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The edge of a stationary radially expanding liquid sheet and the receding rim
bordering a plane sheet are naturally indented. It presents a collection of cusps at
the extremity of which the liquid concentrates and is expelled. An experimental
description of these cusps for a stationary flat inviscid Savart sheet is given. We
identify the stable node–jet structure responsible for the deflection of the incoming
flow at the rim and demonstrate how these cusps are the structures that accommodate
for both mass and momentum conservation at the sheet edge. Their shape, their
number around the sheet, and the residual momentum carried by the ejected liquid
are computed.

Key words: capillary flows, interfacial flows (free surface), thin films

1. Introduction

Among the configurations proposed by Felix Savart to study the nature of
microscopic liquid cohesion and its consequences on the macroscopic world is
that of a jet impacting normally onto a small solid disk (Savart 1833). At impact,
the jet deviates in an axisymmetric fashion and feeds a radially expanding sheet
which is bordered, at some distance from the impact location, by a rim collecting the
liquid. This distance is referred to as the stable radius of the sheet. In the absence of
interaction with the surrounding ambient medium (Huang 1970; Villermaux & Clanet
2002; Lhuissier & Villermaux 2009) or heterogeneous hole nucleation processes
(Lhuissier & Villermaux 2013) altering the ballistic motion of the liquid in the
sheet, this radius has been, following Taylor (1959), conveniently represented as
an equilibrium between the inertia of the flow and capillarity retraction (Clanet &
Villermaux 2002; Villermaux, Pistre & Lhuissier 2013). The sheet rim is, in this
picture, a stagnation point: for a jet with diameter d and velocity u, due to mass
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FIGURE 1. Perpendicular view of a water Savart sheet illustrating the regularly spaced
cusp-shaped indentations at the edge. The water impacts at O and flows radially until it
collects in the liquid rim that borders the sheet. ‘Nodes’, i.e. bulges in the rim, form at
the stagnation points of the flow, at the local minima Rn of the sheet radius, φ is the angle
between two adjacent nodes. The liquid is ejected from the sheet at the extremities of the
cusps, at local maxima Re smaller than the Culick–Taylor radius RTC. The white dot at O
has the same diameter d = 3 mm as the jet, and the impact velocity is u = 2.91 m s−1.
This corresponds to a Weber number We = ρu2d/σ = 353, where ρ = 998 kg m−3 and
σ = 72 mN m−1 respectively stand for the density and the surface tension of the liquid.

conservation and to the fact that the liquid velocity is preserved along the radial
direction r, the sheet thickness h is

h= d2

8r
. (1.1)

By balancing the capillary retraction force 2σ with the incident momentum flux ρhu2

(Taylor 1959; Culick 1960), one obtains the radius RTC where all the liquid inertia
would be arrested as

RTC = ρu2d2

16σ
= We

16
d, (1.2)

where we have introduced the Weber number We = ρu2d/σ , where ρ and σ
respectively stand for the density and the surface tension of the liquid.

If this simple picture offers a good representation of the typical size of the sheet
and of its dependence on We, it is also known to be inaccurate (Clanet & Villermaux
2002), the mean sheet radius being observed to be somewhat smaller than anticipated
in (1.2), and to be at odds with several crucial phenomena. It, first, disregards
the actual shape of water sheets, which are obviously not circular, as successively
observed by Savart (1833), Taylor (1959), Huang (1970) and Clanet & Villermaux
(2002), and as illustrated in figure 1. Second, and more fundamentally, this picture
ignores the crucial question of the mass balance at the rim, that is the mechanism
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by which the liquid is ejected from the sheet, at its edge. This mechanism must
be intrinsically coupled to the details of the sheet shape, and it is clear that a pure
stagnation point representation, if it satisfies momentum balance, avoids the question
of mass conservation. Moreover, in the case of negligible viscosity that we are
considering here (see Villermaux et al. (2013) for the corresponding corrections), the
mechanism by which the liquid is ejected not only influences the circularity, but also
determines the residual radial velocity of the liquid being ejected at the sheet edge,
which has been shown to be a small but non-vanishing fraction of the initial velocity
in the sheet (Clanet & Villermaux 2002), suggesting that a naive stagnation point
picture is ill founded.

