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Self-propulsive performances of the flexible plates undergoing pitching and heaving
motions are investigated numerically. The effects of multiple key dimensionless
parameters are considered, such as bending stiffness, heaving amplitude, pitching
amplitude and flapping frequency. Despite so many influence factors, results indicate that
the cruising speed U (or the cruising Reynolds number Re.), the thrust 7 and the input
power P can be summarized as some simple scaling laws vs the flapping Reynolds number
Rey. In the heaving motion, the scaling laws may be not fully independent of bending
stiffness because in the motion the role of bending stiffness is more complicated for the
thrust generation. Our scaling laws are well supported by biological data on swimming
aquatic animals.
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1. Introduction

In nature, birds, insects and fish utilize flapping wings or fins to generate thrust for
locomotion. Related issues intrigue lots of researchers and considerable breakthroughs
and advances have been achieved over the past few decades through experimental
measurements, theoretical analysis and numerical modelling (Triantafyllou, Triantafyllou
& Yue 2000; Lauder 2015; Smits 2019). These advances are useful not only to biologists
for better understanding of the underlying biology of fish and aquatic mammals, but also
to engineers for the design of efficient biomimetic underwater vehicles (Dai et al. 2018;
Smits 2019; Lin, Wu & Zhang 2021).

Previous studies have focused on the scaling laws of swimming performances (e.g. thrust
and power expenditure). Quinn et al. (2014) investigated a rigid tethered pitching foil
near a solid boundary through experiments and numerical simulations at a chord-based
Reynolds number (Re) of approximately 4700. They have shown that the thrust 7 can be
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scaled as ( fAt)2 and the power input P can be scaled as ( fAt)2'7 if the foil is far from

the ground, where f and A; are the flapping frequency and the amplitude of the trailing
edge, respectively. Floryan et al. (2017) studied rigid tethered pitching and heaving foils
by experiments on a nominally two-dimensional flow with Re = 4780. They found that the
foil performances depend on the Strouhal number and reduced frequency. Further, they
proposed that the thrust scaling is T ~ (fA;)? if the offset drag is negligible (Floryan, Van
Buren & Smits 2018), which is consistent with Quinn er al. (2014). They also suggested
that the power scaling is P ~ fL(V? — V},Vy) (Floryan et al. 2018), where L is the length of
the propulsor, V = fA, is the characteristic speed of the transverse motion, and V), = fhg
and Vp = fLOy are the transverse velocity scales characteristic of the heaving and pitching
motions, respectively. The thrust scaling T ~ (fA,)? is also derived by Gazzola, Argentina
& Mahadevan (2014) through theoretical analysis and they also found that the cruising

Reynolds number Re. can be scaled as Re}v 3, where Re. = UL/v based on the cruising

speed U, and Rey = 27mfA,L/v is the flapping Reynolds number (also termed as the
swimming number) (Vandenberghe, Zhang & Childress 2004; Gazzola et al. 2014). Here
v is the kinematic viscosity of the fluid. By numerical simulations of rigid unconstrained

pitching foils, Lin ef al. (2021) indicated that Re, ~ Re}’* based on a new thrust scaling

T~ ( fA,)5/ 2. Nevertheless, this new thrust scaling has never been confirmed or validated
yet.

However, the rigid foils are quite different from the real wings/fins of birds/fish. These
flapping wings/fins undergo large active or passive deformation in nature (Wootton 1992;
Lauder 2015). Evidence has shown that flexibility has significant effect on the performance
of the propeller (Thiria & Godoy-Diana 2010; Kang et al. 2011; Marais et al. 2012; Shoele
& Zhu 2012; Zhu, He & Zhang 2014b; Floryan & Rowley 2018; Peng, Huang & Lu 2018a).
For instance, the thrust for the tethered pitching flexible foil is found to be up to three times
larger than that of the rigid foil (Marais et al. 2012) and for the self-propulsive heaving
flexible plate, the propulsive efficiency is much higher under certain conditions compared
with the rigid plate (Zhu et al. 2014b). In addition, the self-propelled flexible flapping
wing may take on a more aerodynamic shape to achieve high efficiency (Ramananarivo,
Godoy-Diana & Thiria 2011). Dewey et al. (2013) experimentally studied the performances
of pitching flexible panels at Re ~ 7200 and found that the global maximum efficiency for
the flexible panels is twice as much as that of the rigid panels.

Besides, the drag experienced by a flexible body is quite different from that of a rigid
body. Alben, Shelley & Zhang (2002, 2004) showed that a flexible body experiences a
drag proportional to U*3 by experiments and theoretical analysis with Re in the range
2000—40 000. Neither U3/ scaling of a flat plate aligned with the flow (Gazzola et al.

2014), nor classical U? drag scaling of rigid bodies (Batchelor 1967) is applicable to
the flexible body. This means that a flexible body can achieve drag reduction through
self-similar bending or shape deformations due to flexibility (Alben et al. 2002). Later,
Zhu (2008) numerically studied the same problem as Alben et al. (2002) and found that
the 4/3 power law of drag also occurs at lower Re (= 800). The U*/3 drag scaling of a
flexible body has also been confirmed by other studies further (Gosselin, de Langre &
Machado-Almeida 2010; Luhar & Nepf 2011).

