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Inertia-gravity waves beyond the inertial latitude.
Part 1. Inviscid singular focusing

VICTOR I. SHRIRA† AND WILLIAM A. TOWNSEND
Department of Mathematics, EPSAM, Keele University, Keele ST5 5BG, UK

(Received 17 December 2009; revised 12 July 2010; accepted 12 July 2010;

first published online 15 October 2010)

The paper is concerned with analytical study of inertia-gravity waves in rotating
density-stratified ideal fluid confined in a spherical shell. It primarily aims at clarifying
the possible role of these motions in deep ocean mixing. Recently, it was found
that on the ‘non-traditional’ β-plane inertia-gravity internal waves can propagate
polewards beyond their inertial latitude, where the wave frequency equals the local
Coriolis parameter, by turning into subinertial modes trapped in the narrowing
waveguides around the local minima of buoyancy frequency N . The behaviour of
characteristics was established: wave horizontal and vertical scales decrease as the
wave advances polewards and tend to zero at a latitude corresponding to an attractor
of characteristics. However, the basic questions about wave evolution, its quantitative
description and the possibility of its reflection from the critical latitude remain open.
The present work addresses these issues by studying the linear inviscid evolution of
finite bandwidth wavepackets on the ‘non-traditional’ β-plane past the inertial latitude
for generic oceanic stratification. Beyond the inertial latitude, the wave field is confined
in narrowing waveguides of three distinct generic types around different local minima
of the buoyancy frequency. In the oceanic context, the widest is adjacent to the flat
bottom, the thinnest is the upper mixed layer, and the middle one is located between
the seasonal and main thermocline. We find explicit asymptotic solutions describing
the wave field in the WKB approximation. As a byproduct, the conservation of wave
action principle is explicitly formulated for all types of internal waves on the ‘non-
traditional’ β-plane. The wave velocities and vertical shear tend to infinity and become
singular at the attractor latitude or its vicinity for both monochromatic and finite
bandwidth packets. We call this phenomenon singular focusing. These WKB solutions
are shown to remain valid up to singularity for the bottom and mid-ocean waveguides.
The main conclusion is that even in the inviscid setting the wave evolution towards
smaller and smaller horizontal and vertical scales is irreversible: there is no reflection.
For situations typical of deep ocean, a simultaneous increase in wave amplitude and
decrease of vertical scale causes a sharp increase of vertical shear, which may lead to
wave breaking and increased mixing.

Key words: internal waves, rotating flows, waves in rotating fluids

1. Introduction
The primary motivation for this work comes from physical oceanography. In the

ocean, internal waves of inertial band are by far the most energetic, and whatever

† Email address for correspondence: v.i.shrira@keele.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

38
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010003812


Inertia-gravity waves beyond the inertial latitude. Part 1 479

happens to this band affects internal waves of all scales (e.g. Fu 1981; Garrett
2001). Inertial waves enhance vertical mixing (e.g. Alford 2003) and, in particular, are
believed to play a major role in deep ocean mixing (Wunsch & Munk 1998; Garrett &
St Laurent 2002). Although general mechanisms of mixing are well established (e.g.
Staquet 2004), it is not clear how waves evolve to breaking conditions. The key
question is whether the mechanism is the cascade of weakly nonlinear resonant wave
interactions, which does provide energy transfer to small vertical scales and hence to
strong vertical shear (e.g. Winters & D’Asaro 1997), or if there are alternatives. In
this paper, we argue that a plausible alternative does exist and could be provided
by a linear transformation of inertia-gravity waves into small vertical and horizontal
scales which was found to occur on the non-traditional β-plane (Gerkema & Shrira
2005a, b).

Similar open questions about the role of inertia-gravity waves in mixing are not
confined to oceanic context, but are also relevant to transport processes in stars
(e.g. Kumar & Quataert 1997; Zahn 1997), atmospheres and liquid core of the
Earth (Rieutord et al. 2001). Therefore in this work we consider the evolution of
inertia-gravity waves as a basic fluid mechanics problem potentially relevant to all
other physical contexts involving motions of rotating density-stratified fluids within
a spherical shell. We then apply the findings to the problem of our primary interest –
understanding the transformation of oceanic inertia-gravity waves into small vertical
and horizontal scales.

Surprisingly, even in the simplest linear setting, such a basic process as evolution
of near-inertial waves in a stratified rotating fluid confined between two parallel
surfaces is not properly understood. Within the framework of the commonly used
model based upon the ‘traditional’ approximation (i.e. with the horizontal component
of the local angular velocity of the Earth being neglected), near-inertial waves of
frequency σ propagating on the β-plane polewards have a simple turning point at
their inertial latitude φ, where σ equals the local Coriolis parameter f = 2Ω sinφ, and
Ω is the angular frequency of the Earth rotation (LeBlond & Mysak 1978; Munk
1980; Gerkema et al. 2008).

Dynamics in a spherical shell is qualitatively different: the meridional eigenfunctions
of a motion of frequency σ extend beyond the inertial latitude; this extended part
of the eigenfunctions is characterised by a strong decrease of both vertical and
horizontal scales (Friedlander & Siegmann 1982; Dintrans, Rieutord & Valdettaro
1999). However, so far the spherical geometry has proved to be difficult for analytic
consideration: ‘. . . the problem’s variables are not separable, rendering the analysis
untractable’ (Dintrans et al. 1999). The problem remains challenging to numerics since
the numerical studies were confined to the idealised situations of linear buoyancy
frequency N profile (Dintrans et al. 1999). The analysis of arbitrary stratification
profiles carried out by Friedlander & Siegmann (1982) and Friedlander (1982) was
aimed at spectral properties of the discrete spectrum and excluded some singular
modes. So far none of the approaches tried have captured the aspects of inertia-
gravity wave evolution that we are interested in. We will analytically examine wave
dynamics in spherical geometry in a separate follow-up paper by extending the
approach developed here for the β-plane.

An alternative line of research based on the ‘non-traditional’ β-plane elucidated
the overall qualitative picture of wave evolution for wavepackets, which is practically,
and conceptually, more attractive than the use of global meridional eigenfunctions
(Gerkema & Shrira 2005a, b). For near-inertial inertia-gravity waves confined between
two horizontal planes on the f -plane, the full account of the Coriolis force changes
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Figure 1. (a) Sketch of meridional cross-section of dispersion relation σ (l). The solid line
shows σ (l) on the non-traditional f -plane and the dotted line on the traditional f -plane, both
for an arbitrary vertical mode, l is the meridional wavenumber; and (b) zoomed in vicinity of
small l band, Nmax is the maximal value of buoyancy frequency N (z).

two key features of the dispersion relation, as illustrated in figure 1 for an arbitrary
stratification profile provided N >f (for more detail, see Gerkema & Shrira 2005a).
(i) There appears a new ‘subinertial’ branch confined to the O(f/N)2 frequency
band (σmin, f ) which corresponds to waves trapped in the minima of the buoyancy
frequency N . (ii) The group velocity at zero wavenumber is finite, with the subinertial
branch representing a direct continuation of the superinertial branch. (Note that in
the example shown in figure 1 the maximal value of buoyancy frequency Nmax is
chosen to be 2.5f . This makes the high-frequency extension of the wave existence
range look more significant than for more common larger values of Nmax ).

The sketch makes it easy to capture a qualitative picture of a wavepacket’s
evolution on the ‘non-traditional’ β-plane. Consider a wavepacket with central
frequency σ0 (σ0 >f ) propagating polewards. Its frequency σ0 remains constant
while the local value of f increases. On reaching the inertial latitude, where f = σ0,
the wave obviously cannot continue its poleward propagation and remain super-
inertial, i.e. with σ0 >f . The wavepacket should either turn back, retaining its super-
inertial character, or propagate further polewards as the subinertial mode. In fact,
both reflection and penetration are taking place simultaneously; the reflection and
transmission coefficients were estimated in Gerkema & Shrira (2005b). It was found
that a substantial part of wave energy propagates further polewards as subinertial
waves. A quantitative analytical description of their evolution is the subject of this
paper, with the results of Gerkema & Shrira (2005b) providing the starting point.
The linearised Euler equations were reduced to a single second-order linear partial
differential equation of mixed (Tricomi) type, for which no general analytical approach
is known (e.g. Tricomi 1954; Duffy 2008). Apart from analysis of particular exact
solutions for constant N , the main insight into the character of wave evolution
was inferred from the behaviour of characteristics. It is straightforward to find
the characteristics which correspond to ray trajectories (Maas & Harlander 2006)
and thus get a qualitative idea of wave propagation. Figure 3(b) gives a sample
picture of the characteristics for an incoming wave of fixed frequency for a typical
ocean stratification with N >f everywhere. It shows that waves get trapped in
the narrowing waveguides around the local minima of buoyancy frequency N . The
picture is generic in the sense that for any smooth profile of stratification it might
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Inertia-gravity waves beyond the inertial latitude. Part 1 481

differ from the example just by the number and positions of the waveguides. For
each waveguide there is a critical latitude φ∗ beyond which the waves of a chosen
frequency σ0 cannot penetrate. This latitude corresponds to the tipping point of
the ‘turning surface’ separating the hyperbolicity and ellipticity domains. It can be
shown that characteristics of the linearised Euler equations for monochromatic waves
of frequency σ0 have point attractors at φ = φ∗ for waveguides adjacent to the
bottom and in its vicinity for all other waveguides. As far as we are aware, it was
not known that there might exist attractors lying on the turning surface detached
from the boundaries. Note that the general result by Friedlander (1982) that turning
surfaces can introduce only removable singularities is confined to the square integrable
solutions only and, therefore, does not apply to the continuous spectrum singular
solutions we are interested in. The details are discussed in the follow-up paper. Since
in the literature there is no universally established terminology and the term critical
latitude is also used in different contexts, to exclude controversy we will refer to these
latitudes φ∗ as tip latitudes. In the oceanic context the discrepancy between the tip
latitudes and the attractor latitudes for the internal waveguides are insignificant in
any sense, being a few metres at most. At the tip latitudes the lower bound σmin of
the allowed frequency window for internal waves equals the chosen wave frequency,
i.e. σmin(φ

∗) = σ0. The value of σmin depends upon the local Coriolis parameter in such
a way that it increases polewards; therefore for any given near-inertial frequency σ0

there always exists such a latitude. This lower bound also depends upon the local
stratification profile and, hence, is different for each of the waveguides. In the vicinity
of φ∗, the meridional wavenumber tends to infinity and the vertical scale to zero. At
the same time, as it is easy to see from figure 1, the wave group velocity tends to zero
as σmin → σ0, which, along with the narrowing of the waveguides, enhances the wave
amplitude.