These fundamental questions are precisely the motivation for the present study. We
first describe in § 2 the shape and the dynamics of the liquid structures bordering
the sheet rim. We then rationalize their (stationary) shape and total number around
the sheet in § 3. The corresponding model predicts the number of sites of ejection of
the liquid, together with its residual velocity as a function of the Weber number, and
explains why the radius at which ejection occurs is smaller than RTC. Perspectives are
outlined in the conclusion in § 4, as well as the influence of liquid viscosity and of
gravity.

2. Phenomenology

The liquid sheet is formed by letting a vertical water jet, with a diameter d= 3 mm,
impact perpendicularly onto a solid target. The target is a flat disk, with a diameter
of 6 mm, surrounded by a thin corona whose vertical offset with respect to the disk
surface is tuned so as to ensure a right-angle deflection of the jet at impact (see Clanet
& Villermaux 2002). This forms a flat horizontal liquid sheet with radial flow provided
We� 1, as shown in figure 1, where the sheet is seen from the top. The phenomena
we describe here are insensitive to ambient air as long as We< 1000.

The sheet is certainly not exactly circular. Its edge develops regularly spaced cusp-
shaped indentations which result from the self-adaptation of the rim to the liquid flow
which transits through it.

The liquid is mainly ejected at localized ‘ejection sites’, which are approximately
evenly distributed along the sheet edge. These sites are located at the tips of the
indentations, at the local maxima of the sheet radius. On average, they lie on a circle
with radius Re, which is always smaller than the Taylor–Culick radius RTC. At these
sites, the liquid is drained out of the rim by outward jets visible in figure 2, which
readily fragment into drops, as seen in figure 1. The existence of this radial motion
demonstrates that not all of the momentum of the liquid is dissipated at the edge of
the sheet, as already reported by Clanet & Villermaux (2002): the liquid is ejected
with a small, but finite, residual velocity.

At the base of the indentations, that is at the minimum radius between two adjacent
ejection sites, the rim develops quasi-stationary bulges, which we call ‘nodes’ because
of their shape, as shown in the magnified views of figure 2. These nodes are on
average located at a radius Rn such that (figure 1)

Rn < Re < RTC. (2.1)

The nodes connect the two inclined portions of the rim in which the liquid flows
towards the neighbouring ejection sites. They are actually the nub of the problem
we are considering, since their number sets the number of ejection sites and their
positions influence the size of the sheet. Their particular importance arises from the
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FIGURE 2. (a) Details of the sheet edge and definition of the length scales. The liquid
rim attached to the edge develops a quasi-steady shape with regularly spaced nodes and
ejection sites (We = 592 and the image height is 38.6 mm). (b) Magnified view of a
node showing the control sections I, II and III of the momentum balance at the node.
The velocity components parallel and perpendicular to the rim are u sin θ and u cos θ
respectively (We= 579 and the image height is 13.5 mm). (c) Superposition of 25 images
equally spaced in time by 200 µs. The trajectory of the dark small particles in the sheet
illustrates the constancy of the liquid velocity, in norm and direction, up to the rim
(We= 303 and the image height is 36.7 mm).

fact that they are the only portions of the rim that are perpendicular to the radial flow
of the sheet, the other portions being either inclined or the bases of jets ejecting drops.
The nodes are therefore the only stagnation points of the flow at the edge.

