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Abstract. A probability measure is a characteristic measure of a topological dynamical
system if it is invariant to the automorphism group of the system. We show that zero
entropy shifts always admit characteristic measures. We use similar techniques to show
that automorphism groups of minimal zero entropy shifts are sofic.
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1. Introduction
Let (G, X) be a topological dynamical system: a jointly continuous action of a topological
groupG on a compact Hausdorff spaceX. A homeomorphism ϕ ofX is an automorphism
of (G, X) if g ◦ ϕ = ϕ ◦ g for all g ∈ G. We denote by Aut(G, X) the group of
automorphisms, equipped with the compact-open topology. A Borel probability measure
ν on X is invariant if g∗ν = ν for all g ∈ G.

Definition 1.1. A Borel probability measure ν on X is characteristic if ϕ∗ν = ν for all
ϕ ∈ Aut(G, X).

Note that characteristic measures are not necessarily invariant and invariant measures
are not necessarily characteristic. However, when G is abelian, then G is a subgroup
of Aut(G, X) and hence every characteristic measure is G-invariant; this is not true for
general G. When G is amenable, then (G, X) admits invariant measures and, moreover,
if there are characteristic measures, then there are characteristic invariant measures.
Likewise, if Aut(G, X) is amenable, then there are characteristic measures and, if there
are invariant measures, then there are characteristic invariant measures. This follows from
the fact that G (respectively, Aut(G, X)) acts affinely on the compact, convex set of
characteristic (respectively, invariant) measures.

In this paper we will focus on symbolic dynamical systems, or shifts, and restrict our
attention to finitely generated G. Let A be a finite alphabet. The full shift is the dynamical
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system (G, AG), where AG is equipped with the product topology and the action is by
left translations. A shift (G, �) is a subsystem of (G, AG), with � a closed, G-invariant
subset of AG.

The automorphism groups of shifts are always countable [11]. Even in the simplest case
that G = Z, these groups exhibit rich structure; for example, Aut(Z, 2Z) contains the free
group on two generators, as well as every finite group (see, e.g., [1]).

Some shifts (Z, �) obviously admit characteristic measures: these include uniquely
ergodic shifts, shifts with a unique measure of maximal entropy, shifts with periodic points
(which include all shifts of finite type) and shifts with amenable automorphism groups.
But, since Aut(Z, �) is in general non-amenable, it is not obvious that every (Z, �) admits
a characteristic measure. Indeed, we do not know if this holds.

Our main result concerns zero entropy shifts. To define the entropy of a shift, letN�(F),
the growth function of �; assign to each finite F ⊂ Z the cardinality of the restriction of
� to F . The entropy of � is given by

h(�) = inf
r

1
r

log N�({1, 2, . . . , r}).

THEOREM 1.2. Let (Z, �) be a shift with h(�) = 0. Then (Z, �) admits a characteristic
measure.

Our proof technique critically uses the zero entropy assumption and thus leaves open
the following broader question.

Question 1.3. Does every shift (Z, �) admit a characteristic measure?

We more generally do not know of any countable group G and a shift (G, �) that does
not admit characteristic measures.

Recent work [3–7, 13, 14] shows that ‘small shifts’ have ‘small automorphism groups’.
For example, minimal shifts with slow stretched exponential growth (that is, shifts with
N�(F) = O(e|F |β ) for β < 1/2) have amenable automorphism groups, as shown by Cyr
and Kra [5]. They conjectured that every minimal zero entropy shift has an amenable
automorphism group. A proof of this conjecture would imply Theorem 1.2 for minimal
shifts.

Theorem 1.2 is a consequence of the following, more general, result that applies
to finitely generated groups and relates the existence of characteristic measures to the
growth of the shift. Given a finitely generated group G, we fix a generating set and
denote by Br ⊂ G the ball of radius r , according to the corresponding word length
metric.

THEOREM 1.4. Let G be a finitely generated group. Then every shift (G, �) for which

lim inf
r

1
r

log N�(Br) = 0

admits a characteristic measure.

Theorem 1.2 is an immediate specialization of this result to the case G = Z.
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1.1. Beyond symbolic systems. It is simple to construct a dynamical system (Z, C)which
is not symbolic and which has no characteristic measures: simply let Z act trivially on the
Cantor set C. This system admits no characteristic measures, since the Cantor set has no
measure that is invariant to all of its homeomorphisms.

