd

is a PI force controller with Kv1, Kp1, Kv2, Kf, KI positive
real gains, tk the time instant where the robot’s end-effector
comes in contact with the elastic surface and fd denotes the
desired contact force that corresponds to the desired resting
position xd = 1

k fd > 0.
Compactly, the closed loop system dynamics at each

discrete state can be written as

mẍ = −Kv1ẋ − Kp1�xint for x < 0
(8)

mẍ = −Kv2ẋ − K′
f�f − KI�F for x ≥ 0

where

K′
f = Kf + 1 and �F =

∫ t

tk

�fdξ .

Since f is a function of x we can define (x, ẋ) ∈ �2 as
the state of (8). Furthermore let M ={mnc, mc} be the set of
the two distinct discrete states for non-contact and contact
phase. Note that (8) is a switched system since for each (x, ẋ)
only one mi ∈ M is possible. The continuous dynamics of the
system described by (8) can be written in the form of (2) i.e.
ẋ(t) = fc(x(t)) for the contact case and ẋ(t) = fnc(x(t)) for the
non-contact case. The switching between the two discrete
states occurs at the following two lines of the state space:

Snc,c = {(x, ẋ) ∈ �2 : x = 0 and ẋ ≥ 0} (9)

Fig. 2. Switching lines and system equilibrium.

and

Sc,nc = {(x, ẋ) ∈ �2 : x = 0 and ẋ < 0}

which are the positive and negative y-axis of the phase plane.
It is obvious that Snc,c ∩ Sc,nc = ∅, implying that sliding does
not occur, the solution of the system is unique and that there
are finite switches in finite time. Switch sets (9) partition the
continuous state space in two regions (figure 2).

There are two continuous equilibrium points one for each
discrete system state, (xint, 0) for the non-contact subsystem
in (8) and (fd, 0) or (xd, 0) for the second subsystem. It is
obvious that if xint > 0, only the latter equilibrium point
is possible thus the system possesses only one hybrid
equilibrium point at (xd, 0), that can be easily shifted to the
origin with a suitable change of variables if desired. The
continuous equilibrium is the same for both discrete states
in the special case when xint ≡ xd. This may be possible if
the model of the surface compliance is fully known and the
reference position is set to the desired resting point. Although
it has been proved that each subsystem is asymptotically
stable, there is no guarantee that the hybrid system (8) is
stable. Our aim is to investigate the stability of the hybrid
system (8). We will, first, state some of the known stability
theorems for the hybrid systems in the next section.

III. STABILITY OF HYBRID SYSTEMS
Many stability results of switched and hybrid systems have
been presented in the literature.21–25 Most of the stability
results require the existence of several auxiliary functions,
often referred as multiple Lyapunov functions, or candidate
Lyapunov functions with certain properties, which can be
interpreted as a measure of the system energy, and are
extension of Lyapunov functions used in classical Lyapunov
theory. In order to show stability it is assumed that the
solution of the hybrid system exists, is unique and that there
are finite switches in finite time.

Next we state two basic stability theorems for hybrid
systems. Their generalization can be found in references [21–
23]. Without loss of generality the origin is assumed to be
a continuous equilibrium for which stability is investigated.
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610 Hybrid system

As already mentioned, this does not necessarily imply that
f(0, mi) = 0 ∀mi ∈ M.

Assume that the hybrid state space H is partitioned into
� <∞ disjoint regions �1 . . . �� ⊆ H (i.e. �i ∩ �j =∅, i �= j).
Let us define a continuous scalar function with continuous
partial derivatives Vi : �x

i → � used as a measure of system’s
energy in region �i where by �x

i we denote the continuous
state that belongs to �i. Let the overall energy be defined by
the function V(x) = {Vi(x) : (x, m) ∈ �i} which, in general, is
discontinuous at switching times. Under these assumptions
the following theorem holds.22

Theorem 1: Let the hybrid system (2). If there exist
Vi(x) : �x

i → �, and class K functions α : �+ → �+ and
β : �+ → �+ such that

(i). x ∈ �x
i , α(‖x‖) ≤ Vi(x) ≤ β(‖x‖)

(ii). (x, m) ∈ �i, V̇i ≤ 0
(iii). Vj(x) ≤ Vi(x) at Si,j

then the equilibrium point 0 of (2) is stable in the sense of
Lyapunov.

