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E-STABILITY DOES NOT IMPLY
LEARNABILITY

CHRYSSI GIANNITSAROU
University of Cambridge

The concept of E-stability is widely used as a learnability criterion in studies of
macroeconomic dynamics with adaptive learning. In this paper, it is demonstrated, via a
counterexample, that E-stability generally does not imply learnability of rational
expectations equilibria. The result indicates that E-stability may not be a robust device
for equilibrium selection.
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1. INTRODUCTION AND BACKGROUND

In recent years, there has been an explosion in research that studies macroeconomic
dynamics with adaptive learning.1 A key question in this literature is whether it
is possible for agents that update their expectations using econometric algorithms
(i.e., learn adaptively) to learn the rational expectations equilibrium (REE) as the
sample size of their data set increases. This is also known as learnability of an
REE. Since conditions for learnability typically are hard to pin down in a direct
way, researchers have been looking for (and have often successfully developed)
indirect ways for identifying them. One such popular approach is the E-stability
criterion.

In this paper, I revisit the concept of E-stability and demonstrate, via a coun-
terexample, that E-stability does not always imply learnability of an REE. The
example used is a generic reduced-form model with expectations dated at time
t and a lag of the endogenous variable. In particular, I show that, for certain
parameter regions for which E-stability holds for a minimal state variable (MSV)
solution, there is a learning algorithm (namely, stochastic gradient) that does not
converge to the solution; that is, the REE is not learnable. Furthermore, I discuss
some examples of economic models that can be expressed in this reduced form.

The fact that E-stability may not always be an appropriate learnability criterion
is not entirely new to the literature. This possibility has been pointed out by Barucci
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and Landi (1997) and further explored by Heinemann (2000). Nevertheless, in the
former article, there is no example confirming the assertion. The latter article
provides an example for which numerical simulations indicate that stability or
instability under stochastic gradient learning is independent of the E-stability con-
ditions; in particular, it is shown that the stochastic gradient algorithm converges
to an E-unstable solution, that is, that E-stability is not a necessary condition
for learnability. In the present paper, I further show that there may exist E-stable
equilibria that are not learnable by a stochastic gradient algorithm or, in other
words, that E-stability is not a sufficient condition for learnability.

2. MODEL

Suppose that the reduced form of the model is

yt = λyt−1 + αE∗
t yt+1 + γwt , (1)

wt = ρwt−1 + ut , (2)

where {wt } is an AR(1) exogenous variable with |ρ| < 1 and ut ∼ i.i.d.(0, σ 2
u ).

When writing the expectations, the asterisk is used to denote that they are not
necessarily the expectations in the statistical sense.

Let xt = (yt , wt )
′ and � = (φ1, φ2)

′. If agents perceive the law of motion of
yt to be

yt = x ′
t−1� + ηt ⇒ E∗

t yt+1 = x ′
t�, (3)

then the true law of motion of yt is

yt = T (�)xt−1 + V (�)ut , (4)

where

T (�) ≡ (T1(�), T2(�))′ = ((1 − αφ1)
−1λ, (1 − αφ1)

−1(ραφ2 + γρ))′ (5)

is a mapping from the perceived law of motion to the true law of motion and

V (�) = (1 − αφ1)
−1(αφ2 + γ ). (6)

Solving the fixed-point problem T (�̄) = �̄ yields the MSV rational expectations
solutions

�̄+,− = (φ̄1, φ̄2)
′ =

(
1

2α
(1 ± √

1 − 4αλ),
ργ

1 − α(ρ + φ̄1)

)′
. (7)

It can be shown that for |α + λ| < 1, the only stationary solution is �̄−. Further-
more, for α and λ such that |α + λ| > 1, |αλ| < 1

4 and |α| > 1
2 both solutions are

stationary. For the remaining combinations of α and λ, both solutions are either
nonstationary or nonreal.2
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3. E-STABILITY AND LEARNABILITY

An REE is expectationally stable or E-stable if it is a locally asymptotically stable
equilibrium of the ordinary differential equation

d�

dτ
= T (�) − �. (8)