Although the analysis of characteristics is an excellent tool for getting a qualitative
picture it cannot address a number of fundamental questions. Can waves be reflected
from the tip latitude φ∗? How can the wave evolution be described quantitatively?
Waves in nature are never monochromatic; in which way does the evolution of a
real finite bandwidth wavepacket differ from that of a monochromatic wave? The
vertical focusing of the wave combined with a sharp decrease of the wavelength and
group velocity prompted a suggestion that wave breaking and, therefore, enhanced
mixing, are a very likely outcome of the evolution (Maas 2001; Gerkema & Shrira
2005a, b). This hypothesis, based on a preliminary analysis of the linear problem
for a monochromatic wave, certainly needs thorough examination. What is the
outcome of the evolution of realistic wavepackets, and on what environmental
parameters does it depend? The paper aims to address these open questions by
studying wave evolution inside the narrowing wedge-like waveguides. Note that
to get trapped in these waveguides the waves should not necessarily pass the
inertial latitude, as wind-generated inertia-gravity waves propagating downwards
(e.g. Pollard & Millard 1970; Van Haren 2006; Danioux & Klein 2008) and waves
generated by the bottom topography (e.g. Leaman 1976; Kasahara 2009) as well as
by tides through subharmonic parametric resonance could also get trapped inside
the narrowing waveguides. Hence, this paper which describes dramatic contraction of
wave vertical and horizontal scales, even in an inviscid setting, also contributes
to clarifying the unresolved issue of finding mechanisms of the dissipation of
inertia-gravity waves.

It is worth noting that the wave attractors encountered while examining the
inertia-gravity waves in the ocean represent the basic types of generic attractors for
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482 V. I. Shrira and W. A. Townsend

inertia-gravity waves in a rotating fluid with an arbitrary stable density stratification
N(z). Indeed in the vicinity of these attractors because of the shrinking of wave
scales the wave evolution is determined by local profile of N(z). Three basic situations
characterised by the dominance in the local expansion of N(z) of linear, quadratic
and constant terms, respectively, correspond to the three basic types of attractors
(‘wedge’, ‘parabolic’ and ‘corner’.) In this sense the solutions found describing field
behaviour in the vicinity of these attractors are universal.

The paper is organised as follows. In § 2 we formulate the basic equations on
the non-traditional β-plane and set out the problem. In § 3, utilising the natural
separation of scales, we develop the WKB description and explicitly formulate
the conservation of wave action principle, which is valid for all types of internal
waves on the ‘non-traditional’ β-plane. Then we derive explicit analytic solutions
describing inviscid evolution of a monochromatic wave inside each of the three basic
waveguides. The peculiarity of the problem is that for the wedge waveguides the
WKB approximation works progressively better as the wave approaches the attractor
latitude; correspondingly, in the limit the solutions describing formation of singularity
become exact. In reality waves are not monochromatic, wavepackets always have finite
bandwidth, and for each Fourier component, the singularity is located at a different
latitude. It is not a priori clear whether the packet remains focused or not. This issue
is addressed in § 4, where an analytical description of the evolution of a packet of
finite bandwidth is developed. We show that the packet remains focused. Although
the packet spreading due to dispersion slows down the wave amplitude growth, it
cannot prevent formation of a singularity at the tipping latitude. That is, the singular
focusing is robust. Some implications of the findings, as well as the dependence of
wave evolution on density stratification and latitude, are discussed in § 5.

2. Setting the problem
We begin with the equations of motion of a rotating density-stratified ideal fluid in

the Boussinesq approximation. The notation is standard: u = (u, v, w) is the velocity
field, with zonal (u), meridional (v) and radial (w) velocity components, p is the
departure of pressure from its hydrostatic value (divided by a constant reference
density) and b is the buoyancy:

Du
Dt

+ 2Ω × u + ∇p − bn = 0, n = (0, 0, 1), (2.1a)

∇ · u = 0, (2.1b)

Db

Dt
+ N2(z)u · n = 0. (2.1c)

We use the Cartesian (more precisely pseudo-Cartesian) frame with the horizontal
coordinates following the spherical surface: x is zonal (west–east), y is meridional
(south–north) and z is the radial or vertical coordinate. We place the origin of the
frame z = 0 at the lower boundary of the spherical shell which is presumed to be flat
(e.g. Greenspan 1968; LeBlond & Mysak 1978; Miropol’sky 2001).

In the oceanic context, the motions are confined between the free surface at the top
and the solid flat bottom and are subject to standard boundary conditions. At the
flat bottom z = 0 the inviscid no-flux condition requires

u(0) · n = w(0) = 0, (2.2)
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Figure 2. Meridional dependence of local dispersion σ (l) and evolution of wavenumber l of
a wavepacket of a constant frequency σ0. The initial situation is sketched in (a): there two
wavepackets of subinertial wave frequency σ0 <f with wavenumbers ±l propagate in opposite
directions. If we follow the packet moving polewards, its frequency σ0 remains constant, while
the local Coriolis frequency and correspondingly σmin increase, making the wave more and
more subinertial until it reaches the stage shown in (b), where σmin ⇒ σ0. The packet of
frequency σ0 cannot penetrate beyond the latitude where σmin = σ0. Further poleward σmin > σ0

and, as illustrated in (c), there are no solutions of local dispersion relation for σ = σ0.

while at the outer surface z =H , we adopt the ‘rigid lid’ approximation, which implies

w(H ) = 0. (2.3)

It is worth noting that for the inviscid motions under consideration the free surface
boundary condition is identical to that at the rigid surface. Hence, all the results will
also be equally applicable for any rotating stratified fluid confined between two rigid
shells.

We will consider wave motions in the linear setting on the non-traditional β-plane.
The linearised equations of motions (2.1a)–(2.1c) and the boundary conditions (2.3)
and (2.2) can be rewritten as

ut − f v + f̃ w = −px, (2.4a)

vt + f u = −py, (2.4b)

wt − f̃ u = −pz + b, (2.4c)

ux + vy + wz = 0, (2.4d )

bt + N2(z)w = 0, (2.4e)

w(0) = w(H ) = 0, (2.5)

where the Coriolis parameter f varies linearly with the meridional coordinate
(f = f0 + βy), while f̃ is kept constant to ensure conservation of vorticity and angular
momentum (Grimshaw 1975). The parameters f̃ , f0 and β are defined in the usual
way:

(f̃ , f0) = 2|Ω | (cosφ, sinφ), β = 2|Ω | cosφ/R,

where φ denotes a fixed latitude, Ω denotes the sphere’s angular velocity and R

denotes the sphere’s radius. The buoyancy frequency N is assumed to depend only
on the vertical direction, i.e. N =N(z).

Similarly, in the spirit of the qualitative analysis illustrated in figure 2, a
straightforward analysis of local dispersion relation for a wave with non-zero zonal
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wavenumber propagating polewards on the β-plane could also be carried out (see
also Gerkema & Shrira 2005a , § 5). As the wave moves polewards and becomes
more subinertial it experiences a dramatic increase of the meridional component of
the wavevector, while the zonal component retains its initial value. This observation
implies that subinertial waves propagating polewards tend towards purely meridional
propagation. For simplicity, we confine our consideration to the case of strictly
meridional wave propagation, that is we set ∂x ≡ 0. It is then convenient to introduce
streamfunction ψ:

v = ψz, w = −ψy. (2.6)

It is straightforward to reduce the system (2.4a)–(2.4e) to a single equation for ψ ,

�ψtt + N2ψyy + f 2ψzz + f̃ 2ψyy + 2f f̃ ψyz + βf̃ ψz = 0, (2.7)

where the boundary conditions (2.5) take the form

ψy(0) = ψy(H ) = 0. (2.8)

Our further analysis will be based upon (2.7) with boundary conditions (2.8).

3. Monochromatic wave: WKB description
The basic equation (2.7) admits a Fourier transform with respect to t . In this section

we will examine spatial evolution of a single Fourier harmonic ψ ∼ exp{−iσ t}, and
in this sense we will speak about evolution of a monochromatic wave. Fourier
transform reduces (2.7) to a mixed (Tricomi)-type second-order PDE with coefficients
dependent on both spatial variables. The condition on its hyperbolicity which specifies
the domain where the wave can exist is

(f f̃ )2 − (N2 + f̃ 2 − σ 2)(f 2 − σ 2) > 0. (3.1)

For a typical oceanic stratification the hyperbolic and elliptic domains have a fairly
complicated geometry illustrated in figure 3 by a thick solid line. Even in the simplest
geometry for such a Tricomi-type boundary problem, there is no constructive way of
finding a solution (see e.g. Tricomi 1954; Duffy 2008). Fortunately, in nature, there
is a wide separation of scales, which we discuss and exploit below to develop an
asymptotic WKB description of wave propagation.

In this section, we will focus on the peculiarities of inertia-gravity wave propagation
on the non-traditional β-plane. For simplicity, we confine ourselves to the situations
with no ambient large-scale oceanic motions, and where the only large-scale cause of
inhomogeneity for internal waves is the meridional variation of the Coriolis parameter
f . That is, the characteristic length scale of the inhomogeneity, L, is

L ∼ f0

β
= R tan φ ∼ R. (3.2)

Being interested in wave motions of much shorter scales, we introduce a small
parameter, ε, to characterise the assumed wide separation of scales between L and
the wave motions of characteristic wavenumber O(l0), as

ε = (l0L)−1 � 1. (3.3)

Then, with appropriately scaled independent variables, the explicit β-dependence in
(2.7) becomes O(ε), and we can rewrite the equation in an equivalent form

�ψtt + N2ψyy + f (εy)2ψzz + f̃ 2ψyy + 2f (εy)f̃ ψyz = −εβf̃ ψz, (3.4)
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Figure 3. (a) A typical ocean stratification profile N (z). (b) Thick solid line indicates boundary
of the hyperbolicity/ellipticity domains for a wave of frequency σ0. Thick dashed vertical
line indicates the inertial latitude, where σ0 = f , y is counted from the inertial latitude.
Characteristics are shown in thin lines: thin solid, characteristics going through; thin dashed
reflected characteristics. Thick dotted lines indicate the positions of the tip latitudes; their
coordinates are denoted by y∗. Solution is sought to the right of the grey zone.

which prompts the use of the WKB description. In the limit ε → 0 we recover the
non-traditional f -plane considered in detail by Gerkema & Shrira (2005a). In this
limit the coefficients of our basic equation (3.4) cease to depend on the meridional
coordinate y, which allows Fourier transform with respect to y. The solution for a
single Fourier harmonic with meridional wavevector k = {0, l} and frequency σ can
then be sought in the form ψ = Ψ (z, l, σ ) exp i(ly − σ t), which implies

l2(N2 − σ 2 + f̃ 2)Ψ − 2ilf̃ f Ψz + (σ 2 − f 2)Ψzz = 0, Ψ (0) = Ψ (H ) = 0. (3.5)

Substituting

Ψ (z, l, σ ) =Φ(z, l, σ ) eiδz, where δ =
lf f̃

(σ 2 − f 2)
, (3.6)

leads to the following Sturm–Liouville boundary-value problem for Φ:

Φ ′′ + l2

[
N2(z) − σ 2

σ 2 − f 2
+

(
σ f̃

σ 2 − f 2

)2
]

Φ = 0, Φ(0) = Φ(H ) = 0. (3.7)

This specifies the countable spectrum of eigenvalues l2n as a function of the chosen
frequency σ , thus prescribing the dispersion relation l = ln(σ ), and the structure of
the eigenfunctions Φn(z). Note that both l2n and Φn(z) depend perimetrically on f

and therefore through f on y. Hence, the boundary-value problem (3.7) could be
viewed as a way to specify meridional dependence of wavenumber l for a given
σ and stratification profile N(z). The basic models of stratification relevant to
subinertial waveguides were considered by Gerkema & Shrira (2005a), and since the
corresponding solutions of the boundary-value problem (3.7) will be used throughout
this paper, we provide a summary of the necessary results below.
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3.1. Evolution of wavenumber and vertical scale in the basic models

First, we will look at the dispersion relation and group velocities for the three basic
models of waveguides considered by Gerkema & Shrira (2005a) and evolution of
wavenumber and vertical scale in the vicinity of the corresponding attractors. Since
the wave can exist only in regions where the buoyancy frequency is less than that
prescribed by the hyperbolicity condition (3.1), waveguides are formed around the
minima in N(z), effectively trapping the wave and focusing it towards the minima
as waves advance polewards. Figure 3(a) shows a typical stratification profile of
the ocean, with the three minima where waves can become trapped. The first is in
the upper ocean mixed layer at the top, bounded from above by the ocean surface
and from below by the seasonal thermocline; the mixed layer creates the ‘upper’
or ‘top’ waveguide with typical vertical thickness of ∼102 m. In the main body of
the ocean, there is another minimum between the seasonal thermocline and the
main pycnocline, creating a ‘mid-ocean’ or ‘middle’ waveguide of typical thickness
∼5 × 102 m. The deepest minimum is to be found at the ocean floor. This creates the
bottom waveguide which is the largest, with thickness ∼103 m.

