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The partial coalescence dynamics of a compound drop in a liquid pool is numerically
investigated. We study the effect of the ratio of the inner to outer radii (Rr) of the
compound drop while maintaining a constant liquid volume in the outer shell of
the compound droplet. It is observed that for small values of the radius ratio, the
coalescence dynamics is similar to that of a ‘simple’ drop, but the partial coalescence
is suppressed for large values of Rr. Increasing the value of Rr decreases the distance
migrated by the inner bubble in the downward direction inside the pool. The location
of the bubble after coalescence is found to play an important role in the pinch-off
process of the satellite drop. The influence of the governing dimensionless parameters
on the coalescence dynamics has also been investigated.
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1. Introduction

Coalescence dynamics of a drop in a liquid pool has been a fascinating subject
of research for many centuries due to its relevance in natural phenomena (Thomson
& Newall 1886; Worthington 1908) and industrial applications (Stone, Stroock &
Ajdari 2004). The subject has caught the attention of many researchers recently due
to its complex nature and rich underlying physics (Morton, Rudman & Jong-Leng
2000; Thoroddsen & Takehara 2000; Chen, Mandre & Feng 2006a; Gilet et al. 2007;
Ray, Biswas & Sharma 2010; Zhang et al. 2015; Deka et al. 2018). Consequently,
different regimes from partial/complete coalescence (at low impact velocity) to
splashing (at high impact velocity) have been identified. In partial coalescence, a
satellite drop pinches off, which undergoes a cascading process until the satellite
drop is completely merged on the liquid pool.
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When a drop comes in contact with the free surface of a liquid pool at a low
velocity, it floats until the surrounding fluid trapped between the drop and the free
surface is drained out. After this, coalescence occurs, forming a neck at the contact
point of the drop and the free surface, which expands rapidly due to high capillary
pressure near the contact region. This results in upward moving capillary waves and
thereby the formation of a liquid column, followed by a necking process near the
contact region. The diameter of the neck reduces with time due to the inward pull
exerted by surface tension and a satellite drop pinches off (Blanchette & Bigioni
2006; Ray et al. 2010). The pinch-off process is influenced by the competition
between the vertical and horizontal collapse rates of the liquid column. When the
vertical collapse is sufficiently delayed by the upward pull exerted by the capillary
waves, the horizontal collapse succeeds in merging the neck and producing a satellite
drop. Charles & Mason (1960) reported that the partial coalescence of a drop is a
consequence of an inviscid instability (Rayleigh 1878) of the liquid column that forms
after coalescence. Later, it was revealed that the dynamics of partial coalescence
is primarily governed by gravity, viscosity and interfacial tension (Thoroddsen &
Takehara 2000; Chen, Mandre & Feng 2006b).

Chen et al. (2006b) delineated gravity, inertio-capillary, viscosity-dominated regimes
for the coalescence of a drop in a liquid pool. The coalescence phenomenon is driven
by gravity at higher values of the Bond number, given by Bo = ρ1gD2/σ , wherein
D denotes the drop diameter, g represents the acceleration due to gravity, σ denotes
the interfacial tension, and ρ1 is the density of the drop. The viscous effect becomes
dominant at lower values of Bo. At intermediate values of Bo, the coalescence
phenomenon is driven by inertia and capillary forces. Partial coalescence is primarily
observed in the inertio-capillary regime. The effect of the physical properties of the
fluids on the coalescence process has been reviewed by Kavehpour (2015). Yue, Zhou
& Feng (2006) also investigated the coalescence dynamics of a drop in Newtonian
and viscoelastic fluids. All these previous studies considered ‘simple’ drops.

The aim of the present study is to investigate the coalescence dynamics of a
compound liquid drop in a deep pool of the same liquid. The study of compound
drops is relevant in several applications, such as targeted drug delivery and advanced
material processing (Terwagne et al. 2010). Aston (1972) investigated the dynamics
of a gas-filled hollow raindrop in the presence of aerosols. Subsequently, several
researchers (Gulyaev et al. 2009; Kumar et al. 2013; Li et al. 2018) have investigated
the impact of a compound drop on solid surfaces due to its importance in painting,
coating and printing technologies. Terwagne et al. (2010) studied the coalescence
of a compound drop on a vertically vibrated bath for a different configuration and
observed the formation of a double emulsion above a threshold frequency. Heat
transfer characteristics during the impact of a compound drop on a heated surface
have also been investigated (Zheng et al. 2017; Li et al. 2018). Gao & Feng (2011)
numerically investigated the spreading behaviour of a compound drop on a partially
wetting solid substrate. They observed various flow regimes depending on the radius
ratio of a compound drop. However, to the best of the authors’ knowledge, the partial
coalescence dynamics of a compound drop has not yet been investigated, and is the
subject of the present study.