Equivalently, an REE is E-stable if the Jacobian of T (�) − � evaluated at the

REE, that is,

J (�̄) = d[T (�) − �]

d�

∣∣∣∣
�=�̄

= dT (�)

d�

∣∣∣∣
�=�̄

− I, (9)

is a stable matrix (i.e., it has eigenvalues with strictly negative real parts).3

A widely used learning algorithm is the recursive least squares, which is ex-
pressed as

Rt = Rt−1 + 1

t
(xt−1x

′
t−1 − Rt−1), (10)

�t = �t−1 + 1

t
R−1

t xt−1[x ′
t−1(T (�t−1) − �t−1) + V (�t−1)ut ]. (11)

It has been shown by Marcet and Sargent (1989) that E-stability is a necessary
and sufficient condition for convergence of the recursive least-squares algorithm.
Because of this property and because least squares is a simple and natural choice
for estimating parameters of linear models, E-stability has been widely used as a
learnability criterion.

Nevertheless, E-stability does not always imply learnability when the estimation
algorithm is stochastic gradient. This learning algorithm is expressed recursively
as

�t = �t−1 + (1/t)xt−1[x ′
t−1(T (�t−1) − �t−1) + V (�t−1)ut ]. (12)

The algorithm differs from least squares in that it ignores the second moment
matrix when updating.4 Barucci and Landi (1997) show that an REE is learnable
under stochastic gradient if it is a locally asymptotically stable equilibrium of the
ordinary differential equation

d�

dτ
= [M(�)(T (�) − �)], (13)

where M(�)= limt→∞ E[xt (�)xt (�)′]. The local asymptotic stability of an REE
�̄ under stochastic gradient learning is again determined by the stability of the
Jacobian matrix J SG(�)= d[M(�)(T (�) − �)]/d�, evaluated at �̄. The stoch-
astic gradient algorithm converges locally to the REE if and only if the real parts
of the eigenvalues of J SG(�̄) are strictly negative.
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Using the reduced-form model introduced in the preceding section, it is possible
to demonstrate that E-stability, that is, stability of J (�̄), does not necessarily imply
stability of J SG(�̄). The E-stability conditions [by imposing that the eigenvalues
of J (�̄) have strictly negative real parts] are

E1:
αλ

(1 − αφ̄1)2
< 1 and E2:

ρα

1 − αφ̄1
< 1. (14)

For |α+λ| < 1, the unique stationary solution �̄− is always E-stable. For the areas
defined by |α + λ| > 1, |αλ| < 1/4, and |α| < 1/2, it is possible to find regions
for which both solutions are E-stable, only one solution is E-stable, or no solution
is E-stable. For example, if ρ > 0, in the area defined by α, λ > 0, λ < −ρ2α+ρ,
and α + λ > 1 (shown in Figure 1 as region II, including the shaded area), both
solutions are stationary, but only �̄− is E-stable, whereas in the area defined by
α, λ > 0, λ > −ρ2α + ρ and αλ < 1/4 (shown in Figure 1 as region III), both
solutions are stationary, but none is E-stable.

1 

1/ρ1 1/(1+ρ)

Non-stationary or non-real solutions 

I 

II 

III 

ρ

α

λ

FIGURE 1. E-stability and learnability regions. In region I, defined by the thick solid line,
the solution �̄− is E-stable and learnable with stochastic gradient. In region III, the solution
is neither E-stable nor learnable with stochastic gradient. In region II (which includes the
shaded area) the solution is E-stable, but is learnable with stochastic gradient only for some
parameters. The shaded area corresponds to combinations of α and λ where the solution is
E-stable but not learnable with stochastic gradient.
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Next, the conditions for learnability under stochastic gradient are determined
by the stability of the matrix

J SG(�̄) = M(�̄)




αλ

(1 − αφ̄1)2
− 1 0

αγρ

(1 − αφ̄1)(1 − αρ − αφ̄1)

αρ

1 − αφ̄1
− 1


 , (15)

where the matrix M(�̄) as well as all the derivations of the stability properties are
given in Appendixes A and B.

