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Abstract

This work concerns Markov decision chains on a finite state space. The decision-maker
has a constant and nonnull risk sensitivity coefficient, and the performance of a control
policy is measured by two different indices, namely, the discounted and average criteria.
Motivated by well-known results for the risk-neutral case, the problem of approximating
the optimal risk-sensitive average cost in terms of the optimal risk-sensitive discounted
value functions is addressed. Under suitable communication assumptions, it is shown
that, as the discount factor increases to 1, appropriate normalizations of the optimal
discounted value functions converge to the optimal average cost, and to the functional
part of the solution of the risk-sensitive average cost optimality equation.
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1. Introduction

This work deals with discrete-time Markov decision chains on a finite state space. It is
assumed that the controller has a (nonnull and) constant risk sensitivity coefficient, and two
performance criteria for a control policy are considered, namely, the risk-sensitive average
cost and the risk-sensitive discounted index. Besides standard continuity-compactness require-
ments, the basic framework of the paper is determined by the following property: the state
process is communicating under each stationary policy, a condition that is necessary to ensure
that the optimal risk-sensitive average cost is constant. In this context, the following problem
is studied.

• To obtain convergent approximations for the optimal risk-sensitive average cost in terms
of the family of optimal risk-sensitive discounted value functions.

This problem has a well-known solution in the risk-neutral case, which corresponds to a null
risk sensitivity coefficient; see, for example, [1], [17], [22], and [27].

For the case of a nonnull risk sensitivity coefficient, the above problem was studied in [8], [9],
and [13]. In [13] controlled Markov chains on a Borel space were analyzed under a geometric
ergodicity assumption that is not generally satisfied in the present framework, and a solution
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was given under the condition that the magnitude of the risk sensitivity coefficient is small
enough. In the other two aforementioned works such a condition was not imposed, but the
results were concerned with uncontrolled Markov chains. The results of this paper extend the
conclusions in those papers.

The risk-sensitive average criterion has been intensively studied, and the theory can be traced
back, at least, to the seminal paper by Howard and Matheson [18], where the optimal average
cost was characterized via an optimality equation rendering an optimal stationary policy. More
recently, models with a finite or denumerable state space were considered in [6], [11], [15],
[16], and [24], whereas Markov decision processes on a general state space were studied in
[12]–[14] and [19]. The risk-sensitive average criterion is connected with the theory of large
deviations [2], [20], and mathematical finance [3], [21], [25]. Markov decision models with a
notion of risk more general than the one used in this paper were studied, for example, in [4]
and [23]. In the context of dynamic games, a recent paper by Bäuerle and Rieder [5] deals with
the characterization of risk-sensitive optimal strategies for a zero-sum game.

The main results of this work can be briefly described as follows. For a nonnull risk sensitivity
coefficient, it is shown that, as the discount factor increases to 1, appropriate normalizations of
the optimal discounted value functions converge to the optimal risk-sensitive average cost, and
to the functional part of the solution of the average cost optimality equation.

If the classical risk-neutral normalization to approximate the average cost is applied in the
present risk-sensitive context, then the normalized optimal discounted value function converges
to the mean value of the optimal average cost over the interval joining zero and the risk sensitivity
parameter.

The conditions under which these conclusions are obtained depend on the sign of the risk
sensitivity coefficient. As will be explained in Section 3 below, this difference can be traced back
to the fact that, in the risk-seeking case (corresponding to a negative risk sensitivity coefficient),
a convexity property associated with the optimal discounted value functions holds, but such a
feature cannot be generally ensured for positive risk sensitivity coefficients.

The organization of the paper is as follows. In Section 2 the decision model is formally
introduced, the risk-sensitive average and discounted criteria are formulated, and the basic
continuity-compactness and communication conditions are stated as Assumptions 2.1 and 2.2,
respectively. In Section 3 the main conclusions of the paper are formulated in Theorems 3.1–
3.3, the strategy that will be used to establish those results is outlined, and the technical reason
for which an additional condition is required to analyze the case of a positive risk sensitivity
coefficient is discussed. From this point onwards, the remainder of the paper is dedicated to
proving those theorems. Thus, in Section 4 we present some general technical instruments
that will be used to prove Theorems 3.1 and 3.2 in Sections 6 and 7, respectively, whereas
Theorem 3.3 is established in Section 7. After some brief comments in Section 8, the exposition
concludes with Appendix A in which we present the proof of some technical results which are
used in the derivation of the main results.

Definition 1.1. (Notation.) Given a real-valued function f , the corresponding supremum norm
is given by ‖f ‖ := sup{|f (y)| : y belongs to the domain of f }, whereas B(S) := {f : S →
R : ‖f ‖ < ∞} denotes the space of all bounded functions defined on the nonempty set S,
and B(S) is always endowed with the supremum norm. On the other hand, given an event A,
the corresponding indicator function is denoted by 1(A), and any relation between random
variables holds almost surely with respect to the underlying probability measure. Finally, N

denotes the set of all nonnegative integers.
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2. The model

Throughout the remainder of the paper M = (S, A, {A(x)}, C, P ) denotes a Markov
decision chain, a model for a dynamical system evolving under the influence of a decision-
maker (controller). The nonempty and finite set S is the state space and is endowed with the
discrete topology, the metric space A is the action set, and, for each x ∈ S, A(x) ⊂ A is
the nonempty class of admissible actions at x. On the other hand, C : K → R is the cost
function, where K := {(x, a) | a ∈ A(x), x ∈ S} is the set of admissible pairs, whereas
P = [px,y(·)] is the controlled transition law. The interpretation of this model is as follows.
At each time t ∈ N, the state of the system is observed, say Xt = x, and the controller applies
an action At = a ∈ A(x). As a consequence of that intervention, a cost C(x, a) is incurred
and, regardless of the previous states and actions, at time t + 1 the state Xt+1 = y will be
observed with probability px,y(a), where

∑
y∈S px,y(a) = 1; this is the Markov property of

the decision process.

Assumption 2.1. (i) For each x ∈ S, A(x) is a compact subset of A.

(ii) For every x, y ∈ S, the mappings a �→ C(x, a) and a �→ px,y(a) are continuous in
a ∈ A(x).

Definition 2.1. (Policies.) The class P of decision policies consists of the (measurable) rules π

for choosing actions which, at each time t ∈ N, may depend on the states observed up to t and on
the actions applied before t . Given π ∈ P and the initial state X0 = x, the distribution P

π
x of the

state-action process {(Xt , At )}t∈N is uniquely determined, and E
π
x stands for the corresponding

expectation operator; for details, see, for example, [22]. Define F := ∏
x∈S A(x), which is a

compact metric space and consists of all functions f : S → A such that f (x) ∈ A(x) for all
x ∈ S. The class M of Markov policies consists of the sequences π = (fn)n∈N, where fn ∈ F

for every n ∈ N. Under π = (fn) ∈ M, the equality An = fn(Xn) is always valid, and if
fn = f ∈ F for every n, the policy is referred to as stationary and is naturally identified with f ;
with this convention, F ⊂ M ⊂ P . Note that under a stationary policy f ∈ F, the state process
{Xt } is a Markov chain with time-invariant transition matrix [px,y(f (x))]x,y∈S .

Definition 2.2. (Risk sensitivity and average criterion.) Throughout the remainder of this
paper, it is supposed that the controller has a constant risk sensitivity λ ∈ R so that a random
cost W is assessed via the expectation of Uλ(W), where the strictly increasing (dis-)utility
function Uλ(·) is defined as follows. For each w ∈ R,

Uλ(w) :=
{

sign(λ)eλw if λ 	= 0,

w if λ = 0; (2.1)

note that
Uλ(c + w) = eλcUλ(w), λ 	= 0, c, w ∈ R. (2.2)

If the decision-maker can choose between two random costs W0 and W1, she/he will prefer
to pay W0 when E[Uλ(W1)] > E[Uλ(W0)], and will be indifferent between both costs when
E[Uλ(W1)] = E[Uλ(W0)]. The certainty equivalent of a random cost W with respect to Uλ is
the unique real number E [λ, W ] satisfying Uλ(E [λ, W ]) = E[Uλ(W)], and then the controller
will gladly pay the fixed amount E [λ, W ] to avoid W . Note that, by (2.1),

E [0, W ] = E[W ], E [λ, W ] = 1

λ
log(E[eλW ]), λ 	= 0, (2.3)
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and that
P[|W | ≤ b] = 1 �⇒ |E [λ, W ]| ≤ b, λ ∈ R. (2.4)

By Jensen’s inequality, E [λ, W ] ≥ E[W ] = E [0, W ] ≥ E [−λ, W ] for every λ > 0. The
controller is referred to as risk averse (respectively, risk seeking) if λ > 0 (respectively, λ < 0).
When λ = 0, the controller is risk neutral. Now suppose that the system is driven by a policy
π ∈ P starting at X0 = x ∈ S. Given n ∈ N \ {0}, the total (random) cost incurred before
time n is

∑n−1
k=0 C(Xt , At ), and the corresponding certainty equivalent is

Jn(λ, π, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ−1 log

(
E

π
x

[
exp

(
λ

n−1∑
k=0

C(Xk, Ak)

)])
, λ 	= 0,

E
π
x

[n−1∑
k=0

C(Xk, Ak)

]
, λ = 0;

(2.5)

see (2.3). Thus, the controller is willing to pay Jn(λ, π, x) to avoid the random cost associated
with the first n state-action pairs (Xk, Ak), 0 ≤ k < n, which represents an average of
Jn(λ, π, x)/n per action applied. The largest limit point of these averages is the (long-run)
λ-sensitive average cost at state x ∈ S under policy π :

J (λ, π, x) := lim sup
n→∞

1

n
Jn(λ, π, x). (2.6)

The optimal λ-sensitive average cost function J ∗(λ, ·) is given by

J ∗(λ, x) := inf
π∈P

J (λ, π, x), x ∈ S, (2.7)

and π∗ ∈ P is λ-average optimal if J (λ, π∗, x) = J ∗(λ, x) for every x ∈ S. From (2.4)–(2.7),
it is not difficult to see that

‖J ∗(λ, ·)‖ ≤ ‖C‖, λ ∈ R. (2.8)

The above average criterion will be analyzed under the following condition on the transition law,
ensuring that J ∗(λ, ·) is constant and is characterized in terms of a single optimality equation.