Although, for each of these waveguides, the shape of local variation in N around
its minimum is different, which results in asymptotically different dispersion relations,
the general feature of all the waveguides is that their thickness gradually decreases
with distance from the inertial latitude (see figure 3b) except for the constant thickness
top waveguide. Each waveguide ends at a certain tipping latitude, where σmin = σ :

σ 2
min = 1

2

(
λ − [λ2 − (2f N)2]1/2

)
, λ = N2 + f 2 + f̃ 2, (3.8)

which corresponds to a distance y∗ polewards from the inertial latitude

y� =
1

β

⎛
⎝−f0 + σ

√
N2 − σ 2 + f̃

N2 − σ 2

⎞
⎠, (3.9)

provided N2 >σ 2. Further propagation polewards for waves of the chosen frequency
is no longer possible.

3.1.1. The bottom waveguide: a ‘wedge’ attractor

Near the ocean bottom N2(z) usually varies slowly and attains its minimal value N0

at the bottom. With good accuracy it can be approximated by the Taylor expansion
as N2(z) = N2

0 + γ1z (N2
0 and γ1 = N2

0 /h are constants, h is the characteristic scale of
vertical inhomogeneity). The resulting wedge-shaped hyperbolicity domain confined
between the hyperbolicity/ellipticity boundary specified by (3.1) and the horizontal
bottom z = 0 which hosts the wedge attractor, has nothing specific to the oceanic
context. The wedge attractors are generic: it is the interpretation of the results which
is context-specific and will be discussed later. The Sturm–Liouville boundary-value
problem (3.7) then has solutions in the form

Φ = a(Φ)Ai

(
l̃2/3

[
z − ∆

γ1C

])
, l̃2 =

l2γ1

C
, C = f 2 − σ 2;

∆ = (f f̃ )2 −
(
N2

0 − σ 2 + f̃ 2
)
C.

⎫⎪⎬
⎪⎭ (3.10)

Here a(Φ) is the amplitude and Ai(ξ ) is the Airy function. Originally, we required Φ

to be zero at the bottom (z = 0) and at the upper boundary (z = H ), but to get the
solution in the simple form of the Airy function the boundary condition requiring
vanishing of Φ has been moved to infinity. Because of the Airy functions’ fast decay
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outside the waveguide, the error caused by the modification of the boundary is
negligible. The corresponding wavenumbers ln are expressed in terms of zeros of
Ai(ξ ) denoted as −sn,

ln = ±γ1C
2

(
sn

∆

)3/2

, (3.11)

where sn are known positive constants (sn ≈ 2.34, 4.09, 5.52, 6.79, . . . , (3π(4n −
1)/8)2/3; the first term of large n asymptotic expansion for sn, sn =(3π(4n − 1)/8)2/3,
gives at least 1.8 × 10−2 accuracy for n � 1 and 2.2 × 10−3 for n � 4. Higher-order
terms of the expansion are given in Abramowitz & Stegun (1965, § 10.4).

The group velocity is given by

dσ

dl
=

∓∆5/2

γ1σCs
3/2
n

[
4∆ + 3C

(
N2

0 − σ 2 + f̃ 2 + C
)] . (3.12)

In an unspecified vicinity of the singularity the asymptotics in terms of the distance
to the singularity ŷ take the form

ln(y) ∼ ŷ−3/2,
dσ

dl
∼ ŷ5/2. (3.13)

The shrinking of the wave field vertical scale is determined by two different factors.
The first one is imposed by the eigenfunction Φn(z) specified by (3.10); by virtue of
(3.10), (3.13) it decreases as l−2/3 or, in terms of ŷ, as ŷ1. The second contribution
to the vertical dependence is due to the exponential in the full expression for the
solution (3.6) ψ = Φ exp i(ly − σ t + δz); it is decreasing as δ−1 or ŷ3/2. This factor
becomes essential and even dominant only in the vicinity of the singularity.

3.1.2. The ‘mid-ocean’ waveguide: ‘parabolic’ attractor

Near a generic minimum not adjacent to a boundary, N(z) could be expanded as
N2(z) = N2

0 + γ2(z−zm)2, where N2
0 and γ2 = N2

0 /h2 are constants, and zm is the position
of the chosen local minimum of N2(z). This creates a parabolic domain around the
minimum N0, imparting the name ‘parabolic’ attractor. Again, we consider the example
in the oceanic context, but all the results obtained here apply to parabolic attractors
everywhere as long as the adopted generic expansion of N around zm remains valid.
By changing the origin to the point z = zm and the boundary conditions to Φ → 0 as
z = ±∞, the eigenfunctions can be found from (3.7) in the explicit form

Φ = a(Φ)Hn(ẑ)e
−ẑ2/2, where ẑ =

(
l2γ2

f 2 − σ 2

)1/4

z, (3.14)

where a(Φ) is the amplitude and Hn is the nth Hermite polynomial. Again because

of the fast e−ẑ2/2 decay outside the waveguide, the error due to moving the boundary
conditions to z = ±∞ proves to be negligible. The explicit dispersion relation was
found to be

l = ±(2n + 1)γ 1/2
2

C3/2

∆
, n > 0, C = f 2 − σ 2, ∆ = (f f̃ )2 −

(
N2

0 − σ 2 + f̃ 2
)
C,

(3.15)
which yields the group velocity

dσ

dl
=

∓∆2

σ (γ2C)1/2(2n + 1)
[
3∆ + 2C

(
N2

0 − σ 2 + f̃ 2 + C
)] .
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The asymptotics in terms of the distance ŷ to the tipping latitude are given by

ln ∼ ŷ−1,
dσ

dl
∼ ŷ2. (3.16)

The eigenfunction wave vertical scale decreases as l−1/2 or ŷ1/2, while the vertical
scale due to the exponential decreases as δ−1 or ŷ1. Again the contribution of the
exponential will be dominant near the singularity.

3.1.3. The upper waveguide: a ‘corner’ attractor

In the upper mixed layer of the ocean the buoyancy frequency can be assumed to
be constant, that is N2(z) = N2

c for z � zm. This creates an attractor at the bottom
corner of the parabolic line (at z = zm), imparting the name ‘corner’ attractor. While
from figure 3(b) it is impossible to see that this is indeed a point attractor, it is shown
numerically for a model with constant N in Gerkema & Shrira (2005b). Hereinafter,
we use the terms corner waveguide and upper waveguide interchangeably to emphasise
universality of the results. We move the origin of z to zm and then the eigenfunctions
of the boundary-value problem (3.7) can be written as

Φ = a(Φ) sin
(nπz

H

)
, n ∈ �, (3.17)

where amplitude a(Φ) is a real constant. The corresponding dispersion relation reads
as

l =
±nπ(σ 2 − f 2)

H
√

∆
, where ∆(y) = (f (y)2 − σ 2)

(
σ 2 − N2

0

)
+ σ 2f̃ 2. (3.18)

Note that l(σ ) has a singularity when ∆(y) → 0, implying that the wavelength tends
to zero as y approaches this point, which we denote as y∗, or in terms of latitude as
φ∗. The group velocity is given by

dσ

dl
=

±H∆3/2

nπσ (∆ + f 2f̃ 2 + (σ 2 − f 2)2).
(3.19)

The asymptotics in terms of the distance to the singularity ŷ ≡ y − y∗ are

l ∼ ŷ−1/2,
dσ

dl
∼ ŷ3/2. (3.20)

Due to the idealisation adopted in this very particular model of stratification,
the width of the waveguide and the vertical scale of the eigenfunctions Φn(z)
remain constant. Correspondingly, the characteristic vertical scale of all wave-induced
physical quantities, such as velocity components, shear, etc., is decreasing entirely due
to the exponential factor eiδz as δ−1 or, in terms of the distance to singularity in its
vicinity, as ŷ1/2.

3.2. Evolution of wave amplitude

With ε small but non-zero the coefficients in (3.4) vary slowly with y and there is
an additional term compared with the f -plane. Since there is no method for solving
such mixed-type problems (3.4) and (2.8) in a general setting, we exploit the already
discussed smallness of ε and apply the WKB asymptotic expansion (e.g. Fedoryuk
1993; Miropol’sky 2001). For the situations where a single vertical mode specified by
the chosen mode number n is dominant, the expansion takes the form

ψ = Ψn(0)(z, εy) exp i

[∫ y

yi

ln(εy1) dy1 − σ t

]
+
∑

m,s=1

εmψs(m)(z, εy), (3.21)
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where yi is the initial position of the wavepacket. The mth-order corrections in ε

denoted as ψs(m)(z, εy), which are not confined to the initially chosen nth mode, are
usually used only to check the accuracy of the leading-order terms. The chosen mode
number n is included in the s summation index. Note that it is possible to consider
a more general problem, where in the zeroth order we begin with a number of
wavepackets belonging to different modes. In our context, analysis of such situations
does not promise a new insight and, therefore, lies beyond the scope of the present
paper. A detailed description of the WKB procedure for multi-modal systems in the
context of internal waves could be found in, for example, Miropol’sky (2001).