It is noteworthy that, in the experimental studies mentioned above, the object is fixed in
an oncoming flow and cannot propel themselves freely. Although Van Buren et al. (2018)
suggested that tethered studies can be used to make robust conclusions about swimming
performance, the self-propelled study may be better since the dynamic response of the
swimmer to the surrounding flow is considered. In the present study, the performances
of self-propelled flexible plates are investigated numerically. The plate can move freely in
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(b)

Figure 1. Schematic diagram of the (@) pitching and (b) heaving flexible plates. The red curved lines represent
the flexible plates and the thick dashed lines represent the rigid plates. Here 6y and A are the active pitching
and heaving amplitudes, respectively, and 6, is the passive pitching angle associated with the deformation of
the flexible plate.

the propulsion direction. Two locomotion styles are considered, namely, the pitching and
heaving motions. Meanwhile, the bending stiffness, the flapping amplitude and frequency
are variable and their corresponding effects are investigated. We mainly focus on the
scaling laws for propulsive speed, thrust and input power of the plates.

The remainder of this paper is organized as follows. The physical problem and
mathematical formulation are presented in § 2. The numerical method and validation are
described in § 3. Detailed results are discussed in § 4 and concluding remarks are addressed
in§5.

2. Physical problem and mathematical formulation

The schematic diagram of pitching and heaving flexible plates that we considered are
shown in figure 1. The leading edge of the plate is forced to pitch (figure 1a) and heave
(figure 1)) in the lateral direction, respectively. The motions are described as

0(t) = Op sin(27ft), 2.1
h(t) = ho sin(27tft), (2.2)

where 0(¢) and h(¢) are the instantaneous pitching and heaving motions, respectively,
6o and hg are the pitching and heaving amplitudes, respectively, and f is the flapping
frequency.

Note that only the leading edge of the plate is restricted with the prescribed lateral
motion while other parts of the plate can move freely due to fluid—structure interaction. It
is noticed that for the heaving motion, there is no active pitching but the plate may pitch

passively.
The incompressible Navier—Stokes equations are adopted to solve the fluid flow:
v 1 I
—+v-Vo=—=Vp+ —Vv+f,, (2.3)
ot P P

V.v=0, 2.4)

where v is the velocity, p is the pressure, p is the density of the fluid, u is the dynamic
viscosity and f7, is the Eulerian momentum force acting on the surrounding fluid due to the
immersed boundary. To enforce the no-slip boundary condition, a virtual force is applied
to each Lagrange point of the immersed boundary (Peskin 2002; Mittal & Iaccarino 2005).
The virtual force is distributed to the surrounding neighbouring fluid nodes through a delta
function, i.e. at a relevant fluid node, there is a non-zero f7,. It is noticed that at most fluid
nodes far away from the Lagrange points, f;, = 0.
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The structural equation is employed to describe the deformation and motion of the plate
(Zhu & Peskin 2002; Connell & Yue 2007; Hua, Zhu & Lu 2013):

32X 9 ax |71\ ax 94X
o — — |:Eh (1 — ’— ) —] +EI—= = F,, 2.5)

arr  ds s s d%s

where s is the Lagrangian coordinate along the plate, p; is the structural linear mass
density, X (s, 1) = (X(s, 1), Y (s, 1)) is the position vector of the plate, Fy is the Lagrangian
force exerted on the plate by the surrounding fluid. Here Eh and EI denote the structural
stretching rigidity and bending rigidity, respectively. At the leading edge of the plate, for
the heaving motion, the clamped boundary condition is adopted, i.e.

ax | '\ ax _ #’x 0X
—Eh|1l—|— —+El—— =0, Y@ =ht), —=(1,0, (2.6a-—c)
s s 93s s
while for the pitching motion, the boundary condition is expressed as
ax |71\ ax 93X 0X ,
—FEh|l—|— — 4+ El—— =0, Y® =0, — =(cosh,sinh). (2.7a—c)
s s 33s s

Note that the first boundary condition in (2.6a—c) and (2.7a—c) represents the horizontally
unconstrained condition. At the free end, the boundary condition is expressed as

_Eh(l_)%

— +E[— =0, — =0. (2.8a,b)
as

s 335 as2

1) aX FED. ¢ 32X

In addition, X (s, 0) = (s, y(0)), 0X/0dt(s, 0) = (0, 0) are the initial conditions for the
plate.

In our study, the fluid density p, the dynamic viscosity w, the dimensional length of the
plate L and the Reynolds number (Re = 200) are fixed. To normalize the above equations,
the characteristic quantities p, L and U,,s are chosen where U,,r = uwRe/(pL). Therefore,
the characteristic time is Tyef = L/U,or. Based on dimensional analysis, the following
dimensionless governing parameters are introduced: the heaving amplitude 47, the pitching
amplitude 6, the flapping frequency f*, the Reynolds number Re = pU,erL/t, the mass

ratio of the plate to the fluid M* = p;/(pL), the stretching stiffness S* = Eh/(p UfefL) and
the bending stiffness K* = EI/(p Ufefm).