We investigate the effect of radius ratio, Rr (the ratio of the inner radius to the outer
radius of the compound drop), while maintaining a constant volume in the outer shell
equal to that of a ‘simple’ drop of radius Req. The influence of fluid properties on
the satellite drop formation has been studied in terms of the governing dimensionless
numbers. The mechanism of the coalescence behaviour has also been addressed. We
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FIGURE 1. Schematic diagram showing the initial configuration of a compound drop
placed near the free surface of a liquid pool with zero initial velocity.

observed that the location of the inner bubble after coalescence plays an important
role in the pinch-off process of the satellite drop.

The paper is organized as follows. The problem is formulated in § 2, wherein
the governing equations, numerical method and validation of the present solver are
discussed. The results are presented in § 3 and concluding remarks are given in § 4.

2. Formulation

The coalescence dynamics of a compound liquid drop in a liquid pool is
investigated via axisymmetric numerical simulations using Gerris (Popinet 2009),
which is based on the volume of fluid (VoF) method. The schematic diagram showing
the initial configuration of the drop is presented in figure 1. The drop and the liquid
in the pool are designated by fluid ‘1’, while the surrounding medium is designated
by fluid ‘2’. The dynamic viscosities and the densities of fluid ‘1’ and fluid ‘2’ are
(µ1, ρ1) and (µ2, ρ2), respectively. The fluids are assumed to be Newtonian and
incompressible.

A cylindrical coordinate system (r, z) is used to model the flow dynamics, such
that z= 0 represents the bottom of the computational domain and r= 0 is the axis of
symmetry. Gravity (g) acts in the negative z direction. The inner and outer radii of
the compound drop are Ri and Ro, respectively. The size of the computational domain
is 6R0× 12R0, such that the initial height of the liquid pool is 6Ro. The computational
domain considered in the present study is large enough to have negligible boundary
effect. For all the results presented in the study, t= 0 represents the instant at which
the drop touches the free surface of the pool. However, the simulations are started with
the quiescent drop resting above the interface with a small gap (≈ 0.02Ro) between
the two interfaces, as shown in figure 1.

2.1. Governing equations
The continuity and the Navier–Stokes equations govern the flow dynamics, which are
given by

∇ · u= 0, (2.1)

ρ

[
∂u
∂t
+ u · ∇u

]
=−∇P+∇ ·

[
µ
(
∇u+∇uT

)]
+ σκn̂δs(r − r f )−ρgêz, (2.2)
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where u(u, v) is the velocity field, wherein u and v represent the components of
velocity in the radial (r) and vertical (z) directions, respectively; κ is the mean
curvature; n̂ is the unit normal vector at the interface pointing towards fluid ‘2’; êz
is the unit normal vector in the z direction; δs(r − r f ) is a delta distribution function,
which is zero everywhere except at the interface, where r = r f ; t denotes time.

The following advection equation for the volume fraction c of fluid ‘1’, whose value
is taken as 1 and 0 for fluid ‘1’ and fluid ‘2’, respectively, is solved in order to track
the interface separating the two fluids:

∂c
∂t
+ u · ∇c= 0. (2.3)

The density, ρ, and the dynamics viscosity, µ, are calculated as

ρ = ρ1c+ ρ2(1− c), (2.4)
µ=µ1c+µ2(1− c). (2.5)

2.2. Boundary conditions
The governing equations (2.1)–(2.3) are solved using the following boundary
conditions. The symmetry boundary condition is used at r = 0 and the free-slip
boundary condition is employed at the side boundary (r = 6R0). No-slip and
no-penetration boundary conditions are used at the bottom wall (z = 0) and the
Neumann boundary condition is used at the top of the computational domain
(z= 12R0).

