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The Nature of the Controversy over
Time-Symmetric Quantum

Counterfactuals*

Ruth E. Kastner†‡

It is proposed that the recent controversy over “time-symmetric quantum counterfac-
tuals” (TSQCs), based on the Aharonov-Bergmann-Lebowitz Rule for measurements
of pre- and post-selected systems, can be clarified by taking TSQCs to be counterfac-
tuals with a specific type of compound antecedent. In that case, inconsistency proofs
such as that of Sharp and Shanks (1993) are not applicable, and the main issue becomes
not whether such statements are true, but whether they are nontrivial. The latter ques-
tion is addressed and answered in the negative. Thus it is concluded that TSQCs, un-
derstood as counterfactuals with a compound antecedent, are true but only trivially so,
and provide no new contingent information about specific quantum systems (except in
special cases already identified in literature).

1. Introduction. Time Symmetric Quantum Counterfactuals are claims
about the probabilities of outcomes of counterfactual (not-actually-
performed) measurements on “pre- and post-selected” systems: that is,
on systems identified by two measurement results at two different times
ta and tb, instead of the usual single pre-selection result at a single time
ta. The current controversy over Time Symmetric Quantum Counterfac-
tuals (TSQC) has its roots in a famous paper by Aharonov, Bergmann,
and Lebowitz (henceforth, “ABL”) entitled “Time Symmetry in the
Quantum Process of Measurement” (1964).

The key concept introduced by ABL is that of a “pre- and post-selected
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ensemble,” i.e., an ensemble of systems selected in a time-symmetric way
via a preselection and then a second, final post-selection. The central result
of the paper is a time-symmetric expression for the probability of an out-
come of a measurement performed at a time t between such pre- and post-
selection measurements, subsequently known as the “ABL rule.”

The ABL rule is a straightforward consequence of standard quantum
theory in the case of actually performed measurements at all three times.
It gives the probability of outcome qj of a nondegenerate observable Q
measured at a time t between pre- and post-selection in states |a� at time
ta and |b� at time tb, respectively: (For simplicity and with no loss of gen-
erality, we consider the case of zero Hamiltonian):

P q a bABL j ,
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| |
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j j

i ii
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2 2
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(1) is essentially a time-symmetric generalization of the von Neumann
Projection Postulate or “Process 1” (von Neumann 1995). It assumes that
the density matrix of the system at the intermediate time t is a proper or
“ignorance”—type mixture of possible eigenstates of Q.

In 1985, Albert, Aharonov, and D’Amato (AAD) wrote a paper en-
titled “Curious New Statistical Predictions of Quantum Mechanics” which
began a program of using the ABL rule to derive various results. This
paper made a seemingly innocuous but unexamined assumption about the
applicability of the rule, namely that it could be interpreted as applying
to measurements that ‘might have been carried out’ (1985, 5). However,
this apparently natural and innocuous assumption opened up a ‘Pandora’s
Box’ of controversy as to what kinds of statements are valid to make about
pre- and post-selected systems.

As noted above, the ABL rule was derived on the assumption that the
outcome whose probability is being calculated corresponds to a mea-
surement that was actually performed during the pre- and post-selection
process. However, AAD presented the ABL rule this way:

Consider a quantum mechanical system whose Hamiltonian, for sim-
plicity, we shall take to be zero. Suppose that this system is measured
at time ti to be in the state |A � a� (where A represents some complete
set of commuting observables of the system, and a represents some
particular set of eigenvalues of those observables), and is measured at
time tf(tf � ti) to be in the state |B � b�. What do these results imply
about the results of measurements that might have been carried out
within the interval (ti � t � tf) between them? It turns out that the
probability (which was first written down in ABL (1964)) that a mea-
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1. It should be noted that the case in which the counterfactual measurement is one
which commutes with either the pre- or post-selection observable is a special one in
which the corresponding TSQC fulfills a consistent history condition and can therefore
be seen as uncontroversially valid. What is contested by critics is the general case (any
observable considered at t).

2. For a detailed analysis and defense of the S&S proof, see Kastner (1999a). For Vaid-
man’s response, see Vaidman (1999a).

surement of some complete set of observables C within that interval,
if it were carried out, would find that C � cj is

P cj( )
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and that formula entails, among other things, that P(a) � P(b) � 1.
Consequently, these authors maintain that that such a system, within
such an interval, must have definite, dispersion-free values of both A
and B, whether or not A and B may happen to commute. (original
italics, boldface added for emphasis) (1985, 5)1

Now, it must be pointed out that this portrayal of the ABL rule is not
consistent with the original derivation and presentation of the rule by
ABL. Firstly, the phrases which I have highlighted in boldface, “might
have been carried out” followed by a subjunctive or counterfactual con-
ditional statement of the ABL rule, is the original TSQC-type reading of
the ABL rule (which one might liken to the key to Pandora’s Box). This
view of the ABL rule was a seemingly natural but as-yet-unjustified leap
from the actual, somewhat restrictive assumptions behind the ABL deri-
vation—i.e., an intervening measurement actually being performed and
the process resulting in a pre- and post-selected ensemble depending in
part on that particular measurement—to a much less constrained situation
in which the pre- and post-selected ensemble was viewed as a well-defined
entity in its own right which could be conceptually “held fixed” while the
intervening measurement was regarded as variable.

