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Wake structure of laminar flow past a
sphere under the influence of a transverse
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Jun-Hua Pan1, Nian-Mei Zhang1 and Ming-Jiu Ni1,†
1School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China

(Received 5 June 2018; revised 21 May 2019; accepted 21 May 2019;
first published online 20 June 2019)

The wake structure of an incompressible, conducting, viscous fluid past an electrically
insulating sphere affected by a transverse magnetic field is investigated numerically
over flow regimes including steady and unsteady laminar flows at Reynolds numbers
up to 300. For a steady axisymmetric flow affected by a transverse magnetic field,
the wake structure is deemed to be a double plane symmetric state. For a periodic
flow, unsteady vortex shedding is first suppressed and transitions to a steady plane
symmetric state and then to a double plane symmetric pattern. Wake structures in
the range 210< Re 6 300 without a magnetic field have a symmetry plane. An angle
θ exists between the orientation of this symmetry plane and the imposed transverse
magnetic field. For a given transverse magnetic field, the final wake structure is found
to be independent of the initial flow configuration with a different angle θ . However,
the orientation of the symmetry plane tends to be perpendicular to the magnetic field,
which implies that the transverse magnetic field can control the orientation of the wake
structure of a free-moving sphere and change the direction of its horizontal motion by
a field–wake–trajectory control mechanism. An interesting ‘reversion phenomenon’ is
found, where the wake structure of the sphere at a higher Reynolds number and a
certain magnetic interaction parameter (N) corresponds to a lower Reynolds number
with a lower N value. Furthermore, the drag coefficient is proportional to N2/3 for
weak magnetic fields or to N1/2 for strong magnetic fields, where the threshold value
between these two regimes is approximately N = 4.

Key words: magnetohydrodynamics, particle/fluid flows

1. Introduction
The Lorentz force as a non-contact control method has received special attention

in metallurgy. One application is to produce clean metal, excluding oxides and other
types of non-metallic particles (El-Kaddah, Patel & Natarajan 1995). Another is to
produce immiscible alloys with uniform distributions of solid particles in the matrix
(Zheng et al. 2015). Such processes can be modelled as the transport of spherical
non-conductive particles in magnetohydrodynamic (MHD) flow. It is noted that this is
a first approximation, as more work needs to be done in the future on the transport of
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anisotropic or electrically conducting particles. The wake structure behind the sphere
is important since its trajectory is closely related to the wake structure (Ern et al.
2012). The wake of a flow past a fixed sphere will provide useful insight into the
vortex dynamics of a free-moving body since, in the case of a moving sphere, one
can assume to be standing at the sphere centre to observe the flow field. For example,
when Re < 210, the wake of a flow past a fixed sphere is axisymmetric (Johnson
& Patel 1999), which is unable to exert any side force on the sphere. Hence, a
free-moving sphere with identical Reynolds number will rise vertically (see figure 27
in Horowitz & Williamson (2010)). The regime of an oblique trajectory (see figure 27
in Horowitz & Williamson (2010)) occurs in the range 210< Re< 260, in which the
wake in the fixed-sphere case shows plane symmetry with counter-rotating vortices
(Johnson & Patel 1999). The recirculation region behind the sphere is tilted, producing
a constant lift force within the symmetry plane. If the sphere is unrestrained, the
constant lift force will result in an oblique trajectory. Therefore, investigating the
influence of a magnetic field on the wake structure behind a stationary sphere is the
first step to understanding the vortex dynamics of a free sphere transported in MHD
flows.

Any movement of a conducting fluid that is non-parallel to an external magnetic
field will generate electric currents. Consequently, these currents will interact with
the magnetic field to create the Lorentz force (Davidson 2001), which can greatly
modify the flow pattern. Previous investigations have been reported for MHD flows
with an obstacle, such as a grid bar (Branover, Eidelman & Nagorny 1995), a square
cylinder (Mück et al. 2000) and cylinders with various orientations of magnetic fields,
e.g. streamwise direction (Lahjomri, Capéran & Alemany 1993), transverse direction
(Mutschke et al. 2001) and direction along the cylinder axis (Frank, Barleon &
Müller 2001; Kanaris et al. 2013). As for the case of a sphere, Chester (1957)
studied the effect of a magnetic field on the drag coefficient in a Stokes flow. An
Oseen approximation method was extended to a perfectly conducting, viscous MHD
flow in Goldsworthy (1961). Yonas (1967) made direct drag measurements on a sphere
in conducting liquid sodium with a streamwise magnetic field and found that the drag
coefficient was proportional to the interaction parameter N1/2 for a strong magnetic
field. They also observed that a relatively weak magnetic field was able to completely
damp the dominant frequencies that had existed in hydrodynamic situations. This
meant that the Lorentz force did suppress the unsteady flow. Similar phenomena
were reported in Maxworthy (1962). Sekhar, Sivakumar & Kumar (2005) reported a
two-dimensional axisymmetric model for steady and axisymmetric situations.

However, investigations related to clear wake structures behind a sphere affected
by a magnetic field are rather scarce. Intuitional optical flow visualization techniques,
such as dye visualization or particle image velocimetry (PIV) technology, cannot be
applied due to the opacity of the liquid metal. Therefore, numerical simulation seems
to be a useful method. Previous results (Pan, Zhang & Ni 2018) found five wake
structure patterns and their transitions behind a sphere at Reynolds numbers up to 300
under the influence of a streamwise magnetic field. It was shown that the magnetic
field had a great influence on the wake structure behind the sphere. Furthermore, for
the cylinder cases, the orientation of the magnetic field had a dramatic influence on
the wake structure. Therefore, we investigate the influence of a transverse magnetic
field on wake structures behind a sphere.

Investigations of wake structures and instabilities of a flow past a fixed sphere
without a magnetic field have been carried out, such as stability analyses (Natarajan
& Acrivos 1993; Pier 2008), direct numerical simulations (Johnson & Patel 1999;
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FIGURE 1. Cross-sectional plot of streamwise vortical structures at 1.5 diameters behind
a sphere at Re = 300. The sphere profile is indicated by a dashed circle. There is an
angle θ between the symmetry plane (dash-dotted line) and the transverse magnetic field B
(arrow).