Recall that a dynamical system (G, X) is said to be topologically transitive if for every
two non-empty open sets U , W ⊂ X there is some g ∈ G such that gU ∩W �= ∅. The
system (G, X) is minimal if X has no closed, G-invariant sets. It is free if gx �= x for
every x ∈ X and every non-trivial g ∈ G; in the important case ofG = Z, every non-trivial
minimal system is free.

Question 1.5. Does there exist a non-trivial minimal topological dynamical system that
does not admit a characteristic measure?

An example of a topologically transitive Z-system without characteristic measures is
the Z action by shifts on CZ, where C is the Cantor set.

Recall that (G, X) is said to be proximal [9] if for every x, y ∈ X there exists a
net (gi)i in G such that limi gix = limi giy. Many constructions of dynamical systems
without invariant measures are proximal (e.g., the Furstenberg boundary of non-amenable
groups [8, 9]). Hence, the following claim highlights a tension that needs to be overcome
in order to construct minimal systems without characteristic measures.

CLAIM 1.6. Let (G, X) be a free system. Then (Aut(G, X), X) is not proximal.

Proof. Assume that (Aut(G, X), X) is proximal. Then, for each x ∈ X and g ∈ G, there
is a net (φi)i such that limi φix = limi φigx. SinceG and Aut(G, X) commute, and since
the action is continuous, we have g limi φix = limi φix. Hence, (G, X) is not free.

1.2. Soficity of automorphism groups. We show the following result, using techniques
that are similar to those used to prove Theorem 1.2.

THEOREM 1.7. Let (Z, �) a minimal shift with h(Z, �) = 0. Then Aut(Z, �) is sofic.

Soficity, as defined by Gromov [10] (see also Weiss [15]), is a joint weakening of
amenability and residual finiteness and so this result, in a weak sense, supports the
aforementioned conjecture that these automorphism groups are amenable.

2. Proofs
Let G be a countable group, A a finite alphabet and (G, �) a subshift of (G, AG). Let
F be a finite subset of G. The restriction of σ ∈ � to F is denoted by σF : F → A. We
denote

�F = {σF : σ ∈ �}

and denote the growth function of � by

N�(F) = |�F |.
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PROPOSITION 2.1. Let G be a countable group and let (Fn)n be an increasing sequence
of finite subsets of G with

⋃
n Fn = G. Let (G, �) be a shift with the property that for

every finite K ⊂ G, we have

lim inf
n

N�(
⋃
g∈K gFn)

N�(Fn)
= 1.

Then (G, �) admits a characteristic measure.

If G is in addition amenable, then (G, �) admits a characteristic invariant measure. To
see this, note that the set of characteristic measures is a compact, convex subset of the
Borel measures on �. The group G acts on this set, since for any characteristic ν, g ∈ G
and ϕ ∈ Aut(G, �), we have ϕ(gν) = gϕ(ν) = gν. SinceG is amenable, this action must
have a fixed point, which is the desired characteristic invariant measure.

The proof of Proposition 2.1 will use the notion of a memory set. Given ϕ ∈ Aut(G, �),
there are some finite K ⊂ G and a map � : AK → A such that

[ϕ(σ)](g) = �((g−1σ)K).

The set K is called a memory set of ϕ; see, e.g., [2, p. 6]. We can assume without loss of
generality that K contains the identity.

Proof of Proposition 2.1. For each n, let πn : � → AFn be the restriction map σ 
→ σFn ,
so that πn(�) = �Fn . Let Sn ⊂ � be a set of representatives of the set {π−1

n (σFn) : σ ∈ �}
of preimages of πn. Hence, πn(Sn) = �Fn and |Sn| = |�Fn | = N�(Fn).

Let νn be the uniform measure over Sn and let ν be any weak limit of a subsequence of
(νn)n; such a limit exists by compactness. We will show that ν is characteristic.

Fix ϕ ∈ Aut(G, �). Let K ⊂ G be a memory set of ϕ and assume that it contains the
identity. There is thus � : AK → A such that [ϕ(σ)](g) = �((g−1σ)K). Denote

F̃n =
⋃
g∈K

Fng.