The lower restriction of the scalar functions Vi by the
class K function is equivalent to saying that these functions
are positive definite. A positive definite function is greater
than zero in all points except at the origin (or another point if
explicitly written), where it is zero.28 This definition may be
used also in the case when Vi is not defined at the origin i.e.
when it is not associated with the state region containing the
origin, with the obvious interpretation that the function only
has to be strictly greater than zero in the set of states where it
is defined.22 Such an example is shown in figure 3, where V1

is a function for which condition (i) holds although it has a
nonzero minimum in �2. Clearly, if V1 minimum is contained
in its definition region one could not find a class K function
α to satisfy the lower bound of condition (i). Function β
prevents the overall energy V(x) from being discontinuous at
the origin in the radial direction.22

Condition (iii) of theorem 1 is a requirement for the
system’s energy V to decrease at switching points and
concerns neighboring functions Vi, Vj; i.e. condition 3
requires that each time a new Vj is active its value must
be smaller than the value of the previously active Vi. This is

Fig. 3. Example of functions Vi satisfying the first condition in
theorem 1.

Fig. 4. Sequence of candidate Lyapunov functions Vi satisfying
condition 3 of theorem 2.

a conservative condition that can be relaxed in a more general
hybrid stability theorem.21,23

Theorem 2: Let the hybrid system (2). If there exist
continuous scalar functions with continuous partial derivat-
ives Vi(x) : �x

i → �, and class Kfunctions α : �+ → �+ and
β : �+ → �+ such that

(i). x ∈ �x
i , α(‖x‖) ≤ Vi(x) ≤ β(‖x‖)

(ii). (x, m) ∈ �i, V̇i ≤ 0
(iii). Vi(x(tk+1)) ≤ Vi(x(tk)) where tk, tk+1 are consequent

times where the function Vi is “switched-in” then the
equilibrium 0 of (2) is stable.

Condition (iii) concerns the value of each function Vi

each time is “switched in”. It means that the value of Vi at
switching points (at Sk,i for some k) should be smaller than
that of the previous time it has become active or “switched
in”; this may have happened at Sk,i or at another switch set
say S�,i. Note that this condition is more relaxed than that
of theorem 1 since it does not require the overall system’s
energy V to decrease at switching points (figure 4). In general,
however, this condition requires knowledge of the continuous
trajectory of the hybrid system, at times where there are
switches of candidate Lyapunov functions, which is usually
hard to find. However, for special cases of switched systems
with state-dependent switching of the Lyapunov function,
condition 3 can be checked more easily.

Theorems 1 and 2 refer to the stability of hybrid systems
but it is possible to easily extend them for the case of
asymptotic stability by strengthening their conditions. We
can distinguish two cases depending on whether the switches
of the Lyapunov functions are infinite or not. Infinitely many
switches of Lyapunov functions are possible if, for example,
the continuous equilibrium point is associated with all
regions e.g. f(0, mi) = 0 ∀mi. If there are infinitely switches
of the Lyapunov functions for which all the conditions hold
(in either theorem) and they are strictly decreasing each time
they “switched in” then the hybrid system is asymptotically
stable. If there are not infinitely many, but the last active one
is strictly decreasing, then the system is also asymptotically
stable.23
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Fig. 5. State space partition in regions �1 and �2.

IV. STABILITY ANALYSIS FOR ONE DOF ROBOT
SWITCHED SYSTEM
For the case of a simple one degree-of-freedom robot of this
work, we can easily divide the state space in two disjoint
regions �1 and �2 (figure 5) in a way that �x

1 is the non-
contact part of the state-space (i.e. �x

1 ={(x, ẋ) ∈ �2 : x < 0})
and �x

2 the contact part (i.e. �x
2 = {(x, ẋ) ∈�2 : x ≥ 0}). It is

important to note that, both the continuous equilibriums of
system (8) belong to �x

2.
Let us define two continuous scalar functions with

continuous partial derivatives Vnc and Vc used as a measure
of system’s energy in region �1 and �2, respectively.

For the non-contact case, we choose

Vnc = 1

2
mẋ2 + 1

2
Kp1�x2

int (10)

which is strictly positive in �x
1, since the unique point

(�xint, 0) that minimizes Vnc does not belong to the region
�1 where Vnc is defined.