3. Numerical method and validation

The governing equations of the fluid—plate problem are solved numerically by an immersed
boundary-lattice Boltzmann method for the fluid flow and a finite element method for the
motion of the flexible plate. The body force term f, in (2.3) represents an interaction force
between the fluid and the immersed boundary to enforce the no-slip velocity boundary
condition. Equation (2.5) for the plate is discretized by a finite element method, and
deformations with a large displacement of the plate are handled by the corotational scheme
(Doyle 2001). More details on numerical methods can be found in our previous papers
(Hua et al. 2013; Huang, Wei & Lu 2018; Zhang, Huang & Lu 2020).

To validate the numerical method, a single plate in isolated swimming (Zhu et al. 2014a)
was simulated with Re =200, hj = 0.5, M* = 0.2, K* = 0.8 and §* = 1000. In the
simulations, the computational domain for fluid flow is chosen as [—15, 25] x [—15, 15]
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Figure 2. (a) Validation for the case of a self-propelled heaving plate with the non-dimensional governing
parameters: Re = 200, hj = 0.5, M* = 0.2, K* = 0.8 and $* = 1000 (Zhu, He & Zhang 2014a). (b) Grid
independence and time-step independence studies for a self-propelled pitching plate with K* = 1, f* = 1.0,
0o = 20° and Re. = 100. The streamwise velocity of the leading edge as a function of time is presented.

Case Mesh and time step U* p*

Re. =350 Axp = 0.01, A1p/Ty = 0.0001 1.75 1.32
Axy = 0.0075, Aty /Ty = 0.000075  1.77 1.33
Axy = 0.0066, Aty /Ty = 0.000066  1.78 1.33

Re. = 860 Axg = 0.01, Aty/Ty = 0.0001 435 1248
Ax; = 0.0075, At /Ty = 0.000075 445 12.53
Axz = 0.0066, A, /Ty = 0.000066 4.48  12.55

Table 1. Grid independence and time-step independence studies for two typical cases with larger Re.. Casel:
Re. =350 (K* =1,f* =1, hé = 0.5). Case2: Re, = 860 (K* =5, f* =2, hg = 0.5). The cruising speed U*
and input power P* are presented.

in the x and y directions, which is sufficiently large so that the blocking effects of the
boundaries are eliminated. A constant pressure with v = 0 is imposed at all boundaries
except for the outlet where dv/dx = 0 with constant pressure is imposed (Zou & He
1997). Initially, the fluid velocity field is zero in the entire computational domain. In the
x and y directions the mesh is uniform with spacing Ax = Ay = 0.01L, where L is the
dimensional length of the plate. The time step is Atz = T¢/10000 for the simulations of
fluid flow and plate deformation, where Ty = 1/f is the flapping period. Besides, a finite
moving computational domain (Hua et al. 2013) is used in the x-direction to allow the
plate to move for a sufficiently long time. As the plate travels one lattice in the x-direction,
the computational domain is shifted, i.e. one layer is added at the inlet and another layer is
removed at the outlet (Hua et al. 2013).

Figure 2(a) shows the streamwise velocity of the leading edge as a function of time.
It is seen that the present result is consistent with that of Zhu et al. (2014a). The results
of grid independence and time-step independence for the case of Re. = 100 are shown
in figure 2(b). It is seen that Ax/L = 0.01 and At/Ty = 0.0001 are sufficient to achieve
accurate results. The results of grid and time-step independence studies for higher Re,
are presented in table 1. It is seen that Ax/L = 0.01 and Az/Ty = 0.0001 are accurate
enough for Re. = 350, while Ax = 0.0075 and Az/Ty = 0.000075 are better for Re, =
860. Hence, in most of the present simulations (i.e. cases with Re. < 400), Ax/L = 0.01
and At/Ty = 0.0001 were adopted. For the cases with larger Re. (> 400), a finer mesh
Ax/L = 0.0075 and a smaller time step At/Ty = 0.000075 were adopted.
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Besides, our numerical strategy used in this study has been validated and successfully
applied to investigate many flow problems, such as the coupling performance of tandem
flexible inverted flags in a uniform flow (Huang et al. 2018), the effect of the trailing-edge
shape on the self-propulsive performance of heaving flexible plates (Zhang et al. 2020) and
the intermittent locomotion performance of a self-propelled flapping plate (Liu, Huang &
Lu 2020).

4. Results and discussion

In present simulations, three main parameters are fixed, namely, the Reynolds number
Re = 200, mass ratio M* = 0.2 and stretching stiffness S* = 1000, which are identical to
those in the previous studies (Zhu et al. 2014a; Peng et al. 2018a; Liu et al. 2020). Note that
S* is large enough so that the plate is almost inextensible. While other key parameters are
variable, i.e. the bending stiffness K* € [0.5, 10], the heaving amplitude hé € [0.1,0.5],
the pitching amplitude 6y € [5, 30] (deg.) and the flapping frequency f* € [0.5, 2]. It is
noted that for real fish, K* ~ O(1), e.g. K* of the tail fin of a goldfish (Carassius auratus)
is within the range of 2.5-23 (Hua et al. 2013; Peng, Huang & Lu 2018b). Hence, K* €
[0.5, 10] is adopted here. In the following discussion, variables with a superscript ‘x’ are
dimensionless variables. The symbol ‘~’ means that the two variables on the left and
right-hand sides are proportional, and their dimensions are not necessarily consistent.

4.1. Propulsive performances and scaling laws

The mean propulsive speed U, thrust 7 and input power P are paid special attention.
Specifically, U is calculated by the time-averaged speed of the leading edge (s = 0) within
one cycle at the equilibrium state (Zhu et al. 2014a; Peng et al. 2018a), i.e.