Although it is not possible to present the learnability conditions under stochastic
gradient learning in an elegant way, it is straightforward to explore these numer-
ically, by using a finely defined grid of the regions of interest. In this manner, it
can be shown, for example, that �̄− is stable under stochastic gradient only for
part of region II of Figure 1. In particular, in the shaded part of region II, the
E-stable solution �̄− is not learnable by stochastic gradient learning.5 Further-
more, in region I the solution is always learnable with stochastic gradient, whereas
in region III the solution is not learnable with stochastic gradient. Note that for
different parameter values of σ 2

u the stability properties of stochastic gradient
remain unchanged. However, as ρ decreases, the shaded area of Figure 1, where
�̄− is not learnable under stochastic gradient, becomes larger.

Models that can be expressed in the reduced form analyzed here are the loglin-
earized versions of the real business cycle (RBC) model and, in general, several
dynamic stochastic general equilibrium models. An example of how such models
can be written in this reduced form can be found in Giannitsarou (2004). Note that
for standard versions of the RBC model [e.g., Hansen (1985)], the reduced-form
coefficients are in the zone defined by |α + λ| < 1; that is, the model is regular
or saddle-point stable, for all reasonable calibrations of the model parameters.
In this zone, the unique stationary equilibrium is E-stable and always learnable
under stochastic gradient learning. However, for irregular models (i.e., models
with indeterminacies), reasonable calibrations can yield solutions in the shaded
parameter region of interest shown in Figure 1. In the next section, I provide
an example that fits in this category, namely, the model of Schmitt-Grohé and
Uribe (1997). Thus the counterexample provided here cannot be characterized as
pathological.

Furthermore, the result presented here has implications for the learnability of
REEs under heterogeneous learning, in particular, for the case where some pro-
portion of the population estimates using least squares and the rest of the agents
use stochastic gradient. This issue is covered extensively by Giannitsarou (2003).

Finally, turning to the general issue of equilibrium selection, the present result
is also related to the recent work of McCallum (2002a,b). Basing his analysis
on a similar reduced-form model (the difference is that it includes an intercept),
McCallum first demonstrates how to select a unique MSV solution and then
shows that this solution is always E-stable, thus concluding that it is always

https://doi.org/10.1017/S1365100505040137 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100505040137


E-STABILITY AND LEARNABILITY 281

(least squares) learnable in real time. This argument is then used to reinforce the
appropriateness of his equilibrium selection device. However, as illustrated here,
the unique MSV solution (as defined by McCallum) may fail to be learnable if the
adaptive algorithm is other than least-squares learning.

4. EXAMPLE

In this section, the model of Schmitt-Grohé and Uribe (1997) is employed as an
example for demonstrating how a plausible RBC model can be mapped into the
reduced form (1)–(2). This model is irregular; that is, for certain parameter values,
it has an indeterminate steady state, and therefore it is a potential candidate for
having parameter values that bring the coefficients α and λ in the shaded area
of Figure 1. The model is an extension of the Hansen (1985) model, augmented
with a government that maintains a balanced budget and finances its constant
expenditures by taxing labor income at an endogenously determined rate.6 The
representative agent solves

max E0

∞∑
t=0

βt (log Ct − Nt) (16)

s.t. Kt = Yt + (1 − δ)Kt−1 − Ct − G, (17)

Yt = ZtK
sk

t−1N
sn

t , (18)

G = �t(snYt ), (19)

log Zt = ρ log Zt−1 + ut , ut ∼ i.i.d.
(
0, σ 2

u

)
, (20)

where Kt , Yt , Ct , Nt, �t , and G denote capital, output, consumption, labor, labor
income tax rate, and government expenditures, respectively. It is assumed that
δ, β,�t ∈ (0, 1). Furthermore, the production function has constant returns to
scale, sk + sn = 1, and sk, sn > 0. The loglinearized equilibrium conditions are

ct = −λt , (21)

0 = λt − �

1 − �
θt + sk(kt−1 − nt ) + zt , (22)

0 = Etλt+1 − λt + (1 − β + βδ)[sn(Etnt+1 − kt ) + ρzt ], (23)

kt − kt−1 =
(

1 − β

β

)
kt−1 + δsn

si

nt + δsc

si

λt + δ

si

zt , (24)