For the contact case a good choice of candidate Lyapunov
function is

Vc = 1

2
mẋ2 + amk�x ẋ + 1

2
K′

fk�x2

+ 1

2
aKv2k�x2 + KI�F�x + 1

2
aKI�F2 (11)

that can also be written as

Vc = 1

4
mẋ2 + 1

4
m(ẋ + 2ak�x)2 − ma2k2�x2

+ 1

2
K′

fk�x2 + 1

2
aKv2k�x2 + KI�F�x + 1

2
aKI�F2

or equivalently

Vc = 1

4
mẋ2 + 1

4
m(ẋ + 2ak�x)2 + 1

2

[
�x

�F

]T

×
[

k
(
K′

f + a
(
Kv2 − 2amk

))
KI

KI aKI

] [
�x
�F

]

where a > 0, �x = x − xd and the positive controller gains
are chosen to satisfy

(
K′

f + a
(
Kv2 − 2amk

))
> 0 (12.1)

and

ak
(
K′

f + a
(
Kv2 − 2amk

)) − KI > 0 (12.2)

so that Vc is positive definite in �x
2 meaning that Vc is strictly

positive for all (x, ẋ) ∈ �x
2 except (xd, 0) where it becomes

zero.
Using the fact that Vnc is strictly positive in �x

1 and Vc is
positive definite in �x

2, it can be shown similarly to [28], that
α and β functions of K class exist, such that the first condition
of theorems 1 and 2 is satisfied (see figure 3).

For the non-contact case the time derivative of (10) is

V̇nc = −Kv1ẋ2 (13)

which is negative semi-definite in �1. It is easy to prove
that if motion is free at the entire state space and hence
there is no system switching, (xint, 0) would be the unique
asymptotically stable equilibrium.

The derivative of (11) is

V̇c = (−Kv2 + amk)ẋ2 + k(KI − aK′
fk)�x2 (14)

and it is negative definite in �2 if the controller gains satisfy
inequalities Kv2 − amk > 0 and aK′

fk − KI > 0. Hence, if we
assume that we do not loose contact with the environment
then (xd, 0) will be the asymptotically stable equilibrium of
the closed loop system.

A conservative choice for Kv2 can be made to satisfy
both (12.1) and the first of the above inequalities. This is
if we choose Kv2 to satisfy the inequality Kv2 − 2amk > 0.
Then, note that by satisfying the second of the above
inequalities aK′

fk − KI > 0 implies that (12.2) also holds.
Hence, controller gains should be chosen to satisfy

Kv2 > 2amk

KI < akK′
f

(15)

so that the second condition of stability theorems 1 and 2 is
true.

Let us assume that the robot arm loses contact with the
environment at t = ti and establishes contact at t = ti+1 > ti.
Then, free motion occurs on intervals [t2i, t2i+1) and the mass
is in contact on intervals [t2i+1, t2i+2) (figure 6). At the contact
surface (x = 0) the velocity of the mass, is positive if the
mass moves from non-contact phase to contact phase and
negative for the reverse (figure 1). Since the non-contact
closed loop system continuous equilibrium (xint, 0) would be
asymptotically stable in free motion, we can easily deduce
that each time the arm loses contact with the surface it will
reestablish contact after some finite time (figure 6).

Proposition 1: Condition (iii) of theorem 1 is satisfied
for system (8) if controller gain Kp1 is chosen so as to

https://doi.org/10.1017/S0263574704001201 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704001201


612 Hybrid system

Fig. 6. A stable solution trajectory.

satisfy, 1
x2

int
(K′

f + aKv2)kx2
d ≤ Kp1 ≤ 1

x2
int

((K′
f + aKv2)kx2

d + γ)
for some suitable choice of a for which γ ≥ 0.

Proof: Let switching times t = ti when the arm moves from
the contact phase to free motion and the state of the system
reaches switching line Sc,nc (figure 2). Then, ẋ < 0,

�x = −xd, �xint =−xint, �f =−fd.

Hence

Vnc(x(ti)) = 1

2
mẋ2 + 1

2
Kp1x2

int

and

Vc(x(ti)) = 1

2
mẋ2 − amkxdẋ + 1

2
K′

fkx2
d + 1

2
aKv2kx2

d + 1

2
γ

where γ = aKI�F2
i − 2KI�Fixd with �Fi =

∫ ti
ti−1

�fdξ < ∞
and 0 < ti − ti−1 <∞ the total time that the robot’s end-
effector stays in touch with the compliant surface before it
loses contact at time ti. We assume that the integrator in the
PI controller resets each time the robot end effector loses
contact with the surface. Hence, �Fi = 0 at switching times
when crossing Snc,c and then γ = 0. Otherwise, at Sc,nc it is
possible to find a suitable a > 0 such that γ ≥ 0. Specifically,
if �Fi ≤ 0 then γ ≥ 0 for any a > 0, or else, if �Fi > 0 we can
choose a ≥ 2fd

k mini �Fi
> 0 so that γ = aKI�F2

i − 2KI�Fixd ≥ 0
for all i.