1 ! +Ty 1 ' +Ty ox
U= —/ u(t)dr = ——/ (— >dt, 4.1)
Ty Jr Ty Jr A [5=o

Here u(t) is the instantaneous horizontal speed of the leading edge of the platea and P is
defined as (Zhu et al. 2014a)

1 [+ 1! X (s, 1)
P=— / P(dr = — / / F,(s, 1) - ds | dt, (4.2)
Tf ¢ Tf 1% 0 ot

where F, represents the force on the surrounding fluid by the plate.

The thrust and drag are defined based on force decomposition. The Lagrangian force Fj,
exerted on the plate by the surrounding fluid, can be decomposed into two parts: one is the
normal force F", in which the pressure component dominates; the other is the tangential
force F*, which mainly comes from the viscous effects. These forces at the ith Lagrangian
node are defined as follows (Peng et al. 2018a; Liu et al. 2020):

Fyi=[-pl+Tl-n=F+F, 4.3)
Fl = (Fyi-n)n=(FL FlL). (4.4)
Fi = (Foi-1)t = (FL FL). 4.5)

where I is the unit tensor, 7 is the viscous stress tensor, T is the unit tangential
vector toward the trailing edge, n is the unit normal vector and [-] denotes the jump in
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Figure 3. (a) Schematic diagram for force decomposition. Black curved line represents the plate. Red dot
represents the ith Lagrangian node. Here T and n denote the local tangential and normal vectors, respectively,
and 6 is the angle between T and the positive direction of the x-axis. () The total dimensionless x-component of
F" and F* (i.e. F* =), F™ and FI* = ), F'*) for the pitching (K* = 1, 6y = 20°, f* = 1.0) and heaving

" xi " xi

(K* =1, h =0.5,f* = 1.0) plates as functions of time within one flapping period. Solid and dashed lines
represent F'* and F7*, respectively. The forces are normalized by F s = %prEfL.

a quantity across the immersed boundary. Figure 3(a) shows the schematic diagram for
force decomposition. The total x-component of F" and F* are F{ = ), F}; and Fy{ =
> F;l respectively. Figure 3(b) presents the dimensionless forces F}* and F[* as
functions of time within one cycle. It is seen that, for the heaving plate, F! contributes
much to a thrust since F} < 0, while F} contributes to a drag for F{ > 0. However, for
the pitching plates, F} may contribute to a drag and F{ may contribute to a thrust at some
time. Hence, the thrust 7" and drag D can be defined as (Bottom et al. 2016)

=T =5 (F = |F3]) + 3 (F = |FE]).

] ] (4.6)
D) = 5 (Fy + |Fi]) + 3 (Fy + |Fx]) -

The time-averaged thrust and drag are defined as T = (1/Ty) ftf 1 T(t)dt and D =
(1/Ty) ftf I D(?) dt, respectively.

The propulsive performances of the plates with the bending stiffness K* =1 are
investigated first, as shown in figure 4. It is seen that U, T and P all increase with the
increase of the flapping amplitude and frequency for both pitching and heaving plates.
This is because that, generally, larger flapping amplitude and frequency mean that the
plate may consume more energy, achieve larger thrust and be propelled faster. Besides,
we have checked parameters of all cases in the present study and found that, for most of
the cases, the flapping frequency f is significantly below the first natural frequency f; of
the system. For the other few cases, even when the frequency ratio f. = f/fi is larger than
unity, it is close to unity. Hence, our result shows that when f < f, the speed, thrust and
power increase monotonically with frequency. That is consistent with the results in the
literature (Ramananarivo et al. 2011).

Actually, besides the effects of 6y (i) and f*, the bending stiffness K* may also have a
significant effect on the performances of the plate (Peng et al. 2018a; Liu et al. 2020).
Hence, it is necessary to adopt new parameters to concisely describe the results with
different K*, hj or 6y and f*. Inspired by previous works (Vandenberghe et al. 2004;
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Figure 4. (a) Dimensionless propulsive speed U*, (b) dimensionless thrust 7% and (c¢) dimensionless input
power P* as functions of flapping amplitude for pitching plates with different flapping frequency. Panels (d—f)
are the corresponding results for heaving plates. In all these cases, K* = 1. The velocity, force and power are

normalized by Uyer = uRe/(pL), Frer = (1/2)p UfefL and Py = ,onefL, respectively.

Gazzola et al. 2014; Lin et al. 2021), the flapping Reynolds number Rey = 2mfA;L/v is
introduced (i.e. the swimming number Sw in the study of Gazzola et al. 2014). Besides,
the cruising Reynolds number Re. = UL/v, based on the cruising speed U, can be defined.