0 = θt + sk(kt−1 − nt ) + nt + zt , (25)

zt = ρzt−t + ut , (26)

where si = δK/Y , sc = C/Y , and λt is the Lagrange multiplier. Uppercase
letters denote the steady-state values of the variables; lowercase letters denote
the loglinear variables, that is, xt = log Xt − log X for any variable Xt of the
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FIGURE 2. E-stability and learnability for the model of Schmitt-Grohé and Uribe (1997).
The left column shows the values of the steady-state tax rate � that determine the stability
properties of the two solutions. For the crossed-out areas, the corresponding solutions are
either nonstationary or nonreal. E & SG denotes a solution that is E-stable and learnable
with stochastic gradient. A hyphen is used to denote a solution that is neither E-stable nor
learnable with stochastic gradient.

model. Equations (22)–(25) correspond to equations (12)–(15) of Schmitt-Grohé
and Uribe (1997). Using (22) and (25), one can write nt , by eliminating θt , as

nt = 1 − �

sk − �
λt + sk

sk − �
kt−1 + 1

sk − �
zt . (27)

Next, replace nt in (23) and (24) to obtain

λt = κ1Etλt+1 + κ2kt + κ3ρzt , (28)

λt = µ1kt + µ2kt−1 + µ3zt . (29)

The coefficients κi, µi, i = 1, 2, 3 are stated in Appendix C. Using the above
equations, one can eliminate λt to obtain the reduced form (1), with

α = κ1µ1/d, λ = −µ2/d, γ = (κ1µ3ρ + κ3ρ − µ3ρ)/d, (30)

where d = µ1 + κ1µ2 − κ2. Using the calibration of Schmitt-Grohé and Uribe
(1997) for yearly data (δ = 0.1, β = 1/1.04, sk = 0.3) and setting ρ = 0.9 and
σ = 0.01, it can easily be shown that for labor tax rates in the range (0.6660,
0.7194) the solution �̄− is E-stable but not learnable with stochastic gradient
learning. Figure 2 summarizes the stability properties for both solutions, for the
above calibration and for all steady-state labor tax rates � ∈ (0, 1).7

5. CONCLUDING REMARKS

The idea behind the E-stability conditions goes far back to the work of DeCanio
(1979) and Evans (1985) and it was originally viewed as a kind of learning
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process taking place in notional time, without the need of any associated real-time
adaptive algorithm. Originally, its appeal drew from explaining how economic
agents come to possess rational expectations, thereby justifying the existence
of rational expectations equilibria. After Marcet and Sargent (1989) showed the
equivalence of E-stability with convergence of real-time adaptive least-squares
learning, the E-stability conditions have been extensively used as a criterion of
learnability of REEs.

Motivated by this fact, I provided a counterexample that shows that E-stability
generally does not imply learnability. Naturally, this result raises an important
issue: How robust is adaptive learning as an equilibrium selection device? So far,
the literature has been heavily relying on E-stability to make inferences about
which equilibria are learnable or not; it appears, however, that which equilibria are
learned depends on the selected learning algorithm. This is a somewhat alarming
result, given that the suggested alternative algorithm (stochastic gradient) is just
a small deviation from the commonly used least-squares algorithm. It would thus
be useful to identify general criteria under which E-stability implies or does not
imply stability under algorithms other than the least squares.

NOTES

1. A detailed literature review of the topic is beyond the scope of this paper. A comprehensive
reading on adaptive learning is Evans and Honkapohja (2001).

2. The model studied here is the similar to the one in Sect. 8.6.2 of Evans and Honkapohja (2001).
The only difference is that the present model does include an intercept. Although this alteration does
not have an effect on the stationarity properties of the solutions �̄+,−, it will imply different E-stability
conditions, which will now depend on the persistence ρ of the exogenous variable.

Apart from the MSV solutions, the model may also have other solutions, for example, sunspot
equilibria. The analysis of E-stability or instability of such solutions is beyond the scope of this paper.

3. The concept of E-stability is extensively discussed by Evans and Honkapohja (2001).
4. For more details on the two algorithms, see Marcet and Sargent (1989), Barucci and Landi

(1997), and Evans and Honkapohja (2001).
5. The analysis was done by calculating the eigenvalues of the relevant Jacobian matrices for a thin

grid of 2,000 points of the region defined by α, λ ∈ (0, 1/ρ). To produce Figure 1, the parameters γ

and σ were set to 0.5, and ρ was set to 0.9. The codes were written using Matlab 6.0 and are available
at http://wueconb.wustl.edu/jda/md/contents.html.