Assumption 2.2. For each f ∈ F, the corresponding Markov chain is communicating, that is,
given y, w ∈ S, there exist a positive integer N(f, y, w) ≡ N and states yk ∈ S, 1 ≤ k ≤ N ,
such that y0 = y, yN = w, and pyi−1,yi

(f (yi−1)) > 0 for every positive integer i ≤ N .

For each w ∈ S, let Tw be the first return time to state w, which is given by

Tw := min{n ≥ 1 | Xn = w},
where, as usual, the minimum of the empty set is ∞. Note that

[Tw = n] ∈ σ(Xk, k ≤ n), w ∈ S, n ∈ N. (2.9)

Lemma 2.1. Let z ∈ S and λ ∈ R be arbitrary but fixed. Under Assumptions 2.1 and 2.2, the
following assertions hold.

(i) The optimal λ-sensitive average cost function is constant, say J ∗(λ, ·) = g∗(λ).
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(ii) Given the initial state x ∈ S, let h∗(λ, x) be the minimum certainty equivalent of the
total relative cost

∑Tz−1
k=0 [C(Xk, Ak) − g∗(λ)] incurred before the first visit to state z in

a positive time so that

Uλ(h
∗(λ, x)) = inf

π∈P
E

π
x

[
Uλ

(Tz−1∑
k=0

[C(Xk, Ak) − g∗(λ)]
)]

, x ∈ S.

With this notation,
h∗(λ, z) = 0

and the following optimality equation holds:

Uλ(g
∗(λ) + h∗(λ, x)) = inf

a∈A(x)

[∑
y∈S

px,y(a)Uλ(C(x, a) + h∗(λ, y))

]
, x ∈ S.

(2.10)

(iii) If h : S → R and g ∈ R are such that (2.10) is satisfied when h∗(λ, ·) and g∗(λ) are
replaced by h(·) and g, respectively, then g = g∗(λ) and h(·) − h(z) = h∗(λ, ·).

(iv) There exists a policy f λ ∈ F such that, for every x ∈ S, the action f λ(x) minimizes
the term within brackets in (2.10), and such a stationary policy f λ is λ-average optimal.
Moreover,

g∗(λ) = lim
n→∞

1

n
Jn(λ, f λ, x), x ∈ S.

For the risk-neutral case λ = 0, this is a classical result and its proof can be found in [17]
or [22]. For the λ 	= 0 case, a verification of the above lemma can be found, for example, in [7].
Throughout the remainder of this paper, the state z ∈ S is fixed, and the pair (g∗(λ), h∗(λ, ·))
is as described in Lemma 2.1.

Remark 2.1. Under Assumptions 2.1 and 2.2, the following simultaneous Doeblin condition
holds:

sup
π∈P

E
π
x [Ty] =: B < ∞, x, y ∈ S; (2.11)

see, for example, [26].

Definition 2.3. (Discounted criteria.) Let α ∈ (0, 1) be a discount factor so that the value
at time 0 of the cost C(Xt , At ) to be paid at time t is αtC(Xt , At ). Then, all of the costs
{C(Xt , At )}t∈N incurred during the evolution of the system are worth

∑∞
t=0 αtC(Xt , At ) at the

beginning of the decision processes. Given the initial state X0 = x and the policy π used to
drive the system, the corresponding λ-certainty equivalent is

V (λ, α, π, x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

λ
log

(
E

π
x

[
exp

(
λ

∞∑
k=0

αkC(Xk, Ak)

)])
, λ 	= 0,

E
π
x

[ ∞∑
k=0

αkC(Xk, AK)

]
, λ = 0,

(2.12)

and the optimal (λ-sensitive) α-discounted value function is given by

V ∗(λ, α, x) := inf
π∈P

V (λ, α, π, x), x ∈ S; (2.13)
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if π∗ ∈ P satisfies V (λ, α, π∗, x) = V ∗(λ, α, x) for all x ∈ S then π∗ is λ-optimal with respect
to the α-discounted criterion. The optimality equations satisfied by the collection {V ∗(λ, α, ·)}
are given in the following lemma.

Lemma 2.2. Under Assumptions 2.1 and 2.2, the following assertions hold.

(i) The family {V ∗(λ, α, ·)}λ∈R, α∈(0,1) of optimal discounted value functions satisfies the
following optimality equations. For each x ∈ S, λ ∈ R, and α ∈ (0, 1),

Uλ(V
∗(λ, α, x)) = inf

a∈A(x)

[∑
y∈S

px,y(a)Uλ(C(x, a) + αV ∗(λα, α, y))

]
. (2.14)

(ii) For each λ ∈ R and α ∈ (0, 1), there exists a policy f λ,α ∈ F such that, for every
x ∈ S, the action f λ,α(x) minimizes the term within the brackets on the right-hand side
of (2.14). Moreover,

V ∗(λ, α, x) = V (λ, α, πλ,α, x), x ∈ S, (2.15)

where the Markov policy πλ,α is given by

πλ,α := (f λ,α, f λα,α, f λα2,α, f λα3,α, . . . ). (2.16)

A proof of this lemma can be found in [17] for the risk-neutral case, whereas the risk-sensitive
case λ 	= 0 was verified in [4] and [13]. Note that the stationary policy f λ,α in Lemma 2.2(ii)
satisfies, for every x ∈ S and λ ∈ R,

Uλ(V
∗(λ, α, x)) =

∑
y∈S

px,y(f
λ,α(x))Uλ(C(x, f λ,α(x)) + αV ∗(λα, α, y)), (2.17)

a relation that via (2.1) implies that

eλV ∗(λ,α,x) = eλC(x,f λ,α(x))
∑
y∈S

px,y(f
λ,α(x))eλαV ∗(λα,α,y), λ 	= 0. (2.18)

2.1. The problem

In the risk-neutral case, under Assumptions 2.1 and 2.2, the following relation holds between
the family of optimal discounted value functions {V ∗(0, α, ·)}α∈(0,1) and the optimal average
cost g∗(0):

lim
α↗1

(1 − α)V ∗(0, α, x) = g∗(0), x ∈ S. (2.19)

Moreover,
lim
α↗1

[V ∗(0, α, x) − V ∗(0, α, z)] = h∗(0, x), x ∈ S, (2.20)

where h∗(0, ·) is the functional part of the solution to the optimality equation (2.10) specified
in Lemma 2.1; see, for example, [1] and [22].

Given λ 	= 0, the main objective of the paper is to approximate the optimal λ-sensitive
average cost g∗(λ), as well as the function h∗(λ, ·) in Lemma 2.1, via the family of optimal
discounted value functions {V (λ, α, ·)}.

The results on this problem, which are stated in the following section, extend the conclusions
obtained in [13], where it was assumed that the absolute value of the risk sensitivity coefficient λ
is small enough, and in [8], where the case of uncontrolled Markov chains was analyzed.
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3. Main results

In this section the main approximation results of this paper will be stated. To begin with, it
is convenient to introduce the following notation.

Definition 3.1. Let z ∈ S be the fixed state in Lemma 2.1. For λ ∈ R, α ∈ (0, 1), and x ∈ S,
set

gα(λ, x) := V ∗(λ, α, x) − αV ∗(λα, α, x) and hα(λ, x) := V ∗(λ, α, x) − V ∗(λ, α, z).

Note that (1 − α)V ∗(0, α, x) = gα(0, x) and V ∗(0, α, x) − V ∗(0, α, z) = hα(0, x) so that
(2.19) and (2.20) can be written as

lim
α↗1

gα(0, x) = g∗(0) and lim
α↗1

hα(0, x) = h∗(0, x), x ∈ S,

and the remainder of the paper is dedicated to extending these conclusions to the risk-sensitive
context. The technical details are different for the risk-seeking and the risk-averse cases
and require distinct conditions, as such the corresponding results are stated separately in the
theorems stated below. To continue, let λ ∈ R and α ∈ (0, 1) be arbitrary, and note that the
equalities

hα(λ, z) = 0 and hα(λ, ·) − αhα(λα, ·) = gα(λ, ·) − gα(λ, z) (3.1)

always hold. Next, observe that multiplying both sides of (2.14) by e−λαV ∗(λα,α,z), direct
calculations using the homogeneity property in (2.2) and the above definition yield that

Uλ(gα(λ, z)+hα(λ, x)) = inf
a∈A(x)

[∑
y∈S

px,y(a)Uλ(C(x, a)+αhα(λα, y))

]
, x ∈ S, (3.2)

and it follows that, if |hα(λ, ·) − αhα(λα, ·)| is ‘small’ when α is ‘close’ to 1, then the pair
(gα(λ, z), hα(λ, (·)) is ‘an approximate solution’ of the optimality equation (2.10), and in such
a case it might be expected that such a pair is ‘approximately equal’ to (g∗(λ), h∗(λ, ·)). In the
following theorems we state conditions under which this intuitive argument can be formalized.

Theorem 3.1. Under Assumptions 2.1 and 2.2, the following assertions are valid.