Substituting (3.21) into (3.4) yields in the zeroth order in ε the same boundary
value problem (3.7), thus the same dispersion relation and group velocity formulae
still apply. In the first order in ε, we find (with the mode number subscript dropped)

l2(N2 −σ 2 + f̃ 2)Ψ(1) −2ilf f̃ ∂zΨ(1) +(σ 2 −f 2)∂2
zzΨ(1) = F [Ψ(0)], Ψ(1)(0) = Ψ(1)(H ) = 0,

(3.22)
where

F
[
Ψ(0)

]
= f̃ ∂yf ∂zΨ(0) + (N2 − σ 2 + f̃ 2)(2il∂yΨ(0) + iΨ(0)∂yl) + 2f f̃ ∂2

yzΨ(0). (3.23)

The requirement of solvability of (3.22) imposes the following orthogonality condition:∫ H

0

F
[
Ψ(0)

]
Ψ ∗

(0) dz = 0,

∫ H

0

(
F
[
Ψ(0)

])∗
Ψ(0) dz = 0, (3.24)

where ∗ denotes the complex conjugate. Combining these two conditions we find∫ H

0

[2f̃ fyΨ
∗Ψz + (N2 − σ 2 + f̃ 2)(2il∂y(Ψ Ψ ∗) + 2iΨ Ψ ∗ly) + 2f f̃ (ΨzΨ

∗
y − Ψ ∗

z Ψy)] dz = 0,

(3.25)

where Ψ =Ψ(0). Then using the substitution Ψ (z, l, σ ) =Φ(z, l, σ ) exp i(δz) we get the
conservation law

∂

∂y

[
l

∫ H

0

(N2 − σ 2 + f̃ 2)Φ2 dz + f f̃ δ

∫ H

0

Φ2 dz

]
= 0, (3.26)

which prescribes the evolution of the wave amplitude. Equation (3.26) is the stationary
form of the conservation of wave action equation, the quantity in square brackets is
the wave action flux (Whitham 1974). As far as we are aware, the conservation of
wave action has never been deduced for internal wave motions on the non-traditional
β-plane. The conservation of wave action equation in the stationary form (3.26)
describes the evolution of wave amplitude of a narrowband wavepacket of frequency
σ as it propagates through inhomogeneity created by the latitude-dependent rotation.
The wave belongs to a particular nth mode implicitly specified by the presence of
wavenumber l in (3.26); l satisfies the dispersion relation provided by the boundary-
value problem (3.22).

The equation, in general, is applicable to all internal wave motions, although the
non-traditional effects are more prominent for the near-inertial waves we are focusing
on. The change in energy of propagating waves could be interpreted in two different
ways. In the terrestrial frames of reference (e.g Cartesian frame and the β-plane or
spherical coordinates), the wave propagates through the steady spatial inhomogeneity
created by the latitude-dependent rotation. Since such frames are not inertial, there
is no special reason for the energy of the wavepacket to be conserved. If we consider
the problem in an inertial frame, then we arrive at the situation similar to the classical
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examples of waves propagating on non-uniform currents: in our case waves propagate
through inhomogeneous flow created by the sphere’s solid-body rotation.

Explicitly defining the amplitude in terms of the streamfunction Φ(z) = a(Φ)Φ̃(z),
where Φ̃(z) is a eigenfunction of (3.7) depending upon the waveguide, we obtain

a(Φ) = a0

(∫ H

0

[l(N2 − σ 2 + f̃ 2) + f f̃ δ]Φ̃2 dz

)−1/2

, (3.27)

where a0 is a constant found by matching with the initial amplitude. The amplitude
depends on y through f (y), l(y) and Φ̃2(y). Setting N2(z) = N2

0 + Ñ2(z) we can simplify
this to

a(Φ) = a0

{∫ H

0

[
∆

σ 2 − f 2
+ Ñ2(z)

]
lΦ2 dz

}−1/2

. (3.28)

The evolution of the wave amplitude is specific to each of the three basic waveguides
and has to be examined separately for each case.

3.2.1. The bottom (‘wedge’) waveguide

From (3.27), the amplitude’s spatial dependence for the bottom waveguide is given
by

a(Φ) = a0

(∫ ∞

0

[
l
(
N2

0 − σ 2 + f̃ 2
)

+ f f̃ δ + lγ1z
]{

Ai

(
l̃2/3

[
z − ∆

γ1C

])}2

dz

)−1/2

,

(3.29)

where l̃2 = l2γ1/C with l(y) being prescribed by (3.11). The expression can be further
simplified:

a(Φ) = a0

(
l̃−2/3

∫ ∞

0

[
l
(
N2

0 − σ 2 + f̃ 2
)

+ f f̃ δ + l̃−2/3lγ1z
]
Ai(z − sn)

2 dz

)−1/2

. (3.30)

In terms of large l or, equivalently, small distance ŷ to the attractor latitude, the
leading-order asymptotics are

a(Φ) � αl · l1/6 � αŷ · ŷ−1/4, (3.31)

where expressions for the constants αl, αŷ are given in Appendix A. From the Euler
equations (2.4a)–(2.4e) the asymptotics for the other variables follow:

a(w) ∼ a(v) ∼ a(u) ∼ a(b) ∼ ŷ−7/4. (3.32)

In the immediate vicinity of the zeros of the eigenfunctions the field variables have
different asymptotics, since only the derivatives of the eigenfunction are non-zero.
For the nth mode there will always exist n zeros. One is imposed by the boundary
condition at the bottom, Φ(0) = a(Φ)Ai(−sn) = 0. The other n − 1 occur when the
argument of the Airy function passes through the other zeros: sm, 0 < m < n. In the
immediate vicinity of these zeros the next order in the asymptotics has to be used:

a(v) ∼ a(u) ∼ ŷ−5/4, a(w) ∼ a(b) ∼ 0. (3.33)

Hereinafter, for brevity we will often refer to the asymptotics in the vicinity of a zero
of the eigenfunction as ‘near-zero’ asymptotics and those away from a zero of the
eigenfunction as ‘generic’ asymptotics. The Richardson number Ri decreases more
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rapidly outside the vicinity of the zeros,

Ri =
N2

u2
z + v2

z

∼ ŷ13/2 (generic) and Ri ∼ ŷ11/2 (near-zero). (3.34)

The derivation of the asymptotics for the shear is given in Appendix B.2. The
nonlinearity (wave steepness) parameter εN (defined as the ratio of amplitude of
meridional velocity to the phase velocity) grows more rapidly far from zeros than in
their vicinity:

εN ∼ ŷ−13/4 (generic), εN ∼ ŷ−11/4 (near-zero). (3.35)

Small y asymptotics, which might be of practical interest, are given in Appendix A.

3.2.2. The ‘mid-ocean’ (‘parabolic’) waveguide

For the mid-ocean waveguide substituting explicit normalised eigenfunctions Φ̂ =
Hn(ẑ) · e−ẑ2/2, where ẑ =(l2γ2/(f

2 − σ 2))1/4z ≡ z/b, into (3.27) we find

a(Φ) =
a0√∫ ∞

−∞
b
[
l
(
N2

0 − σ 2 + f̃ 2
)

+ f f̃ δ + lb2γ2ẑ
2
]{

Hn(ẑ) exp

(
− ẑ2

2

)}2

dẑ

, (3.36)

where l(y) is given by (3.15). The leading-order asymptotics takes the form

a(Φ) � αl · l1/4 � αŷ · ŷ−1/4, (3.37)

where αl and αŷ are given in Appendix A, while the asymptotics for other variables
are in § 4.3. Small y asymptotics are also available in Appendix A.

3.2.3. The ‘top’ (‘corner’) waveguide

Similarly, for the upper or top waveguide the amplitude is given by

a(Φ) = a0

(∫ H

0

[
l
(
N2

0 − σ 2 + f̃ 2
)

+ f f̃ δ
]
sin2

(
nπz

H

)
dz

)−1/2

. (3.38)

Remarkably the expression has the same leading-order asymptotics in ŷ as in the case
of the bottom and mid-ocean waveguides

a(Φ) � αl · l1/2 � αŷ · ŷ−1/4. (3.39)

Whether this is just a coincidence or there are deep underlying reasons behind this
universality is not clear. The coefficients αl, αŷ are given in Appendix A along with
small y asymptotics.

In all models of stratification considered, the velocity components as well as the
inverse Richardson number and nonlinearity monotonously grow and tend to infinity
at the tipping latitude. Note that the inverse Richardson number always grows more
rapidly than the nonlinearity.

3.3. Accuracy and range of validity of the asymptotics

The advantages of using, wherever possible, simple asymptotic solutions for the
amplitudes of the previous section, compared to the full formulae (3.30), (3.36)
and (3.38), are obvious; we could expect these asymptotics to be valid in a
certain unspecified neighbourhood of the singular point for the bottom and middle
waveguides. However, it is not a priori clear how well they describe the full solution
and, crucially, what is their range of validity. Remarkably, for the streamfunction
amplitude aΦ the discrepancy between the full expressions and their small ŷ
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Figure 4. Validity of small ŷ asymptotics. Evolution of scaled aΦ is shown in thick
lines: thick dashed, aΦ small ŷ asymptotics (3.31); thick solid, aΦ according to
the full formula (3.30); thick dotted, ratio of aΦ (3.30) to its asymptotics (3.31).
Evolution of scaled l(y) is shown by thin lines: solid, l(y) according to (3.11); dashed,
asymptotics (3.13), both shifted vertically by 1/2. Parameters used: N0 = 2.5 × 10−4 s−1,

latitude=45◦, γ1 = 4 × 10−10 m−1 s−2, a0 = 5.14 × 10−3. The starting point y = ystart = 11 km
is chosen to ensure that the separation of scales condition (3.3) holds for y � ystart.

asymptotics is negligible over the entire range of ŷ for all models of stratification.
This point is demonstrated in figure 4 for the bottom waveguide: evolution of the
streamfunction amplitude aΦ according to the full formula (3.10) and (3.30) is shown
and compared to its leading-order asymptotics. This excellent agreement allows us
to use the asymptotics as a very good approximation of true dependencies for all
ŷ throughout the subsequent sections. Note that for other wave characteristics the
agreement between the full expressions and their small ŷ asymptotics is good but
not as spectacularly good as for aΦ . This point is illustrated in figure 4 by plotting
wavenumber dependence l(y) as given by (3.11) and its asymptotic counterpart (3.13).

3.4. Validity of the WKB solutions

The WKB expansion is based on the assumption of separation of scales given in (3.3).
If the condition is satisfied initially, and as long as we are interested in subinertial
waves propagating towards their tipping latitude, which is the case, the wavelength
decreases for all the waveguides as specified by their asymptotics; hence the condition
of scale separation works progressively better. The most restrictive in our context
is the condition that in the process of evolution the wavelength should also remain
small compared to the distance to the singular point, ŷ, that is, the condition

lŷ � 1 (3.40)

has to be satisfied. For the top, middle and bottom waveguides, lŷ evolves by virtue
of their asymptotics as ŷ1/2, ŷ0 and ŷ−1/2, respectively. Each case has to be considered
separately.

The bottom waveguide has the asymptotics ŷ−1/2, implying that as the wave
approaches the singularity the condition becomes better satisfied. Hence, since the
small parameter ε representing the separation of scales also tends to zero in the limit
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ŷ → 0, the solution in the form

Φ = b1 · ŷ−1/4Ai[b2 · ŷ−1z − sn], b1 = const.,

b2 = |bl |2/3

(
γ1

2f0βy�

)1/3

, bl = −2γ1f0βy�s3/2
n

∆̄
, ∆̄ = (2f0β + 2β2y�)

(
N2

0 − σ 2
)
⎫⎬
⎭

(3.41)

tends to the exact solution. Here y� is the length of the waveguide specified by (3.9).
To return to original physical variables, say velocities, we have to take into account
the factor eiδz eliminated by transformation (3.6).