The indentations are not stationary. They are dynamic structures which evolve in
time, are born, move and die randomly along the sheet edge. However, their lifetime
is much longer than the transit time of the liquid particles flowing through them (see
figure 2c), and for these particles, they thus appear as frozen stationary structures,
an observation we will use in § 3. The number of these indentations is not fixed.
It fluctuates slightly, as a consequence of the permanent annihilation and inception
of new nodes, around a mean value N, a function of the Weber number. Figure 3
illustrates this dynamics. When two adjacent nodes closely approach each other, they
merge, and N decreases by a unit (figure 3a). When two adjacent nodes get too
distant from each other, a new node forms on one of the large corrugations which
develop on the long rim portions that separate the nodes from the next ejection
sites, and N increases by a unit (figure 3b). The newly nucleated node subsequently
grows and recedes toward the sheet centre until it reaches the same radius Rn as
the other nodes. The number N is determined by the density of nodes for which the
annihilation rate equilibrates the inception rate. The equilibrium is stable, and the
global annihilation/inception dynamics maintains a self-sustained population of nodes
at the edge of the sheet.
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(a) (b)

FIGURE 3. Annihilation and inception of the nodes. The time lapse between successive
images is 18.5 ms and the height of each image is 12.7 mm. (a) When two nodes
approach each other closely, they either merge or one of them disappears due to the close
interaction with the other node (We = 463). (b) When neighbouring nodes become too
distant from each other, a new node appears due to the corrugations which develop over
the long rim portions (We= 569).

We emphasize that these indentations are intrinsic to the dynamics of the sheet edge
and are not the result of any extrinsic forcing. The fact that they have random and
moving locations on the edge means that they do not result from some asymmetries
in the jet or in the impact disk, unlike in the study of Taylor (1959), where the
location and number of the cusps was forced by imposing large-amplitude azimuthal
modulations of the sheet thickness (see also Dressaire et al. 2013). This was checked
by rotating either the jet, the impact disk, or both, and noticing that the indentations
behave independently. They are also not artificial indentations such as those generated
by Clanet & Villermaux (2002), using a trick pioneered by Savart himself, consisting
in placing a thin wire across the sheet, slicing it at a predetermined radial location.

3. The structure of the cusps

The indentations of the sheet edge described in figure 2 are quasi-steady structures
composed of a node located at r = Rn plus the associated two oblique rim portions
departing from it. These rim portions, oriented at an angle π/2 − θ with respect to
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the direction of the incident flow (direction e2), collide at a radial position r=Re. The
merging of each pair of rim portions coming from adjacent nodes creates N = 2π/φ

ejection sites from which the liquid is expelled radially outwards, where φ denotes
the angle between two consecutive nodes (see figure 1).

To understand the structure of a cusp, it is first essential to note from figure 2(c)
that, upstream of the nodes, fluid particles follow a purely radial ballistic trajectory.
There is no feedback coupling of the sheet edge shape, orientation or position on the
flow in the sheet. The rim portions are oblique shock waves, and the local equilibrium
describing the overall structure of a cusp, namely Rn and φ, solely relies on the
unperturbed velocity u and sheet thickness h(r) in its vicinity, as given in (1.1). In
order to determine this structure, we now consider a control volume containing a
node and delimited by the sections I, II and III sketched in figure 2(b). The net
force exerted at surfaces I–III orients the liquid momentum flux entering this volume,
through II, towards the direction of the rim, emanating from III. Defining hn= h(Rn),
2L and D as the sheet thickness at the radial position of the node, the node width and
its diameter in the plane of symmetry (see figure 2c), respectively, the forces involved
in this balance are as follows.

(a) The net force at I, that is, across the plane of symmetry of the node,
is the sum of the capillary force along the node perimeter −πDσ e1
and of the pressure force (πD2/4)pII e1, where pII' 2σ/D denotes the
liquid pressure in the node.

(b) The momentum flux and the capillary force at II are respectively given
by ρu2Lhn e2 and 2σL (e1 + e2), where it has been taken into account
that the projected lengths of surface II on the directions e1 and e2 are
both approximately of order L.

(c) Lastly, the capillary force and the pressure force in the rim, at III,
are πδσ (sin θ e2 + cos θ e1) and −(πδ2/4)pIII (sin θ e2 + cos θ e1)

respectively, where δ is the diameter of the rim and pIII' 2σ/δ is the
capillary pressure in it. The momentum flux through III is still an
unknown m to be determined as a result of the momentum balance
at the node.