Assuming that by the words “these authors maintain . . . ”, AAD mean
ABL, their statement is incorrect. In fact, as observed also by Sharp and
Shanks (1993, 494, footnote 2) ABL never make any claim in their 1964
paper about a system having “definite, dispersion-free values” of noncom-
muting observables.

A few years later, Sharp and Shanks (1993) gave a proof intended to
demonstrate that TSQCs give predictions inconsistent with quantum the-
ory. Such proofs (Cohen (1995), Miller (1996)) have become part of the
controversy and will not be addressed in detail in this paper, which aims
to formulate the question in different (and, hopefully, illuminating) terms.2
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3. It should be noted that Vaidman considers the TSQC as applicable to a counterfac-
tual measurement in the case when some different observable is actually measured at
t. In contrast, Mohrhoff restricts his TSQC to the case when no measurement is actually
performed at t (at least for the applicability of the TSQC for obtaining what he terms
“objective probabilities”; cf. Mohrhoff 2001).

The counterfactual usage of the ABL rule, as proposed by Lev Vaidman
(cf. 1996–1999) and Ulrich Mohrhoff (cf. 2000, 2001), which I am calling
a “Time Symmetric Quantum Counterfactual” (TSQC), consists (as in
AAD) in applying the rule to cases in which Q was not actually measured
at t.

Vaidman’s proposed wording of his TSQC is as follows (with minor
changes in notation to match that used in this paper):

(1V) “If a measurement of an observable Q were performed at time t,
then the probability for Q � qj would equal PABL(qj), provided that the
results of measurements performed on the system at times ta and tb are
fixed” (Vaidman 1999a, 6 (e-print version)).3

Mohrhoff’s is as follows:
(1M) “If a measurement of observable Q were performed on system S

between the (actual) preparation of the probability measure |a��a| at time
ta and the (actual) observation of the property |b��b| at time tb, but no
measurement is actually performed between ta and tb, then the measure-
ment of Q would yield qj with probability PABL(qj|a,b)” (Mohrhoff 2001,
865).

Vaidman (cf. 1996–1999) has used (1V) to obtain what he calls “elements
of reality” for pre- and post-selected quantum systems. Mohrhoff (2000)
has used the ABL rule in the form of (1M) to obtain what he terms “ob-
jective probabilities” for quantum systems. He sees these time-symmetric
“objective probabilities” as the most informative and epistemologically
complete kinds of probabilities attributable to quantum systems, in contrast
to what he terms “subjective probabilities.” The latter are generally time-
asymmetric, and (as he defines them) pertain to situations which fail to take
into account all facts (such as outcomes of future measurements). Now,
presumably, in defining quantities such as “elements of reality” and “ob-
jective probability,” Vaidman and Mohrhoff intend their TSQTs to have a
highly nontrivial character: i.e., they should give meaningful contingent in-
formation about specific quantum systems.

2. The Controversy to Date. The most recent installment of the controversy
over TSQCs involved an exchange between myself (Kastner 2001) and
Mohrhoff (2001). In Kastner (2001) I argued that (1M) fails to get around
the proof by Sharp and Shanks (1993) (henceforth “S&S”) which showed
that predictions obtained from a counterfactual usage of the ABL rule
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4. For example, Vaidman says “In the counterfactual world in which a different mea-
surement was performed at time t, the state before t is invariably the same, but the state
after time t is invariably different (if the observables measured in actual and counter-
factual worlds have different eigenvalues.) Therefore, we cannot hold fixed the quantum
state of the world in the future.” (Vaidman 1999a, 5 (e-print version)). Mohrhoff, in
his (2001, 867), says: “Obviously, Dr. X [the experimenter] might not have obtained
the result |b��b| at the time tb [were the counterfactual intervening measurement per-
formed]”.

conflict with quantum mechanics. The problem was that (1M) does noth-
ing to actually “fix” the pre- and post-selection results in the way TSQC
advocates require for evasion of the S&S proof (see section 4 below). In
Kastner (2001) I suggested that perhaps what advocates of TSQCs really
had in mind by talk of “fixing” the pre- and post-selected states of systems
subject to TSQC claims was what was referred to therein as Statement
(1�):

(1�) “Consider system S having pre- and post-selection results a and b
at times ta and tb when a measurement of observable Q was not performed.
If a measurement of observable Q had been performed at time t, ta � t �
tb on S, and if S had the same pre- and post-selection outcomes as above,
then outcome qj would have resulted with probability PABL(qj|a,b).”

I noted that (1�) was essentially equivalent to a weaker version of (1M),
called (2):

(2) “In the possible world in which observable Q is measured and sys-
tem S yields outcomes a and b at times ta and tb respectively, the probability
of obtaining result qj at time t is given by PABL(qj|a,b).”

In his response, Mohrhoff (2001) did not address statement (1�), but
indicated that he saw no difference between the statements (1M) and (2).
If (1�) and (2) are equivalent, it appears a reasonable assumption to take
(1�) as the intended meaning of his TSQC. Taking a TSQC claim to be
equivalent to statement (1�) means understanding talk about “fixing” pre-
and post-selection results (such as in Vaidman’s version (1V)) as equiva-
lent to the second, italicized “if”-clause or antecedent in (1�) (since both
Vaidman and Mohrhoff acknowledge that post-selection results can’t ac-
tually be “fixed”).4

It seems that what the TSQC really is, then, is not just a simple coun-
terfactual but rather a type of “compound” counterfactual—that is, one
with a double antecedent. For the immediate purpose of clarifying the
controversy over the correctness of TSQCs, I shall take (1�) as the intended
meaning of TSQCs. I shall defer the question of whether the above state-
ments differ (I think that (1�) and (2) are equivalent, and that (1) differs
from both of those), which will be addressed in Section 4.