For the parabolic waveguide, lŷ is monotonically increasing and tends to a finite
non-zero value at the singularity. Provided the validity condition (3.40) is satisfied
at any chosen initial point, it remains valid at the singularity. This implies that the
solution

Φ = m1 · ŷ−1/4Hn

[
m2

z

ŷ1/2

]
exp

(
−
(

m2

z

ŷ1/2

)2/
2

)
, m1 = const.,

m2 =

(
γ2|ml |
2f0βy�

)1/4

, ml = −
(2n + 1)

√
γ2(2f0βy�)3/2

∆̄

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.42)

is at least O(ε) accurate when ŷ → 0. On the other hand, as ŷ → 0 the slope of the
turning surface delineating the hyperbolicity/ellipticity domains inevitably becomes
supercritical for the characteristics, which results in the characteristics attractor
occurring at some yattractor < y∗. Therefore, for the parabolic waveguides, it is difficult to
expect the WKB to be valid for yattractor <y <y∗. Nevertheless the direct substitution
of the WKB solution (3.42) into the original streamfunction equation (3.4) and
numerical evaluation of the discrepancy shows that the asymptotic solution does
satisfy the equation with good accuracy even when ŷ → 0. Although for the typical
oceanic conditions the interval |yattractor − y∗| is of the order of a few metres at most,
the discrepancy might be of significance in other physical contexts. The issue needs
further investigation.

For the top waveguide, the asymptotics lŷ ∼ ŷ1/2 implies that the WKB ceases to
be valid near the singularity. However, for realistic values of parameters the region
of the WKB validity covers almost the entire domain. (The WKB breaks down at
ŷ ∼ 1m with the domain being several hundred kilometres.) We do not elaborate this
point here, since, as we show in a separate paper, if viscosity is taken into account
then a wavepacket will totally dissipate well before it could leave the domain of the
WKB validity. Also the idealisation of sharp interface certainly loses its validity for
sufficiently small wavelengths. It is also worth noting that this most idealised model
of ocean stratification does not fully capture the true behaviour of the wave field near
singularity in the WKB description and therefore, from a mathematical viewpoint,
is more challenging than more realistic models. Obviously the WKB description is
not applicable in the vicinity of the inertial latitude: it becomes valid for y > ystart ,
and ystart depends both on stratification and latitude. For the parameters illustrated
in figure 4 ystart is 11 km. Further on throughout the paper, for consistency we set
ystart = 11 km for all N(z) and all latitudes.
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4. Evolution of a finite bandwidth packet
4.1. Description of finite bandwidth packets

In the previous section, the wavepacket was assumed to be quasi-monochromatic;
however, in reality the wavepackets always have a finite bandwidth. Therefore,
although the conclusions of § 3 regarding the existence of a singularity and the
behaviour of the wave as it approaches it are valid for each Fourier harmonic, and
the problem is linear, we cannot make any conclusions on the behaviour of the
packet as a whole. Because for each Fourier component the singularity is located in
a different position, it is not a priori clear whether the packet remains focused. To
address this issue, we consider a packet of finite bandwidth, adopting the approach
used in Gnevyshev & Shrira (1989).

Consider a packet with central frequency σ0 and a characteristic bandwidth �σ .
Assume for certainty its spectrum is Gaussian. Then, starting with (3.21), without loss
of generality the streamfunction could be written as

ψ(y, z, t) =
1

�σ
√

π

∫ ∞

−∞
Ψ (y, z, σ ) exp

(
i

∫ y

yi

l(y1, σ ) dy1 − iσ t −
(

σ − σ0

�σ

)2
)

dσ,

(4.1)

where Ψ (y, z, σ ) and l(y, σ ) are given by the solution for monochromatic wave
discussed in § 3 and here presumed to be known for each σ . Assume that the width
of the packet is small compared to the central frequency, i.e. �σ � σ0. Then taking
σ = σ0 + σ̃ , where σ̃ is comparatively small, we expand both l and Ψ in the Taylor
series in σ̃ around σ0:

ψ =
1

�σ
√

π

∫ ∞

−∞
[Ψ (y, z, σ0) + Ψ ′(y, z, σ0)σ̃ + · · · ]

× exp

[
−σ0t − iσ̃ t + i

∫ y

yi

[l(y1, σ0) + l′(y1, σ0)σ̃ + · · · ] dy1 −
(

σ̃

�σ

)2
]

dσ. (4.2)

In this section, we are only concerned with the effects of wavepacket spreading. To
assess whether the packet contracts as it approaches the critical point and to find the
effect this has on its amplitude, we need to retain only the leading-order ψ term, as
the higher-order terms there do not contribute to the packet spreading.

4.2. First-order approximation

First, on retaining only the leading-order term in the exponent expansion, we find

ψ = Ψ (y, z, σ0) exp

[
i

∫ y

yi

l(y1, σ0) dy1 − iσ0t − s2

]
, (4.3)

where s =
�σ

2

(
−t +

∫ y

yi

dy1

cg(y1, σ0)

)
, cg =

dσ

dl
is the group velocity.

It is easy to see that the decay of the wave field, due to distancing of the ‘observation
point’ y(t) from the centre of the wavepacket yc(t), is given by exp(−s2). At t =0,
the centre of the wavepacket is assumed to be at the position yi . Then for all times t

(t > 0) the new position of the centre, yc(t), is prescribed by

t =

∫ yc

yi

dy1

cg(y1, σ0)
, (4.4)
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and the expression for s can be rewritten as

s =
�σ

2

(
−
∫ yc

yi

dy1

cg(y1, σ0)
+

∫ y

yi

dy1

cg(y1, σ0)

)
=

�σ

2

(∫ y

yc

dy1

cg(y1, σ0)

)
. (4.5)

We define the meridional scale of the packet Ly as the scale of the field’s e-fold
decay from the centre of the packet to its periphery. More precisely, Ly is the distance
between a ‘boundary’ point in the packet and its centre, Ly = |yb −yc|, with yb specified
by the e-fold decay condition s2 = 1.

In the vicinity of the critical latitude for the considered models of waveguides,
the group velocity tends to zero with the distance to the singularity ŷ. Consider the
general setting

cg = αŷq (q > 1), (4.6)

where ŷ = y� −y is the distance from the point y to the critical point y�. The condition
s2 = 1 applied to (4.5) specifies the evolution of the packet boundary:

ŷb = ŷc(1 ± W )1/(1−q), W =
2α(q − 1)ŷq−1

c

�σ
. (4.7)

Then the meridional scale of the packet evolves as

Ly = |1 − (1 ± W )1/(1−q)|ŷc. (4.8)

Since q > 1 and ŷc → 0, it follows that W � 1, which enables us to simplify the
expression for the packet scale:

Ly ≈ 2α

�σ
ŷq

c . (4.9)

Hence as long as q > 1 the wavepacket is always narrowing. For the considered specific
models of the bottom, middle and top waveguides, q = 5/3; 2; 3/2, correspondingly,
the meridional scale decreases as ŷ5/3

c , ŷ2
c and ŷ3/2

c , respectively.

4.3. Second-order approximation

On taking into account the O(σ − σ0)
2 term in the expansion of the exponent in (4.2),

we find

ψ(y, z, t) =
Ψ (y, z, σ0)√

1 − iµ
exp

[
i

∫ y

yi

l(y1, σ0) dy1 − iσ0t − s2(1 + iµ)

1 + µ2

]
, (4.10)

where

µ =
�σ 2

2

∫ y

yi

∂2

∂σ 2
l(y1, σ0) dy1. (4.11)

Therefore, to second order, the spatial decay of the wavepacket is given by the factor
exp(−s2/(1 + µ2)). As before we define the meridional scale of the packet Ly by the
e-fold decay condition, which now takes the form: s2/(1 + µ2) = 1. For waves in the
vicinity of the critical latitude, with the power-like asymptotics

l = αlŷ
p, cg = αcg

ŷq(p > 0, q > 1), (4.12)

it is straightforward to find

µ =
�σ 2qα

(q/p−1)
l

2pα2
cg

(p + 2q − 1)

(
ŷ−(p+2q−1) − ŷ

−(p+2q−1)
i

)
(4.13)
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Since p + 2q − 1 > 1, in the vicinity of the critical point µ ∼ ŷ−(p + 2q−1) and,
correspondingly, µ � 1. There could exist interesting intermediate asymptotics in
the range µ ∼ 1; however, we are primarily concerned with the large time limit,
and therefore confine our consideration to the situation where µ � 1. The condition
s2/µ2 = 1 specifies ŷb:

±�σq(q − 1)α(q/p−1)
l

pαcg
(p + 2q − 1)

(
ŷq−1

c − ŷq−1
c

(
ŷb

ŷi

)p+2q−1)
= ŷ

p+q
b ŷq−1

c − ŷ
p+2q−1
b . (4.14)

Since p + 2q − 1 > 0 and ŷb � ŷi , from (4.14) it follows that ŷb → 0 as ŷ(q−1)/(p + 2q−1)
c .

Thus, for all three waveguides, the packet remains focused at the critical point for
the central harmonic. The finite bandwidth effect noticeably slows down the wave
amplitude growth through a factor

√
2/µ ∼ ŷ(p +2q−1)/2 due to the (1 − iµ)−1/2 term in

(4.14). For each of the waveguides this effect turns the amplitude growth into decay
for ψ . The rate of amplitude decay in the bottom, middle and top waveguides is ŷ,
ŷ3/4 and ŷ1/2, respectively. However, it is only for ψ that the growth turns into decay.
The velocities, vertical shear and the nonlinearity are either stationary or continue to
grow, albeit more slowly.

4.4. Summary

Here we summarise our main findings on the evolution of subinertial wavepackets
propagating polewards in each of the three basic types of waveguides in the rotating
stratified fluid on the non-traditional β-plane. As tracing of the characteristics of
the basic equation (2.7) suggests (see figure 3), for each waveguide there exists a
critical point y∗ – the tipping latitude – beyond which a trapped wavepacket cannot
propagate. Dependence of y∗ on the stratification profile and latitude is given by
(3.9). Our key observation is that evolution of wave packets is well described by the
WKB. For the bottom and middle waveguides the WKB becomes more accurate as
a packet approaches its critical point y∗. Narrowing of the waveguide height down
to zero at the critical point and the decrease of the wavepacket group velocity (also
down to zero at y = y∗) always results in a monotonic growth of the monochromatic
wave amplitude (see (3.38), (3.41), (3.42) and figure 4), tending to a singularity at
y = y∗. This focusing always overcomes the dispersion spreading for finite bandwidth
packets (checked to second order) in the sense that the packet remains localised, but
the dispersion weakens the amplitude growth and even turns it into decay in terms
of ψ for the waveguides considered here.