Re Nature of flow State

20 6 Re< 210 Closed attached recirculation Steady, axisymmetric
Re' 210 Axisymmetric → plane symmetric First bifurcation
210< Re< 270 Stable double threads Steady, plane symmetric
Re' 270 Steady → unsteady Second bifurcation
270< Re 6 300 Periodic vortex shedding Unsteady, plane symmetric

TABLE 1. Summary of transitions with Reynolds numbers up to 300.

Tomboulides & Orszag 2000) and detailed experiments (Ormières & Provansal 1999).
They all found a consistent scenario of transition. The wake structure transitions
from axisymmetric to plane symmetric with double threads at Re ≈ 210. This
double-thread wake consists of a pair of steady streamwise counter-rotating vortices.
The recirculation region behind the sphere is tilted and the shifting of this ring
vortex makes the flow become non-axisymmetric. Subsequently, a second transition
occurs at Re ≈ 270. The double-thread wake is itself observed to become unstable
in a periodic state within a symmetry plane determined by the first transition. It is
called reflectional symmetry preserving (Fabre, Auguste & Magnaudet 2008). With
increasing Reynolds number, hairpin vortices begin to shed from the sphere, e.g. dye
lines in experiment (Johnson & Patel 1999) revealed shedding of large-amplitude
hairpin vortices at Re= 300. As the Reynolds number is further increased, simulation
in Mittal (1999) shows that the wake becomes irregular and no plane symmetry
remains for Re> 355.

As reviewed above, with Reynolds numbers up to 300, the wake structure behind
a sphere without a magnetic field will undergo a series of well-defined transitions,
as given in table 1. The current work is to investigate how a transverse magnetic
field affects the fluid dynamics and wake structures of these flows. Wake structures
behind the sphere are plane symmetric at 210<Re6 300 in the absence of a magnetic
field. Figure 1 plots a cross-section of streamwise vortical structures at 1.5 diameters
behind the sphere at Re= 300. A symmetry plane is clearly shown. Its orientation is,
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FIGURE 2. Schematic for the flow configuration and related geometrical parameters.

in principle, random but is determined by perturbations in experiment or numerical
bias (Johnson & Patel 1999). After imposing a transverse magnetic field, there will
be an angle between the symmetry plane and the transverse magnetic field; see angle
θ in figure 1. Of particular interest in this work is to investigate whether the initial
angle θ will affect the wake structure.

2. Flow configuration and modelling
An electrically conducting incompressible Newtonian fluid is considered under the

influence of an imposed transverse magnetic field. For most cases of liquid-metal flow
in industrial applications, the magnetic Reynolds number, which characterizes the ratio
between magnetic convection and diffusion, is very small, Rm = µσUL� 1. A so-
called quasi-static approximation (Davidson 2001; Sarris et al. 2006; Moreau 2013)
of MHD equations is invoked. The non-dimensional MHD equations governing the
flow can be written as

∂u
∂t
+ (u · ∇)u=−∇p+

1
Re
∇

2u+N(J×B), (2.1)

∇ · u= 0, (2.2)
J=−∇φ + u×B, (2.3)
∇ · J= 0. (2.4)

With the solenoidal current field (2.4) and the Ohm’s law (2.3), a Poisson equation
for the electric potential can be derived as

∇ ·∇φ =∇ · (u×B). (2.5)

The dimensionless flow variables, such as time t, velocity u, pressure p, current
density J, imposed magnetic field B and electric potential φ, are scaled with
d/U0, U0, ρU2

0, σUB0, B0 and dU0B, respectively. Here d, U0, ρ, σ , ν, µ and B0
are the sphere diameter, uniform inflow velocity, fluid density, electrical conductivity,
kinematic viscosity, magnetic permeability and the intensity of the magnetic field,
respectively. Two dimensionless parameters in the momentum equation (2.1) are the
Reynolds number Re = U0d/ν and the interaction parameter N = σdB2/ρU0, which
measure the ratios of inertial to viscous forces and electromagnetic to inertial forces,
respectively.

Figure 2 shows the flow configuration and related geometrical parameters. A
uniform inflow is along the z-axis, while a transverse magnetic field is in the x–y
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plane. A concentric sphere-type grid is first clustered around the sphere to have
good orthogonality. Then ‘O’ grids and multi-block grids are divided into other parts
of the computational domain. A second-order-accurate consistent and conservative
numerical scheme is sufficient to solve the present problem, in which the current
density flux is located on the cell face while all other variables are stored in the cell
centre. Detailed validation and verification can be found in Ni et al. (2007). Since the
present work mainly investigates the influence of a transverse magnetic field on the
wake structure at the rear of a sphere, any wake–wall interactions are not considered.
Hence, slip boundary conditions are set on the lateral boundaries. A uniform velocity
is given at the inlet, while a convective boundary condition is applied at the outlet. A
no-slip boundary condition is imposed on the sphere. Furthermore, electric potential
boundaries should be specified for the electric potential governing equation. All
electric potential boundary conditions can be summarized as

∂φ

∂n
= (u×B) · n, (2.6)

which is derived from the electric potential (2.5) projected on the boundary. Here n is
the outward normal direction. The above equation derives the zero normal component
of the current at the boundary, which implies that the lateral walls are insulators. It
is suitable for practical situations since the duct flow with insulating walls is easily
driven with less pressure drop (Müller & Bühler 2013). It is noted that currents will
concentrate near the sphere and the present computational domain is sufficient to
solve the physical mechanism. For the present fixed electrically insulating sphere,
the boundary condition (2.6) on the sphere can be reduced to ∂φ/∂n = 0. The grid
resolution test for the streamwise magnetic field case in Pan et al. (2018) can be
re-used here.

The flow without a magnetic field is first simulated for a long time until a ‘stable’
state is obtained. Then, a uniform transverse magnetic field is imposed. The flow
configuration and the numerical model are axisymmetric, and the axisymmetric flow
in the absence of a magnetic field can be broken by different bifurcation points with
increasing Reynolds number. When a transverse magnetic field is applied, we can
expect symmetries with respect to two planes, which are parallel to the z-axis, and
either parallel or normal to the magnetic field. One symmetry plane that is parallel
to the magnetic field is named the P-symmetry plane and the other that is normal to
the magnetic field is named the N-symmetry plane. The present discussion concerns
Reynolds numbers up to 300, for which the wake structure behind the sphere will
be steady axisymmetric, steady plane symmetric and periodic. The last two wake
patterns have a symmetry plane whose orientation is, in principle, random, but is
determined by certain numerical biases. As shown in figure 1, an angle θ exists after
imposing a transverse magnetic field in the x–y plane. For a certain orientation of the
symmetry plane, in order to check the dependence of the initial flow configuration
with a different angle θ , x-directional and y-directional transverse magnetic fields
with identical intensity are imposed respectively to investigate whether they have the
same influences on the wake structure.