Statement (1�) is of course undeniably true: If I were to measure an
observable that was not actually measured at t, and if the system under
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5. The reason we have been critics is because of the claims based on the proposed
TSQCs; cf. Sections 1 and 4.

discussion were pre- and post-selected with the same results as in the actual
world, then of course the ABL rule would apply to the probabilities of
outcomes of the not-really-measured observable. I certainly do not dis-
agree with this assertion, nor, I think, do any of the other critics of
TSQCs.5

Apparently, then, we have found a statement of the TSQC which is
true. The trouble is that the addition of the second antecedent makes it
much too weak to support the kinds of claims being advanced by advo-
cates of the TSQC, such as the claim of a nontrivial “objective probability”
by Mohrhoff, or of “elements of reality” by Vaidman. Why should the
second antecedent make such a difference to the strength of the counter-
factual statement? As a starting point, consider an everyday counterfac-
tual such as (leaving aside for the moment possible objections that every-
day counterfactuals can have nothing in common with ostensibly more
exotic TSQCs, which I will address in the next section):

(A) If there had been a raffle this Wednesday, then nobody would have
won.

Now, claim (A) is quite a surprising claim, since ordinarily, if one holds
a raffle, there is almost certainly some winner (if only a sympathy entry
from the person donating the raffle item). So (A) is quite a strong and
dramatic and surprising claim as it stands.

Now consider the following variant of (A):
(A�) If there had been a raffle this Wednesday, and if nobody had

entered, then nobody would have won.
It is obvious that the addition of the second, auxiliary antecedent, “if

nobody had entered,” weakens the claim so much as to make it completely
vacuous. It is, of course, undeniably true, but only trivially so: all it does
is to restate the raffle rules. That is, it gives no specific information about
the event under consideration: namely, a particular hypothetical raffle pos-
sibly held on a specific date, with certain specific potential entrants. But
what is (A�) other than a version of (A) with certain background condi-
tions taken as “fixed”? For, if no raffle takes place on Wednesday, then
in the actual world, there are no entrants. If we hold this condition fixed,
then we obtain a consequence that there are no winners in a counterfactual
raffle.

The triviality of (A�) is best explained in terms of what is called “co-
tenability” in many theories of counterfactuals. I shall follow Horwich
(1988, Chapter 10) in describing the concept of cotenability with respect
to counterfactual statements.

The first serious attempt to construct a theory of counterfactuals was
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by Nelson Goodman (1947). Goodman proposed that a counterfactual
statement of the form

CF: “If it were the case that P, then it would be the case that Q,”
symbolized by

P Q�→ , (2)

is true if and only if the antecedent P, together with certain background
conditions S holding when P is false, nomologically entail Q; in symbols:

P S Q& .→ (3)

This formulation successfully captures the idea that a counterfactual is
true when the “stage is set” (S) for something (Q) to happen if P were true
(which it is not).

However, the notorious problem is in delimiting the background con-
ditions S. As Horwich notes, we can make any absurd claim Q by using
S to create a false conjunction on the left hand side of (3). For example,
suppose in the actual world it is not raining. Then if I consider that fact
as background condition S and introduce the antecedent P � not-S � “It
is raining”, I can obtain the following absurd conclusion:

(4) “If it is raining and not raining, then pigs can fly.”
Statement (4) is vacuously true, but true nonetheless. In order to solve

this problem, Goodman found that facts allowed in S had to be “coten-
able” with P, which meant that they could only be those whose truth would
not be affected by the truth of P. in other words, they had to fulfill the
requirement

P S�→ , (5)

which unfortunately made Goodman’s definition of counterfactuals cir-
cular. (Note that (5) would successfully eliminate (4), since one could not
maintain that “If it were raining, then it would not be raining.”)

Nevertheless, we can apply the cotenability concept to see why (A�) is
trivial. A counterfactual is considered true because the “stage is set” (S)
so that one additional event P, if true, leads nomologically to the conse-
quent Q. But if the stage setting (S) has any dependence on whether P
occurs, then the left hand side of (3) could be false, and Q may not occur
nomologically.

In symbols, if S is no longer true when P is true, the conjunction (S&P)
becomes false. But we needed the truth of (S&P) in order for Q to follow
nomologically. If (S&P) is false, then any Q whatsoever follows vacuously,
rather than nomologically, as in example (4). If (S&P) might be false, then
Q might not follow nomologically, so we can’t assert that it “would”,
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6. (B) was proposed by an anonymous referee.

which is what the counterfactual does (see again statement CF, which
asserts “If it were the case that P, then it would be the case that Q,” rather
than merely “If it were the case that P, then it might be the case that Q”).

Now, back to statement (A�). The role of the auxiliary antecedent in
(A�) is to get around the failure of cotenability between the antecedent (a
raffle is held) and the background conditions S in place when the ante-
cedent is false (nobody enters).