2.3. Non-dimensionalization
The governing equations and the boundary conditions are non-dimensionalized using
the equivalent radius of the compound drop, Req(≡ (R3

o − R3
i )

1/3) as the length scale,

Vs(≡
√
σ/ρ1Req) as the velocity scale, and ts(≡

√
ρ1R3

eq/σ) as the time scale, such
that

(z, r)= Req(̃z, r̃), (u, v)= Vs(ũ, ṽ), µ=µ2(µ̃), ρ = ρ1(ρ̃),

P= σ/Req(P̃), t= ts(̃t),

}
(2.6)

where tildes designate the dimensionless variables, which are dropped hereafter while
presenting the results. The dimensionless numbers used to describe the results are
the Bond number, Bo(≡ ρ1gR2

eq/σ), the Ohnesorge numbers associated with fluid ‘1’
and fluid ‘2’, which are given by Oh1(≡ µ1/

√
ρ1σReq) and Oh2(≡ µ2/

√
ρ1σReq),

respectively, the Atwood number, At(≡ (ρ1 − ρ2)/(ρ1 + ρ2)), and the radius ratio,
Rr(≡ Ri/Ro).

2.4. Numerical method and validation of the solver
A VoF-method-based open source solver Gerris (Popinet 2009), which incorporates
a height-function-based balanced-force continuum-surface-force formulation for the
inclusion of the surface tension term in the Navier–Stokes equations is used. A
dynamic adaptive grid refinement is incorporated that provides a large number of grid
points/cells in the interfacial region and regions with velocity gradient. The numerical
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0 0.53 1.150.5 mm 1.40 2.62 3.57

FIGURE 2. Comparison against the experiment of Blanchette & Bigioni (2006) presenting
the partial coalescence phenomenon of an ethanol drop of radius 0.535 mm in air. The
present numerical results are shown in red, whereas the background images are the
experimental results of Blanchette & Bigioni (2006). The times (in ms) are written on
each image. The corresponding dimensionless parameters are Oh1 = 1.09 × 10−2, Oh2 =

2.08× 10−4, At= 0.997 and Bo= 0.09.

scheme is second-order accurate in space and time. Extensive validation exercises
of the current numerical methodology have been performed in our previous studies
(see for instance, Tripathi, Sahu & Govindarajan (2015)). In addition, we have also
validated the present solver by comparison with the experimental result of Blanchette
& Bigioni (2006) for a ‘simple’ drop.

Figure 2 shows the comparison of the coalescence dynamics of a ‘simple’ ethanol
drop of radius Req = 0.535 mm obtained from the present numerical simulation
(red coloured profiles) with the experiment of Blanchette & Bigioni (2006). The
corresponding dimensionless numbers are Oh1 = 1.09 × 10−2, Oh2 = 2.08 × 10−4,
At = 0.997 and Bo = 0.09. In the experiment of Blanchette & Bigioni (2006), an
ethanol drop was deposited onto the surface of a pool containing ethanol and the
dynamics were captured using a high-speed camera. The coalescence starts at t = 0.
For t> 0, the drop starts to drain into the pool (see t= 0.53, 1.15 and 1.4 ms). This
generates a cylindrical column whose height is higher than that of the initial drop
(t = 2.62 ms). The neck of this column narrows down due to the inward pull of
the surface tension, and a satellite drop is pinched off (t = 3.57 ms). It can be seen
in figure 2 that the dynamics obtained from our numerical simulation at different
time instants are in good agreement with the experiment of Blanchette & Bigioni
(2006). Note that in the Gerris solver, the pinch-off of satellite drop is decided by
the smallest cell size. However, it is shown below that after a certain refinement level
the results do not change.