3. Results and discussions
3.1. Steady axisymmetric flow with magnetic field

When 20 < Re < 210 in the absence of a magnetic field, the flow is steady,
axisymmetric and topologically similar. Only the separation length and the separation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

42
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.423


156 J.-H. Pan, N.-M. Zhang and M.-J. Ni
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FIGURE 3. Skin friction lines on the sphere surface at Re= 150 with different interaction
parameters: (a) N = 0, (b) N = 0.3, (c) N = 1 and (d) N = 4. The flow direction is from
inside to outside. The magnetic field direction is from bottom to top.

angle of the separation bubble vary with different Reynolds numbers. Here, only
the case at Re = 150 is considered. Since the flow is axisymmetric, any magnetic
field direction in the transverse plane has the same effect on the wake structure.
So only results of the y-directional transverse magnetic field are given below. Skin
friction lines on the sphere surface with different interaction parameters are presented
in figure 3. It is noted that convergence of skin friction lines is a criterion of
three-dimensional flow separation (Lighthill 1963). Skin friction lines can clearly show
flow traces in the rear of the sphere, which help us analyse the wake structure. As
shown in figure 3, the shape of the flow separation line is narrowed in the P-symmetry
plane at N = 0.3, which changes from a circular shape at N = 0 to an approximately
elliptical shape. At this stage, the flow separation line is closed; skin friction lines in
the inner part of the closed separation line come from recirculation flows. This means
that a recirculation region still exists. However, with an increasing magnetic field at
N = 1, the closed separation line disappears, which means the recirculation region
is gone. Shatrov, Mutschke & Gerbeth (1997) also found that a transverse magnetic
field could lead to a complete suppression of recirculation on a two-dimensional
flow past a cylinder. Now the upstream flow converges into two symmetric points
at the rear of the sphere surface. Further increasing the magnetic field at N = 4, the
convergence points disappear and a straight separation line in the N-symmetry plane
is clearly visible. Obviously, the non-axisymmetry of the wake structure is expected
when affected by a transverse magnetic field. Now the wake structure is double plane
symmetric and its symmetry planes are P- and N-symmetry planes.

Assuming that the sphere is absent in the flow, currents coming from electromotive
forces are dominant in the core flow, which are generated by the fluid motion and
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FIGURE 4. Current lines at Re= 150 with N = 1. The results are plotted at time instant
Ti = 71t after imposing a transverse magnetic field. Here 1t is the time step in the
simulation. The magnetic field direction is from bottom to top. (a) Front view. The
flow direction is from inside to outside. Current lines are contoured with x component
of the Lorentz force, for which the positive direction is from left to right. The sphere
is contoured with the electric potential, for which the red colour means positive value
while the blue one represents negative value. (b) Side view. The flow direction is from
left to right.

represented by u × B in the Ohm’s law (2.3). When considering a sphere, the flow
field mainly can be divided into two parts. One part is far away from the sphere,
where electromotive forces u×B are dominant. Currents in this part flow from right
to left, as shown at the B position of figure 4(a). The other part is near the sphere,
where the velocity u must be weaker. Positive charges are concentrated in the left
side of the sphere (red colour) while negative charges are concentrated in the right
side of the sphere (blue colour). The charge conservation law requires that current
lines need to be closed. Since velocity is weaker here, electric potential gradients
are dominant, where currents flow from left to right, as shown at the C position of
figure 4(a). Furthermore, the sphere is electrically insulating. Currents will not go into
the sphere, but flow over the surface instead, as shown from A to C positions in the
side view of figure 4(b).

After understanding the current distribution, it is easy to know the Lorentz force
J × B exerted on the flow. Since currents flow over the sphere surface from A to C
positions in figure 4(b), the z-component of current Jz exists and will interact with
the magnetic field to generate the x-component of the Lorentz force. Figure 4(a)
shows the x-component of the Lorentz force contours on the current lines. These
forces pull the upstream flow away from the P-symmetry plane to two lateral sides
of the sphere. Figure 5(a) shows a schematic for the x-component of the Lorentz
force acting on the upstream flow at a small interaction parameter. As a result, the
upstream flow around the sphere diverges from the P-symmetry plane and converges
to the N-symmetry plane. The blue curved arrows in figure 5(a) show this moving
trend. The Lorentz force at position C of figure 4(a) is interesting – it will accelerate
rather than damp the upstream flow. The z-component of the Lorentz force contours
are plotted in figure 5(b). The z-component of the Lorentz force in zone D is larger
than that in zone E since the currents are clustered in zone D, which corresponds to a
faster flow near the surface in zone D. Hence this flow drives the flow separation line
from a circular shape into an approximately elliptical shape, as shown in figure 4(a).
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FIGURE 5. Lorentz force at Re = 150 with N = 1 in a front view for figure 4(a). The
flow direction is from inside to outside. (a) Schematic for the Lorentz force acting on
the upstream flow with a small interaction parameter. The red dashed line represents the
separation line. The black and red arrows represent the upstream flow projected on the
transverse plane and the Lorentz force on the transverse plane, respectively. The blue
curved arrow shows the moving trend of the upstream flow affected by the Lorentz force.
(b) The z-component of the Lorentz force contours in a section 0.35d away from the
sphere centre.
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FIGURE 6. Pressure contours and streamlines in the symmetry plane at Re = 150 with
N = 0.1. The magnetic field direction is along the y-axis. (a) One quarter of the three-
dimensional streamlines. (b) P-symmetry plane. (c) N-symmetry plane.

Figure 6 shows such a recirculation of elliptical shape in detail. One quarter of the
three-dimensional streamlines at N = 0.1 behind the sphere are plotted in figure 6(a).
The direction of the core flow connecting two spirals reflects the moving trend of
the upstream flow around the sphere. Such a moving trend will squeeze flow in the
N-symmetry plane and make the left vortex in figure 6(a) spiral outwards. At the
same time, the right vortex spirals inwards as it serves as the source of the core flow.
Figures 6(b) and 6(c) show such spirals in the P- and N-symmetry plane. These two
spirals will become smaller and finally disappear with increasing magnetic field.