First, recall that the wave field in terms of the streamfunction is described either by

ψ(y, z, t) = Φ(z) exp i(ly − σ t + δz), δ =
lf f̃

(σ 2 − f 2)
(4.15)

for monochromatic wavepackets, or by a Fourier integral for the packets of finite
bandwidth �σ:

ψ(y, z, t) =
1

�σ
√

π

∫ ∞

−∞
Ψ (y, z, σ ) exp

(
i

∫ y

yi

l(y1, σ ) dy1 − iσ t −
(

σ − σ0

�σ

)2
)

dσ.

(4.16)

4.4.1. Pattern of evolution

The derived formulae contain all the information on wave evolution in a somewhat
implicit form. To translate the formulae in terms of ψ and Ψ into dependencies of
physical quantities of prime interest, and to provide a broad picture of wave evolution,
we illustrate and briefly discuss it separately for each waveguide. We plot dependence
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Shear, Ri –1/2

Figure 5. Top waveguide: meridional velocity (a) and the vertical shear or Ri−1/2 (b). Solid
lines represent the full WKB results, dashed lines show their small ŷ asymptotics. Evolution
of monochromatic wave is plotted in thin lines. Finite bandwidth results are shown in thick
lines. The curves for the vertical shear and Ri−1/2 are identical. The dotted vertical line near
the critical point indicates where the WKB ceases to be applicable as condition (3.40) breaks
down. The curves are normalised by choosing a0 such that the full WKB expressions (solid line)
equal one at the chosen starting point ystart. Parameters used: z = zm, ystart = 11 km, φ = 45◦,
N0 = 2.5 × 10−4 s−1, h = 100 m.

on y of meridional velocity v and full vertical shear (v2
z + u2

z)
1/2 over the whole range

of existence of the subinertial modes. The normalised curves for the vertical shear and
Ri−1/2 are identical. Dependence of the zonal component u is practically identical to
that of v.

Figure 5 illustrates the key features of wave evolution in the top waveguide. It
demonstrates that simple asymptotic formulae agree very well with the full WKB
results. It should be noted that in this figure all the dependencies are taken at the
lower boundary, that is, at the zero of the eigenfunction. Away from zeros the physical
quantities increase more rapidly. For the top waveguide the WKB itself ceases to be
applicable at a certain distance before the singularity, but in the oceanographic
context the distance, being less than a metre for the typical parameters, is negligible
for any practical consideration. Therefore the challenging mathematical problem of
describing the field in the vicinity of singularity has not been considered here, some
analytical results could be found in Gerkema & Shrira (2005b). The account of the
finite bandwidth of the packet leads to quite dramatic consequences in this case: in
the vicinity of eigenfunction zeros the unlimited power growth of the velocities and
shear turns into the decay of velocities and a very weak finite growth of shear. Away
from the zeros there is still a slow increase in shear but the velocities remain constant.
Although away from zeros the shear does become infinite at the singularity, in the
oceanic context the growth rate seems to be too slow, and so far neglected processes
might arrest and reverse the growth. Evolution in the middle waveguide illustrated
in figure 6 has three important distinctions. First, the WKB remains valid over the
whole domain including the singularity. Second, the amplitude growth is stronger:
the account of dispersion weakens it, but velocity continues to grow mildly for about
400 km. The small ŷ asymptotics do not catch this growth. The last and the most
important distinction is that the growth of vertical shear is stronger; shear tends to
infinity at the tipping latitude, although the initial growth rate is quite moderate.
Again it should be noted that this consideration is carried out at the zero of the
eigenfunction for n=1, while the growth rates are higher away from the zero. We
evaluate the function at this point for simplicity, as any other constant value of z would
leave the waveguide before reaching the singularity; to follow the line of maximal
shear is complicated and could be confusing without elaborating it in great detail.
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Figure 6. Middle waveguide: meridional velocity (a) and the vertical shear or Ri−1/2 (b). Solid
lines represent the full WKB results, dashed lines show their small ŷ asymptotics. Evolution
of monochromatic wave is plotted in thin lines. Finite bandwidth results are shown in thick
lines. The curves are normalised by choosing a0 such that the full WKB expressions (solid line)
equal one at the chosen starting point ystart. Parameters used: z = zm, ystart = 11 km, φ = 45◦,
N0 = 3.3 × 10−4 s−1, h =100 m.
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Figure 7. Bottom waveguide: meridional velocity (a) and the vertical shear or Ri−1/2 (b).
Solid lines represent the full WKB results, dashed lines show their small ŷ asymptotics.
Evolution of monochromatic wave is plotted in thin lines. Finite bandwidth results are shown
in thick lines. The curves are normalised by choosing a0 such that the full WKB expressions
(solid line) equal one at the chosen starting point ystart. Parameters used: z = 0, ystart = 11 km,
φ = 45◦, N0 = 2.5 × 10−4 s−1, h =650 m.

The same features are much more strongly pronounced in the case of the bottom
waveguide as shown in figure 7: velocity grows linearly up to the singularity, and again
the asymptotics fails to describe this growth. The shear grows much more substantially
and exhibits singularity at the attractor latitude. For the same simple reasoning, the
shear is evaluated at the bottom (z =0), which is a zero of the eigenfunction. The
asymptotics accurately predict the evolution in the vicinity of the attractor latitude
and so can be used for demonstrating qualitative behaviour. What happens in
the vicinity of the attractor latitude requires a more detailed consideration which
we carry out below.

4.4.2. Asymptotics in the vicinity of the singularity

Asymptotics in the vicinity of the attractor latitude in terms of the distance to the
critical point ŷ have the following universal form for all physical variables of interest:

Variable of interest ∼ ŷ−mj Φ̂j ei(cŷ−k−σ t+δz), c = const. (4.17)
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Waveguide/variable Φ̂1 Φ̂2 ẑ A l cg k

Bottom(mc) Ai(ẑ) ∂ẑAi(ẑ) ŷ−1z − sn ŷ−1/4 ŷ−3/2 ŷ5/2 3/2
Bottom(f b) Ai(ẑ) ∂ẑAi(ẑ) ŷ−1z − sn ŷ1 ŷ−3/2 ŷ5/2 3/2

Middle(mc) e−ẑ2/2Hn(ẑ) e−ẑ2/2∂ẑHn(ẑ) ŷ−1/2z ŷ−1/4 ŷ−1 ŷ2 1

Middle(f b) e−ẑ2/2Hn(ẑ) e−ẑ2/2∂ẑHn(ẑ) ŷ−1/2z ŷ3/4 ŷ−1 ŷ2 1

Top(mc) sin(ẑ) cos(ẑ) z ŷ−1/4 ŷ−1/2 ŷ3/2 1/2
Top(f b) sin(ẑ) cos(ẑ) z ŷ1/2 ŷ−1/2 ŷ3/2 1/2

Table 1. Asymptotics for the basic quantities in each waveguide. The subscripts ‘mc’ and
‘fb’ indicate the monochromatic and finite bandwidth wavepackets, respectively. A is the
normalised streamfunction amplitude.

Waveguide/variable w v u b p εN vz, uz Ri−1

Bottom(mc) 7/4 7/4 7/4 7/4 1/4 13/4 13/4 13/2
Bottom(f b) 1/2 1/2 1/2 1/2 −1 2 2 4

Middle(mc) 5/4 5/4 5/4 5/4 1/4 9/4 9/4 9/2
Middle(f b) 5/4 1/4 1/4 1/4 −3/4 5/4 5/4 5/2

Top(mc) 3/4 3/4 3/4 3/4 1/4 5/4 5/4 5/2
Top(f b) 0 0 0 0 −1/2 1/2 1/2 1/2

Table 2. The exponents m1 for generic small ŷ asymptotics (4.17). Here p denotes the variation
of pressure over reference density and εN is nonlinearity small parameter. The subscripts ‘mc’
and ‘fb’ indicate the monochromatic and finite bandwidth wavepackets, respectively.

Waveguide/variable w v u b p εN vz, uz Ri−1

Bottom(mc) – 5/4 5/4 – −1/4 11/4 11/4 11/2
Bottom(f b) – 0 0 – −3/2 3/2 3/2 3

Middle(mc) – 3/4 3/4 – −1/4 7/4 7/4 7/2
Middle(f b) – −1/4 −1/4 – −5/4 3/4 3/4 3/2

Top(mc) – 1/4 1/4 – −1/4 3/4 3/4 3/2
Top(f b) – −1/2 −1/2 – −1 0 0 0

Table 3. The exponents m2 for a small ŷ asymptotic (4.17) near the boundary (for the top
and bottom waveguide) and in the vicinity of the symmetry line for the middle waveguide.
The subscripts ‘mc’ and ‘fb’ indicate the monochromatic and finite bandwidth wavepackets,
respectively. The notation is the same as in table 2. Near the boundaries and zeros of the
eigenfunctions the quantities w and b do not have an expansion in ŷ and are approximately
zero.

The expression for Φ̂j , exponents mj and k as well as constant c are different for each
waveguide. The exponents mj also differ for monochromatic and finite bandwidth
packets. The subscript j = 1 indicates the generic asymptotic regime given by the
leading-order asymptotic term which vanishes at the zeros of the eigenfunction.
Their positions include the ‘bottom’ boundaries for the top and bottom waveguides
for all modes and the symmetry line for the middle waveguide for the odd nodes;
correspondingly the formulae with j =1 describe the wave field away from these
zeros. The subscript j = 2 indicates the near-zero asymptotic regime. Results are
summarised in tables 1–3. The expressions for the coefficients can be found by taking
the streamfunction coefficients given in Appendix A and using the streamfunction
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definition (2.6) and the Euler equations (2.4a)–(2.4e). An example is given in Appendix
B.2 for vertical shear in the bottom waveguide.

It is worth noting that the growth of all field components is the most robust
for the bottom waveguide and weakest for the top waveguide. In all waveguides in
the monochromatic case there is an infinite increase in velocities and shear towards
singularity in both the generic and near-zero asymptotics. Taking into account the
realistic effect of finite bandwidth does not destroy the phenomenon of the singular
focusing, but vastly changes its outcome, as previously discussed. The finite bandwidth
effects each waveguide differently. For the bottom waveguide, while growth of all field
variables continues for most of the domain, the growth of velocities is slowed down
near the zeros of the eigenfunction Φ̂1, producing regions of near-zero growth in the
y–z domain. However, the vertical shear and inverse Richardson number continue
to grow robustly even according to the near-zero asymptotics. The velocities in
the middle waveguide also continue to grow while away from the zeros; however,
according to the near-zero asymptotics the velocities decay at the same rate as they
increase under the generic asymptotics. Importantly, however, both the vertical shear
and inverse Richardson number continue to grow, albeit more slowly than in the
bottom waveguide. Finally, for the upper waveguide the velocities are nearly constant
(∼ŷ0) in the generic case and are decreasing in the vicinity of zeros. The shear
increases away from the zeros and is asymptotically constant in their neighbourhood.
Although the inverse Richardson number is growing, the growth is much slower than
in the other waveguides.