Figure 3 shows that the bulge at the node is a long-lived structure slowly growing
from the capillary destabilization of the rim. The relative dimensions of the bulge
L and D must thus be such that it is a marginally stable object with respect to
capillary destabilization in the sense of Plateau (Plateau 1873). Representing the node
as a cylinder of length 2L and radius D/2, and expressing the Plateau condition for
marginal stability (2π/2L) (D/2)= 1, we have

L'πD/2. (3.1)

Shorter bulges expand by capillary pressure, and longer bulges break through the
capillary instability. This is in fair agreement with the measurements of figure 4(a)
showing that L and D are of the same order of magnitude, and are both much larger
(typically 100 times larger) than the sheet thickness hn to which the bulge is attached.

The fluid particles entering the bulge are reoriented in the direction of the oblique
rim portions. Mass conservation thus provides the value of the rim diameter δ as

uhnL' (πδ2/4)u sin θ, (3.2)
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FIGURE 4. (a) Ratio of the half-width L to the diameter D of the node (see figure 2)
versus We. The inset shows L and D scaled by the sheet thickness at the node hn.
(b) Angle θ of the rim at the nodes (as defined in figure 2) versus We. The dashed line
represents θ = 26.6◦ derived in (3.6). The inset shows that Rn tends to Re as We increases.

since the velocity in the rim at the bulge exit is approximately given by u sin θ . Due
to the fact that the contributions of both the capillary and the pressure forces in
region III can be neglected with respect to those in region I, an approximation that
will be justified a posteriori, the momentum exiting the node through III is then, at
leading order,

m ' ρu2hnLe2 − 2σLe2 + 2σLe1 −πDσe1 + π D
2
σe1

= ρu2hnLe2 − 2σLe2 + σLe1. (3.3)

Now, θ and hn are also linked by the condition that the momentum flux ρu2hn cos2 θ
absorbed per unit length of the rim is approximately balanced by the capillary forces
2σ acting perpendicular to the rim; in other words, the rim orientation satisfies the
condition for a stationary inclined shock. This is the Taylor (1959) ‘stagnation point’
representation, omitting the contribution of the centrifugal forces and rim bending
due to the accumulation of momentum from the incoming sheet flow, the neglect of
which is justified below. Thus, within relative errors to be determined, the momentum
balance in the direction perpendicular to the shock yields

cos2 θ = 2σ
ρu2hn

or tan θ =
√
ρu2hn

2σ
− 1. (3.4a,b)

Consequently, since the momentum flux exiting the node has the same direction as
that of the rim, it follows from (3.3) and (3.4) that

tan θ = m · e2

m · e1

= ρu2hn/2σ − 1
1/2

= tan2 θ

1/2
. (3.5)

This gives
tan θ = 1/2, that is θ ' 26.6◦, (3.6)

a value for the cusp angle at the node θ that matches the measurements reported in
figure 4(b). Finally, making use of relations (1.1), (1.2), (3.4) and (3.6), the radial
position of the node is expressed as a function of the Taylor–Culick radius as

1
cos2 θ

= ρu2d2

16σRn
= 5

4
, (3.7)
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FIGURE 5. (a) Average radius of the nodes and of the cusp extremities versus We. The
orange solid line shows the Taylor–Culick radius. The red dashed line is (4/5)RTC from
(3.8). (b) Mean number of ejection sites N at the edge of the sheet versus We. (•) present
study, (�) data from figure 12 in Clanet & Villermaux (2002). The error bars stand for
the standard deviation of N, the temporal fluctuation of which is shown in the inset for
We= 353.

which yields the radius of the nodes

Rn = 4
5

RTC, (3.8)

representing well the measurements in figure 5(a). The relative errors made
in this representation are weak. Since sin θ ' 1/2, it follows from (3.2) that
δ/L ' √(8/π)hn/L ' 0.16 (see figures 2 and 4). Therefore, the ratios in each
direction e1 and e2 of the resulting capillary forces acting at the node surface III
πδσ/2 (sin θ e2 + cos θ e1), with respect to the net capillary force acting at surfaces I
and II, namely, −2σL e2 + σL e1, are given respectively by δ/L (π/2) cos θ ' 0.2 and
δ/L (π/4) sin θ ' 0.06, justifying why they were neglected in (3.3). The centrifugal
force in the balance of momentum perpendicular to the rim at the bulge exit is
ρu2 sin2 θ δ2/Rn ∼ |m|/Rn ∼ σL/Rn. Thus, since the capillary force acting normal to
the rim is 2σ , the relative error made in the balance (3.4) is of order L/(2Rn)� 1
(see figure 1), further supporting the approximation made.