Continuing with figure 4(a), figure 7 shows the time evolution of skin friction lines
on the sphere surface. The recirculation region first becomes smaller in figure 7(a) and
then disappears in figure 7(b). Now the upstream flow directly flows over the sphere
surface and converges at the N-symmetry plane. At this stage, the x-component
Lorentz force competes with the pressure gradient between the front and rear of
the sphere, for which the Lorentz force pulls away the upstream flow from the
P-symmetry plane and the pressure gradient pushes the upstream flow towards the
P-symmetry plane. When the x-component Lorentz force is dominant, upstream flows
will go away from the P-symmetry plane and converge at two points, as shown in
figure 7(c). Further increasing the magnetic field, pressure gradients become dominant
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FIGURE 7. Time evolution of skin friction lines on the sphere surface at Re = 150
with N = 1. The results are plotted at different time instants after imposing a transverse
magnetic field: (a) Ti = 271t, (b) Ti = 1671t and (c) Ti = 2671t, where 1t is the time
step in the simulation. The flow direction is from inside to outside. The magnetic field
direction is from bottom to top.

and a straight separation line will remain at the N-symmetry plane. The final stable
states in figures 3(c) and 3(d) correspond to these two situations.

3.2. Unsteady plane symmetric flow with magnetic field
3.2.1. Unsteady flow with weak magnetic field

It is known that the onset of unsteadiness for a flow past a sphere without
a magnetic field occurs at Re ≈ 270 and large-scale vortical structures are shed
periodically at Re= 300. Regardless of the certain orientation of the symmetry plane,
x-directional and y-directional transverse magnetic fields are imposed, respectively.
For a weak magnetic field situation, the flow is still unsteady with vortex shedding.
In order to quantify how the Lorentz force damps vortex shedding, a distance length
H defined in Pan et al. (2018) is used here, which presents the tilt of recirculation
behind the sphere, as shown in figure 8(a). In a period of vortex shedding, the tilt
of recirculation varies with time. Time evolution of the distance length for different
interaction parameters during one period is plotted in figure 8(b). The amplitude is
much damped by the transverse magnetic field at N = 0.01. The x-directional and
y-directional transverse fields have the same influences on the wake behind the sphere,
which is also confirmed by the identical time history of drag and lift coefficients in
figure 8(c).

After vortices are shed from the sphere, they are advected downstream. Figure 9
shows the power spectra of the streamwise velocity at point (0, 0, 6d) behind the
sphere for N = 0, and for N = 0.01 in the x- and y-directions. It is clearly seen
that the same shedding frequency St = 0.136 is found at N = 0.01 for x-directional
and y-directional transverse magnetic fields, which means that both fields have the
same influences on the downstream wake flow. Compared with the case with no
magnetic field at N = 0, the shedding frequency is unchanged. Hence, the transverse
magnetic field affects only the amplitude and not the frequency of vortex shedding.
Numerical (Mutschke et al. 2001) and experimental (Lahjomri et al. 1993) results
found that flow past a cylinder with an increasing streamwise magnetic field led to a
slightly reduced shedding frequency. Shatrov et al. (1997) claimed that an increasing
streamwise magnetic field caused a reduction of the mean separation angle of a
two-dimensional cylinder flow, which should lead to a slightly smaller shedding
frequency. However, for the present sphere case, the separation line during the vortex
shedding process is nearly unaffected by the influence of a weak transverse magnetic
field at N = 0.01. The Lorentz force mainly affects the tilt of the recirculation
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FIGURE 8. Time evolution at Re=300 with different interaction parameters. The magnetic
field is along the x- or y-direction. (a) Schematic for the distance length H between the
stagnation point and the axis along the sphere centre. (b) Time evolution of distance length
during one vortex shedding period T . The time is scaled with T . (c) Time history of drag
and lift coefficients. The time is scaled with d/U0. These coefficients are both scaled with
1
2ρU2

0A, where A is the transverse section area of the sphere.
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FIGURE 9. Power spectra of the streamwise velocity component at x= 0, y= 0, z= 6d
behind the sphere at Re = 300 with N = 0 or N = 0.01 (semi-log plots). The magnetic
field is along the x- or y-direction.

and the separation angle remains unchanged. This may be the reason for the same
shedding frequency. Such unchanged shedding frequency phenomenon is also found
in the case of flow past a sphere with a streamwise magnetic field (Pan et al. 2018).
Furthermore, a stronger damping of the superharmonics can be seen in figure 9. The
same phenomenon is also reported for a streamwise magnetic field case in Pan et al.
(2018). For x-directional or y-directional transverse magnetic fields, the different initial
angle θ impacts the time scale of the wake going to the final equilibrium state (see
§ 3.3), which causes the different amplitude of the frequency of the superharmonics
in figure 9.

Three-dimensional large-scale vortical structures in the near-wake region of the
sphere are shown by streamwise vorticity in figure 10. In figure 8(b), the degree of
tilt is greatly damped by the magnetic field, so the smaller tilt converts less azimuthal
vorticity into streamwise vorticity. Hence, a smaller streamwise vorticity is shown in
figure 10(b).
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FIGURE 10. Streamwise vortical structures at Re = 300 with different interaction
parameters: (a) N = 0 and (b) N = 0.01. Isosurfaces of streamwise vorticity with ωz± 0.4.
The red streamwise vorticity is positive while the blue one is negative.
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FIGURE 11. Drag and lift coefficients of steady flows at Re= 300 versus the interaction
parameter with a magnetic field along x- or y-direction: (a) Cd (semi-log plots) and (b) Cl.

3.2.2. Steady flow under an increasing magnetic field
Shatrov et al. (1997) reported that the unsteady vortex shedding of a two-

dimensional flow past a cylinder would be suppressed and transitioned to a steady
flow affected by a transverse magnetic field. Then a stronger transverse magnetic field
could lead to a complete suppression of recirculation. Similar results can be found
for the present sphere case. Under an increasing magnetic field, the oscillation of the
distance length H in figure 8(b) will be completely suppressed. The periodic state
transitions to a steady state at N = 0.015. But the distance length itself is still larger
than zero, which means the tilt of recirculation behind the sphere still exists. The flow
is now steady, plane symmetric and a constant lift force is in the symmetry plane.
In § 3.2.1, x-directional and y-directional transverse magnetic fields have the same
influences on unsteady wake structures. This conclusion is also suitable for steady
wake structure situations, since figure 11 shows identical drag and lift coefficients.
Remember that the flow past a sphere is first simulated for a long enough time and
then a transverse magnetic field is imposed. In order to check whether the different
initial time instants for imposing a transverse magnetic field have an influence on the
final steady state, four time instants of a period as the starting points in figure 8(b)
are tested at N = 0.04. All results are identical, which indicates that the starting
time of imposing a magnetic field does not affect the final results, and the present
steady results are consistent. Furthermore, the lift coefficient in figure 11(b) decreases
with an increasing magnetic field and then remains zero. It should be noted that the
non-zero lift zone corresponds to a plane symmetric state with tilt of recirculation
behind the sphere while the flow in the zero lift zone corresponds to a double plane
symmetric state. Here, a transition occurs at Cl = 0.