Cotenability fails because we cannot assert (5) in this case:

P S�→

(where P is “a raffle is held” and S is “there are no entrants”) because
when raffles are held, people generally enter them.

That is, the best we can do is to say “If a raffle were held, there might
be no entrants,” with S being a highly unlikely occurrence.

Thus the introduction of the antecedent P affects the truth of those
background conditions S, so those background conditions are not coten-
able with P. The only way we can force Q to nomologically follow in the
form (3) is to stipulate that those background conditions don’t change
upon introduction of P, despite the fact that they normally would. To do
this we add an auxiliary antecedent stipulating the certainty of background
condition(s) S which would not normally be certain. In making such a
stipulation, we invoke a state of affairs that conflicts with the known pro-
cesses of our world (such as: when raffles are held, people enter them; and
when measurements are made at time t, outcomes at time tb generally don’t
occur with certainty but only with some probability dependent on the
measurement outcome at time t).

Note that there can be nontrivial compound counterfactuals, and it is
not required that the main antecedent and the auxiliary antecedent guar-
antee each other. All that is required for cotenability is that the back-
ground conditions holding when the antecedent is false (in this case, no
entrants) have no dependence on the truth of the main antecedent. In the
specific case of (A�), whether or not there are entrants does depend on
whether a raffle is held, and that is why cotenability fails and (A�), which
stipulates background conditions that normally would not hold, becomes
trivial.

The following is an example of a nontrivial compound counterfactual:6

(B): “If a raffle were held and if three people had entered, then with
probability x one of them would have won.”

In (B), the quantity x can take on different values and in so doing will
give different information about how the raffle is run (i.e., different rules
about the nature of the pool of tickets, purchased and unpurchased, from
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7. As suggested by a second anonymous referee.

which the winning ticket is drawn). Note that the second antecedent in
(B) is not the background condition S (no entrants) in place when the
antecedent was false, so it does not have the same structure as (A�) or (1�).
The crucial point is that in (B), non-cotenable background conditions S
(no entrants) are not being invoked in order to to obtain the truth of the
consequent.

Here is another compound counterfactual that is nontrivial7: Suppose
the only people in town this week, besides myself, are such that they buy
raffle tickets but don’t claim prizes (in other words, only the absent-
minded people are in town). Then one might make the following counter-
factual claim:

(C): “If there had been a raffle, and if only I and the absent-minded
people had entered, then I would have won the raffle.”

Again, the above is not completely trivial because the second antecedent
does not serve the purpose of circumventing noncotenability. The back-
ground condition holding when the antecedent is false (i.e., when no raffle
is held) is that no one enters the raffle, and this not what the second
antecedent asserts. But notice that what the second antecedent asserts is
extremely unlikely (how plausible is it that everyone besides me who enters
and wins a raffle fails to claim their prize?), and that the ordinarily sur-
prising conclusion “I would have won the raffle” is therefore much less
surprising. It is less surprising in proportion to the extent that I have
“tampered” with the background conditions (i.e., tailored them to my
desired outcome of winning the raffle).

To sum up: if the TSQC (1�) is understood as a counterfactual with an
auxiliary antecedent whose function is to fix the statement of background
conditions S holding when P is false, where S is not cotenable with the main
antecedent, it is only trivially true in the same way that (A�) is trivially
true.

Therefore quantities obtained from TSQCs that appear surprising at
first glance, such as probabilities of unity for outcomes of noncommuting
observables, are laden with such a heavy burden of conditions that they
cease to apply to systems under study in any sort of physically meaningful
way (just as no one cares about the fact that, if nobody entered a raffle,
then nobody would win).

3. Are TSQCs Immune to the Charge of Vacuity? The argument thus far
has been that a TSQC, understood as (1�)—a counterfactual with explicitly
“fixed” noncotenable background conditions—has the structure of state-
ment (A�), which is obviously trivial. Thus it is an argument by analogy:
the triviality of (A�) underscores the triviality of (1�). (In fact it seems to
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this author that the triviality of (1�) is already clearly evident, since the
auxiliary antecedent is such a “big if.”) The persuasiveness of this argu-
ment therefore depends on the strength of the analogy. TSQC advocates
insist that ordinary counterfactuals are “classical,” and maintain, on that
basis, that TSQCs are immune from any analogies with ordinary coun-
terfactuals. However, this claim will be challenged in what follows.

Here we apparently need to address the specific ontologies proposed
by Vaidman and Mohrhoff, since they both claim that their TSQC pro-
posals provide new insights into the nature of the quantum world. There-
fore they obviously think TSQCs are nonvacuous. Thus our task boils
down to deciding whether quantum systems and the physics describing
them, according to TSQC proponents, makes them immune to the trivi-
ality of stating that if no one entered a counterfactual raffle, then no one
would win.

For starters, then, let us first adopt Mohrhoff ’s viewpoint, which, as I
understand it from his (2000) and (2001), is characterised by the following
key beliefs:

a. No time index applies to unobserved quantum systems.
b. No intrinsic properties are possessed by unobserved quantum sys-

tems. The only time that a system can be said to “possess” a property
is when a measurement with a definite outcome has occurred.

c. There is no “flow” of time at the microscopic level, either forward
or backward.

d. There is no real difference between past, present, and future.
e. There is no causality.