The cruising Reynolds number Re. as a function of Rey is presented in figure 5. It is
astonishing to see that, for both pitching and heaving plates, Re. values of all cases follow

the same scaling law approximately, i.e. Re, ~ Re;/ 2. This can be interpreted as follows.
By a simple dimensional analysis reasoning (see Appendix A.l) and the elongated-body
theory (EBT) (Lighthill 1960, 1971) (see Appendix A.2), we get that the thrust scaling
is T ~ (fA;)?. This scaling is also identical to that in previous studies, e.g. Gazzola
et al. (2014) and Quinn et al. (2014). As for the drag scaling, ample evidence (including
theoretical analysis, experiments and simulations) indicates that, for a flexible body in an
oncoming flow, D is proportional to U*3 (Alben et al. 2002; Zhu 2008; Luhar & Nepf
2011). In Appendix B, we further show that this drag scaling is still valid for the inclined
plates, which are more like our flexible plates. More detailed discussions about the thrust
and drag scaling are presented in § 4.2. Balancing the thrust and drag, one can get that
U3 ~ (fA,)Z, ire. U~ (fA,)3/2. From the definitions of Re. and Rey, the formula can be

further written as Re, ~ Re;/ 2. The result is highly consistent with our observation from
figure 5.

We would like to check whether the present scaling law is supported by the biological
observations. Figure 6 shows that our scaling law is consistent with the biological data
from the supplementary information of Gazzola et al. (2014). Meanwhile, the present
scaling law seems to be applicable to a wider range of Rey (up to ~2.5 x 10%).

Next, our scaling laws for the thrust 7" and the drag D are discussed. Figure 7 plots
the dimensionless thrust 7* vs Rey and the dimensionless drag D* vs U*. It is seen that
there also exist some scaling laws. For the pitching plates, T* (figure 7a) is proportional

to Re}'8 and D* (figure 7c) is proportional to U*!2. While for heaving plates, 7* and D*
(see figure 7b,d) show approximately Re?'! and U*!# growth, respectively. It is surprising

to find that the thrust and drag scaling are very close to 7™ ~ Re}% and D* ~ U*/3,
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Figure 5. The cruising Reynolds number Re. as a function of the flapping Reynolds number Res for (a)
pitching and () heaving plates. Each symbol denotes a case that we simulated. Each kind of symbol represents
the cases with a specific K. The green, red, blue and black symbols represent the cases with f = 0.5, 1.0, 1.5
and 2.0, respectively.
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Figure 6. Biological data and the scaling Re, ~ Re;/ 2. The data sets are obtained from figures S4(d), S5(d),
S8(c) and S10(a,b) in the supplementary information of Gazzola et al. (2014).

respectively, which we adopted above. Besides, due to 7 = D at equilibrium state, one
can get that Re}'8 ~ U*!2 for the pitching plates and Re]%'1 ~ U*1* for the heaving plates,

which can both be further transformed to Re, ~ Re]%/ 2. This confirms the scaling law in
figure 5 from another view. It is also noticed that there is a small discrepancy between
the numerical and theoretical scalings. This may be due to the nonlinearity of the system
and the complex fluid—structure interaction, which are greatly simplified in the theoretical
analyses. For example, in the theoretical analysis (see Appendix A), we assumed that the
effect of stiffness K* is fully included in A,.

It is seen that the data sets of T and D for the pitching plates overlap very well
(figure 7a,c). Note that due to the flexibility of the plate, the direct result is the emergence
of the passive pitching angle 6, (see figure 1). Nevertheless, the locomotion style has not
changed for the pitching plates (compared with the heaving plates, see below). Under the
same locomotion style, the growing forms of 7" and D should be identical. Therefore, all
pitching data sets collapse into a single curve.

On the other hand, for the flexible heaving plates, there are both heaving (active,
amplitude /o) and pitching (passive, amplitude 6,) motions. When the plate is almost
rigid, the heaving motion is prominent. When the plate becomes more flexible, the passive
pitching motion becomes more prominent, i.e. there may be a large ,. Actually, here
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Figure 7. (a) The dimensionless thrust T* as a function of Rey and (c) the dimensionless drag D* as a function
of U* for pitching plates. Panels (b,d) are the corresponding results of the heaving plates. Symbols are identical

to those in figure 5. The velocity and force are normalized by U,;s = uRe/pL and Frr = (1/2)p UfefL,
respectively.

K* plays an important role in the thrust generation. For the rigid plate, the thrust is
mainly generated by the leading-edge vortex (Vandenberghe er al. 2004), while for the
flexible plate, the normal force contributes much to the thrust (Peng et al. 2018a; Liu et al.
2020). Due to the different flow mechanism, the flexibility influences the thrust scaling
considerably (and drag scaling, since T = D). Therefore, the data sets do not overlap very
well. It is also noticed that 7' at smaller K* (i.e. K* = 0.5 and 1, the square and circle
symbols in figure 7b) is higher than that at larger K* (i.e. K* = 5 and 10). This is because
the thrust can be significantly enhanced by appropriately increasing the flexibility (Marais
et al. 2012).