Figure 12 shows detailed changes of topological structures, indicating that the
wake structure is symmetric in the P-symmetry plane and the small left spiral in
the N-symmetry plane will grow until it becomes the same as the right spiral. Now
the lift force is zero and a transition from a steady plane symmetric flow to a
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FIGURE 12. Pressure contours and streamlines in the symmetry plane at Re = 300
steady flow with different interaction parameters. The magnetic field direction is along
the y-direction. (a) P-symmetry plane at N = 0.015. (b) P-symmetry plane at N = 0.04.
(c) P-symmetry plane at N = 0.09. (d) N-symmetry plane at N = 0.015. (e) N-symmetry
plane at N = 0.04. ( f ) N-symmetry plane at N = 0.09.

steady double plane symmetric one occurs. With a further increasing magnetic field,
the topological structure behind the sphere at Re = 300 will go through the same
patterns that happened at Re = 150 in figure 3. With Reynolds numbers up to 300,
a steady axisymmetric flow and an unsteady flow affected by a transverse magnetic
field have been investigated. It is noted that, for a steady plane symmetric flow at
210< Re< 270, the topological structure of the wake behind the sphere affected by
a transverse magnetic field will go through the same changes as the steady flow at
Re = 300 shown in figure 12. They both experience the small left spiral growing, a
transition from plane symmetry to double plane symmetry. Hence, the results are not
repeatedly presented here.

The wake structure behind the sphere will change from an unsteady plane
symmetric pattern to a steady plane symmetric one when affected by a transverse
magnetic field. At this stage, the recirculation at the rear of the sphere still exists.
Its wake structure has a similar topological structure with the case at 210< Re< 270
in the absence of a magnetic field. An effective viscosity concept in a previous
investigation (Pan et al. 2018) can be used to understand this phenomenon with a
magnetic damping effect. This theory claims that the Lorentz force action on the
flow can be seen as an effective viscosity and that increasing the magnetic field is
equivalent to adding effective viscosity into a corresponding hydrodynamic flow case,
which is equivalent to decreasing the effective Reynolds number. Consequently, the
change of wake structure affected by an increasing magnetic field will experience
a similar change of wake structure in a hydrodynamic flow case with decreasing
Reynolds number. Hence, a so-called ‘reversion phenomenon’ (Pan et al. 2018)
is also found, which indicates that the topological structure behind the sphere at
a higher Reynolds number with a certain interaction parameter corresponds to a
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FIGURE 13. Detailed wake flow at Re = 300 with N = 16. (a) Three-dimensional
streamlines at the rear of the sphere. The blue arrow is a jet flow, which is caused by
convergence of upstream flow. (b) Contour of the streamwise velocity norm Un at the
slice z= 1d behind the sphere. The velocity Un is scaled with the inlet velocity. Traces
of cross-flow velocity are projected on the slice. (c) Streamwise vorticity contour at the
slice z= 1d behind the sphere. The profile of the sphere is indicated by a dashed circle.

lower-Reynolds-number case with a lower interaction parameter. Finally, all wake
structures will be damped to be a double plane symmetric state with a strong
transverse magnetic field.

The double plane symmetric wake is further discussed below. Figure 13 shows a
detailed wake flow at Re = 300 with N = 16. With the reversion phenomenon, the
topological structure in figure 13(a) is double plane symmetric, which corresponds
to the same topological structure at Re = 150 with N = 4 in figure 3(d). Upstream
flows converge at two sides of the straight separation line by the action of the Lorentz
force. Under the mass conservation constraint, the flow velocity at these two zones
is faster than the surrounding flow, as shown in figure 13(a,b), so there will be a
jet flow, which heads downstream and meets with the low-speed outer upstream flow.
Then the upstream flow is pushed away and has a swirl velocity to move downstream.
Such interaction converts to a streamwise vorticity. Figure 13(c) plots the streamwise
vorticity contours at the slice z= 1d behind the sphere, which confirms again that the
wake structure is double plane symmetric.

3.3. Preferred orientation of the vortex symmetry plane
In § 3.2, it was reported that the wake structure behind the sphere showed the same
quantitative changes affected by transverse magnetic fields with identical intensity and
different angle θ , such as the tilt of recirculation, vortex shedding frequency, drag
coefficient and lift coefficient. Now we pay attention to the relationship between the
orientation of the symmetry plane and the transverse magnetic field. The dash-dotted
line in figure 14 represents the symmetry plane at Re = 300 with N = 0. As can
be seen, after being affected by the x-directional or y-directional transverse magnetic
field at N = 0.01, the new symmetry plane denoted by the solid line at time instant
T = 300 will rotate and tend to be perpendicular to the magnetic field. Apart from the
unsteady flow, we also examine the steady plane symmetric flow in § 3.2.2. Detailed
topological structures of these flows are shown in figure 12. Such ring vortex shifting
generates a lift force within the symmetry plane, so the lift force orientation can
represent the orientation of the symmetry plane. The lift force in the transverse plane
can be decomposed into x- and y-components. Detailed lift force coefficients affected
by two transverse magnetic fields are plotted in figure 15(a). The direction from the
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FIGURE 14. Cross-section of streamwise vortical structures at 1.5 diameters behind the
sphere is plotted at Re = 300 with N = 0.01 at time instant T = 300 (not final stable
state): (a) x-directional magnetic field and (b) y-directional magnetic field. The dash-dotted
line and solid line represent the orientation of the original and new symmetry planes,
respectively. The black and red arrows mean the magnetic field direction and the lift force
direction, respectively. The profile of the sphere is indicated by a dashed circle.
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FIGURE 15. The orientation of the wake structure tends to be perpendicular to a
transverse magnetic field. The red arrow represents the magnetic field direction. (a) Lift
force Clx–Cly plot at Re = 300 with different interaction parameters under the influence
of a transverse magnetic field. (b) Lift force Clx–Cly plot at Re = 250 with different
interaction parameters under the influence of a streamwise magnetic field (Pan et al. 2018).
(c) Lift force Clx–Cly plot at Re = 300 with different initial symmetry planes under the
influence of a transverse magnetic field. The dashed arrow represents the initial orientation
of the symmetry plane at N = 0.

coordinate origin to the data point of the lift force represents the orientation of the
symmetry plane. It is clearly seen that, under the influence of a transverse magnetic
field, this orientation is completely perpendicular to the magnetic field in the final
equilibrium state.