We now turn to the ejection radius Re. Assimilating the rim departing from a node
to a straight line (the actual shape is bent slightly inward, see figure 1 and Clanet &
Villermaux (2002)) ending at a radius Re, the angle φ in figure 1 is simply expressed
as a function of the ratio Rn/Re according to

Re

Rn
= cos θ

cos(θ + φ/2) . (3.9)

If nothing destabilizes it before that point, the rim will extend down to the
unsurpassable Taylor–Culick radius. Imposing, with no justification at this stage,
Re = RTC, and making use of Rn/RTC = cos2 θ from (3.8), (3.9) reduces to

cos(θ + φ/2)= cos3 θ. (3.10)

With θ ' 26.6◦, this yields φ ' 35◦ and N = 2π/φ ' 10. The measurements of the
number of cusps N shown in figure 5(b) are somewhat consistent with this value, at
least in order of magnitude: there are indeed of the order of 10 cusps around the sheet,
but what figure 5(b) also shows is a distinctive increase of N with We.

The reason for this discrepancy is that the ejection radius Re is not RTC, as seen
in figures 1 and 5(a). The liquid is ejected upstream of RTC because, as can be
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appreciated from figures 2(b) and 3, the growth of capillary perturbations along the
rim breaks the latter before it has the chance to reach the Taylor–Culick radius.
The rim capillary perturbations grow with a characteristic time τ ∼√ρδ3/σ , that is,
considering the proportionality of δ to hn suggested by figure 4(a) and (3.2),

τ ∼
√
ρh3

n

σ
. (3.11)

Right after exiting the node, the perturbations are convected along the rim with a
velocity u sin θ (this velocity is further altered since the rim keeps accumulating mass
and momentum down to the ejection site, see, e.g. Bremond & Villermaux (2006)).
The arc length between the node and the position where the rim has lost its integrity
by capillary instability (and therefore sheds mass, thus defining Re) is thus expected
to decrease with the Weber number as

u sin θ τ ∼ dWe−1. (3.12)

The trend of (3.12) is in qualitative agreement with the observation shown in the
inset of figure 4(b), indicating that Re tends towards Rn as We increases. Since (3.9)
expresses that φ decreases for increasing Rn/Re, this explains why the number of cusps
N is a growing function of the Weber number: the capillary instability limits the length
of the rim earlier for larger We.

This capillary instability is, furthermore, appreciably excited by the strong agitation
in the rim itself which results from the dissipation of the mechanical energy it absorbs.
The hieratic motion of the bulge at the node is, for instance, obvious in figure 3. The
rate of energy dissipation u′

3
/D, per unit mass ρLD2 of the bulge, defines a typical

turbulent velocity u′ which is, equilibrating the kinetic incident energy from the sheet
with that dissipated at the bulge location, such that

1
2
ρu2hnLu∼ ρD2L

u′
3

D
, (3.13)

hence

u′ ∼
(
σu
ρD

)1/3

. (3.14)

We have already noted in (3.1) that the bulge aspect ratio L/D is of order unity, since
it is a marginally stable structure with respect to the rim capillary instability. We can
now estimate its absolute size, or at least give an upper bound for it: it must be such
that its internal velocity fluctuations do not break it. Therefore, the Weber number Wec
based on D and u′ should be at most of order unity, i.e.

Wec = ρu′
2
D

σ
=O(1). (3.15)

Consequently, by making use of hn = 2σ/(ρu2)× RTC/Rn from (3.4), one anticipates
that

D
hn
∼ Rn

RTC
We3

c, (3.16)

which is essentially a constant, as seen in figure 4(a).