(i) For each x ∈ S and λ < 0,
lim
α↗1

gα(λ, x) = g∗(λ) (3.3)

and
lim
α↗1

hα(λ, x) = h∗(λ, x), (3.4)

where (g∗(λ), h∗(λ, ·)) is the solution of the optimality equation described in Lemma 2.1.

(ii) The convergence (3.3) is uniform on compact intervals of (−∞, 0), that is, given x ∈ S

and a compact set K ⊂ (−∞, 0), supλ∈K |gα(λ, x) − g∗(λ)| → 0 as α ↗ 1.

The key fact that will be used below to establish this theorem is that, for each α ∈ (0, 1) and
x ∈ S, the mapping λ �→ λV ∗(λ, α, x) is convex in λ ∈ (−∞, 0). In general, this property
cannot be ensured on the interval (0, ∞) and, to extend the conclusions in Theorem 3.1 to the
risk-averse case λ > 0, the following additional condition will be used.
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Assumption 3.1. For each (x, a) ∈ K, px,x(a) > 0.

Theorem 3.2. Under Assumptions 2.1, 2.2, and 3.1, the following assertions hold.

(i) For each x ∈ S and λ > 0, the convergences (3.3) and (3.4) are valid.

(ii) The convergence (3.3) is uniform on compact intervals of (0, ∞).

The proof of these two theorems will be presented in Sections 5 and 6, respectively, after
establishing some basic tools in Section 4. On the other hand, due to (2.19), for λ 	= 0, it is
interesting to investigate the behavior of (1 − α)V ∗(λ, α, x) as α ↗ 1. The following result
will be obtained from the uniform convergence conclusions in Theorems 3.1 and 3.2.

Theorem 3.3. Suppose that Assumptions 2.1 and 2.2 hold. In this case, we have the follow-
ing.

(i) For each λ < 0,

lim
α↗1

(1 − α)V ∗(λ, α, x) = 1

λ

∫ λ

0
g∗(s) ds. (3.5)

(ii) If, additionally, Assumption 3.1 is valid then the above convergence also holds for each
λ > 0.

Remark 3.1. (i) Theorems 3.1–3.3 extend the results of [8] and [9], where uncontrolled models
were studied under the assumption that the underlying Markov chain is communicating. The
proof of Theorem 3.1, which is based on a convexity property of the optimal discounted value
functions, is motivated by the approach used in those papers. On the other hand, within the finite
state context of this work, Theorems 3.1 and 3.2 extend a result of [13], where the convergence
(3.3) was obtained assuming that |λ| is small enough.

(ii) Let λ 	= 0 be fixed. Suppose that the convergences (3.3) and (3.4) hold and, for each
α ∈ (0, 1), let f λ,α be the stationary policy in Lemma 2.2(ii). In this case, any limit point f̃ of
the family {f λ,α}α∈(0,1) as α ↗ 1 is λ-average optimal. To verify this assertion, first note that
direct calculations using Definition 3.1 and (2.2) yield that (2.17) is equivalent to

Uλ(gα(λ, z) + hα(λ, x))

=
∑
y∈S

px,y(f
λ,α(x))Uλ(C(x, f λ,α(x)) + αhα(λα, y)), x ∈ S. (3.6)

Now, select a sequence {αn} ⊂ (0, 1) increasing to 1 such that

lim
n→∞ f λ,αn(·) = f̃ (·)

and note that the second equality in (3.1), (3.3), and (3.4) together yield that

lim
n→∞ αhαn(λα, ·) = h∗(λ, ·).

Replacing α by αn in (3.6), and taking the limit as n goes to ∞ on both sides of the resulting
inequality, we see that (3.3) and (3.4) yield, via Assumption 2.1,

Uλ(g
∗(λ) + h∗(λ, x)) =

∑
y∈S

px,y(f̃ (x))Uλ(C(x, f̃ (x)) + h∗(λ, y)) for every state x.

Thus, f̃ (x) minimizes the right-hand side of the optimality equation (2.10), and then f̃ is
λ-optimal by Lemma 2.1(iii).
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The remainder of this paper is devoted to the presentation of the proofs of the three theorems
stated above. Since the arguments are rather technical, it is convenient to provide a brief
description of the approach to be followed, as well as an outline of the organization of the
subsequent material. Roughly, the essential objective of the analysis below is to establish that,
for every λ 	= 0,

lim
α↗1

gα(λ, x) = lim
α↗1

gα(λα, x), where the limits do not depend on x, (3.7)

a fact that allows us to obtain the convergences (3.3) and (3.4) in a fairly direct way. To achieve
this goal, the exposition has been organized as follows. Section 4 contains some general
results that will be useful in the analysis of both the risk-seeking and the risk-averse cases,
including bounds for the discounted approximations gα(λ, ·) and hα(λ, ·), relations between
the functions gα(λ, ·) and gα(λα, ·) via stochastic matrices, and a continuity property of a
dynamic programming operator. Next, Theorem 3.1 will be proved in Section 5. The argument
relies on the fact that the mapping λ �→ λV ∗(λ, α, x) is always convex on (−∞, 0), a property
that immediately yields that gα(·, x) is increasing on the negative axis and then, via the relations
established in Section 4, (3.7) is directly derived. The proof of Theorem 3.2 is presented in
Section 6 and, due to the fact that the convexity of the mapping λ �→ λV ∗(λ, α, x) cannot be
generally ensured on the interval (0, ∞), the argumentation is substantially more elaborated
than the one used to prove Theorem 3.1, involving the mappings λ �→ gα(λαk, x) for every
integer k, as well as a subtle application of Assumption 3.1. Indeed, the reason to introduce
Assumption 3.1 in this paper is that, for the risk-averse case λ > 0, we have not been able to
establish (3.7) based solely on Assumptions 2.1 and 2.2. Finally, Theorem 3.3 will be proved
in Section 7 using the uniform convergence results in Theorems 3.1(ii) and 3.2(ii).

4. Auxiliary tools

This section contains basic technical instruments that will be used to prove the main con-
clusions of the paper. The first objective is to establish the following boundedness result.

Lemma 4.1. Suppose that Assumptions 2.1 and 2.2 hold. In this context, the following asser-
tions hold.

(i) For each x ∈ S,

|gα(λ, x)| ≤ ‖C‖, α ∈ (0, 1), λ ∈ R \ {0}. (4.1)

(ii) For every x, y ∈ S,

|V ∗(λ, α, x) − V ∗(λ, α, y)| ≤ 2B‖C‖, λ ∈ R \ {0}, α ∈ (0, 1),

where B is the constant in (2.11).

Proof. (i) Let α ∈ (0, 1), λ ∈ R \ {0}, and x ∈ S be arbitrary but fixed. It will be shown
that

λV ∗(λ, α, x) ≤ λαV ∗(λα, α, x) + |λ|‖C‖,
λV ∗(λ, α, x) ≥ λαV ∗(λα, α, x) − |λ|‖C‖, (4.2)

inequalities that, via Definition 3.1, lead to (4.1). First note that (2.12) yields

λV (λ, α, π, x) = log

(
E

π
x

[
exp

(
λ

∞∑
k=0

αkC(Xk, Ak)

)])
, π ∈ P .
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Now, observe that

λ

∞∑
k=0

αkC(Xk, Ak) = λα

∞∑
k=0

αkC(Xk, Ak) + λ(1 − α)

∞∑
k=0

αkC(Xk, Ak);

since | ∑∞
k=0 αkC(Xk, Ak)| ≤ ‖C‖/(1 − α), it follows that

λ

∞∑
k=0

αkC(Xk, Ak) ≤ λα

∞∑
k=0

αkC(Xk, Ak) + |λ|‖C‖,

λ

∞∑
k=0

αkC(Xk, Ak) ≥ λα

∞∑
k=0

αkC(Xk, Ak) − |λ|‖C‖.

These two last displays together imply that, for every π ∈ P ,

λV (λ, α, π, x) ≤ λαV (λα, α, π, x) + |λ|‖C‖,
λV (λ, α, π, x) ≥ λαV (λα, α, π, x) − |λ|‖C‖. (4.3)

Next, suppose that λ < 0. In this context, taking the supremum over π ∈ P on both sides of
the above inequalities, via (2.13) it follows that (4.2) holds. On the other hand, if λ > 0, taking
the infimum with respect to π ∈ P on both sides of the relations in (4.3), (2.13) yields that
(4.2) remains valid in this case.