Figure 16 plots a schematic of how the Lorentz force affects the orientation of the
symmetry plane. The tilt of recirculation behind the sphere is simply represented by a
small and large spiral. The orientation is along these two spirals. In fact, the physical
mechanism here is similar to the case in § 3.1. The moving trend of upstream flow
affected by the action of the Lorentz force in figure 16(a) will rotate the orientation,
and the faster upstream flow in zone D in figure 16(b) will squeeze the orientation.
These two effects finally make the orientation lie in the N-symmetry plane, which is
perpendicular to the magnetic field. Further details of the tilt of recirculation behind
the sphere are plotted in figure 12(e). Some streamlines from the large spiral directly

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

42
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.423


Flow past a sphere influenced by a transverse magnetic field 165

Lorentz force

Divergence

Convergence

Upstream flow

Moving trend

The small spiral

The large spiral

B

E

D

0.25
0.20
0.15
0.10
0.05
0
-0.05
-0.10

(a) (b)

FIGURE 16. Lorentz force at Re= 300, N = 0.04 in a front view. The flow direction is
from inside to outside. (a) Schematic for the moving trend of the upstream flow, which
will affect the orientation of the symmetry plane. (b) The z-component of the Lorentz
force contours in a section 0.35d away from the sphere centre.

flow downstream. However, this is not the case for the similar topological structure
affected by a streamwise magnetic field in Pan et al. (2018). Since the moving trend
of upstream flow not only rotates the orientation of the symmetry plane, but also
converges flow near the N-symmetry plane, this will squeeze flow in the large spiral
and make some flows spiral outwards and head downstream. The orientation of the
symmetry plane at Re = 250 affected by a streamwise magnetic field in Pan et al.
(2018) is also examined. However, the original symmetry plane at N= 0 is unchanged
in figure 15(b), which is different from the present transverse magnetic field case.

For the orientation of the symmetry plane without a magnetic field, the orientation
in principle is random but is actually determined by perturbations in experiments
or numerical biases (Johnson & Patel 1999). It has been reported in Ghidersa &
Dušek (2000) that the symmetry plane can be selected randomly by perturbation
with a spectral/spectral-element discretization method. However, in the present
finite-volume-type numerical method it is difficult to impose a perturbation for a
certain direction in a flow around a fixed sphere. In order to obtain different initial
angle θ , one easy way is to change the transverse magnetic field direction. As seen
in figure 15(a), the orientation of the symmetry plane is located at N = 0. Three
kinds of magnetic field directions are considered, which are along the y-axis positive
direction, the x-axis positive direction and the x-axis negative direction. These three
magnetic fields have different initial angle θ with the symmetry plane. Since the flow
configuration and the numerical model are axisymmetric, the whole system of these
three magnetic fields can be rotated around the z-axis to be parallel to the y-direction,
as shown in figure 15(c). Now three cases with different initial symmetry planes at
N = 0 are affected by a transverse magnetic field. The lift force Clx–Cly plot as in
figure 15(a) is given in figure 15(c). Owing to the symmetry breaking that occurs
when going from the solution with two symmetry planes at N = 0.09 to the solution
with only one symmetry plane with N < 0.09, two equivalent solutions with one
symmetry plane exist. Hence, the transition occurs at a pitchfork bifurcation.

Ern et al. (2012) reported that the wake structure behind a free-moving particle
was related to its trajectories. So it is possible that the transverse magnetic field can
control the trajectory of a free-moving particle by changing the orientation of its wake
structure. A case is given below to show this control feature.

The freely rising sphere case at G = 165, m∗ = 0.5 in the absence of a magnetic
field is chosen. Here, G = U0d/ν is the Galileo number, which replaces the
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FIGURE 17. Freely rising sphere at G = 165, m∗ = 0.5 without a magnetic field.
(a) Oblique trajectory. (b) Isosurfaces of streamwise vorticity with ωz ± 0.3. The red
streamwise vorticity is positive while the blue one is negative. (c) Cross-section plot of
streamwise vortical structures at one diameter behind the sphere. The profile of the sphere
is indicated by a dashed circle.

Reynolds number in a moving-body problem; U0 =
√
|1−m∗|gd is the gravitational

velocity scale, where g is the acceleration of gravity and m∗ measures the ratio
of particle density to fluid density. A moving-frame method coupled with sphere
motion equations (Pan, Zhang & Ni 2019) is used to simulate a freely rising
sphere. Figure 17(a) shows an oblique trajectory of the sphere, which agrees
with the numerical result (Jenny, Dušek & Bouchet 2004) and the experimental
result (Horowitz & Williamson 2010). Figure 17(b) shows a double-threaded wake
consisting of streamwise counter-rotating vortices. It is clearly seen that the wake
structure is plane symmetric. Furthermore, these two vortices will induce a flow with
the right-hand rule and then a force will be exerted on the sphere under the law of
interaction, which leads to a horizontal velocity to compensate this force, as shown
in figure 17(c). It is noted that the horizontal velocity is along the symmetry plane.
Hence, the horizontal velocity can represent the orientation of the wake structure.