For all the waveguides of special interest is the effect of nearby zeros on the shear
and inverse Richardson number. If we move the ‘observation point’ z off z = zm

for the middle waveguides and z = 0 for the bottom waveguide the local buoyancy
frequency N will increase thus decreasing the inverse Richardson number. However,
since the z = zm and z =0 for their respective waveguides coincide with a zero in
the eigenfunction (for all modes on the top and bottom waveguides and for odd
modes on the middle waveguide), the growth of inverse Richardson number at these
points will be minimal (see tables 2 and 3). This implies that the maximum of inverse
Richardson number which is initially at z = zm (or z = 0) then moves onto the generic
asymptotics, which provides local maximum in inverse Richardson number growth.
For higher mode numbers, this creates alternating regions of high and low shear
in the vertical cross-sections and causes non-monotonic growth in y of the inverse
Richardson number for any fixed z.

5. Discussion
We begin by summarising our findings from the basic fluid dynamics perspective.

For inertia-gravity waves in a rotating ideal fluid with arbitrary density stratification
confined in a spherical shell we analytically found singular modes of continuous
spectrum within the framework of the linearised Euler equations on the non-
traditional β-plane. More specifically, first we noticed that the wavelength of inertia-
gravity waves is rapidly decreasing polewards of the inertial latitude, which implies
that beyond the inertial latitude there is always separation of scales between the
wavelength and the curvature radius of the surface R, whatever the value of R.
This separation of scales is exploited, allowing an analytic solution of the mixed-
type boundary value problem to be obtained in the WKB description. For waves
of a fixed frequency σ the solutions become singular at the tipping points of the
hyperbolicity domain y∗. Depending on the stratification profile we identified three
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generic basic types of waveguides and corresponding tip singularities: ‘wedge-like’,
‘parabolic’ and ‘corner’; in the oceanic context they appear as the bottom, mid-
ocean and top guides. For an arbitrary smooth stratification profile, the wave motion
becomes confined in the waveguides and then focuses at their tips. The particular
way the wave focuses is prescribed by the stratification in the vicinity of the tip.
Locally, the buoyancy frequency N(z) could be either constant, linear, quadratic
or non-analytic. The explicit analytic solutions in the vicinity of these singularities
summarised in § 4.4.2 are universal in the sense that they describe the generic options
for an arbitrary smooth stratification. Qualitatively the wave evolution resembles the
classical problem of an internal wave approaching its critical layer (e.g. LeBlond &
Mysak 1978; Miropol’sky 2001): within the framework of the initial-value problem
a wavepacket never reaches the singular point, while the wavelength tends to zero.
However, in contrast to the critical layer situation, where reflection and penetration
are possible for relatively weak stratification with Ri ∼ 1 (e.g. Lindzen Barker 1985),
in our case there is no reflection, even in the ideal fluid the singularities act as absolute
absorbers of the wave field, similar to the black holes in astrophysics. There are also
important distinctions of mathematical character: critical layers for internal waves are
considered as one-dimensional problems described by ODEs, while our singularities
are two-dimensional and have to be described by mixed-type PDEs. Although two-
dimensional absorbing critical layers are also known in the context of Rossby waves
on zonal currents (Gnevyshev & Shrira 1989), their mathematical model is essentially
different.

The second key question is how robust are the found singularities. Since each Fourier
harmonic develops a singularity at its own tipping latitude, survival of the singularities
for a finite bandwidth wavepacket and, hence, their physical existence is not a priori
guaranteed. We demonstrated that the singularities are robust in this sense, they are
weakened but not smoothed out by the finite bandwidth of the packet. It could also
be proved that the found singularities are not an artefact of the β-plane description
and accurately capture the field behaviour in full spherical geometry. However, the
proof requires a special consideration and therefore will be given elsewhere. The main
general conclusion is that the evolution of inertia-gravity waves beyond the inertial
latitude leads to irreversible shrinkage of scales and infinite growth of vertical shear.
Whether this growth could cause mixing, or neglected nonlinearity and diffusion will
interfere earlier, cannot be discussed in a general setting: the question has to be
addressed only on a case-by-case basis with respect to a specific context. Below we
discuss it for internal waves in the ocean.

For inertia-gravity waves in the ocean we have described a mechanism leading
to the increase of vertical shear, which can be a potential cause of mixing. We
have also got a good overall picture of wavepacket evolution in each of the three
subinertial waveguides typical for the oceanic stratification. The key open question
of how relevant these findings are to a real ocean cannot be adequately addressed
within the scope of the present paper since the rate of increase of vertical shear
has to be compared to the neglected processes (e.g. turbulent viscosity, bottom
friction, nonlinear interactions), which requires a special consideration and will be
reported elsewhere. However, if the shear increases sufficiently fast this mechanism
will likely be unaffected by other factors. Thus finding the rate of shear growth
and analysing its dependence on the environmental parameters might provide us
with an insight into the potential importance of this mechanism for the real ocean
even without consideration of other factors. The task of mapping the parameter
space is not trivial. Even for the simplified models of stratification the buoyancy
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Figure 8. Normalised vertical shear or Ri−1/2 for the middle (a) and bottom (b) waveguides.
The increase in buoyancy frequency reduces the maximum length of the waveguide (see
figure 3). The sample values of N0: N1 = 2 × 10−4 s−1, N2 = 4 × 10−4 s−1 and N3 = 6 × 10−4 s−1.
Parameters used: z = 0, ystart = 11 km, φ = 45◦, h =650 m (bottom waveguide) and h = 104 m
(middle waveguide). The inertial latitude is at y = 0.

frequency N(z) employed in the vicinity of the singularity, N(z) is characterised by
two parameters: its minimal value N0 and vertical scale of inhomogeneity h. We
recall that we estimate h from the profile assuming linear dependence on z near
the bottom (γ1 = N2

0 /h), quadratic dependence at the centre of the middle guide
(γ2 = N2

0 /h2) and for the top guide we set h equal to the thickness of the guide. The
latitude φ specifies two other frequency scales: f and f̃ . If we non-dimensionalise our
results by setting, say, f =1, the gain in simplicity is immaterial, we still have to deal
with multi-dimensional parameter space, but it becomes less convenient to interpret
the results of the analysis in terms of dimensional quantities commonly used for
describing the observations. We find the use of standard dimensional variables to be
more illuminating.

The growth of vertical shear for the bottom and middle waveguides depends most
upon buoyancy frequency N0. The dependence is illustrated in figure 8 for several
values of N0. To interpret better the parameter space we introduce a length scale
characterising the increase in the vertical shear denoted Lfoc . For the bottom and
middle waveguides, where there is a significant increase in shear, the length Lfoc is
defined as the distance required for the shear to double from its initial value. For
the top waveguide, where the shear does not increase dramatically, we define Lfoc

as the inverse rate of change of vertical shear with y normalised at the starting
point ystart. For all waveguides this is done at the maximum of vertical shear in
the initial vertical cross-section. This maximum occurs at specific depths: z = zm for
the middle waveguide and at the lower boundary z =0 for the top and bottom
waveguides. At these particular depths the vertical shear |uz| =

√
|uz|2 + |vz|2 has an

explicit dependence upon the parameter h in the form

|uz(N0, φ, y, z, t, h)| = P (h)Q(N0, φ, y) exp i(ly − σ t + δz), (5.1)

where the functions P and Q are different for each waveguide (see Appendix B.1 for
details). Therefore the dependence on h drops out for the length scale Lfoc . We are
not interested in the ‘wave’ part of the solution and so we take the absolute value of
the shear. In figure 9 the length scale Lfoc is shown for the middle and the bottom
waveguides for a wide range of parameters.

Evolution in the top waveguide has a very weak dependence upon stratification
and Lfoc is of the order of 106 m initially. The shear does increase albeit very slowly,
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Figure 9. Dependence of Lfoc (in kilometres) on N0 (s−1) and latitude φ (degrees) for the
middle (a) and bottom (b) waveguides. The parameters are the same as in figure 8, and taken
at the initial starting point ystart = 11 km.

and most likely the increase is too small to be of significance for the mixed-layer
dynamics. At the same time, a single-layer model with constant N being a basic
model for rotating stratified fluids certainly could be applicable to a wide range of
situations well beyond the context of the oceanic mixed layer.

Although the length scale Lfoc is a useful characteristics of spatial shear growth
rate, a temporal growth rate would be more informative, since it would allow direct
comparisons with the time scales of other processes not considered in our study. It is
straightforward to convert the results from spatial to temporal frame via (4.4). The
dependence of the shear growth rate inverse time scale Tfoc , which we define as the
number of wave periods required for the wavepacket to double its vertical shear, is
presented in figure 10 for the middle and bottom waveguides. In contrast to the spatial
growth rate in figures 8 and 9, the temporal growth rate increases with the decrease
of N0. For a fixed N0 it decreases with latitude. It is easy to see that for the bottom
waveguide there is a wide range of parameters where the shear growth rate is so
high that it is unlikely that any other mechanisms might arrest or reverse the growth,
preventing expected wave breaking. The shear growth in the middle waveguide is
much slower, and hence the possibility of wave breaking caused primarily by this
mechanism is reduced. It should be noted that in both these waveguides the maximum
of vertical shear is initially located at the same depth z as the corresponding attractor,
which coincides with a zero of the eigenfunction. Although the near-zero asymptotics
are slower than the generic asymptotics, the initial growth appears to be greatest at
these points. This is because far from the tipping latitude the asymptotics are not
valid yet, just as the initial growth of meridional velocity is not captured by the
asymptotics (see figure 6).

To discuss the potential impact of this mechanism we would have to consider
simultaneously other physical mechanisms relevant to the time scales in question,
which goes beyond the scope of the present work. Note that in contrast to the spatial
scale Lfoc , the time scale Tfoc depends upon the scale of vertical inhomogeneity h, since
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Figure 10. Number of periods Tfoc needed for the vertical shear to double and Ri−1 to
quadruple for the middle (a) and bottom (b) waveguides. The parameters and units are the
same as in figure 8, and taken at the initial starting point ystart.

the transformation into the temporal frame involves h-dependent group velocity. The
dependence on h is very simple, since the group velocity is proportional to h; h simply
represents a rescaling of time. In particular, note that the minima of Tfoc in (N0, φ)
space will remain minima for any h. Away from the depths chosen for the figures the
dependence upon h is much more complicated. Since h is the characteristic vertical
scale of inhomogeneity it determines the initial width of the waveguide and hence the
portion of energy this guide will capture. Since the distance to singularity does not
depend on h, an increase in h implies faster spatial contraction of the wave vertical
scale.

Summarising our findings, we can conclude that for a wide range of parameters
typical of the real ocean the mechanism we considered is expected to provide robust
growth of vertical shear in the bottom waveguide, much weaker growth in the middle
waveguide and even weaker growth in the top waveguide. At present, we do not
have experimental evidence to support our conclusions although the already existing
experimental techniques like the acoustic Doppler current profiler (ADCP) in principle
allow direct verification (e.g. Van Haren 2006). To outline more accurately the range
of parameters, where intense mixing is the most likely outcome of wave evolution, one
has to take into account other physical mechanisms, which are the subject of further
studies.