Therefore,

Vnc(x(ti)) − Vc(x(ti)) = 1

2
Kp1x2

int + amkxdẋ

− 1

2
(K′

f + aKv2)kx2
d − 1

2
γ,

and since ẋ < 0,

Vnc(x(ti)) − Vc(x(ti))

≤ 1

2
Kp1x2

int − 1

2
(K′

f + aKv2)kx2
d − 1

2
γ ≤ 0

when

Kp1 ≤ 1

x2
int

(
(K′

f + aKv2)kx2
d + γ

)
. (16)

At switching times t = ti + 1 when the mass moves from
free motion to contact phase, the system reaches switching
line Snc,c. Then ẋ > 0, �x = −xd, �xint = −xint, �f =−fd

and �F = 0.
Hence

Vnc(x(ti+1)) = 1

2
mẋ2 + 1

2
Kp1x2

int

Vc(x(ti+1)) = 1

2
mẋ2 − amkxdẋ + 1

2
K′

fkx2
d + 1

2
aKv2kx2

d

Therefore,

Vnc(x(ti+1)) − Vc(x(ti+1)) = 1

2
Kp1x2

int + amkxdẋ

− 1

2
(K′

f + aKv2)kx2
d.

Since ẋ ≥ 0,

Vnc(x(ti+1)) − Vc(x(ti+1))

≥ 1

2
Kp1x2

int − 1

2
(K′

f + aKv2)kx2
d ≥ 0

when

Kp1 ≥ 1

x2
int

(K′
f + aKv2)kx2

d (17)

Q.E.D.

Control gain conditions (15), (16) and (17) are sufficient
conditions for the system (8) to be Lyapunov stable according
to theorem 1. Note however, that the proportional gain Kp1 of
the PD controller for the free robot motion has a lower bound
that depends on the surface’s stiffness, a result that becomes
useless as soon as the stiffness of the surface k becomes
too large. Moreover, gains of the two controllers cannot be
chosen independently which is a significant drawback in the
usefulness of this theorem and the stability analysis of the
contact problem. To overcome this problem we next consider
the third condition of the second, more general stability
theorem.

Proposition 2: If γ ≥ 0 then, the third condition (iii) of
theorem 2 is satisfied for system (8)

Proof : Vnc is a non-increasing function along the system
solution in �x

1 because of (13). Hence during the non-contact
time interval [t2i, t2i + 1), it is true that

Vnc(t2i) ≥ Vnc(t2i+1), (18)

which implies

1

2
mẋ(t2i)

2 ≥ 1

2
mẋ(t2i+1)2
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and therefore

|ẋ(t2i)| ≥ |ẋ(t2i+1)|, ∀i. (19)

On the other hand, Vc is a strictly decreasing function in
�x

2 along the system solution because of (14). Hence during
the contact time interval [t2i + 1, t2i + 2), it is true that

Vc(t2i+1) > Vc(t2i+2). (20)

Given that ẋ(t2i+1) is the velocity of the arm when crossing
Snc,c and ẋ(t2i + 2) is the velocity when crossing Sc,nc,
ẋ(t2i + 1) > 0 and ẋ(t2i + 2) < 0. Hence, if γ ≥ 0, (20) implies

1

2
mẋ(t2i+1)2 >

1

2
mẋ(t2i+2)2.

Therefore,

|ẋ(t2i+1)| > |ẋ(t2i+2)|, ∀i. (21)

From (19) and (21) we deduce that

|ẋ(t2i)| > |ẋ(t2i+2)|, ∀i (22)

i.e. the velocity of the system at consequent times where the
function Vnc is “switched-in” is decreasing.

It is easy to show that because of (22),

Vnc(t2i) > Vnc(t2i+2). (23)

On the other hand,
at t2i+2:

Vc(t2i+2) = 1

2
mẋ(t2i+2)2 − amkxd ẋ(t2i+2)

+ 1

2
K′

fkx2
d + 1

2
aKv2kx2

d + 1

2
γ

and at t2i+3:

Vc(t2i+3) = 1

2
mẋ(t2i+3) − amkxdẋ(t2i+3)

+ 1

2
K′

fkx2
d + 1

2
aKv2kx2

d.

Note that in the second equation γ = 0 because during the
non-contact phase [t2i + 2, t2i + 3) the integral of the force error
has been reset to zero. Subtracting the above two functions
and using the assumption that γ ≥ 0 we find that

Vc(t2i+2) − Vc(t2i+3) ≥ 1

2
mẋ(t2i+2)2 − amkxd ẋ(t2i+2)

− 1

2
mẋ(t2i+3)2 + amkxd ẋ(t2i+3).