It should be noted that (a) through (e) constitute a basic metaphysical
position concerning events in time, and that Mohrhoff’s claims about ob-
jective probabilities are secondary to these basic assumptions. Therefore
Mohrhoff sees his usage of the ABL rule in deriving what he calls “objec-
tive probabilities” as justified by these assumptions.

The task now becomes to understand why, or if, beliefs (a) through (e)
should make Statement (1�) any less vacuous than (A�). In other words,
since everyone surely agrees that the statement concerning a “counterfac-
tual raffle” with fixed background conditions, (A�), is vacuous, we need
to see whether beliefs (a) through (e) serve to make statement (1�) immune
from the same kind of vacuity. (The latter is essentially what Mohrhoff
has argued in his defense of his usage of the ABL rule, which is why I feel
compelled to address it here). So let us catalog the differences (according
to Mohrhoff’s ontological assumptions):

It is generally assumed that a raffle consists of physical systems that
always have observable properties (i.e., possessed properties, as defined
according to (b)). Two considerations arise: (i) it need not be the case that
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the systems involved in the raffle are classical systems, and (ii) even if it
did, does the fact that a raffle involves observable (possessed) properties,
causality and time flow throughout the interval [ta, tb] have a bearing on
whether (1�) is as vacuous as (A�)?

In support of (i), consider a quantum raffle. It goes like this: at ta (say,
Monday), there are N possible entrants (each of which could be some sort
of device rather than a person). (We require that N be nonzero, otherwise
it makes no sense to consider any kind of raffle, whether actual or not.
Thus the number N becomes a component of the raffle rules.) Each pro-
spective entrant holds a quantum coin. If no raffle is held at time t
(Wednesday), the coin remains in an unflipped ready state. If a raffle is
held at time t, a signal is sent to each of the N prospective entrants which
triggers a coin flip. For each coin flip that comes up heads, there is an
entrant. (We need not concern ourselves with how a winner is chosen from
the pool of entrants; our question concerns only whether or not there is a
winner.) At time tb (say, Friday), the number of entrants M is recorded.
Obviously, when M � 0, there is no winner.

Now, when there is no raffle, there are no coin flips, therefore none
comes up heads, therefore M � 0 and there is no winner. Statement (A�)
asserts the obvious: namely, if a counterfactual raffle were held and if none
of the coin flips came up heads, there would be no winner.

I would argue that the counterfactual quantum raffle described is iso-
morphic, in every relevant sense, to the situation considered in a TSQC.
(Note that I am not claiming that the quantum raffle is the same procedure
as in a TSQC; obviously it is not. All I am claiming is that the general
form of the claim corresponds in every relevant sense to the TSQC.) First,
regarding the quantum raffle: we have an empirical fact at ta (Monday):
the number N of prospective entrants. Prior to tb (Friday), there is no fact
of the matter as to possessed properties of the quantum coins (ready, heads
or tails), since they are not being measured (according to Mohrhoff’s on-
tology). Only at time tb do we measure the coins and find out how many
(M) are in heads states. We then note that M � 0, and conclude that, had
a raffle been performed and if the same outcomes had obtained at ta and tb,
then no one would have won the raffle.

In the TSQC case, we have an empirical fact at ta: the outcome of the
pre-selection measurement. Prior to tb, there is no fact of the matter as to
what properties the system has, since it is not being measured (again, ac-
cording to Mohrhoff’s ontology). Only at time tb do we measure the system
and find out which eigenvalue of the post-selection observable obtains at
that time. We are then in a position to input the outcomes observed at ta

and tb into the ABL rule and conclude that, had a measurement of Q been
performed at t, and if the same outcomes had obtained at ta and bb, then the
probabilities of eigenvalues of Q would have been as given by the ABL rule.
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One might find a difference in that the output of the TSQC applies to
an outcome at time t (prior to tb) while the outcome of the raffle seems to
apply to time tb (Friday). Against this, we reply that, assuming time sym-
metry and/or a lack of time index in either case—remember, this is a quan-
tum raffle with a time-symmetric, antirealist ontology—that the raffle out-
come can be seen as applying at time t, just as in the TSQC. Therefore
those holding the raffle might not discover the bad news until Friday, but
one can apply time-symmmetry to argue that “in fact” there was no winner
prior to Friday (or, to put it slightly differently, that there was fated to be
no winner prior to Friday).

One could also, of course, point out that the quantum raffle is a
slightly different kind of experimental procedure than the usual situation
considered in a TSQC. But again, this difference is superficial. To see
this, let’s fill out the details in a possible quantum raffle. Assume a three-
dimensional Hilbert space for which the “ready,” “heads,” and “tails”
states form a basis. Then a raffle taking place at t corresponds to a uni-
tary evolution of the ready state to a state which is an equal superposition
of the heads and tails states, call it the “flipped” state ( 1

2
[heads � tails]).

At tb, a measurement of an observable with outcomes [heads] or [not-
heads] is performed.

So the raffle differs from the usual TSQT in that there is a unitary
evolution between t and tb if the raffle is held; but since such an evolution
is fully time symmetric, the difference in no way disqualifies the example
as a fair analogy.