(ii) Let λ ∈ R \ {0} and α ∈ (0, 1) be arbitrary but fixed. To begin with, let the Markov policy
πλ,α be as in Lemma 2.2(ii), and observe that (2.12) and (2.15) together yield that

exp(λV ∗(λ, α, x)) = E
πλ,α

x

[
exp

(
λ

∞∑
k=0

αkC(Xk, Ak)

)]
, x ∈ S. (4.4)

Next, let n ∈ N \ {0} and x, y ∈ S be arbitrary but fixed, and note that

E
πλ,α

x

[
1(Ty = n) exp

(
λ

∞∑
k=0

αkC(Xk, Ak)

) ∣∣∣∣ (Xk, Ak), k < n, Xn

]

= E
πλ,α

x

[
1(Ty = n) exp

(
λ

n−1∑
k=0

αkC(Xk, Ak)

)

× exp

(
λαn

∞∑
k=0

αkC(Xk+n, Ak+n)

) ∣∣∣∣ (Xk, Ak), k < n, Xn

]

= 1(Ty = n) exp

(
λ

n−1∑
k=0

αkC(Xk, Ak)

)

× E
πλ,α

x

[
exp

(
λαn

∞∑
k=0

αkC(Xk+n, Ak+n)

) ∣∣∣∣ (Xk, Ak), k < n, Xn

]
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= 1(Ty = n) exp

(
λ

n−1∑
k=0

αkC(Xk, Ak)

)
E

πλαn,α

Xn

[
exp

(
λαn

∞∑
k=0

αkC(Xk, Ak)

)]

= 1(Ty = n) exp

(
λ

n−1∑
k=0

αkC(Xk, Ak)

)
exp(λαnV ∗(λαn, α, Xn)),

where the second equality is due to (2.9), the third one follows from the Markov property and
the definition of the policies πλ,α in (2.16), and (4.4) was used in the last step. Since Xn = y

on the event [Ty = n] by (2.9), and P
πλ,α

x [Ty < ∞] = 1 by (2.11), it follows that

E
πλ,α

x

[
exp

(
λ

∞∑
k=0

αkC(Xk, Ak)

)]

= E
πλ,α

x

[
exp

(
λ

Ty−1∑
k=0

αkC(Xk, Ak) + λαTy V ∗(λαTy , α, y)

)]
,

an equality that via (4.4) leads to

exp(λV ∗(λ, α, x)) = E
πλ,α

x

[
exp

(
λ

Ty−1∑
k=0

αkC(Xk, Ak) + λαTy V ∗(λαTy , α, y)

)]
,

and then

exp(λ[V ∗(λ, α, x) − V ∗(λ, α, y)])

= E
πλ,α

x

[
exp

(
λ

Ty−1∑
k=0

αkC(Xk, Ak) − λ[V ∗(λ, α, y) − αTy V ∗(λαTy , α, y)]
)]

.

Observe now that

V ∗(λ, α, y) − αTy V ∗(λαTy , α, y) =
Ty−1∑
k=0

[αkV ∗(λαk, α, y) − αk+1V ∗(λαk, α, y)]

=
Ty−1∑
k=0

αkgα(λαk, x),

by Definition 3.1. Combining the last two displays, it follows that

exp(λ[V ∗(λ, α, x) − V ∗(λ, α, y)]) = E
πλ,α

x

[
exp

(
λ

Ty−1∑
k=0

αk[C(Xk, Ak) − gα(λαk, y)]
)]

.

Observing that λ
∑Ty−1

k=0 αk[C(Xk, Ak) − gα(λαk, y)] ≥ −2|λ‖C‖Ty by Lemma 4.1(i), the
above equality implies that

eλ[V ∗(λ,α,x)−V ∗(λ,α,y)] ≥ E
πλ,α

x [e−2|λ|‖C‖Ty ] ≥ e−2|λ|‖C‖E
πλ,α

x [Ty ] ≥ e−2|λ|‖C‖B,

where Jensen’s inequality was used in the second step, and the third inequality is due to (2.11).
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Therefore,
λ[V ∗(λ, α, y) − V ∗(λ, α, x)] ≤ 2|λ|‖C‖B.

Interchanging the roles of x and y, it follows that |λ| |V ∗(λ, α, y)−V ∗(λ, α, x)| ≤ 2|λ|‖C‖B,
and the conclusion follows, since x, y ∈ S and λ 	= 0 are arbitrary. �

Given α ∈ (0, 1), the next objective of this section is to relate the mappings (λ, x) �→
gα(λ, x) and (λ, x) �→ gα(λα, x) via a stochastic matrix. The result in this direction is stated
as Lemma 4.2 below and involves the following notation. Recall that, for each λ 	= 0 and
α ∈ (0, 1), the stationary policy f λ,α satisfies (2.17) and (2.18).

Definition 4.1. For each λ ∈ R \ {0} and α ∈ (0, 1), the stochastic matrices Qλ,α and Q̃λ,α on
S are defined as follows. For every x, y ∈ S,

Qλ,α
x,y := px,y(f

λ,α(x))eλα2V ∗(λα2,α,y)∑
w∈S px,w(f λ,α(x))eλα2V ∗(λα2,α,w)

(4.5)

and

Q̃λ,α
x,y := px,y(f

λα,α(x))eλα2V ∗(λα2,α,y)∑
w∈S px,w(f λα,α(x))eλα2V ∗(λα2,α,w)

.

Lemma 4.2. Under Assumptions 2.1 and 2.2, the following assertions hold for every α ∈
(0, 1).

(i) If λ < 0 then

eλgα(λ,x) ≤ eλ(1−α)C(x,f λ,α(x))
∑
y∈S

Qλ,α
x,y eλαgα(λα,y), x ∈ S.

(ii) For each λ > 0,

eλgα(λ,x) ≥ eλ(1−α)C(x,f λ,α(x))
∑
y∈S

Qλ,α
x,y eλαgα(λα,y), x ∈ S, (4.6)

and
eλgα(λ,x) ≤ eλ(1−α)C(x,f λα,α(x))

∑
y∈S

Q̃λ,α
x,y eλαgα(λα,y), x ∈ S. (4.7)

(iii) For each λ ∈ R \ {0} and x, y ∈ S,

Qλ,α
x,y ≥ px,y(f

λ,α(x))e−4|λ|B‖C‖ and Q̃λ,α
x,y ≥ px,y(f

λα,α(x))e−4|λ|B‖C‖, (4.8)

where the finite constant B is as in (2.11).

Proof. Let α ∈ (0, 1) and λ ∈ R \ {0} be arbitrary but fixed. To begin with, note that (2.1)
and the optimality equation (2.14) together yield that

sign(λ)eλV ∗(λ,α,x) ≤ sign(λ)eλC(x,a)
∑
w∈S

px,w(a)eλαV ∗(λα,α,w), x ∈ S, a ∈ A(x). (4.9)

(i) Suppose that λ < 0. In this case, observing that sign(λ) = −1, the above relation with
λα instead of λ leads to

eλαV ∗(λα,α,x) ≥ eλαC(x,f λ,α(x))
∑
w∈S

px,w(f λ,α(x))eλα2V ∗(λα2,α,w), x ∈ S.
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Combining this equality with (2.18), it follows that, for every x ∈ S,

eλ[V ∗(λ,α,x)−αV ∗(λα,α,x)]

≤ eλC(x,f λ,α(x))
∑

y∈S px,y(f
λ,α(x))eλαV ∗(λα,α,y)

eλαC(x,f λ,α(x))
∑

w∈S px,w(f λ,α(x))eλα2V ∗(λα2,α,w)

= eλ(1−α)C(x,f λα,α(x))

×
∑
y∈S

px,y(f
λ,α(x))eλα2V ∗(λα2,α,y)∑

w∈S px,w(f λ,α(x))eλα2V ∗(λα2,α,w)
eλα[V ∗(λα,α,y)−αV ∗(λα2,α,y)]

and the conclusion follows via Definitions 3.1 and 4.1.
(ii) Assume that λ > 0. In this context, sign(λ) = 1, and (4.9) with λα instead of λ now

leads to

eλαV ∗(λα,α,x) ≤ eλαC(x,f λ,α(x))
∑
w∈S

px,w(f λ,α(x))eλα2V ∗(λα2,α,w), x ∈ S.

Paralelling the argument used to establish part (i), this inequality and (2.18) together lead to
(4.6). To establish (4.7), recall that λ is positive and note that (2.18) with λα instead of λ yields

eλαV ∗(λα,α,x) = eλαC(x,f λα,α(x))
∑
y∈S

px,y(f
λα,α(x))eλα2V ∗(λα2,α,y), x ∈ S,

whereas (4.9) implies that

eλV ∗(λ,α,x) ≤ eλC(x,f λα,α(x))
∑
y∈S

px,y(f
λα,α(x))eλαV ∗(λα,α,y), x ∈ S.

Using these last two displays, (4.7) follows along the same lines used in part (i).
(iii) Let w∗ ∈ S be fixed, and note that (4.5) yields

Qλ,α
x,y = px,y(f

λ,α(x))eλα2[V ∗(λα2,α,y)−V ∗(λα2,α,w∗)]∑
w∈S px,w(f λ,α(x))eλα2[V ∗(λα2,α,w)−V ∗(λα2,α,w∗)] , x, y ∈ S.

Using the fact that |V ∗(λα2, α, ·) − V ∗(λα2, α, w∗)| ≤ 2|B‖C‖, by Lemma 4.1, it follows
that, for every x, y ∈ S,

eλα2[V ∗(λα2,α,y)−V ∗(λα2,α,w∗)] ≥ e−2|λ|B‖C‖

and ∑
w∈S

px,w(f λ,α(x))eλα2[V ∗(λα2,α,w)−V ∗(λα2,α,w∗)] ≤ e2|λ|B‖C‖.

These last three displays yield that Q
λ,α
x,y ≥ px,y(f

λ,α(x))e−4|λ|B‖C| for all x, y ∈ S, whereas
the second inequality in (4.8) can be established along similar lines. �

The following continuity property will be useful.
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Lemma 4.3. For each x ∈ S, the mapping

(λ, h(·)) �→ inf
a∈A(x)

[∑
y∈S

px,y(a)Uλ(C(x, a) + h(y))

]
=: T [λ, h](x)

is continuous in (λ, h(·)) ∈ (R \ {0}) × B(S).

Proof. Let x, y ∈ S, h, h̃ ∈ B(S), and λ, λ̃ ∈ R \ {0} be arbitrary, where λ and λ̃ have the
same sign. Set

ε(λ, λ̃, h, h̃) := |λ − λ̃|(‖C‖ + ‖h‖) + |λ̃| ‖h − h̃‖
and observe that eλ(C(x,a)+h(y)) ≤ eλ̃(C(x,a)+h̃(y))eε(λ,λ̃,h,h̃) for every a ∈ A(x). This inequality
and (2.1) immediately yield that

T [λ, h](x)

{
≤ T [λ̃, h̃](x)eε(λ,λ̃,h,h̃), λ, λ̃ > 0,

≥ T [λ̃, h̃](x)eε(λ,λ̃,h,h̃), λ, λ̃ < 0.