Finally, the power expended is considered, as presented in figure 8. Results show that
the dimensionless input power P* can be scaled as P* ~ Re}'7 for both pitching and
heaving plates, which is consistent with the results of Quinn er al. (2014). Besides, as
described in the introduction, Floryan ef al. (2018) showed that the power scaling is
P ~jL(V2 — Vi,Vp). Note that V;,Vy = 0 in the present study, hence P ~fLV2 ~fL(fA,)2.
If the flapping amplitude is large, i.e. A; ~ L, the formula becomes P ~ (fA;)>. The
same power scaling can also be obtained by dimensional analysis (see Appendix A.l).
In the derivation, if A; is large, the effect of lateral velocity fA; is more significant and
therefore more suitable to be chosen as the characteristic velocity. The derivation from
the EBT of Lighthill (1971) also confirms our power scaling (see Appendix A.2). On
the other hand, for small amplitude, i.e. A;/L < 1, the model of Theodorsen (1935)
indicates P ~ ( fAt)z. It is noticed that in our study, A;/L € [0.09, 0.55]. Therefore, the
amplitude in our study is moderate, which is between the conditions A;/L << 1 and A; ~ L.
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Therefore, approximately the exponent should between two and three. In the experimental
study of rigid tethered pitching foils by Quinn et al. (2014), their flapping amplitude
range is A;/L € [0.095, 0.16] and they have P ~ (fAt)2'7. In general, our A; range is a
little bit larger than that of Quinn et al. (2014). The exponent should be closer to three.
However, compared with the rigid foils, our flexible plates should be favourable for energy
consumption (Zhu et al. 2014b). Hence, the power scaling of a flexible foil with larger A,
may be close to that of the rigid foil with smaller A;. In other words, our power scaling
(fA)?7 is reasonable.

4.2. Comparison with results in the literature

In the above, we proposed a new scaling law, i.e. Re, ~ Re;/ 2 Tt is also noted that other

two scaling laws, namely, Re, ~ Re?/ 3 and Re, ~ Re;/ 3, are given by Gazzola et al. (2014)

and Lin et al. (2021), respectively. In the following, we would like to make a thorough
comparison between these scaling laws.

Indeed, the three scaling laws may look close in the qualitative analysis of a log—log plot.
However, a quantitative analysis of our data fittings indicates that the optimal Re,-scaling
is Re, ~ Re;/ % with R? = 0.99 for the pitching cases (figure 5a) and R?> = 0.97 for the
heaving cases (figure 5b).

Besides, note that all three scaling laws can be derived from the balance of thrust and
drag. Hence, a more essential analysis should start from thrust and drag scaling. Gazzola
et al. (2014) have derived a scaling law of thrust 7, i.e. T ~ ( fA,)z. The thrust scaling has
been found and confirmed further in other studies (Quinn et al. 2014; Floryan et al. 2018;
Gibouin et al. 2018; Van Buren et al. 2018) and our physical reasoning (see Appendix A).
In addition, the quantitative results of T in figures 7(a) and 7(b) are also consistent well
with this thrust scaling.

Under the circumstances of 7 ~ (fA,)?, the swimming speed scale is sensitive to the
assumed drag law. For the drag scaling, Gazzola et al. (2014) suggested that D ~ U3/?,
which is estimated from the viscous drag on a flat and rigid plate aligned with the flow.
However, for a real fish, due to its flexibility, when it flaps, its body continuously deforms.
The curved boundary layer and the corresponding drag should be quite different from
those of the rigid flat plate. Therefore, the drag scaling of Gazzola et al. (2014) may
be not universally applicable. The flexible curved boundary-layer effect has been fully
considered in previous studies and found that a stationary curved flexible fibre or plate in
an oncoming flow experiences a drag proportional to U*/3 (Alben et al. 2002; Zhu 2008;
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Gosselin et al. 2010; Luhar & Nepf 2011). Generally speaking, U*? scaling denotes a
drag reduction for flexible curved plates (Alben et al. 2002). Besides, as we have shown

in Appendix B, the U*/3 scaling is still valid for inclined plates, whose shapes are also
curved and streamlined due to deformation. Therefore, in the present study, the drag of the
deformed curved flapping plates should be close to that of plates in Alben ef al. (2002),
rather than that of flat plates. Moreover, it can be observed directly from figures 7(c) and
7(d) that the U*/3 scaling of drag can fit our data well. Hence, it is adopted to perform the
analysis.

In summary, there are strong grounds to support our scalings T ~ (fA,;)> and D ~ U*/3,

and further support the scaling Re, ~ Re;/ 2

In the study of Lin et al. (2021), the drag scaling of Gazzola et al. (2014),i.e. D ~ U3/2,
was adopted. They then derived a new thrust scaling, i.e. T ~ (fA;)>/2. However, the new
thrust scaling has never been confirmed or validated yet. One might conjecture that the
thrust scaling is only applicable to their rigid self-propulsive flapping model.

It should be pointed out that Re in the present study is close to that of larvae. Although
our Re is much lower than those of many adult swimming animals, our scaling may extend
to surprisingly higher Re (up to ~2.5 x 107, see figure 6). While Re in the study of Gazzola
et al. (2014) went up past 108, around 1000 higher than what is presented here. Indeed, Re
may impact the nature of drag. If Re is high enough, biological data may switch to a
different scaling.

5. Conclusions

The propulsive performances of self-propelled flapping flexible plates are investigated
numerically. Both pitching and heaving motions are considered. Results indicate that the
propulsive speed U, thrust 7 and input power P increase with the flapping amplitude
and frequency in both locomotion styles. Further, some simple scaling laws are found.
Specifically, for both pitching and heaving plates, the cruising Reynolds number Re, can be

2

scaled as Re, ~ Re;’» , and the dimensionless input power P* can be scaled as P* ~ Re%'7.