4. Conclusion and extensions

The relation in (3.16) completes the description of the cusps bordering stationary
radially expanding liquid sheets, for which we have successively given the radius
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of the nodes Rn, the shape of the bulges at the nodes L/D, their absolute size D,
the distance between the nodes and the radial extremity of the cusps Re (where the
sheet disrupts into drops), and the number of ejection sites N. This answers the long-
standing question of the status of these ubiquitous structures.

These cusps are the structures that accommodate for both mass and momentum
conservation at the sheet edge when its radius (Rn or Re) is steady. They are not
present on a rim recently formed by, for example, cutting a sheet along a straight
line (Lhuissier & Villermaux 2011) or piercing it with a hole. In this early dynamics,
the rim collects the liquid of the sheet as it recedes, before instabilities (capillary,
centrifugal) destabilize it. The cusps must thus be understood as the saturated
late-stage form of the transient natural instabilities the rim undergoes as soon as
it is formed, and for which figure 3 illustrates the dynamics. In this respect, they
bear obvious similarities to the cusps formed on premixed flame fronts (Michelson &
Sivashinsky 1982; D’Angelo, Joulin & Boury 2000; Aldbrege & Killingsworth 2004)
and, in general, to fronts that propagate normal to themselves and suffer a geometric
Eikonal type of focusing, an analogy which will probably be worth pursuing.

A last, and important, consequence of the present findings is the direct prediction
of the ejection velocity of the liquid when it is expelled from the sheet at Re. Fluid
particles flow with an approximate velocity u sin θ at the rim junction with the
node that slightly varies down to the ejection site due to the mass and momentum
accumulation along the rim. This effect is also partly responsible for the rim portions
from opposite sides being inclined with an angle smaller than θ (see figure 1). At
the extremity of a symmetric cusp, the liquid is thus expelled with a velocity of the
order of but smaller than u sin2 θ (the collision of the two rims is inelastic). The
average radial velocity ue at which the jets (readily breaking into drops) are ejected
from the sheet is thus, using (3.7) and (3.8),

ue

u
. 1− Rn

RTC
= 1

5
. (4.1)

This is in agreement with the measurements in Clanet & Villermaux (2002), showing
that the ratio of velocities in (4.1) indeed approaches 1/5 by slowly increasing with
increasing We, consistently with the fact that Rn approaches Re as We increases (see
also figure 4b). That ejection velocity is, however, interestingly, practically zero with
higher-viscosity liquids. This fact is consistent with the determining role invoked here
that is played by the capillary instability, not only because it limits the rim extension
once the cusps are formed, but also because it is the source of the cusp nucleation,
as explained above. If this instability is damped by viscosity (see, e.g. Eggers &
Villermaux 2008), the rim has no chance to grow thickness modulations, i.e. bulges,
which are, as figure 3 suggests, necessary for cusp formation. This is why the sheet
reaches its maximal extension (itself a function of the impacting Reynolds number,
see Villermaux et al. (2013)), expelling the liquid with vanishingly small residual
radial momentum when the liquid viscosity prevents capillary destabilization of the
rim. Once the cusps are formed, however, viscous corrections have little influence on
the momentum balance in (3.3): while the contribution of the shear stresses is exactly
zero at surface II (see figure 2) since ∂u/∂r= 0 in r=Rn, the relative contribution of
the viscous stresses at surface III can be safely neglected with respect to that of the
momentum flux with the present water sheet since uδ/ν &O(103).

A similar role to that of viscosity is surprisingly played by gravity: our sheet is
formed perpendicular to gravity. If it were bent slightly upwards the number of cusps
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would reduce, and conversely if it were bent downwards, which makes the value of N
extremely sensitive to the horizontality of the sheet, a fact probably responsible for the
discrepancy in absolute value between the two data sets reported in figure 5(b). We
suspect that gravity damps (conversely increases) the rim capillary instability through
a Rayleigh–Taylor kind of mechanism, a specific study left for future research.
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