Interchanging the roles of (λ, h) and (λ̃, h̃), it follows that

T [λ̃, h̃](x)

{
≤ T [λ, h](x)eε(λ̃,λ,h̃,h), λ, λ̃ > 0,

≥ T [λ, h](x)eε(λ̃,λ,h̃,h), λ, λ̃ < 0.

Since ε(λ, λ̃, h, h̃) + ε(λ̃, λ, h̃, h) → 0 as λ̃ → λ in R \ {0} and h̃ → h in B(S), the desired
conclusion follows from the last two displays. �

The following continuity result for the optimal risk-sensitive average cost g∗(·) was estab-
lished in Proposition 2.1 and Theorem 3.1 of [10].

Lemma 4.4. Under Assumptions 2.1 and 2.2, the mapping λ �→ g∗(λ) is continuous on R.

5. The risk-seeking case

In this section Theorem 3.1 will be proved. The argument has been divided into three parts,
stated as Lemmas 5.1–5.3 below. The starting point is the following result, where a fundamental
convexity property is established.

Lemma 5.1. Let α ∈ (0, 1) and x ∈ S be arbitrary.

(i) For each π ∈ P , the mapping λ �→ λV (λ, α, π, x) is convex on R.

(ii) The function λ �→ λV ∗(λ, α, x) is convex on (−∞, 0).

(iii) The function gα(·, x) is increasing and continuous on (−∞, 0).

Proof. (i) Given π ∈ P , note that (2.12) yields

eλV (λ,α,π,x) = E
π
x [eλWα ], λ ∈ R, (5.1)

where Wα := ∑∞
k=0 αkC(Xk, Ak). Now, let λ, λ0, λ1 ∈ R and ρ ∈ (0, 1) be such that

λ = ρλ0 + (1 − ρ)λ1,
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and observe that Hölder’s inequality implies that

E
π
x [eλW ] = E

π
x [eρλ0W e(1−ρ)λ1W ] ≤ E

π
x [eλ0W ]ρE[eλ1W ](1−ρ).

Using (5.1), this relation leads to eλV (λ,α,π,x) ≤ eρλ0V (λ0,α,π,x)e(1−ρ)λ1V (λ1,α,π,x), that is,

λV (λ, α, π, x) ≤ ρλ0V (λ0, α, π, x) + (1 − ρ)λ1V (λ1, α, π, x),

establishing the convexity of the mapping λ �→ λV [λ, α, π, x).

(ii) Since the supremum of a family of convex functions is also convex, part (i) implies that the
mapping λ �→ supπ∈P [λV (λ, α, π, x)] is convex on R. The conclusion follows by combining
this fact with the relation

sup
π∈P

[λV (λ, α, π, x)] = λ inf
π∈P

V (λ, α, π, x) = λV ∗(λ, α, x), λ < 0;

see (2.13) for the second equality.

(iii) Using the fact that a convex function on an open interval is continuous, part (ii) implies
that the function λ �→ V ∗(λ, α, x) = λ−1[λV ∗(λ, α, x)] is continuous on (−∞, 0), and then
so is gα(·, x) by Definition 3.1. Now, let λ, λ1 ∈ (−∞, 0) be such that

λ < λ1.

In this case
λα > λ, λ1α > λ1, λα < λ1α

so that the extreme points of the interval [λ, λα] are less than the corresponding end points of
the interval [λ1, λ1α], and then the convexity of the mapping μ �→ μV ∗(μ, α, x) on (−∞, 0)

established in part (ii) implies that

λV (λ, α, x) − λαV (λα, α, x)

λ − λα
≤ λ1V (λ1, α, x) − λ1αV (λ1α, α, x)

λ1 − λ1α
.

Using the inclusion α ∈ (0, 1), this inequality is equivalent to gα(λ, x) ≤ gα(λ1, x), by
Definition 3.1, so that gα(·, x) is increasing on (−∞, 0). �

Next, the limit points of the family {gα(λ, ·)} as α goes to 1 will be studied using Lemmas 4.2
and 5.1(iii).

Lemma 5.2. Let λ < 0 be arbitrary but fixed. Suppose that the sequence {αn} ⊂ (0, 1) satisfies

lim
n→∞ αn = 1 and lim

n→∞ gαn(λ, x) =: g̃(λ, x) exist for each x ∈ S. (5.2)

In this case,

(i) limn→∞ gαn(λαn, x) = g̃(λ, x) for all x ∈ S, and

(ii) g̃(λ, ·) is constant, say g̃(λ, ·) = g̃∗(λ).

Proof. Recall that that the inequality |gα(λ, x)| ≤ ‖C‖ is always valid, by Lemma 4.1, and
let {αn} ⊂ (0, 1) be such that (5.2) holds.
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(i) It is sufficient to show that any limit point of {gαn(λαn, ·)} coincides with g̃(λ, ·).
To achieve this goal, let g̃(1)(λ, ·) : S → R be an arbitrary limit point of {gαn(λαn, ·)} and
select a subsequence {βk} of {αn} such that

lim
k→∞ gβk

(λβk, x) = g̃(1)(λ, x), x ∈ S. (5.3)

Since the space of stationary policies is a compact metric and the matrices Qλ,α in Definition 4.1
are stochastic, taking an additional subsequence (if necessary), without loss of generality it can
be supposed that the following limits also exist for every x, y ∈ S:

lim
k→∞ f λ,βk (x) =: f λ(x) and lim

k→∞ Qλ,βk
x,y =: Qλ

x,y, (5.4)

where, since S is finite, the limit matrix Qλ is stochastic. Moreover, via Lemma 4.2(iii)
and Assumption 2.1, the above display yields that Qλ

x,y ≥ e−4|λ|B‖C‖px,y(f
λ(x)) for every

x, y ∈ S, and then Qλ is a communicating matrix, by Assumption 2.2. Consequently, Qλ has
an invariant distribution ρ(·) which is positive at each state, that is,

ρ(y) > 0 and ρ(y) =
∑
x∈S

ρ(x)Qλ
x,y, y ∈ S. (5.5)

Observe now that, for every k ∈ N and x ∈ S,

eλgβk
(λ,x) ≤ eλ(1−βk)C(x,f λ,βk (x))

∑
y∈S

Qλ,βk
x,y eλβkgβk

(λβk,y),

by Lemma 4.2(i), whereas, using the fact that λ < 0, Lemma 5.1(iii) yields

λgβk
(λ, ·) ≥ λgβk

(λβk, ·).
Since {βk} is a subsequence of {αn}, taking the limit on both sides of the inequalities in the last
two displays, via (5.2)–(5.4), it follows that

eλg̃(λ,x) ≤
∑
y∈S

Qλ
x,yeλg̃(1)(λ,y), x ∈ S,

and
λg̃(λ, ·) ≥ λg̃(1)(λ, ·). (5.6)

Combining these two inequalities with (5.5), it follows that

0 ≤
∑
x∈S

ρ(x)

[∑
y∈S

Qλ
x,yeλg̃(1)(λ,y) − eλg̃(λ,x)

]

=
∑
y∈S

∑
x∈S

ρ(x)Qλ
x,yeλg̃(1)(λ,y) −

∑
x∈S

ρ(x)eλg̃(λ,x)

=
∑
y∈S

ρ(y)eλg̃(1)(λ,y) −
∑
x∈S

ρ(y)eλg̃(λ,x)

=
∑
x∈S

ρ(x)[eλg̃(1)(λ,x) − eλg̃(λ,x)]

≤ 0,
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where the last inequality is due to (5.6). Recalling that ρ(·) > 0 and λ is nonnull, these last
three displays together lead to

g̃(1)(λ, x) = g̃(λ, x), eλg̃(x) =
∑
y∈S

Qλ
x,yeλg̃(y), x ∈ S. (5.7)

As already mentioned, from the first equality we see that

lim
n→∞ gαn(λαn, x) = g̃(λ, x) = lim

n→∞ gαn(λ, x), x ∈ S.

(ii) Since Qλ has a unique invariant distribution ρ(·), via the ergodic theorem the second
equality in (5.7) implies that eλg̃(λ,x) = ∑

y∈S ρ(y)eλg̃(λ,y) for every x ∈ S, and then g̃(λ, ·) =
g̃∗(λ), where g̃∗(λ) := λ−1 log(

∑
y∈S ρ(y)eλg̃(λ,y)). �

The following result is the final step before the proof of Theorem 3.1.

Lemma 5.3. Given λ 	= 0, suppose that g̃(λ) ∈ R is such that

lim
n→∞ gαn(λ, x) = g̃(λ), x ∈ S, (5.8)

where {αn} ⊂ (0, 1) and αn ↗ 1. In this case,

g̃(λ) = g∗(λ) and lim
n→∞ hαn(λ, x) = h∗(λ, x), x ∈ S,

where (g∗(λ), h∗(λ, ·)) is the solution of the optimality equation (2.10).