Let S̃n = {σ
F̃n

: σ ∈ Sn} be the set of projections of the elements of Sn to F̃n. Since F̃n
contains Fn, it follows that |Sn| = |S̃n|.

Define ϕ′ : �
F̃n

→ �Fn by

[ϕ′(σ )](g) = �((g−1σ)K)

for g ∈ Fn.
By the definition of F̃n, this is well defined and moreover ϕ(σ)Fn = ϕ′(σ

F̃n
); that is, ϕ′

maps the restriction of σ to F̃n to the restriction of ϕ(σ) to Fn. Hence, ϕ(Sn)Fn = ϕ′(S̃n).
Also, ϕ′ is onto and so there is a subset Rn ⊆ �

F̃n
such that the restriction of ϕ′ to Rn is a

bijection from Rn to �Fn .
For every ε > 0, we can, by the claim hypothesis, take n to be large enough so that

N�(Fn) ≥ (1 − ε)N�(F̃n). Then Rn and S̃n are both of size N�(Fn) ≥ (1 − ε)N�(F̃n).
Since their union is contained in �

F̃n
and is thus of size at most N�(F̃n), their intersection
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is of size at least (1 − 2ε)N�(F̃n). Since

ϕ(Sn)Fn = ϕ′(S̃n) ⊇ ϕ′(S̃n ∩ Rn),

and since ϕ′ is a bijection when restricted to Rn, ϕ(Sn) is also of size at least
(1 − 2ε)N�(F̃n), which is at least (1 − 2ε)N�(Fn).

Since νn is the uniform distribution on Sn, it follows that the push-forward measures
πn(νn) and πn(ϕ(νn)) differ by at most 2ε in total variation. Since the sequence
(Fn)n is increasing, this implies that for all m ≤ n we also have that πm(νn) and
πm(ϕ(νn)) differ by at most 2ε. Thus, for each m, πm(ν) and πm(ϕ(ν)) are identical
and so ϕ(ν) = ν, since

⋃
n Fn = G, and so the cylinder sets defined by the restrictions

(πm)m form a clopen basis for the Borel σ -algebra. We have thus shown that ν is
characteristic.

Using Proposition 2.1, the proof of our main result is straightforward.

Proof of Theorem 1.4. Denote L(r) = log N�(Br). By the claim hypothesis, there is a
sequence (rk)k such that limk L(rk)/rk = 0. Thus, and because L(r) is increasing, there is
another subsequence rn such that for every i > 0,

lim
�
L(rn + i)− L(rn) = 0.

Hence, if we set Fn = Brn , then the conditions of Proposition 2.1 are satisfied and thus the
conclusion follows.

Theorem 1.7 is a corollary of the following more general statement.

THEOREM 2.2. Let G be a countable group and let (Fn)n be an increasing sequence of
finite subsets of G with

⋃
n Fn = G. Let (G, �) be a minimal shift with the property that

for every finite K ⊂ G, we have

lim inf
n

N�(
⋃
g∈K gFn)

N�(Fn)
= 1.

Then Aut(G, �) is sofic.

The following lemma will serve as our working definition of a sofic group; the reduction
to the usual definition is straightforward (see, e.g., [12, Lemma 2.1]). A partially defined
map from a set A to A is a map from a subset of A into A.

LEMMA 2.3. Let H be a countable group. Suppose that for all finite subsets � ⊂ H and
all ε > 0, we have a finite set A and a map g 
→ g̃ that assigns to each g ∈ � a partially
defined map g̃ from A to A which satisfies the following four conditions.
(1) For every g ∈ �, there is a subset Ag ⊂ A with |A \ Ag|/|A| < ε such that the map

g̃ is defined and injective on Ag .
(2) For the identity element e ∈ G, ẽ is the identity map wherever it is defined.
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(3) g̃h(a) = g̃(h̃(a)) whenever all three are defined.
(4) If there is some a ∈ A such that g̃(a) = (a), then g is the identity.
Then H is sofic.

We will need the following compactness lemma.