But, considering point (ii), suppose there really is no fully time sym-
metric, nonclassical raffle? Suppose there must always be some “classical”
component, whether a possessed property, a temporal direction, a causal
influence, involved in processes leading to statements such as (A�)? So
what? While both Mohrhoff and Vaidman have insisted that certain
“behind-the-scenes” features of quantum systems (i.e., questions of how it
happens that a system ends up with one outcome or another at times ta or
tb) are what immunize TSQCs from comparisons with everyday counter-
factuals, no reason has been given for thinking that such behind-the-scenes
features have any bearing on the legitimacy of the counterfactual claims
under consideration. On the contrary, I show below that Mohrhoff ’s own
definitions of his proposed applications of the ABL rule imply that behind-
the-scenes features precisely fail to immunize TSQCs from comparison
with everyday counterfactuals.

In his (2001), Mohrhoff invokes behind-the-scenes considerations as
crucial to the validity of his TSQC. That is, he (and Vaidman, as noted
above) rejects arguments against his TSQC if they seem to be based on
everyday, “classical” counterfactuals (such as my statements A and A�)
which, he assumes, invariably involve systems that always possess prop-
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erties during the time interval [ta, tb]. Specifically, he states that TSQCs
differ fundamentally from ordinary “classical” counterfactuals (such as
A) because the latter involve systems with determinate properties and the
former involves systems with indeterminate properties unless measured:

“While a classical counterfactual assumes that something obtains
whereas in reality something else obtains, a quantum counterfactual as-
sumes that something obtains where in reality nothing obtains” (Mohrhoff
2001, note 23).

But by this definition, Mohrhoff ’s own “subjective” counterfactual us-
age of the ABL rule would consitute a “classical counterfactual” which
would therefore be disqualified from comparison with his TSQC:

“In principle, both rules [Born and ABL] have an objective as well as
a subjective application. If Q is actually measured, both rules assign prob-
abilities that are subjective inasmuch as they are based on probability
measures that fail to take account of at least one relevant fact—the result
of the measurement of Q” (Mohrhoff 2001, 865).

In the case of what Mohrhoff terms the “subjective” counterfactual
application of the ABL rule, in reality “something else obtains” at t. Now,
the “subjective” counterfactual application of the ABL rule is clearly some
kind of TSQC (though not yielding what Mohrhoff would term “objective
probabilities”). Therefore he cannot coherently disallow (A�) as a valid
analogy with TSQCs based on the fact that the former might involve sys-
tems with determinate behind-the-scenes features.

In any case, it must be reiterated (recall point (i) above) that it is per-
fectly possible that an “ordinary” counterfactual statement such as A� can
always be replaced by a suitably “indeterminate” version (such as a quan-
tum raffle) and that the resulting statement is clearly just as vacuous. But
(ignoring for the moment the subjective ABL counterfactual claim of
Mohrhoff which shows (i) to be unnecessary anyway), even if (i) should
prove difficult to fulfill, anyone with a universally antirealist ontology can
do this for ordinary classical processes merely by asserting esse est percipi.
Then (A�) involves indeterminate properties just as much as (1�) does. But
I doubt that even Bishop Berkeley would regard Statement (A�) as non-
vacuous. The fact that, no matter what one does with one’s ontological
assumptions, (A�) remain just as trivial, should be taken as a good indi-
cation that varying one’s ontological assumptions are not sufficient to
rescue (1�) (which has the same form as (A�)) from vacuity.

What about a possible objection that the thing that saves (1�) from
vacuity is precisely the ABL rule (as opposed to some other kind of rule,
like that of the raffle)? That would mean that counterfactual statements
with a compound antecedent, such as (A�), are indeed trivial unless the
underlying rule is the ABL rule. But against this, it is clearly the form of
the statement, not the content, which makes it vacuous. To put it differ-
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ently, the computational rule is not what is at issue; rather it is the con-
tingent, empirical numbers (arising from assumed background conditions)
input in the rule that are at issue. Therefore the precise nature of the
specific computational rule has no bearing on whether the statement is
vacuous.

Thus, denying all properties, time, and causality between measurements
does nothing to emeliorate the vacuity of (1�), because its vacuity stems
only from the necessity to add an extra condition, and not from any as-
sumed macroscopic, classical, determinate attributes. The extra condition
is required simply because there are facts that require “fixing” for the
consequent to follow, but which are physically not fixed (the latter fact
being acknowledged by proponents of TSQCs). This has nothing to do
with whether or not one subscribes to the beliefs (a) through (e); it is simply
the violation of cotenability between those facts and the antecedent (Mohr-
hoff, in 2001, has denied a cotenability problem for TSQCs, but his ar-
gument is flawed; a detailed refutation is presented below in Section 5).

It should be noted that Mohrhoff ’s tenseless view of facts—i.e., that a
statement such as “X is true at time tb” should be seen as holding at all
other times—fails to accomplish the kind of counterfactual fixing he seeks.
This is because, if we are going to consider a counterfactual event at t—
an event that might have occurred but didn’t—then, to be consistent with
physical law, we also have to consider possible outcomes at either ta or tb

other than the actual ones, that might have occurred but didn’t. Mohrhoff
acknowledges these other possible outcomes but calls them “irrelevant,”
which can only be justified if his TSQC contains the second antecedent
appearing in (1�), which explicitly instructs us to disregard them. But the
second antecedent removes the need for any arguments that facts are un-
tensed and therefore fixed, since said facts—whether tensed or untensed—
are being “fixed” by the additional antecedent, which throws out the un-
wanted possible outcomes, in either case.