A grid convergence test is conducted in figure 3 for a compound ethanol drop
of Rr = 0.5 coalescing into an ethanol pool. The volume of the outer shell of the
compound ethanol drop is kept the same as that of the ‘simple’ drop, as considered
in figure 2. Thus the dimensionless numbers are the same as those used to generate
figure 2. The simulations are performed with four different meshes using the adaptive
mesh refinement feature of Gerris (Popinet 2009). This provides the finest cells in
the interfacial region and in the region having a velocity gradient. The smallest
(dimensionless) cell sizes, ∆, used are 0.049 (figure 3a), 0.023 (figure 3b), 0.012
(figure 3c), and 0.006 (figure 3d). The corresponding values of Rs/Req, Rs being
the radius of the satellite drop, are 0.617, 0.61, 0.607 and 0.606. It can also be
seen in figure 3 that the coalescence dynamics obtained using different meshes are
qualitatively similar. The percentage difference between the values of Rs/Req for
∆ = 0.012 and 0.006 is approximately 0.13 %. Thus, ∆ = 0.012 has been used to
generate the rest of the results presented in the present study.
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(a) (b)

(c) (d)

t = 0 t = 1.0 t = 1.62 t = 0 t = 1.0 t = 1.62

t = 0 t = 1.0 t = 1.62 t = 0 t = 1.0 t = 1.62

FIGURE 3. Grid convergence test for the coalescence dynamics of an ethanol compound
drop of radius ratio, Rr = 0.5: (a) ∆= 0.049, (b) ∆= 0.023, (c) ∆= 0.012 and (d) ∆=
0.006. The remaining parameters are the same as those used to generate figure 2.

t = 0.01
(a)

(b)

t = 0.25 t = 0.50 t = 0.75 t = 1.00 t = 1.25 t = 1.50 t = 1.75

FIGURE 4. The coalescence sequence of a compound ethanol drop. The radius ratios
in (a,b) are Rr = 0.5 and Rr = 0.7, respectively. The remaining dimensionless numbers
are same as those used to generate figure 2. Arrow marks indicate the direction of the
momentum acting on the interface.

3. Results and discussion

We begin the presentation of our results by discussing the mechanism of the
coalescence of a compound drop on a liquid pool. It is observed that for small Rr,
the coalescence dynamics of the compound drop is similar to that of a ‘simple’ drop,
where the primary drop produces a satellite drop after pinch-off. Such a dynamics is
presented in figure 2. On the other hand, the partial coalescence phenomenon (i.e. the
formation of satellite drop) is not observed in case of a compound drop with large
Rr. The coalescence dynamics of compound drops with Rr = 0.5 and Rr = 0.7 are
discussed in figure 4.

It can be seen in figure 4 that at the early stage (as the drop comes in contact
with the free surface), the curvature near the contact region becomes sharp, which
in turn generates a large capillary pressure near the contact region, leading to the
rapid expansion of the neck. The uneven curvature of the coalescing drop creates a
pressure difference between the regions above and below the bubble (inner shell of
the compound drop), such that pressure is high above and low below the bubble. As
a result, a downward force acts on the bubble and it starts to move in the downward
direction, as shown at t = 0.25 in figure 4. Due to this movement of the bubble
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in the downward direction, the neck tends to expand in order to create a passage
for the bubble, and the resultant capillary waves propagate in the upward direction
along the interface of the coalescing drop (as indicated by the arrow marks at t =
0.25 and 0.5). When these waves reach the top part of the drop, an upward thrust
is generated at the drop tip, as shown at t = 0.75. The upward momentum exerted
by the capillary waves delays the vertical collapse of the drop (forming a column of
fluid ‘1’), while the bubble continues to move in the downward direction due to the
pressure difference at the top and bottom portions of the bubble, and the push induced
by the drainage of the drop liquid. The buoyancy opposes the motion of the bubble
of fluid ‘2’ (which is lighter than fluid ‘1’). For the parameter values considered,
the above-mentioned process is mostly similar until t = 0.75 for different values of
Rr, as shown in figure 4. The influence of the propagating capillary waves along the
interface has been extensively studied by Blanchette & Bigioni (2006), Thoroddsen
et al. (2007), Ray et al. (2010), Ding et al. (2012), Deka et al. (2019) in the case of
‘simple’ drops.

In the case of a compound drop with small Rr (i.e. when the inner bubble is small),
the pressure difference at the top and bottom portions of the bubble acting in the
downward direction dominates the buoyancy force acting in the upward direction.
Thus the bubble moves a longer distance in the downward direction as compared
to a larger bubble (i.e. for large Rr). It can be seen in figure 4 that for Rr = 0.5
(a) the inner bubble moves far below the neck region of the drop (see at t = 1 and
1.25). Then due to the inward momentum generated by surface tension, the neck of
the column narrows down (t = 1.5), and a secondary or satellite drop is pinched off
(t= 1.75).