Proof. Let {αn} ⊂ (0, 1) be a sequence such that αn ↗ 1 and (5.8) holds. Next, let h̃(λ, ·)
be any limit point of {hαn(λ, ·)}, and select a subsequence {βk}k∈N of {αn} such that

lim
k→∞ hβk

(λ, x) =: h̃(λ, x), x ∈ S. (5.9)

Now, observe that (3.1) implies that h̃(λ, z) = 0, whereas, for every x ∈ S,

lim
k→∞[hβk

(λ, x) − βkhβk
(λβk, x)] = lim

k→∞[gβk
(λ, x) − gβk

(λ, z)] = g̃(λ) − g̃(λ) = 0,

where the second equality is due to (5.8). Since S is finite, the two previous displays together
yield that

‖βkhβk
(λβk, x) − h̃(λ, x)‖ → 0 as k → ∞. (5.10)

Next, replace α by βk on both sides of (3.2) and take the limit as k goes to ∞ on both sides of the
resulting equality to obtain, via (5.8)–(5.10) and Lemma 4.3, that the pair (g̃(λ), h̃(λ, ·)) satisfies
the optimality equation (2.10). Recalling that h̃(λ, z) = 0, it follows that g̃(λ) = g∗(λ) and
h̃(λ, ·)) = h∗(λ, ·), by Lemma 2.1(iii), and the conclusion follows, since h̃(λ, ·) is an arbitrary
limit point of {hαn(λ, ·)}. �

Proof of Theorem 3.1. Suppose that Assumptions 2.1 and 2.2 hold, and recall that, by
Lemma 4.1, ‖gα(λ, ·)‖ ≤ ‖C‖ and ‖hα(λ, ·)‖ ≤ 2B‖C‖.

(i) Let (g̃(λ, ·), h̃(λ, ·)) be an arbitrary limit point of the family {(gα(λ, ·), hα(λ, ·))}α∈(0,1)

as α increases to 1. To establish (3.3) and (3.4), it is sufficient to show that

g̃(λ, ·) = g∗(λ) and h̃(λ, ·) = h∗(λ, ·). (5.11)
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To achieve this goal, let {αn} ⊂ (0, 1) be a sequence such that αn ↗ 1 and limn→∞ gαn(λ, x) =
g̃(λ, x) for every x ∈ S. In this context, Lemma 5.2 yields that g̃(λ, ·) is constant, say g̃(λ),
and (5.11) follows via Lemma 5.3.

(ii) Let I ⊂ (−∞, 0) be a compact interval. Given an arbitrary but fixed state x ∈ S, set

	(α) := sup
λ∈I

‖gα(λ, x) − g∗(λ)‖, α ∈ (0, 1),

and note that, by Lemmas 4.4 and 5.1(iii), for each α ∈ (0, 1), there exits λα such that

λα ∈ I and 	(α) = |gα(λα, x) − g∗(λα)|, α ∈ (0, 1).

It must be shown that
	(α) → 0 as α ↗ 1,

a convergence that is equivalent to the following statement:

if {αn} ⊂ (0, 1) and αn ↗ 1 then |gαn(λαn, x) − g∗(λαn)| → 0. (5.12)

To establish this claim, let {αn} ⊂ (0, 1) be an arbitrary sequence increasing to 1, and note
that, since the sequence {λαn} is contained in the compact interval I , taking a subsequence (if
necessary), without loss of generality it can be assumed that

lim
n→∞ λαn =: λ∗ ∈ I ⊂ (−∞, 0). (5.13)

Next, let ε > 0 be arbitrary. Using the fact that gα(·, x) converges pointwise to g∗(·) on
(−∞, 0), by part (i), Lemma 5.1(iii) implies that g∗(·) is an increasing function on (−∞, 0).
Recalling that g∗(·) is continuous, by Lemma 4.4, select numbers a, b such that

a < λ∗ < b < 0 and [g∗(a), g∗(b)] ⊂ (g∗(λ∗) − ε, g∗(λ∗) + ε). (5.14)

To continue, using (5.13), select a positive integer N1(ε) such that

n > N1(ε) �⇒ λαn ∈ (a, b)

and, recalling that both gαn(·, x) and g∗(·) are increasing on (−∞, 0), observe that

n > N1(ε) �⇒ gαn(λαn, x) ∈ [gαn(a, x), gαn(b, x)] and g∗(λαn) ∈ [g∗(a), g∗(b)].
On the other hand, part (i) implies that there exists a positive integer N2(ε) such that

n > N2(ε) �⇒ |gαn(a, x) − g∗(a)| < ε and |gαn(b, x) − g∗(b)| < ε.

The last two displays together lead to

n > max{N1(ε), N2(ε)} �⇒ g∗(λαn),

gαn(λαn, x) ∈ (g∗(a) − ε, g∗(b) + ε) ⊂ (g∗(λ∗) − 2ε, g∗(λ∗) + 2ε),

where (5.14) was used to set the inclusion. Therefore,

n > max{N1(ε), N2(ε)} �⇒ |g∗(λαn) − gαn(λαn, x)| ≤ 4ε,

and then |g∗(λαn) − gαn(λαn, x)| → 0, since ε > 0 is arbitrary. This establishes (5.12) and, as
already noted, completes the proof of the theorem. �
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6. The approximation results under risk aversion

In this section Theorem 3.2 will be proved. The argument relies heavily on Theorem 6.1
below, whose statement involves two sequences {λn} and {αn} satisfying the following condi-
tions:

λn ∈ (0, ∞), αn ∈ (0, 1), n ∈ N, (6.1)

and
lim

n→∞ λn =: λ∗ ∈ (0, ∞), whereas lim
n→∞ αn = 1. (6.2)

Theorem 6.1. Suppose that Assumptions 2.1, 2.2, and 3.1 hold, and let the sequences {λn} and
{αn} be as in (6.1) and (6.2). In this case,

lim
n→∞ gαn(λn, x) = g∗(λ∗)

and
lim

n→∞ hαn(λn, x) = h∗(λ∗, x) = lim
n→∞ αnhαn(λnαn, x), x ∈ S.

Before presenting the rather technical proof of this theorem, it will be useful to derive
Theorem 3.2.

Proof of Theorem 3.2. Suppose that Assumptions 2.1, 2.2, and 3.1 hold, and let λ > 0 be
arbitrary.

(i) To establish (3.3) and (3.4), it is sufficient to show that if {αn} is a sequence of positive
numbers increasing to 1, then

lim
n→∞ gαn(λ, x) = g∗(λ) and lim

n→∞ hαn(λ, x) = h∗(λ, x), x ∈ S,

convergence follows from Theorem 6.1 applied to the λn = λ case for every n.
(ii) Given x ∈ S and a compact interval I contained in (0, ∞), define

	̃n(x, I ) :− sup

{
|gα(λ, x) − g∗(λ)|

∣∣∣∣ λ ∈ I, 1 − 1

n + 1
≤ α < 1

}
, n ∈ N,

and note that
	̃n(x, I ) ≥ 	̃n+1(x, I ) ≥ 0, n ∈ N. (6.3)

It must be verified that
	̃n(x, I ) → 0 as n → ∞. (6.4)

To achieve this goal, for every n ∈ N, select

λn ∈ I and αn ∈
[

1 − 1

n + 1
, 1

)

such that

−1

n
≤ 	̃n(x, I ) − 1

n
≤ |gαn(λn, x) − g∗(λn)|. (6.5)

Recalling that the compact interval I is contained in (0, ∞), there exists a subsequence {λnk
}

such that
lim

k→∞ λnk
= λ∗ ∈ I ⊂ (0, ∞). (6.6)

https://doi.org/10.1017/apr.2018.10 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.10


Risk-sensitive vanishing discount approximations 223

From this point, since αnk
→ 1, Theorem 6.1 yields

lim
k→∞ gαnk

(λnk
, x) = g∗(λ∗).

Now, using the fact that g∗(·) is continuous, by Lemma 4.4, note that (6.6) implies that

lim
k→∞ g∗(λnk

) = g∗(λ∗).

These last two displays and (6.5) together yield that limk→∞ 	̃nk
(x, I ) = 0, and (6.4) follows

via the monotonicity relation (6.3). �
The remainder of this section is dedicated to presenting the somewhat elaborated proof of

Theorem 6.1. To ease the presentation, the essential technical tools have been formulated in
Lemmas 6.1–6.3 below, and the corresponding proofs are presented in Appendix A. To begin
with, some notation is introduced. Throughout the remainder of this section {(λn, αn)} is a fixed
sequence satisfying (6.1) and (6.2), and Assumptions 2.1, 2.2, and 3.1 are enforced. Now, with
regard to Lemma 4.1 and Definition 3.1 and, recalling that S is a finite set and F is a compact
metric space, observe that, via Cantor’s diagonal method, without loss of generality it can be
assumed that, for every k ∈ N and x, y ∈ S, the following limits exist:

gk(x) := lim
n→∞ gαn(λnα

k
n, x),

hk(x) := lim
n→∞ hαn(λnα

k
n, x), f (k)(x) = lim

n→∞ f λnαk
n,αn(x), (6.7)

and
Q(k)

x,y := lim
n→∞ Q

λnαk
n,αn

x,y , Q̃(k)
x,y := lim

n→∞ Q̃
λnαk

n,αn
x,y . (6.8)

Note that Q(k) and Q̃(k) are stochastic matrices, and that

‖gk(·)‖ ≤ ‖C‖, ‖hk(·)‖ ≤ 2‖C‖B, k ∈ S, (6.9)

by Lemma 4.1. With the above notation, the conclusions of Theorem 6.1 are equivalent to

g0(·) = g∗(λ∗) and h0(·) = h∗(λ∗, ·) = h1(·). (6.10)

The starting point to achieve this goal is the following simple result.