The scaling laws of 7" and P are also derived using dimensional analysis reasoning and
the EBT (Lighthill 1971). The derived laws are consistent with or close to our findings.
For the thrust and drag calculated in our simulations, the scaling laws are very close
to (fA;)? and U*/3, respectively. They are consistent with those in the literature. The
U*3 drag law is found to be still applicable for inclined plates. Besides, the flexibility
influences the thrust scaling considerably for the heaving plates, while it does not for the
pitching plates. The Re. scaling can be simply derived by balancing the thrust and drag.
Our present scaling law is also well supported by biological data. This study may deepen
our understanding of the locomotion of aquatic animals and may be helpful for bionic
design.
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Appendix A. Physical reasoning for the scaling laws
A.l. Dimensional analysis reasoning for the thrust and power scalings

Dimensional analysis reasoning is a broadly applicable technique for developing scaling
laws. In isothermal fluid mechanics problems, there are only three basic dimensions, i.e.
mass M, length £ and time 7. Therefore, only three repeating parameters are required,
and the determinant of the dimensional matrix formed from these three parameters must
be non-zero (Kundu, Cohen & Dowling 2012). The common choices are characteristic
length, velocity and density. In the present flow system, the length of the plate L and the
fluid density p are naturally chosen as characteristic length and density, respectively. For
the characteristic velocity, there are two choices, i.e. the cruising speed U and fA; based
on the trailing-edge amplitude A;. However, U is determined by the characteristic lateral
velocity of the tail motion fA;, i.e. the most important velocity scale is fA; instead of U
(Van Buren et al. 2018; Smits 2019). Hence, the characteristic velocity fA; is adopted here.

It is noted that there are four variable dimensionless input parameters in our study, i.e.
the bending stiffness K*, the heaving amplitude A}, the pitching amplitude 6y and the
flapping frequency f* (see § 4). Actually, the effects of these four parameters are directly
or indirectly included in the characteristic velocity fA;. Specifically, the flapping frequency
f appears explicitly in fA;; the amplitude of the trailing edge A; is mainly affected by the
flapping amplitude (A or 6p) and modulated by the bending stiffness K*. From this point
of view, fA; is indeed a key characteristic quantity of the system.

Hence, we assume that the effects of the flapping amplitude (/g or 6p) and the rigidity
(K*) can be all quantified by A, as a whole. Through this assumption, we can get a
much simpler form of scalings using only three parameters (i.e. p, L and fA;). Besides,
we finally get the same thrust scaling as that of Gazzola et al. (2014). Also note that
in the experimental study about flexible flapping plates of Floryan, Van Buren & Smits
(2019), when f is small (i.e. the Strouhal number St = 2fA;/U, is small), the data of
thrust and power are well collapsed (see their figures 8(b), 9(b), 10(b) and 11(b)). In other
words, A; can capture the effects of flexibility and describe the results well when f is
small. Therefore, this assumption is reasonable to a certain extent. Indeed, A; cannot fully
represent the effect of K*. As we have mentioned in § 4.1, this simplified analysis may lead
to a small discrepancy between the numerical and theoretical scalings.

According to the [T theorem of Buckingham (1914), a dimensionless group of thrust is
expressed as

Iy = Tp“(fA)°LE. (A1)

Note that, for a two-dimensional problem, the dimensions of 7, p, fA; and L are [T] =
IN m~!], [p] = [kg m—3], [fA;] = [m s7!1 and [L] = [m], respectively. Since I is

dimensionless, one can easily obtain that the exponents a = —1, b = —2 and ¢ = —1.
Therefore,
7 4 (A2)
1= —F7 5
p(fA)2L

Holding IT; constant, one can get that T ~ (fA;)?, ie. T* ~Re% when written in

dimensionless form.
As for the input power P, the dimensionless group is

M = Pp®(fA;)PLC. (A3)
936 A9-13
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The dimension of P is [P] = [kg m s3] for a two-dimensional problem. Because I1 is
dimensionless, it is easy to find thata = —1, b = —3 and ¢ = —1. Hence,

P

=L

(A4)

Holding 1> constant, we have P ~ ( fAt)3, which can be written in non-dimensional form
as P* ~ Ref3.

A.2. Elongated-body theory for the scaling laws

Elongated-body theory has been widely adopted in previous studies about two- and
three-dimensional problems (Bottom et al. 2016; Floryan et al. 2018; Akbarzadeh &
Borazjani 2019). For an undulating plate, the lateral motion of the whole body is expressed
by the travelling-wave equation

Y(z,t) = A(z) sin2nft — 2mz/A), (A5)

where A(z) is the amplitude of the wave, z is the axial direction from the leading edge
(z = 0) to the trailing edge (z = L), f is the frequency and A is the wavelength. According
to the EBT (Lighthill 1960, 1971), the thrust of an undulating plate is expressed as

1 a [ Y
T=|mw|W-——-w - — mw— | dz, (A6)

where m is the virtual mass per unit length (Lighthill 1971; Akbarzadeh & Borazjani 2019).
Note that for a three-dimensional body, m = }Tnﬁpsz, where 8 & 1 is a non-dimensional
parameter, p is the fluid density and s is the span (Lighthill 1971). For two-dimensional
problems, although m may have a different expression, it is independent of kinematic
parameters (i.e. f and A;), i.e. we can take m as a constant. Hence, m does not affect
the scaling laws. Here W = Y /9t = 2nfA(z) cos(2mtft — 2mz/A) is the lateral velocity of
the plate, and w = DY /Dt = 0Y /ot + U(9Y/9z) is the lateral velocity of fluid adjacent to
the plate. Using (AS) and assuming the variation of A(z) along the axial direction is very

small (especially near the trailing edge (z = L)), i.e. A (z) =~ 0, we can get that

U U
w = 2mfA(2) (1 — f_/l> cos2nuft — 2mz/A) =W (1 — f_/l) . (A7)
Actually, just as indicated by Lighthill (1971), we have w = W(V — U)/V, where V = fA
is the wave speed.