Since

ẋ(t2i + 2) < 0 and ẋ(t2i+3) > 0,

Vc(t2i + 2) − Vc(t2i+3) ≥ 1

2
mẋ(t2i+2)2 − 1

2
mẋ(t2i+3)2.

Furthermore, due to (19), |ẋ(t2i + 2)| ≥ |ẋ(t2i + 3)| and therefore
Vc(t2i+2) ≥ Vc(t2i + 3) and due to (20),

Vc(t2i + 1) > Vc(t2i + 3). (24)

Taking (23) and (24) together imply that the third condition
of theorem 2 holds. Q.E.D.

By assuming γ ≥ 0 we mean that we can choose
a > 0 so that γ = aKI�F2

i − 2KI�Fixd ≥ 0 and as before
a ≥ 2fd

k mini �Fi
> 0.

Theorem 3: The hybrid equilibrium point (xd, 0) of system
(8) is asymptotically stable if control gains are chosen to
satisfy

Kv2 > 2amk

KI < akK′
f

γ = KI�Fi(a�Fi − 2xd) ≥ 0.

Proof : We have proved that all three conditions of theorem
2 hold for the hybrid equilibrium point (xd, 0) of the switched
system (8) and therefore (xd, 0) is stable. Furthermore, we
can easily prove by contradiction that there is a finite number
of Lyapunov function switches. The assumption of infinite
switches results in an equilibrium point at the origin that
contradicts the fact that (xd, 0) is the unique equilibrium of
the system. Given that xint > 0 the last switch would bring
the system to the contact phase. As the contact Lyapunov
function (Vc) is strictly decreasing, we can easily prove that
(xd, 0) is asymptotic stable. Q.E.D.

Note that control gain conditions concern only the gains of
the contact force controller. The surface stiffness affect the
lower bound of the contact damping gain and consequently
the speed of response when in contact. Moreover, although
constant a is not directly involved in the control signals, it
may further intensify the stiffness effect through a big lower
bound. This can happen if mini �Fi is comparatively small
that may be related to the system velocity at the time of
establishing contact.

V. CONCLUSIONS
We have proved asymptotic stability of a simple one degree of
freedom robot moving, without friction towards a compliant
surface, using theorems of hybrid stability theory. The two
controllers used for each phase are simple PD and PI control
signals that have been successfully used at each case. We have
shown that the contact stability problem can be formulated
as a hybrid stability problem. Two hybrid stability theorems
based on properties of multi-Lyapunov functions have been
used to prove the stability of the hybrid system. The more
conservative but easier to use theorem that involves values
of successive Lyapunov functions at switch points result in
stability conditions that unfortunately couple the gains of the
two controllers. However, it is shown that the more general
theorem that in general requires the solution of the system at
switch times can be used in this case. Thus, we have proved
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the asymptotic stability of the hybrid equilibrium under
conditions that involve only gains of the contact controller. It
is anticipated that this analysis can be further extended to the
more general case of a multi degree of freedom robot as well
as to the consideration of nonlinear spring like environmental
models.
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23. S. Pettersson and B. Lennartson, “Stability and Robustness for
Hybrid Systems.” Procs. 35th IEEE Conference on Decision
and Control, Kobe (December, 1996) pp. 1202–1207.

24. G. N. Davrazos and N. T. Koussoulas, “A Review of
Stability Results for Switched and Hybrid Systems.” Procs.
9th Mediterranean Conference on Control and Automation,
CD proceedings, file med 01-169.pdf (June 27–29, Dubrovnik,
Croatia 2001).

25. R. A. Decarlo, M. S. Branicky, S. Pettersson and B. Lennartson,
“Perspectives and Results on the Stability and Stabilizability
of Hybrid Systems,” Proceedings of IEEE (2000) Vol. 88(7),
pp. 1069–1082.

26. L. Tavernini, “Differential automata and their discrete simu-
lators,” Nonlinear Analysis, Theory, Methods & Applications
11(6), 665–683 (1987).

27. H. S. Witsenhausen, “A class of hybrid-state continuous-time
dynamic systems,” IEEE Transactions on Automatic Control
11(2), 161–167 (1966).

28. H. K. Khalil, Nonlinear Systems (Prentice-Hall, 1996).
29. J. J. Slotine and W. Li, Applied Nonlinear Control (Prentice-

Hall, 1999).

https://doi.org/10.1017/S0263574704001201 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704001201