The present author is currently agnostic regarding tensed vs. untensed
views of facts, and wishes merely to point out that the untensed view does
nothing to accomplish the goal of obtaining counterfactually fixed events
at times ta and tb in the absence of the second antecedent (without violating
quantum theory—in which case the ABL rule would not hold anyway,
since it is nothing more than a deductive consequence of quantum theory).

We turn briefly now to Vaidman’s ontology, which differs from Mohr-
hoff ’s in that it assumes a bi-directional causal flow: one in the reversed
time direction originating from the measurement at tb, along with the usual
“retarded” causal flow originating at ta. But such metaphysical precepts
concern what happens “behind the scenes,” and I have already argued
that whatever goes on behind the scenes has no bearing on the vacuity of
the counterfactual claim. Whether or not there is reversed causal flow from
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tb, the fact remains that the post-selection result at tb is not actually phys-
ically fixed (as Vaidman readily admits; see footnote 4), and this makes
Vaidman’s TSQC also isomorphic to statements (1�) and (A�).

Thus, if TSQCs are properly understood as Statement (1�)—and I think
they clearly are, as argued above—then they are completely vacuous. All
they do is to restate the ABL rule, providing no contingent information
about the specific systems under study. In the same way, statement (A�)
tells us nothing substantive about the nature of the specific people, devices,
or raffle-holding entity, in place during the time interval in question [ta, tb]
(Monday through Friday), but merely restates the raffle rules.

4. Are Statements (1) and (1�) Different? Recall that (1) has two variants:
Mohrhoff ’s version, which I am calling (1M), and Vaidman’s version,
which I am calling (1V) (although Vaidman’s TSQC is really closer in
wording to (1�)). Let us first consider (1M). Statement (1M) fails to cor-
rectly convey the meaning of the TSQC—if the intended TSQC is truly
(1�)—because it contains only a single antecedent, and lacks any statement
of the necessary additional condition (the auxiliary antecedent) required
for the validity of the claim. It merely restates (i) that the measurement at
t is not performed in the actual world (redundant since we already know
that the statement is counterfactual) and (ii) the pre- and post-selection
results occurring in the actual world, which we also already know. Thus
(1M) is completely equivalent to the single-antecedent counterfactual:

(3) If I had measured Q at t, then the probability of outcome qk would
be as given by the ABL rule.

(3) is a stronger claim than (1�), in the way that (A) is a stronger claim
than (A�). That is, (3) and (A) are highly nontrivial (but generally false)
counterfactual claims. Both of these omit the auxiliary antecedent condi-
tion required for the truth of the claim (but which also makes the claim
trivial).

(A) is obviously false; (3) is false as shown by the S&S proof. That is,
in failing to explicitly “fix” the required outcome at tb, (3) permits the
application of the Sharp and Shanks inconsistency proof which demon-
strates that such claims (in general) contradict quantum mechanics. There-
fore (3), which would unambiguously do the work desired by Vaidman
and Mohrhoff (in giving us “surprising” probabilities and/or specific con-
tingent objective probabilities) is (generally) false.

As for (1V), as noted above, if we understand the “fixing” requirement
as equivalent to the additional condition referred to in the auxiliary coun-
terfactual antecedent, then (1V) is simply equivalent to (1�). It is therefore
vacuous, meaning that quantities derived from it do not really apply to
specific systems in the way in which it has been claimed. Criticisms of (1V)
can be seen as directed to claims based on (1V), rather than to the vacu-
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ously true nature of (1V) itself. That is, either (i) TSQC proponents have
essentially been proposing (3), which is false and therefore not applicable
to quantum systems; or they have been proposing (1�), which is vacuous
and therefore also yields no valid information about specific quantum
systems. In either case, what continues to be invalid is the use to which
(1V) has been put in supporting claims such as that one can “Ascertain
the Values of rx, ry, and rz of a Spin-1⁄2 Particle,” (Vaidman, Aharonov,
and Albert 1987) and other “surprising” effects (cf. Vaidman (1996b, 900–
901). The 1987 title itself explicitly attributes values obtained from coun-
terfactual usages of the ABL rule (i.e., values corresponding to observables
that were not measured) to a single system.

In another example, according to Vaidman and Mohrhoff, the ABL
rule can be applied both conventionally and counterfactually to a partic-
ular individual particle in the “Three-Box” experiment, yielding the “sur-
prising” (Vaidman) or “objective” (Mohrhoff) result that the particular
particle’s probability of being located in box A is unity and its probability
of being located in box B is unity, when only one or the other measurement
(opening either box A or box B) is actually performed. Clearly that would
be surprising and substantive information, but the ABL probability of
unity corresponding to the measurement that was not performed—the
counterfactual one—depends crucially on an auxiliary “if” clause fixing
non-cotenable selection results, just as the surprising result of statement
(A)—that no one would win a counterfactual raffle—depends crucially on
fixing the non-cotenable background condition that nobody enters a raffle.
In both cases, the “surprising” result ceases to be surprising or objectively
applicable to the specific particle (raffle) once the background conditions
are fixed “by hand” in this way. The above kinds of specific claims which
depend upon TSQCs are thus seen to be invalid, even if the TSQC can
escape the Sharp & Shanks proof in the formulation (1�).