On the other hand, for Rr= 0.7, as the size of the inner bubble is large enough, the
buoyancy force that acts in the upward direction cannot be dominated by the pressure
difference acting in the downward direction. Thus the bubble does not move far away
from the neck region. Another way to compare the dynamics for the small and large
values of Rr is that a large bubble (large Rr) expends more energy to expand the neck
in order to make its passage as compared to a small bubble (small Rr). Due to the
competition between the buoyancy and the pressure difference acting in the opposite
direction, the bubble deforms significantly, which opposes narrowing of the neck. As a
result, the neck does not become thin enough for the pinch-off to occur as in case of
Rr=0.5, and finally expands (t=1.75 in figure 4), leading to the complete coalescence
of the drop without the formation of any satellite drop.

In order to understand the flow field in the partial coalescence process of a
compound drop, in figure 5 we present the contours of the radial (u) and the vertical
(v) components of the velocity, and the pressure field (P) for Rr= 0.5. It can be seen
at the early times (t 6 0.5) in the P field (c) that a pressure difference is created in
the regions above and below the bubble due to the opening of the neck to facilitate
drainage of the drop liquid into the pool. This pushes the bubble in the downward
direction, as evidenced by the development of the negative v velocity at t 6 0.5 in
figure 5(c). During this period, the change in curvature and deformation of the bubble
to an oblate shape is accompanied by the development of an outward u velocity near
the neck. Non-zero u velocity contours near the interfacial regions can be seen (a
at t 6 0.5). Later, the force induced by drainage further pushes the bubble into the
liquid pool. As the bubble moves downwards, away from the neck region, negative
u velocity develops near the neck region, as evident at t > 1. The negative radial
velocity component becomes sharper at t = 1.5, which makes the neck thinner and
subsequently leads to the pinch-off of the satellite drop.
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t = 0.01 t = 0.25 t = 0.50
(a)

(b)

(c)

t = 0.75 t = 1.00 t = 1.25 t = 1.50

1.5
u
1.0
0
-1.0
-2.0

1.5
√

1.0
0
-1.0
-2.0

3.0
P

1.5
0
-1.5
-3.0

FIGURE 5. The temporal evolution of contours of the radial (u) and vertical (v)
components of velocity and the pressure field (P) for a compound drop with Rr = 0.5.
The remaining dimensionless numbers are same as those used to generate figure 2.

0 0.1 0.2 0.3 0.4 0.5
Rr

0 0.1 0.2 0.3 0.4 0.5
Rr

0.70
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0.60
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0.50

1.9

1.8

1.7

1.6

1.5

R s
/R

eq

tp

(a) (b)

FIGURE 6. The variations of (a) Rs/Req and (b) tp versus Rr. The remaining parameter
values are same as those used to generate figure 2.

Figure 6(a,b) shows the variation of the ratio between the equivalent radii of the
secondary and primary drops (Rs/Req) and the variation of pinch-off time tp with Rr,
respectively. Here, Rs represents the equivalent radius of the satellite drop. The pinch-
off time is defined as the time taken from start of coalescence to the pinch-off of
the satellite drop. It can be observed that Rs/Req remains nearly constant for all the
values of Rr considered. The pinch-off time, tp, also remains approximately the same
for Rr 6 0.4 (see figure 6b), which increases sharply for Rr > 0.4. For the parameter
values considered, we observe that the partial coalescence is completely suppressed
for Rr > 0.56 (approximately), which is termed as the critical radius ratio (Rcr). The
sharp increase in the value of tp for 0.4 < Rr < 0.6 can be understood as follows.
Near the critical radius ratio, the size of the bubble is large enough to create sufficient
buoyancy force to oppose its downward motion. Because of low penetration of the
bubble, it opposes the inward movement of the neck, leading to a delay in pinch-off
(as discussed in figure 4). This effect increases at a faster rate with the increase in the
value of Rr for Rr > 0.4 for this set of parameters. Furthermore, the drainage slows
down due to the presence of the bubble, which acts like an obstacle and resists the
drainage. As a result, although the drainage time of the liquid drop increases with an
increase in the value of Rr, the value of Rs/Req remains almost constant.