6. Schmitt-Grohé and Uribe (1997) present their model in continuous time, without uncertainty.
Here, I include an exogenous technological shock in the production function and the model is presented
in discrete time.

7. The computations were done with Matlab 6.0, by calculating the relevant eigenvalues of J (�̄−)

and J SG(�̄−). The code is available at http://wueconb.wustl.edu/jda/md/contents.html.
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APPENDIX A: E-STABILITY AND
STOCHASTIC GRADIENT LEARNABILITY

CONDITIONS

The matrix dT (�)/d� is

dT (�)

d�
=




αλ

(1 − αφ1)2
0

αρ(αφ2 + γ )

(1 − αφ1)2

αρ

1 − αφ1


 . (A.1)

Noting that (1 −αφ̄1)
−1(αφ̄2 + γ ) = (1 −αρ −αφ̄1)

−1γ , the matrix J (�̄) that determines
the E-stability conditions reduces to

J (�̄) =




αλ

(1 − αφ̄1)2
− 1 0

αγρ

(1 − αφ̄1)(1 − αρ − αφ̄1)

αρ

1 − αφ̄1

− 1


 . (A.2)

This has eigenvalues

αλ

(1 − αφ̄1)2
− 1 and

αρ

1 − αφ̄1
− 1. (A.3)
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Furthermore, the second moment matrix M(�) is defined by

M(�) = lim
t→∞

[
E

(
y2

t

)
E(ytwt )

E(ytwt ) E
(
w2

t

)
]

≡
[
m11 m12

m12 m22

]
. (A.4)

Since wt is a stationary AR(1), m22 = σ 2
u /(1 − ρ2). Moreover, yt = T1(�)yt−1 +

T2(�)wt−1 + V (�)ut , and in the limit yt will be stationary; thus,

E(ytwt ) = E{[T1(�)yt−1 + T2(�)wt−1 + V (�)ut ](ρwt−1 + ut )} (A.5)

= ρT1(�)E(yt−1wt−1) + ρT2(�)m22 + V (�)σ 2
u ⇒ (A.6)

m12 = ρT2(�)m22 + V (�)σ 2
u

1 − ρT1(�)
(A.7)

and

E
(
y2

t

) = E[(T1(�)yt−1 + T2(�)wt−1 + V (�)ut )
2] (A.8)

= T 2
1 (�)E

(
y2

t−1

) + T 2
2 (�)m22 + V 2(�)σ 2

u + 2T1(�)T2(�)m12 ⇒ (A.9)

m11 = T 2
2 (�)m22 + V 2(�)σ 2

u + 2T1(�)T2(�)m12

1 − T 2
1 (�)

. (A.10)

At the two solutions, T (�̄) = �̄ and V (�̄) = (1−αφ̄1)
−1(αφ̄2 +γ ) = (1−αρ−αφ̄1)

−1γ ;
thus, the second moment matrix simplifies to

M(�̄) = σ 2
u

1 − ρ2




γ 2(1 + ρφ̄1)

(1 − αρ − αφ̄1)2(1 − ρφ̄1)
(
1 − φ̄2

1

) γ

(1 − αρ − αφ̄1)(1 − ρφ̄1)

γ

(1 − αρ − αφ̄1)(1 − ρφ̄1)
1


 .

(A.11)

The Jacobian that determines learnability conditions under stochastic gradient is

J SG(�̄) = M(�̄)




αλ

(1 − αφ̄1)2
− 1 0

αγρ

(1 − αφ̄1)(1 − αρ − αφ̄1)

αρ

1 − αφ̄1

− 1


 . (A.12)

Although there are analytic expressions for the eigenvalues of J SG(�̄), it is not possible to
present them in an elegant way, and they are therefore omitted.