Lemma 6.1. (i) For every k ∈ N, the following two relations hold:

eλ∗gk(z)+λ∗hk(x) = inf
a∈A(x)

[
eλ∗C(x,a)

∑
y∈S

px,y(a)eλ∗hk+1(y)

]
, x ∈ S, (6.11)

hk(·) − hk+1(·) = gk(·) − gk(z) and hk(z) = 0. (6.12)

(ii) If gk(·) is constant then gk(·) = g∗(λ∗) and hk(·) = h∗(λ∗, ·) = hk+1(·).
Next, let x, y ∈ S and k ∈ N be arbitrary. Replacing the parameters λ and α in (4.8) by

λnα
k
n and αn, respectively, and taking the limit in the resulting inequalities, via Assumption 2.1,

(6.7), and (6.8), it follows that

Q(k)
x,y ≥ px,y(f

(k)(x))e−4λ∗B‖C‖ and Q̃(k)
x,y ≥ px,y(f

(k+1)(x))e−4λ∗B‖C‖. (6.13)

Similarly, starting from (4.6) and (4.7), Assumption 2.1, (6.7), and (6.8) together lead to

eλ∗gk(x) ≥
∑
w∈S

Q(k)
x,weλ∗gk+1(w) and eλ∗gk(x) ≤

∑
w∈S

Q̃(k)
x,weλ∗gk+1(w). (6.14)
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Now, set
Mk := max

x∈S
gk(x), mk := min

x∈S
gk(x), k ∈ N,

and note that (6.14) yields eλ∗gk(x) ≥ ∑
w∈S Q

(k)
x,wemk+1 = emk+1 , as well as eλ∗gk(x) ≤∑

w∈S Q̃
(k)
x,weλ∗Mk+1 = eλ∗Mk+1 for every x ∈ S and k ∈ N, so that, since λ∗ is positive,

mk+1 ≤ mk ≤ Mk ≤ Mk+1, k ∈ N,

and then the limits
M∗ := lim

k→∞ Mk, m∗ := lim
k→∞ mk (6.15)

exist and belong to [−‖C‖, ‖C‖], by (6.9). Observe that the last three displays together yield
that

m∗ ≤ gk(·) ≤ M∗, k ∈ N. (6.16)

On the other hand, using the fact that the state space is finite, it follows that

(i) for every n ∈ N, the function gn(·) has a maximizer xn ∈ S so that gn(xn) = Mn, and

(ii) there exists a state x∗ such that xn = x∗ for infinitely many nonnegative integers n.

Therefore, the first convergence in (6.15) yields that

there exists {nk} ⊂ N such that nk ↗ ∞ and lim
k→∞ gnk

(x∗) = M∗. (6.17)

Similarly, it can be shown that there exists x∗ ∈ S such that

lim
r→∞ gnr (x∗) = m∗ for some sequence {nr} ⊂ N increasing to ∞.

The following two lemmas, which concern the sequences {gk(·)} and {f (k)} in (6.7) and the
numbers M∗ and m∗ in (6.15), are the backbone of the argument that will be used below to
establish Theorem 6.1. The corresponding proofs rely on Assumption 3.1.

Lemma 6.2. Suppose that Assumptions 2.1, 2.2, and 3.1 hold.

(i) Let x ∈ S and the sequence {nk} ⊂ N be such that

lim
k→∞ nk = ∞, lim

k→∞ gnk
(x) = M∗, lim

k→∞ f (1+nk) =: f ∈ F. (6.18)

In this case,
px,y(f (x)) > 0 �⇒ lim

k→∞ g1+nk
(y) = M∗.

(ii) There exists a sequence {nk} ⊂ N increasing to ∞ such that

lim
k→∞ gnk

(w) = M∗, w ∈ S.

Lemma 6.3. Suppose that Assumptions 2.1, 2.2, and 3.1 hold.

(i) If x ∈ S and {nk} ⊂ N satisfy

lim
k→∞ nk = ∞, lim

k→∞ gnk
(x) = m∗, lim

k→∞ f (nk) =: f ∈ F,

then
px,y(f (x)) > 0 �⇒ lim

k→∞ g1+nk
(y) = m∗.
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(ii) There exists a sequence {nk} ⊂ N such that limk→∞ nk = ∞ and

lim
k→∞ gnk

(y) = m∗, y ∈ S.

The following consequence of Lemmas 4.3 and 6.1 will be used to provide a fairly direct
proof of Theorem 6.1.

Lemma 6.4. Suppose that L ∈ R is such that the convergence

lim
k→∞ gnk

(x) = L, x ∈ S,

holds for some sequence {nk} ⊂ N increasing to ∞. In this case, L = g∗(λ∗).

Proof. Recall that‖hnk
‖ ≤ 2B‖C‖ for every k. Taking a subsequence (if necessary), without

loss of generality assume that limk→∞ hnk
=: h ∈ B(S) exists, and note that, via (6.12),

limk→∞ hnk+1(x) = limk→∞ hnk
(x) − limk→∞[gnk

(x) − gnk
(z)] = h(x) − [L − L] = h(x)

for every x ∈ S. Now, replace k by nk in (6.11) and take the limit as k goes to ∞ on both sides
of the resulting equality to obtain, via Lemma 4.3, that the pair (L, h(·)) satisfies the optimality
equation (2.10) corresponding to λ∗, so that L = g∗(λ∗), by Lemma 2.1. �

Proof of Theorem 6.1. As already mentioned, it is sufficient to verify (6.10). To achieve this
objective, using Lemma 6.2(ii) select a sequence {nk} ⊂ N going to ∞ such that limk→∞ gnk

=
M∗, and observe that Lemma 6.4 yields M∗ = g∗(λ∗). Similarly, Lemmas 6.3(ii) and 6.4
together lead to m∗ = g∗(λ∗), and then gk(·) = g∗(λ∗) for every k, by (6.16); in particular,
g0(·) = g∗(λ∗) and (6.10) follows from Lemma 6.1(ii). �

7. Proof of the integral formula

In this section a proof of Theorem 3.3 will be provided. The argument relies on the following
lemma, which is a consequence of the uniform convergence results in Theorems 3.1(ii) and
3.2(ii).

Lemma 7.1. Let x ∈ S and λ ∈ R \ {0} be arbitrary, and suppose that either of the following
conditions are valid:

(i) λ < 0 and Assumptions 2.1 and 2.2 hold;

(ii) λ > 0 and Assumptions 2.1, 2.2, and 3.1 hold.

In this framework,

(1 − α)

∞∑
k=0

λαkgα(λαk, x) →
∫ λ

0
g∗(s) ds as α ↗ 1. (7.1)

Proof. Let x ∈ S, λ 	= 0, ε ∈ (0, |λ|), and α ∈ (0, 1) be arbitrary but fixed. Now, set

Iε(λ) :=
{

[ε, λ], λ > 0,

[λ, −ε], λ < 0,

whereas, for each nonnegative integer k,

Ik(α, λ) :=
{

[λαk+1, λαk] if λ > 0,

[λαk, λαk+1] if λ < 0.
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Observe that, under either of the conditions (i) or (ii), Theorems 3.1(ii) and 3.2(ii) imply that

sup
t∈Iε(λ)

|gα(t, x) − g∗(t)| → 0 as α ↗ 1. (7.2)

Next, let k∗ ≡ k∗(ε, λ, α) be the largest integer k satisfying the |λ|αk ≥ ε so that

λαk ∈ Iε(λ), 1 ≤ k ≤ k∗, (7.3)

and
|λ|αk∗ ≥ ε > |λ|αk∗+1. (7.4)

Using the fact that |g(λαk, x)−g∗(λαk)| ≤ 2‖C‖ for every k ∈ N, by (2.8) and (4.1), it follows
that ∣∣∣∣

∞∑
k=0

(1 − α)λαkgα(λαk, x) −
∞∑

k=0

(1 − α)λαkg∗(λαk)

∣∣∣∣
≤ (1 − α)

k∗∑
k=0

|λ|αk|gα(λαk, x) − g∗(λαk)|

+ (1 − α)

∞∑
k=k∗+1

|λ|αk|gα(λαk, x) − g∗(λαk)|

≤ (1 − α)

k∗∑
k=0

|λ|αk|gα(λαk, x) − g∗(λαk)| + (1 − α)

∞∑
k=k∗+1

2‖C‖λ|αk

≤ (1 − α)

k∗∑
k=0

|λ|αk sup
t∈Iε(λ)

|gα(t, x) − g∗(t)| + 2‖C‖λ|αk∗+1

≤ |λ| sup
t∈Iε(λ)

|gα(t, x) − g∗(t)| + 2‖C‖ε,

where the third inequality is due to (7.3), and (7.4) was used in the last step. Since ε ∈ (0, |λ|)
is arbitrary, this last display and (7.2) together imply that

lim
α↗1

[ ∞∑
k=0

(1 − α)λαkgα(λαk, x) −
∞∑

k=0

(1 − α)λαkg∗(λαk)

]
= 0. (7.5)

On the other hand, recalling that g∗(·) is continuous, by Lemma 4.4, select δ > 0 such that

|g∗(s) − g∗(t)| < ε if |s|, |t | ≤ |λ| and |s − t | ≤ δ.