Next, we discuss different types of partial coalescence dynamics observed in the
case of a compound drop. We have observed three different types of coalescence for
different values of Rr, namely, (i) pinch-off of a satellite drop without bursting of
the bubble, (ii) pinch-off of a satellite drop along with bursting of the bubble, and

866 R2-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

13
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.137


Coalescence dynamics of a compound drop

1.701.681.651.5 1.90

1.931.911.871.5 1.95

2.01.951.751.5 2.02

(a)

(b)

(c)

FIGURE 7. Different partial coalescence processes observed for Rr = 0.55 (a), Rr = 0.56
(b) and Rr = 0.58 (c). The remaining dimensionless numbers are same as those used to
generate figure 2.

R s
/R

eq

0.65

0.60

0.55

0.50
0.2 0.4 0.6 0.8 1.0

At
0.2 0.4 0.6 0.8 1.0

At

2.2

2.0

1.8

1.6

tp

(a) (b)

FIGURE 8. The variations of (a) Rs/Req and (b) tp with At for Rr = 0.5. The remaining
dimensionless numbers are the same as those used to generate figure 2. The dashed lines
indicate linear fits to the data points.

(iii) the bubble bursting before the pinch-off of the satellite drop. These processes
are demonstrated in figure 7(a–c) and are associated with Rr = 0.55, 0.56 and 0.58,
respectively. In the last case, it can be seen in figure 7(c) that the detachment of
the satellite drop occurs as a result of the bubble bursting itself and not because of
the pinching of the neck. The different partial coalescence phenomena observed for
different values of Rr can be attributed to the decrease in the penetration depth of the
bubble with the increase in the value of Rr, as explained in figure 4.

Finally, a parametric study is conducted by varying different dimensionless numbers.
Figure 8(a,b) present the variations of Rs/Req and tp with the Atwood number At.
Increasing At, i.e. increasing the density contrast between fluid ‘1’ and fluid ‘2’,
increases the drainage rate due to the increase in the effective gravitational force.
This, in turn, speeds up the drainage, as well as the thinning of the neck, and
decreases the pinch-off time of the satellite drop, as evident in figure 8(b). It can
be argued that although increasing At increases the drainage rate, a decrease in the
pinch-off time decreases the total drainage, leading to the increase in the satellite
drop volume, as evident in figure 8(a). Although the drainage is faster at higher At
due to the stronger effective gravitational force, the penetration of the bubble into the
liquid pool decreases with increasing At because of higher buoyancy force acting on
the bubble. As a result the critical radius ratio, Rrc, decreases with increasing At, as
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FIGURE 9. The variations of the critical radius ratio, Rcr, with At for different values of
Bo. The dashed lines indicate linear fits to the data points.

evident in figure 9, where the variation of Rcr with At is shown for three different
values of Bo. Inspection of figure 9 reveals that for a fixed At, as expected, increasing
Bo (decreasing the surface tension over gravitational force) decreases the value of Rcr.
We observe (not shown) that increasing Oh1 and Oh2 has a negligible effect on the
critical radius ratio, Rcr, for the range of parameters considered.

4. Concluding remarks

The partial coalescence dynamics of a compound drop in a liquid pool is
investigated via axisymmetric numerical simulations using an open source VoF-based
flow solver, Gerris. The effect of the radius ratio (Rr) of the compound drop while
maintaining a constant liquid volume in the outer shell is studied. We observed that
for small Rr, the partial coalescence dynamics is similar to that of a ‘simple’ drop.
However, for the parameters considered, the partial coalescence is suppressed above
a critical radius ratio as the inner bubble remains near the free surface and thereby
prevents the inward movement of the neck. Three different types of coalescence have
been observed for different values of Rr: (i) pinch-off of a satellite drop without
bursting of the bubble, (ii) pinch-off of a satellite drop along with bursting of the
bubble, and (iii) bubble bursting before the pinch-off. A parametric study is conducted
by varying other dimensionless numbers, such as the Atwood and the Bond numbers,
to identify the critical radius ratio, Rcr, above which partial coalescence is suppressed.
The location of the inner bubble in the pool is found to play an important role in
the pinch-off process.
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