At the same time it has to be mentioned that all the above estimates were made
for an ocean with no background flows. The key element of the vertical shear growth
we investigated is horizontal inhomogeneity, which has so far been provided by
the gradient of the planetary vorticity β . The presence of large-scale background
circulation could cause a much stronger inhomogeneity, significantly changing the
overall picture of wave evolution and the corresponding estimates. To get quantitative
estimates, it is necessary to solve a much more involved problem of wave propagation
on a sheared current, which goes beyond the scope of this paper.
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Appendix A. Inviscid asymptotics in the vicinity of the singularity (small ŷ) and
inertial latitude (small y)

Here we express the amplitude constants for both the small ŷ asymptotics (3.31),
(3.37) and (3.39) and the small y asymptotics in terms of initial amplitude a0. For
brevity we will use the following parameters and notations: y� is the distance from
the inertial latitude to the singular point specified by (3.9); ystart is the ‘starting point’,
the distance past the inertial latitude at the boundary of the WKB validity which we
choose as the initial location of the wavepacket under consideration; ∆̂ and f̂ denote
combinations of parameters given by the expressions

∆̂ = 2(f0 + βystart)β
(
N2

0 − σ 2
0

)
, (A 1)

f̂ 2 = (f0 + βystart)
2 + 2(f0 + βystart)βy� + β2(y�)2. (A 2)

A.1. Bottom waveguide

For the small ŷ asymptotics, we have

αŷ = a0

⎡
⎣l̂1/3

(
f̂ 2 − σ 2

0

γ1

)1/3

∆̂
An

σ 2 − f̄ 2
+ γ1

(
f̂ 2 − σ 2

0

γ1

)2/3

l̂−1/3(Bn)
2/3

⎤
⎦

−1/2

, (A 3)

where

An =

∫ ∞

0

Ai[z − sn]
2 dz, A1 = 0.4917, A2 = 0.6450, A3 = 0.7486, (A 4)

Bn =

∫ ∞

0

zAi[z − sn]
2 dz, B1 = 0.7664, B2 = 1.7578, B3 = 2.7550. (A 5)

The expression for αl is related to αŷ via the simple formula

αl = αŷ l̂
−1/6, where l̂ = γ1(f̂

2 − σ 2)2
(

sn

∆̂

)3/2

. (A 6)

For the small y asymptotics we have

a(Φ) ∼ αy(y + ystart)
0 = a0

[
− l̄1/3

(
2f0β

γ1

)1/3

σ 2f̃ 2 An

2f0β

+ γ1

(
2f0β

γ1

)2/3

l̄−1/3Bn

]−1/2

(y + ystart)
0, (A 7)

l̄ = 4γ1f
2
0 β2

(
sn

σ 2f̃ 2

)3/2

. (A 8)

A.2. Middle waveguide

For the small ŷ asymptotics, we have

αŷ = a0

⎡
⎣ −l̂∆̂

σ 2
0 − f̂ 2

(
f̂ 2 − σ 2

0

l̂2γ2

)1/4

An − γ2 l̂

(
f̂ 2 − σ 2

0

l̂2γ2

)3/4

Bn

⎤
⎦

−1/2

, (A 9)
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where

An =

∫ ∞

−∞
exp(−ẑ2)Hn(ẑ)

2 dẑ, A1 = 2
√

π, A2 = 8
√

π, A3 = 48
√

π, (A 10)

Bn =

∫ ∞

−∞
ẑ2 exp(−ẑ2)Hn(ẑ)

2 dẑ, B1 = 3
√

π, B2 = 20
√

π, B3 = 168
√

π. (A 11)

The expression for αl is related to αŷ via the simple formula

αl = αŷ l̂
−1/4, where l̂ =

1

∆̂
(2n + 1)

√
γ2

(
f̂ 2 − σ 2

0

)3/2
. (A 12)

The small y asymptotics are

a(Φ) ∼ αy(y + y�)0y = a0

[
σ 2f̃ 2 l̄

−2f0β

(
2f0β

γ2 l̄2

)1/4

An + γ2 l̄

(
2f0β

γ2 l̄

)3/4

Bn

]−1/2

(y + ystart)
0,

(A 13)

l̄ = −(2n + 1)γ 1/2
2

(2f0β)3/2

σ 2f̃ 2
. (A 14)

A.3. Upper waveguide

For the small ŷ asymptotics we have

αŷ = a0

(
l̂∆̂

f̂ 2 − σ 2
0

An

)−1/2

, (A 15)

where

An =

∫ H

0

sin

(
nπz

H

)2

dz =
H

2
∀n. (A 16)

The expression for αl is related to αŷ as

αl = αŷ(l̂)
−1/2, where l̂ =

1

∆̂

nπ

H

(
σ 2

0 − f̂
)
. (A 17)

The small y asymptotics yield

a(Φ) ∼ αy(y + ystart)
0 = a0

(
l̄σ 2f̃ 2

2f0β
An

)−1/2

(y + ystart )
0, l̄ =

2nπf0β

Hσf̃
. (A 18)

Appendix B. Derivation of vertical shear for bottom waveguide
Here we show an example of the derivation of the asymptotics for total vertical

shear in the bottom waveguide. The total vertical shear is composed of both the
derivative of zonal and meridional velocity. From the definition of the streamfunction
(2.6) and its modal solution (3.10) the vertical shear of meridional velocity is

vz = ψzz = aΦ(−δ2Φ + 2iδl̃2/3Φ ′ + l̃2/3(l̃2/3z − sn)Φ)E, (B 1)

where aΦ is the amplitude and

Φ = Ai
[
l̃2/3z − sn

]
, Φ ′ = Ai′

[
l̃2/3z − sn

]
, E = exp i(ly − σ t + δz). (B 2)
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From the first Euler equation (2.4a) and by assuming the usual harmonic dependence
on time with frequency σ , the vertical shear of zonal velocity is given by

uz =
∂

∂z

[
aΦ

iσ
(f v − f̃ w)

]
(B 3)

=
aΦ

iσ

[
Φ
(
f l̃2/3

(
l̃2/3z − sn

)
− δ(f δ + f̃ l)

)
+ iΦ ′ l̃2/3(2f δ + f̃ l)

]
E. (B 4)

The total vertical shear is then |uz| =
√

|uz|2 + |vz|2.

B.1. Dependence upon height h

The dependence of the vertical shear upon h is quite simple at the bottom boundary
z = 0. At this point the eigenfunction and its derivative become

Φ = Ai
[
l̃2/3z − sn

]
= Ai[−sn] = 0, Φ ′ = Ai′

[
l̃2/3z − sn

]
= Ai′[−sn] �= 0. (B 5)

This reduces the meridional and zonal velocity derivatives to

vz = aΦ

(
2iδl̃2/3Φ ′)E, uz = aΦ

1

σ

[
l̃2/3(2f δ + f̃ l)Φ ′]E, (B 6)

giving a total vertical shear of

|uz| =
√

|uz|2 + |vz|2 =
aΦ

σ
(4δ2(f 2 + σ 2) + f̃ 2l2 + 4f f̃ δl)1/2 l̃2/3Φ ′E

=
aΦf̃ N4

0

h2σ

√
f 4 + σ 4 + 6f 2σ 2(f 2 − σ 2)2

(sn

∆

)5/2

Φ ′E. (B 7)

Here we are concerned only with the amplitude of the vertical shear, and so we take
the absolute value. It should be noted that aΦ does not depend upon h in any of the
waveguides. This can be seen by substituting the expressions for l, δ, l̃ and b into the
formulae for aΦ . From here it is clear that the dependence upon h is simple, and that
by normalising the shear we effectively remove the dependence. The same is true of
the top and middle waveguides, with the same h−2-dependence.

B.2. Asymptotics

In this section, we will be using the expressions for the asymptotic constants given in
Appendix A. To find the asymptotics for vertical shear in the bottom waveguides we
first start by introducing the parameter ŷ = y� − y as the distance to the singularity.
Now at z =0 and ŷ = 0, we are at the attractor latitude which for this guide coincides
with the tipping latitude, and so the hyperbolicity condition is satisfied. Using this we
find that the leading asymptotics for the wavenumber is

l ∼ l̂ŷ−3/2, l̂ = γ1(f̂
2 − σ 2)2

(
sn

∆̂

)3/2

. (B 8)

Putting this along with the expressions for δ and l̃ into the derivatives of velocity
(B 1), (B 4) along with the expression for the amplitude (A 3) gives us

vz ∼ αŷ

{
Φ

[
γ

1/3
1 l̂2/3

(f̂ 2 − σ 2)1/3

(
γ

1/3
1 l̂2/3

(f̂ 2 − σ 2)1/3
zŷ−9/4 − snŷ

−5/4

)

− f̂ 2f̃ 2 l̂2

(f̂ 2 − σ 2)2
ŷ−13/4

]
− Φ ′ 2if̂ f̃ l̂5/3γ

1/3
1

(f̂ 2 − σ 2)4/3
ŷ−11/4

}
E, (B 9)
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uz ∼αŷ

iσ

{
Φ

[
f̂ γ

1/3
1 l̂2/3

(f̂ 2 − σ 2)1/3

(
γ

1/3
1 l̂2/3

(f̂ 2 − σ 2)1/3
zŷ−9/4 − snŷ

−5/4

)

+
f̂ f̃ l̂

f̂ 2 − σ 2

(
f̃ l̂ − f̂ 2f̃ l̂

f̂ 2 − σ 2

)
ŷ−13/4

]
+ Φ ′ iγ 1/3

1 l̂2/3

(f̂ 2 − σ 2)1/3

(
f̃ l̂ − 2f̂ 2f̃ l̂

f̂ 2 − σ 2

)
ŷ−11/4

}
E.

(B 10)

As can be seen in both derivatives of velocity, the leading-order asymptotic
involves Φ while the second order involves Φ ′. As such there are two asymptotical
regimes: the generic regime where the leading-order term is ŷ−13/4; and the slower
ŷ−11/4 regime when the eigenfunction Φ is zero. We will consider the total vertical
shear |uz| =

√
|uz|2 + |vz|2 in these two regimes.

In the generic regime, we ignore all of the terms except the leading-order ŷ−13/4

terms, giving

|uz| ∼ αŷ

f̂ f̃ 2 l̂2

f̂ 2 − σ 2

(
f̂ 2

f̂ 2 − σ 2
+

1

σ 2

(
1 − f̂ 2

f̂ 2 − σ 2

)2)1/2

ŷ−13/4E. (B 11)

In the vicinity of a zero of the eigenfunction the leading-order terms disappear and
the ŷ−11/4 terms become leading-order, giving

|uz| ∼ αŷ

γ
1/3
1 f̃ l̂5/3

(f̂ 2 − σ 2)1/3

(
4f̂ 2

(f̂ 2 − σ 2)2
+

1

σ 2

(
1 − 2f̂ 2

f̂ 2 − σ 2

)2)1/2

ŷ−11/4E. (B 12)

The method is similar for the other waveguides. The asymptotic dependence of these
field variables and all others with ŷ can be found in tables 1–3.
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