Now, suppose that α > 1 − δ/|λ|. Observing that the length of Ik(α, λ) is |λ|αk(1 − α) ≤
|λ|(1 − α) and λαk ∈ Ik(α, λ), the above display yields |g∗(λαk) − g∗(s)| < ε for every
s ∈ Ik(α, λ) so that∣∣∣∣(1 − α)λαkg∗(λαk) −

∫ λαk

λαk+1
g∗(s) ds

∣∣∣∣ =
∣∣∣∣
∫ λαk

λαk+1
[g∗(λαk) − g∗(s)] ds

∣∣∣∣
≤

∫
Ik(α,λ)

|g∗(λαk) − g∗(s)| ds

≤ ε|λ|αk(1 − α).
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Combining this relation with the equality
∫ λ

0 g∗(s) ds = ∑∞
k=0

∫ λαk

λαk+1 g∗(s) ds, it follows that

∣∣∣∣
∞∑

k=0

(1 − α)λαkg∗(λαk) −
∫ λ

0
g∗(s) ds

∣∣∣∣ =
∣∣∣∣

∞∑
k=0

[
(1 − α)λαkg∗(λαk) −

∫ λαk

λαk+1
g∗(s) ds

]∣∣∣∣
≤

∞∑
k=0

∣∣∣∣(1 − α)λαkg∗(λαk) −
∫ λαk

λαk+1
g∗(s) ds

∣∣∣∣
≤

∞∑
k=0

ε(1 − α)|λ|αk

= ε|λ|.
Thus, since ε ∈ (0, |λ|) is arbitrary, it follows that

lim
α↗1

∞∑
k=0

(1 − α)λαkg∗(λαk) =
∫ λ

0
g∗(s) ds,

and (7.1) follows combining this convergence and (7.5). �
Proof of Theorem 3.3. Suppose that either of the conditions in Lemma 7.1 hold. Let λ 	= 0,

x ∈ S, and α ∈ (0, 1) be arbitrary, and observe that Definition 3.1 yields

n∑
k=0

λαkgα(λαk, x) =
n∑

k=0

λαk[V ∗
α (λαk, x) − αV ∗

α (λαk+1, x)]

=
n∑

k=0

λαkV ∗
α (λαk, x) −

n∑
k=0

λαk+1V ∗
α (λαk+1, x)

= λV ∗
α (λ, x) − λαn+1V ∗

α (λαn+1, x), n ∈ N.

Recalling that |V ∗
α (·, x)| ≤ ‖C‖/(1−α) and taking the limit as n goes to ∞, the above relation

implies that

λV ∗
α (λ, x) =

∞∑
k=0

λαkgα(λαk, x).

This equality yields (1 − α)λV ∗(λ, x) → ∫ λ

0 g∗(s) ds as α ↗ 1, by Lemma 7.1, and (3.5)
follows since λ 	= 0. �

8. Concluding remarks

In this paper Markov decision chains with risk-sensitive average cost criterion were studied.
The basic framework was determined by the standard continuity-compactness conditions in
Assumption 2.1, and the communication property in Assumption 2.2, which is necessary to
ensure that the optimal average cost function is constant. Within that context, assuming that
the controller is risk seeking, it was proved in Theorem 3.1 that appropriate normalizations of
the optimal α-discounted value functions converge to the solution of the risk-sensitive average
cost optimality equation. Such a result was obtained by taking advantage of the fact that the
mapping λ �→ λV ∗(λ, α, x) is convex on the negative axis for every discount factor α ∈ (0, 1)
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and x ∈ S. In the risk-averse case λ > 0, λV ∗(λ, α, x) = infπ [λV (λ, α, π, x)], and then,
since the infimum of a family of convex functions is not necessarily convex, it follows that,
a priori, the convexity of the mapping λ �→ λV ∗(λ, α, x) cannot be ensured. Thus, to extend
the approximation results in Theorem 3.1 to the risk averse case, the additional condition in
Assumption 3.1 was required, as well as to follow an alternative route of analysis.

Appendix A. Proofs of Lemmas 6.1–6.3

Proof of Lemma 6.1. (i) Let k ∈ N and x ∈ S be arbitrary. With regard to (2.1) and, keeping
in mind that λ > 0, noting that (3.2) with αn and λnα

k
n instead of α and λ, respectively, yields

exp(λnα
k
n[gαn(λnα

k, z) + hαn(λnα
k
n, x)])

= inf
a∈A(x)

[
exp(λnα

k
nC(x, a))

∑
y∈S

px,y(a) exp(λnα
k+1
n hαn(λnα

k+1
n , y))

]
, x ∈ S.

Observe now that (6.2) and (6.7) together imply that ‖αk+1
n hαn(λnα

k+1
n , ·) − hk+1(·)‖ → 0 as

n → ∞, since S is finite. Taking the limit as n goes to ∞ on both sides of the above displayed
equality, via (6.2), (6.7), and Lemma 4.3, then (6.11) follows, whereas (6.12) is a consequence
of (3.1) and (6.7).

(ii) Suppose that gk(·) is constant. In this case, hk = hk+1 and hk(z) = 0, by (6.12),
whereas (2.1) and (6.11) show that the pair (gk(z), hk(·)) satisfies the optimality equation
(2.10) corresponding to the risk sensitivity coefficient λ∗, and the conclusion follows from
Lemma 2.1(iii). �

Proof of Lemma 6.2. (i) Since the matrix Q̃(nk) is stochastic on the finite state space S, after
taking a subsequence (if necessary), without loss of generality it can be assumed that

lim
k→∞ Q̃(nk)

w,v =: Q̃w,v, w, v ∈ S,

so that, using Assumption 2.1, (6.13), and (6.18) together imply that

Q̃w,v ≥ e−4λ∗B‖C‖pw,v(f (w)), w, v ∈ S. (A.1)

Next, observe that the second inequality in (6.14) yields

eλ∗gnk
(x) ≤

∑
w∈S

Q̃(nk)
x,w eλ∗g1+nk

(w),

and, via (6.16), it follows that, for every y ∈ S,

eλ∗gnk
(x) ≤ Q̃(nk)

x,y eλ∗g1+nk
(y) +

∑
w∈S\{y}

Q̃(nk)
x,w eλ∗g1+nk

(w)

≤ Q̃(nk)
x,y eλ∗g1+nk

(y) +
∑

w∈S\{y}
Q̃(nk)

x,w eλ∗M∗

= Q̃(nk)
x,y eλ∗g1+nk

(y) + (1 − Q̃(nk)
x,y )eλ∗M∗

.

Recalling that λ∗ is positive, after taking the inferior limit as k goes to ∞ in the above display,
via (6.18), it follows that

eλ∗M∗ ≤ Q̃x,yeλ∗ lim infk→∞ g1+nk
(y) + (1 − Q̃x,y)e

λ∗M∗
,
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and this immediately yields

Q̃x,y > 0 �⇒ lim inf
k→∞ g1+nk

(y) ≥ M∗ �⇒ lim
k→∞ g1+nk

(y) = M∗,

where the second implication is due to (6.16). From this point, the conclusion follows observing
that Q̃x,y > 0 when px,y(f (x)) > 0, by (A.1).

(ii) The proof of this part relies heavily on Assumption 3.1. Define the class G of subsets of
S as follows: G ⊂ S belongs to G if and only if G is nonempty and there exists a sequence
{nk} ⊂ N going to ∞ such that

lim
k→∞ gnk

(x) = M∗, x ∈ G.

From this definition, it follows that the desired conclusion is equivalent to the inclusion S ∈ G.
To achieve this goal, observe that G is nonempty since the singleton {x∗} belongs to G, by
(6.17). Now, let G∗ ∈ G be a maximal element of G with respect to the inclusion relation so
that

G ∈ G and G∗ ⊂ G �⇒ G∗ = G. (A.2)

Next, let {nk} ⊂ N be a sequence converging to ∞ such that

lim
k→∞ gnk

(x) = M∗, x ∈ G∗,

and, without loss of generality, assume that limk→∞ f (1+nk) =: f exists. In this case setting

Ĝ := {y ∈ S | px,y(f (x)) > 0 for some x ∈ G∗}, (A.3)

part (i) implies that limk→∞ g1+nk
(y) = M∗ for every y ∈ Ĝ so that Ĝ ∈ G, by the definition of

the class G. To conclude, observe that, by Assumption 3.1, the inclusion G∗ ⊂ Ĝ follows from
(A.3). Using (A.2), these two last displays together imply that G∗ = Ĝ so that G∗ is closed with
respect to the transition matrix [pw,v(f (w))]w,v∈S . Since this last matrix is communicating,
by Assumption 2.2, it follows that S = G∗ ∈ G, completing the proof. �

Lemma 6.3 can be established by paralleling the argument in the above proof of Lemma 6.2.
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[19] Jaśkiewicz, A. (2007). Average optimality for risk sensitive control with general state space. Ann. Appl. Prob.

17, 654–675.
[20] Kontoyiannis, I. and Meyn, S. P. (2003). Spectral theory and limit theorems for geometrically ergodic Markov

processes. Ann. Appl. Prob. 13, 304–362.
[21] Pitera, M. and Stettner, L. (2016). Long run risk sensitive portfolio with general factors. Math. Meth. Operat.

Res. 83, 265–293.
[22] Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley,

New York.
[23] Shen, Y., Stannat, W. and Obermayer, K. (2013). Risk-sensitive Markov control processes. SIAM J. Control

Optimization 51, 3652–3672.
[24] Sladký, K. (2008). Growth rates and average optimality in risk-sensitive Markov decision chains. Kybernetika

44, 205–226.
[25] Stettner, L. (1999). Risk sensitive portfolio optimization. Math. Meth. Operat. Res. 50, 463–474.
[26] Thomas, L. C. (1981). Connectedness conditions for denumerable state Markov decision processes. In Recent

Developments in Markov Decision Processes, Academic Press, New York, pp. 181–204.
[27] Tijms, H. C. (2003). A First Course in Stochastic Models. John Wiley, Chichester.

https://doi.org/10.1017/apr.2018.10 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.10

	1 Introduction
	2 The model
	2.1 The problem

	3 Main results
	4 Auxiliary tools
	5 The risk-seeking case
	6 The approximation results under risk aversion
	7 Proof of the integral formula
	8 Concluding remarks
	A Proofs of Lemmas 6.1--6.3
	Acknowledgements
	References