APPENDIX B: E-STABILITY PARAMETER
REGIONS

To find the regions where the solutions are E-stable, it is assumed for simplicity that ρ > 0.
Analogous analysis can be done for ρ < 0, but the regions are different.
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Solution �̄−. Assuming that 1 − 4αλ > 0, it follows that

1 − 4αλ > 0 ⇒ −(1 − 4αλ) <
√

1 − 4αλ ⇒ 8αλ − 2 < 2
√

1 − 4αλ

⇒ 4αλ < 2 − 4αλ + 2
√

1 − 4αλ ⇒ 4αλ < (1 + √
1 − 4αλ)2

⇒ 4αλ

(1 + √
1 − 4αλ)2

< 1 ⇒ αλ

(1 − αφ̄1,−)2
< 1. (B.1)

Thus, the first E-stability condition (E1) is always satisfied for �̄−.
Next, for the second E-stability condition (E2), assuming that 1−4αλ > 0, it is required

that

ργ

1 − α(ρ + φ̄1,−)
< 1 ⇔ 2αρ

1 + √
1 − 4αλ

< 1 ⇔ 2αρ − 1 <
√

1 − 4αλ. (B.2)

If 2αρ − 1 < 0, or equivalently, α < 1/(2ρ), then the above condition is satisfied. If
2αρ − 1 > 0, or equivalently, 0 < 1/(2ρ) < α, then

2αρ − 1 <
√

1 − 4αλ ⇔ 4α2ρ2 + 1 − 4αρ < 1 − 4αλ ⇔ λ < ρ − αρ2. (B.3)

Thus, (E2) is satisfied for all λ if α < 1/(2ρ), and for all λ < ρ − αρ2 if α > 1/(2ρ).
To conclude, whenever �̄− is stationary, it is E-stable for all λ if α < 1/(2ρ), and for all
λ < ρ − αρ2 if α > 1/(2ρ).

Solution �̄+. Assuming that 1 − 4αλ > 0, (E1) is satisfied if

αλ

(1 − αφ̄1,+)2
< 1 ⇔ 4αλ

(1 − √
1 − 4αλ)2

< 1 ⇔ 4αλ < (1 − √
1 − 4αλ)2

⇔ 4αλ < 2 − 4αλ − 2
√

1 − 4αλ ⇔ 1 − 4αλ >
√

1 − 4αλ. (B.4)

This condition is only satisfied if 1 − 4αλ > 1 or, equivalently, if αλ < 0, that is, only
when α and λ have opposite signs. Thus, the first E-stability condition (E1) is satisfied for
all λ < 0 if α > 0, and for all λ > 0 if α < 0.

Next, for the second E-stability condition (E2), I restrict attention to the areas where
(E1) is satisfied. Note that αλ < 0 implies

αλ < 0 ⇒ −4αλ > 0 ⇒ 1 − 4αλ > 1 ⇒ √
1 − 4αλ > 1 ⇒ 1 − √

1 − 4αλ < 0. (B.5)

Thus, if α > 0, (E2) is always satisfied because

ργ

1 − α(ρ + φ̄1,+)
< 1 ⇔ 2αρ

1 − √
1 − 4αλ

< 0 < 1. (B.6)

If α < 0, (E2) is equivalent to

2αρ

1 − √
1 − 4αλ

< 1 ⇔ −2αρ

−1 + √
1 − 4αλ

< 1 ⇔ −2αρ < −1 + √
1 − 4αλ

⇔ 1 − 2αρ <
√

1 − 4αλ ⇔ 4α2ρ2 + 1 − 4αρ < 1 − 4αλ

⇔ λ > ρ − αρ2. (B.7)
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Therefore, whenever α and λ have opposite signs, the second E-stability condition (E2)
holds for all λ < 0 if α > 0, and for λ > ρ − αρ2. To conclude, whenever solution �̄+ is
stationary, it is E-stable for all λ and α such that λ < 0 and α > 0, and for all λ and α such
that α > 0 and λ > ρ − αρ2.

APPENDIX C: COEFFICIENTS FOR THE
EXAMPLE

The coefficients of (28) and (29) are

κ1 = 1 + (1 − β + βδ)sn(1 − �)

sk − �
,

κ2 = (1 − β + βδ)sn�

sk − �
, (C.1)

κ3 = (1 − β + βδ)

(
sn

sk − �
+ 1

)

µ1 =
[

δ

si

(
sc + sn(1 − �)

sk − �

)]−1

(C.2)

µ2 = −
[

1 + 1 − β

β
+ δsnsk

si(sk − �)

]
µ1 (C.3)

µ3 = −
[

δsn

si(sk − �)
+ δ

si

]
µ1 (C.4)
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