Note that the time-averaged value within one cycle of the integral item in (A6) is zero
and A(z) = A, at z = L. Hence, (A6) becomes

2
T ~ m(fA)? (1 — (fﬂ) ) . (A8)

For the flapping plate in our study, there is no obvious undulation during swimming (see
figure 1). In other words, A is large in our flapping cases and the item (U/f 1) may be small
enough to be neglected. Hence, (A8) is reduced to 7" ~ ( fA,)z.
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Figure 9. (a) Schematic diagram of the inclined plate in oncoming flow, where 6 is the inclination angle of
the plate and U is the oncoming flow velocity. (b—d) The dimensionless drag D* of inclined plates as functions
of Reynolds number (Rey = UL/v ~ U) with different # and bending stiffness K*: (b) 6 = 20°, K* = 0.01,
(c) 0 =30°, K* =0.01 and (d) 6 = 40°, K* = 0.005.

We further estimate the power consumed by the plate. The acceleration of fluid adjacent
to the plate is a = Dw/Dt. Considering A'(z) ~ 0, we have

2
a = —41%f*A(2) <1 — f%) sin2mft — 2mz/A). (A9)

Similarly, A(L) = A;. Neglecting the item (U/f1), we have a ~ f?A,. The mass of fluid
pushed by the plate is scaled as pLA;. The plate does work at a rate equal to its lateral
velocity W ~ fA;. Hence, the power expenditure is scaled as P ~ (pLA;) - ( F2A) - (JA),
ie. P~ (fA).

Appendix B. Drag scaling for the inclined plates

One may notice that the fibre in the study of Alben et al. (2002) is normal to the incoming
flow, i.e. the inclination angle 6 in figure 9(a) is 90°. For a fixed 6, i.e. in Alben’s
model, increased speed is associated with reduced projected frontal area. People may
have an illusion that in the self-propulsive cases, the increased speed is associated with
increased frontal area, which is opposite to Alben’s cases. However, note that in our study,
0 (i.e. pitching amplitude) is variable. Hence, it is unreasonable to directly compare the
relationship between speed and projected frontal area. Nevertheless, we would like to
illustrate why Alben’s drag law can be applied in our study.

First, we try to test whether the drag scaling of Alben ef al. (2002) can be applied
to the cases with different fixed inclination angle 6 (see figure 9(a)), since our flexible
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Figure 10. The pitching (a) and heaving (b) plates in an inertial frame. (c) The heaving plate in a non-inertial
frame moving with the head of the plate.

plates are more like inclined plates (see figure 1). Here many cases for different 6 and
bending rigidity K* are simulated. The computational domain, grid spacing and time step
are identical to these in § 3. The oncoming flow velocity is U and the Reynolds number is
Rey = UL/v. The horizontal force experienced by the plate is the drag D. Note that, under
these circumstances, the plate is completely passive and K* should be relatively small to
ensure that the bending deformation of the plate is relatively large (Alben et al. 2002; Zhu
2008), so that the plate shape is more streamlined.

The dimensionless drag D* as a function of Rey for cases of different & and K* are
presented in figure 9(b—d). It is seen that the growing forms of drag are very close to that
of Alben ef al. (2002) (i.e. D ~ U*/3). In other words, even when the plate is inclined,
Alben’s law is still valid. Therefore, if a flexible plate has a streamlined curved shape
in an oncoming flow due to the fluid—structure interaction (FSI), U*/? drag law seems
applicable. This may be regarded as a simple generalization of Alben’s drag law.

Besides, we can change our views on the pitching and heaving cases in new inertial
and non-inertial frames, respectively, to see the analogies between our cases and those of
Alben et al. (2002).

For a pitching plate, because the cruising speed U is almost a constant, we can view the
locomotion in an inertial frame (see figure 10a) which is moving with U. In the new frame,
at any time, the oncoming flow with U is passing through an inclined flexible plate. It is
noticed in the inertial frame, except the head of the plate experiences a rotational moment,
the other part of the plate is free to move passively and form a streamlined shape due to
the FSI. According to this viewpoint, Alben’s law can be applied.

For a heaving plate, suppose the cruising speed is U. In the inertial frame which is
moving with U, the plate is heaving up and down (see figure 10b). We can set up a
non-inertial frame moving with the head of the plate. Suppose at time ¢, the plate moves
upward with a lateral component velocity v. In this new frame, we can see that the inclined

oncoming flow with velocity magnitude +/ U? + v2 is passing through the flexible plate
(see figure 10c). It is easy to imagine that at different times during a period, the oncoming
flow from different angles is passing through the flexible plate. In the non-inertial frame,
except the head of the plate experiences an inertia force, the other part of the plate is free to
move passively and form a streamlined shape due to the FSI. According to this viewpoint,
Alben’s law should also be valid in this situation.
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