The reason to choose such a freely rising sphere is that it has a similar wake
structure to a flow past a fixed sphere in § 3.2.2. They are both plane symmetric
with a double-threaded wake. After the freely rising sphere reaches its stable state,
x-directional and y-directional transverse magnetic fields are imposed respectively to
show its control feature to the trajectory of the freely rising sphere. The horizontal
velocity of the freely rising sphere is used to represent the direction of motion of
the sphere in the horizontal plane. As shown in figure 18, under the influence of
a transverse magnetic field, the horizontal velocity tends to be perpendicular to the
magnetic field. The reason is that the transverse magnetic field rotates the wake
structure behind the freely rising sphere to be perpendicular to itself, as shown in
figure 19. Assuming one is standing on the free sphere centre to observe the flow
field, the physical mechanism of wake structure rotation is similar to the fixed-sphere
case. The only difference is that there is no constraint on the degrees of freedom of
a freely rising sphere. Hence, the rotation of the wake structure will rotate the freely
rising sphere by viscosity force, which will facilitate the fluid–solid system moving
into a new equilibrium state. As shown in figure 17(c), the smaller the streamwise
vorticity, the weaker induced flow it has, leading to a smaller horizontal velocity.
Figure 19 shows that the streamwise vorticity becomes smaller under the damping
effect of an increasing magnetic field. Its variation trend is the same as the change
of the horizontal velocity in figure 18.
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FIGURE 18. Magnetic field can control a freely rising sphere moving at G=165, m∗=0.5
under the influence of a transverse magnetic field. (a) Transverse velocity Vx–Vy plot for
x- and y-directional magnetic field. (b) Transverse velocity Vx–Vy plot with two opposite
small perturbations. The free-moving sphere is first stable at N = 0.025 and then the
magnetic field changes to N = 0.01 and N = 0.015 with a small x-direction perturbation
of horizontal velocity exerted on the sphere.
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FIGURE 19. Cross-section plots of streamwise vortical structures affected by a transverse
magnetic field at one diameter behind the freely rising sphere at G = 165, m∗ = 0.5:
(a) N = 0.01, (b) N = 0.015, (c) N = 0.02, (d) N = 0.01, (e) N = 0.015 and ( f ) N = 0.02.
The arrow indicates the magnetic field direction. The profile of the sphere is indicated by
a dashed circle.

As shown in figure 18(a), a horizontal velocity transition occurs at N = 0.025,
where the motion of the free-moving sphere transitions from an oblique trajectory to
a vertical one. A small velocity perturbation along the x-axis positive direction or the
x-axis negative direction is exerted on the free sphere when it rises vertically and, at
the same time, the transverse magnetic field decreases from N = 0.025 to N = 0.015
or N = 0.01. Figure 18(b) shows two equivalent solutions where one symmetry plane
exists. The transition also occurs at a pitchfork bifurcation.
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FIGURE 20. Control features at G = 165, m∗ = 0.5 with different initial angles and
interaction parameters. The time is scaled with d/U0, where U0 is the gravitational velocity.
(a) Time history of the angle θ . The dashed line represents a threshold angle θt = 81◦,
which means the transverse velocity is 90 % perpendicular to the magnetic field. (b) The
evolving time for different initial angles reaching 90 % perpendicular to a magnetic field.
Solid points represent results of different cases. (c) Horizontal migration ratio defined by
Vh/Vz, where Vh and Vz are terminal horizontal and vertical velocities.

Some control features are discussed here. Figure 20(a) plots a time history of
the angle θ with an initial angle θ0 = 26◦. The most attractive feature is that the
transverse magnetic field can control the horizontal motion of the free sphere to be
perpendicular to itself. Here, a threshold angle θt = 81◦ is defined, which means the
angle θ reaches 90 % perpendicular to a magnetic field and one can say that the
control effect is obvious when θ > θt. In order to give a systematic investigation of
the influence of the initial angle θ0 and the magnetic field intensity N on the temporal
evolution of the angle θ , a total of 25 cases are simulated. Figure 20(b) shows the
evolving time of the angle θ from the initial angle θ0 to the threshold angle θt. It
is clearly seen that it takes less time for a strong magnetic field to reach the angle
θt. Apart from the evolving time, a horizontal migration ratio is defined by Vh/Vz,
where Vh and Vz are the terminal horizontal and vertical velocities of the free sphere.
The horizontal migration ratio decreases with increasing magnetic field and shows a
linear dependence of N2.5 in the range 0.01 6 N 6 0.02 in figure 20(c).

Further consideration about the temporal evolution of the angle θ to reach the
equilibrium state is given in figure 21. In § 3.2.2, an effective viscosity concept is
used to explain the ‘reversion phenomenon’, which claims that a magnetic damping
effect is equivalent to adding effective viscosity into the case and this case reverses
to a lower-Reynolds-number case with a lower interaction parameter. The ‘reversion
phenomenon’ inspires us to use the magnetic damping time τ = (σB2/ρ)−1 to
scale the evolving time in figure 20(b). The interaction parameter N = σB2d/ρU0
can be reformed as N = d/U0τ , so that we have the relation τ = d/U0N. For
the present investigations, d/U0 is a fixed value; hence with the time scaling τ ,
the three-dimensional plot in figure 20(b) is reduced to a two-dimensional plot in
figure 21(a), where the magnetic damping effects shrink together. This can be more
clearly seen by comparing figure 20(a) and figure 21(a). The shape of the angle θ
evolving curve is like a hyperbolic tangent function θ = 90 tanh(βT), where β is
a parameter. As can be seen in figure 21(a), the time history of the angle θ can
collapse together by horizontal translation and the collapsed curve is characterized
by a hyperbolic tangent function. So for a case with an initial angle θ0, the temporal
evolution of the angle θ can be easily fitted with a hyperbolic tangent function

θ ′ = tanh(βT + atanh(θ ′0)). (3.1)
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FIGURE 21. Evolution of the transient time to reach the equilibrium angle at G = 165,
m∗ = 0.5 with different initial angles and interaction parameters. The time is scaled with
the magnetic damping time τ = (σB2/ρ)−1. (a) Time history of the angle θ . The dashed
curve represents a hyperbolic tangent function. Solid curves can collapse to the dashed
curve by horizontal translation, as the black arrow shows. (b) The comparison between
fitted curves and simulation results at N = 0.015.

Here, θ ′= θ/90 and θ ′0= θ0/90. It is noted that here the evolution time is scaled with
the magnetic damping time, T = t/τ = tNU0/d. With some mathematical operations,
the inverse function of the above equation is given as

T =
1
β

atanh
(
θ ′ − θ ′0

1− θ ′θ ′0

)
. (3.2)

The only unknown parameter β can be easily obtained by linear fitting with the 25
simulation results, which gives β = 0.75. Figure 21(c) shows good agreement between
the fitted curves plotted with (3.1) and the simulation results.