5. Cotenability Violation Not Addressed by Mohrhoff Argument. In Section
2, I described how TSQCs are made trivial because they invoke an aux-
iliary antecedent to circumvent the fact that the necessary background
conditions (both the pre- and post-selection outcomes) are not cotenable
with the antecedent (a counterfactual measurement at t). Mohrhoff denies
a problem with cotenability, and in his (2001) uses the impossibility of
superluminal signaling in an EPR (Einstein-Podolsky-Rosen) experiment
as an analogy.

Before turning to that analogy, it should be noted that Mohrhoff ’s
discussion misconstrues the meaning of cotenability as something much
weaker than it is. He assumes that background conditions need only be
consistent with a counterfactual event to satisfy cotenability, but this is
not what cotenability means. To use the raffle as an example, the back-
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ground condition of there being no raffle entrants (M � 0) is physically
consistent with a counterfactual raffle, but not cotenable with it. It is con-
sistent because it is possible (though highly unlikely) that no one would
enter a raffle held on Wednesday. (I.e., as noted in Section 2, one can
truthfully say “If a raffle were held, there might not be any entrants.”)
However, it is not cotenable because its (counterfactual, not actual) truth
depends on whether or not a raffle is held; because when there are raffles,
people enter them (or quantum devices flip coins). Cotenability is a much
stronger requirement than mere consistency between background condi-
tions and counterfactual events. As discussed above (refer to expression
(5)), it requires that there be no counterfactual dependence of those back-
ground conditions on the truth of the antecedent.

To return to Mohrhoff ’s analogy: in the famous example of a perfectly
anticorrelated pair of spin 1/2 particles separated by a spacelike distance
and measured by Alice and Bob, superluminal signaling is impossible be-
cause, as Mohrhoff says, “it is impossible for Bob not only to determine
the spin component measured by Alice but also to find out whether or not
any spin component is measured by Alice” (Mohrhoff 2001, note 21). This,
of course, is because no initial information concerning spin orientation is
available from the density matrix of each of the particles, which is just
proportional to the identity.

Mohrhoff claims that an exactly analogous situation holds in a timelike
sense as applied to a counterfactual measurement at time t, and that there-
fore there is no violation of cotenability between the background condi-
tions holding at ta and tb and a counterfactual measurement at time t
(loosely speaking, that those background conditions are unaffected by
such a measurement). However, this analogy is flawed.

The precise analogy drawn by Mohrhoff is the following: instead of
two anticorrelated particles separated by a spacelike distance, we have a
single particle perfectly correlated with itself (in terms of spin direction)
at two different times. Mohrhoff assumes that Alice might make a mea-
surement at t and Bob makes the post-selection measurement at tb, and
notes that it is impossible for him to tell, based on his measurement,
whether Alice made a measurement at t. But this analogy is false, because
it neglects the known pre-selection at time ta—which, unlike the uninfor-
mative initial state of the anticorrelated particles of the EPR case, contains
very specific information about spin orientation. Given a known preselec-
tion, say |a�, if Bob measures the observable A at time tb and obtains a
result other than a, then he knows with certainty that Alice made a mea-
surement of a noncommuting observable at time t. Therefore Alice’s mea-
surement certainly “disturbs” the particle in the way that Mohrhoff denies
throughout his (2001). Ironically, Mohrhoff makes exactly this point (in
slightly different terms) in the previous note (Mohrhoff 2001, note 20).
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The phenomenon that I discuss above and that Mohrhoff discusses in
his note 20 is most dramatically observed in the case of photons encoun-
tering crossed polarizers. If one places a polarizer oriented along, say,
direction x at point a and another oriented exactly opposite to it at point
b, then no photons will pass the second polarizer. (Think of this as the
actual experiment, with no measurement at t.) But if one were to place a
polarizer in between the first two, at an oblique angle to both (a counter-
factual measurement at t), photons would be able to pass the second po-
larizer. Thus anyone post-selecting photons through a measurement at
point b can determine whether someone has inserted a third polarizer in
between a and b. This is exactly a violation of cotenability: an intervening
event renders previous background conditions uncertain.

6. Conclusion: TSQCs Are either False or Vacuous. If one takes the TSQC
as (1M), it is false because it fails to state the extra condition (auxiliary
antecedent) needed for the consequent to follow nomologically (as stated,
the consequent does not follow). The Sharp and Shanks proof (1993),
which assumes no auxiliary antecedent, can be understood as a proof of
the falsity of (1M). Objections by both Mohrhoff and Vaidman to the
S&S proof seem to turn on the issue of whether or not the proof has taken
into account the “fixity” of pre- and post-selection results, so those objec-
tions can be seen as supporting (1�) as an accurate statement of their
TSQC. If one takes the TSQC as (1�), the Sharp and Shanks proof does
not apply; the TSQC is then true, but only trivially so. It does nothing but
restate the ABL rule, and cannot be considered as providing information
about specific systems as claimed. Metaphysical precepts concerning the
reality (or lack thereof) of quantum systems, time, or properties between
measurements have no bearing whatsoever on these conclusions, which
are based solely on the empirically observable conditions necessary for the
consequent to follow from the stated antecedent(s).
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