LEMMA 2.4. Let ϕ be an automorphism of a subshift (G, �) such that ϕ(σ) �= σ for all
σ ∈ �. Then there is some finite set K ⊂ G such that for all σ ∈ � the restrictions σK
and ϕ(σ)K differ.

Proof. Let (Fn)n be an increasing sequence of finite subsets of G with
⋃
n Fn = G.

Assume towards a contradiction that for each n there is a σn ∈ � such that σnFn =
ϕ(σn)Fn . Assume without loss of generality that the sequence (σ n)n converges to σ .
Since the sequence (Fn)n is increasing, ϕ(σ)Fn = σFn for all n. Hence, ϕ(σ) = σ ,
since (Fn)n exhausts G. This is in contradiction to our assumption that ϕ has no fixed
points.

Proof of Theorem 2.2. Let � be a finite subset of Aut(G, �) which includes the identity.
Fix 1 > ε > 0. Let K be a finite subset of G that contains the memory sets (see the proof
of Proposition 2.1 for the definition of a memory set) of all ϕ ∈ �.

Since (S, �) is minimal, ϕ(σ) �= σ for every σ ∈ � and non-trivial ϕ. To see this, note
that if the set of fixed points of ϕ is non-empty, then it is a subshift and so, by minimality,
must be all of �. Accordingly, by Lemma 2.4, we can enlarge K (while keeping it finite)
so that σK �= ϕ(σ)K for all σ ∈ � and ϕ ∈ �.

To prove the claim, we proceed to find partially defined maps which satisfy the assump-
tions in Lemma 2.3 for �, ε. Choose k large enough so that N�(

⋃
g∈K gFk)/N�(Fk) <

1 + ε. Denote F = Fk and F̃ = ⋃
g∈K gFk .

For every ϕ ∈ �, there is a natural map ϕ′ : �
F̃

→ �F , which, given σ ∈ �, maps the
configuration σ

F̃
to the configuration ϕ(σ)F . This is well defined, since K contains the

memory set of ϕ and hence ϕ(σ)F is determined by σ
F̃

.
Since ϕ is an automorphism, ϕ′ is surjective. Now we setA to be�

F̃
and let the partially

defined map ϕ̃ from A to A be given by ϕ̃(a) = b whenever there exists a σ ∈ � such that
a = σ

F̃
and b is the unique element of A = �

F̃
whose projection on �F is ϕ′(a). This

map is undefined when uniqueness fails.
We now prove that this map has the four properties required by Lemma 2.3.

(1) Since the projection map π : �
F̃

→ �F is surjective, and since N�(F̃ )/N�(F ) <
1 + ε, there can be at most εN�(F ) many elements in �F with more than one
extension to �

F̃
. Thus, π−1 is one-to-one on a 1 − ε fraction of �F . Since ϕ′ :

�
F̃

→ �F is surjective, it follows that ϕ̃ is defined on a (1 − ε)/(1 + ε) fraction of
A = �

F̃
.

(2) If σF ∈ �F has a unique extension to �
F̃

, then that extension must be σ
F̃

. Applying
this to the identity of Aut(G, �) yields the desired condition.

(3) Suppose that ψ̃(a), ϕ̃(ψ̃(a)) and ϕ̃ψ(a) are all defined. We show that
ϕ̃(ψ̃(a)) = ϕ̃ψ(a). Note that for any η ∈ � and σ

F̃
∈ A, if η̃(σ

F̃
) is defined, then
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η̃(σ
F̃
) = η(σ)

F̃
. Applying this to ψ , ϕ and ϕψ , we get that for a = σ

F̃
,

ϕ̃(ψ̃(σ
F̃
)) = ϕ̃(ψ(σ)

F̃
) = ϕψ(σ)

F̃
= ϕ̃ψ(σ

F̃
).

(4) The fourth condition follows from the fact that K ⊆ F̃ and the defining property of
K that ensures that σK and ϕ(σ)K differ.

We have thus proved that all of the conditions of Lemma 2.3 hold and so and the group is
sofic.

Theorem 1.7 is an easy corollary of Theorem 2.2, as, by the same argument as in the
proof of Theorem 1.2, every zero entropy subshift must satisfy

lim inf
n

N�(
⋃
g∈K gFn)

N�(Fn)
= 1.
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