The control feature of the transverse magnetic field is attractive. The present work
is the first time that the field–wake–trajectory control mechanism has been analysed
for a particle freely moving in MHD flows.

3.4. Drag and lift coefficients

Pan et al. (2018) reported that the drag coefficient was proportional to N1/2 for a
strong streamwise magnetic field. A similar result is also found here for a strong
transverse magnetic field. Figures 22(a) and 22(b) show two linear relationships.
The drag coefficient is proportional to N2/3 for small interaction parameters or N1/2

for large interaction parameters. The threshold between these two drag coefficient
regimes is approximately N = 4. Delacroix & Davoust (2018) found that the drag
coefficient in the presence of a weak transverse magnetic field is proportional to N0.65.
However, for large interaction parameters, drag measurements in Kalis et al. (1966)
are proportional to N1/2. Here, a qualitative analysis is used to explain the drag law
Cd ∝ N1/2 for large interaction parameters. The existence of a sphere can be seen
as a finite disturbance in the inflow, which results in two main physical phenomena.
Part of the finite disturbance near the sphere that is perpendicular to the magnetic
field is a thin Hartmann boundary layer. Müller & Bühler (2013) reported that the
dominant role of the Hartmann boundary layer was responsible for electromagnetic
pressure losses originating from the Joule dissipation effect. They found that the
pressure drop was proportional to N1/2. Hence, the energy loss in the Hartmann
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FIGURE 22. Drag and lift coefficients versus the interaction parameter. (a) Linear
dependence of drag coefficient versus N2/3 for small interaction parameters. (b) Linear
dependence of drag coefficient versus N1/2 for large interaction parameters. (c) Lift
coefficient in steady flows with different Reynolds numbers versus the interaction
parameter.

Re 220 250 280 300
N 0.01 0.04 0.065 0.085

TABLE 2. The transition points of lift coefficient Cl = 0 at steady flows for different
Reynolds numbers affected by a transverse magnetic field.

boundary layer by the Joule dissipation effect is proportional to N1/2. The other part
of the finite disturbance is flow around the sphere and this lateral movement flow
sweeps a portion of the magnetic field sideways. Hence, an Alfvén wave is created,
which can propagate the finite disturbance and energy away along the magnetic field
(Davidson 2001; Moreau 2013). It is noted that such a process is similar to the
streamwise magnetic field case (Pan et al. 2018), for which the energy propagated by
an Alfvén wave is also proportional to N1/2. The drag law may be interpreted from
the perspective of the energy. Assume that we set the coordinate system fixed on the
sphere centre and make the sphere move with the inlet flow velocity. Now, the power
created from the drag force pushing the sphere mainly contributes to the energy
carried away by the Alfvén wave and the pressure drop power (Joule dissipation) in
the Hartmann boundary layer. So for a large interaction parameter, there is a drag
law Cd ∝N1/2.

In § 3.2, for a weak magnetic field at N = 0.01, the unsteady vortex shedding flow
at Re= 300 will be damped. The amplitude of tilt of recirculation behind the sphere
becomes smaller. With an increasing magnetic field at N = 0.015, the unsteady flow
transitions to a steady flow with a constant lift force within the symmetry plane.
Figure 22(c) plots the steady part of the lift coefficient with different Reynolds
numbers versus the interaction parameter. The lift force decreases with increasing
magnetic field and then remains zero. The non-zero lift force zone corresponds to
a plane symmetric state with a tilt of recirculation behind the sphere and the flow
in the zero lift zone corresponds to a double plane symmetric state. The inflection
points of lift coefficients at Cl = 0 represent a transition. Detailed transition values
are given in table 2. It is noted that the transition occurs at a pitchfork bifurcation.
In order to define various wake structures and transition processes, a total of 112
cases are performed. Figure 23 gives the map of regimes for wake patterns behind a
sphere in the {N, Re} plane.
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FIGURE 23. Map of regimes for wake patterns behind a sphere in the {N,Re} plane. The
dashed and dash-dotted lines correspond to the hydrodynamics first and second bifurcation,
respectively. Regime I is a steady double plane symmetric state. Regime II is a steady
plane symmetric state. The last regime III is an unsteady plane symmetric state.

4. Conclusions

The wake structure of a flow past a sphere with Reynolds numbers up to 300
under the influence of an imposed transverse magnetic field has been simulated and
analysed in detail. For a steady axisymmetric flow affected by a transverse magnetic
field, the upstream flow diverges from the symmetry plane parallel to the magnetic
field and converges to the symmetry plane normal to it. The wake flow is double
plane symmetric. For an unsteady vortex shedding flow, only the amplitude of vortex
shedding is damped but the frequency remains unchanged. Under an increasing
magnetic field with the interaction parameter N = 0.015, vortex shedding is totally
suppressed and the wake structure transitions to a steady plane symmetric pattern,
for which a tilt of recirculation behind the sphere exists. Such ring vortex shifting
produces a constant lift force. With a further increasing magnetic field, the lift
force decreases and reaches zero. Now, the wake structure transitions to a double
plane symmetric state, where the transition occurs at a pitchfork bifurcation. A total
of 112 cases among three kinds of wake structure patterns are summarized in the
{N, Re} plane.

Wake structures at Reynolds numbers from 210 to 300 without a magnetic field are
plane symmetric. There will be an angle θ between the orientation of the symmetry
plane and the transverse magnetic field. Transverse magnetic fields with identical
intensity and different initial angle θ have the same influence on the wake structure.
However, the orientation of the symmetry plane tends to be perpendicular to the
transverse magnetic field. Furthermore, we show the field–wake–trajectory control
mechanism for a sphere freely moving in MHD flows and consider the temporal
evolution of the angle θ related to the initial angle θ0 and the magnetic field intensity
N. The control feature of a transverse magnetic field will be investigated more in
the future.

A so-called ‘reversion phenomenon’ is also found. It describes that the topological
structure behind the sphere with a higher Reynolds number and a certain interaction
parameter corresponds to a lower-Reynolds-number case with a lower interaction
parameter. An effective viscosity concept can explain this phenomenon. Finally, all
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wake structures will be in a double plane symmetric state with a strong transverse
magnetic field. Furthermore, two linear relationships of the drag coefficient are found.
One is proportional to N2/3 for small interaction parameters; the other is proportional
to N1/2 for large interaction parameters; and the threshold value between these two
regimes is approximately N = 4.
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