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Abstract  In this paper we use the norm of bounded variation to study multilinear operators and
polynomials on Banach lattices. As a result, we obtain when all continuous multilinear operators and
polynomials on Banach lattices are regular. We also provide new abstract M- and abstract L-spaces of
multilinear operators and polynomials and generalize all the results by Grecu and Ryan, from Banach
lattices with an unconditional basis to all Banach lattices.
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1. Introduction

The theory of holomorphic functions on infinite-dimensional spaces has seen very little
influence from the theory of positivity in general and Banach lattice theory in particular;
indeed, most of that influence is very recent. Our interest in that influence on holomorphic
functions from Banach lattice theory was ignited largely by reading the recent papers [3]
and [12]. Benyamini et al. [3] showed how Banach space valued orthogonally additive
polynomials on a Banach lattice can be linearized by using a concavification of the Banach
lattice (see also [16] and, for a C*-algebra version, [15]). In [12] Grecu and Ryan studied
mulitlinear forms on Banach lattices with an unconditional basis, pointing out analogies
with theorems about holomorphic functions on Banach lattices. In our paper [5] we
provided a new unified framework to study regular multilinear operators and orthogonally
additive, as well as regular, polynomials on Banach lattices and vector lattices. For its
foundation we used the Fremlin tensor product of vector lattices [10] and Fremlin’s
projective tensor product of Banach lattices [11]. Our goal in this paper is twofold.
On the one hand, we introduce new abstract M- and abstract L-spaces (AM- and AL-
spaces, respectively) of multilinear operators and polynomials (Theorems 3.1 and 3.3 and
Corollaries 3.2 and 3.4), therewith generalizing their classical counterparts in the theory
of positive operators (see, for example, [7]). On the other hand, we show how the notion
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of bounded variation, first introduced by Buskes and van Rooij in [6] for bilinear maps,
makes it possible to remove the condition of unconditional basis from all of the results
by Grecu and Ryan in [12]. In the process, we obtain when all continuous multilinear
operators and all continuous polynomials on Banach lattices are regular (Corollary 4.10
and Theorem 4.11). We also obtain new results on orthosymmetric multilinear operators
(Theorem 4.6) and Pietsch integral operators (Proposition 5.3).

For the general theory of positive operators we refer the reader to [2] and [14]. For the
wider context of infinite-dimensional holomorphy, we refer the reader to Dineen [9].

2. Preliminaries

For a Banach space X, let X* denote its topological dual and Bx denote its closed unit
ball. Throughout the paper, all Riesz spaces are Archimedean. For a Riesz space FE, let
E7 denote its positive cone. For z € ET, a partition of x is a finite sequence of elements

of ET whose sum equals . We often denote a partition (u1, ..., ux) of x by just a letter u.
If u = (uy,...,ug) and v = (vy,...,vy) are partitions of x, we call u a refinement of v if
the set {1,...,k} can be written as a disjoint union of sets I, ..., I, in such a way that
Ui:Zu]', i:l,...,m.
JEL

Any two partitions of x have a common refinement. Thus, ITx, the set of all partitions
of z, in a natural way is a directed set (see [6]).

For Banach spaces X, X1,...,X,,,Y, let L(X1,...,X,;Y) denote the space of contin-
uous n-linear operators from X; X -+ x X, to Y and let P("X;Y") denote the space of
continuous n-homogeneous polynomials from X to Y. For an n-homogeneous polynomial
P:X —>Y,let Tp: X x--- x X = Y denote the (unique) symmetric n-linear opera-
tor associated with P and, for a symmetric n-linear operator T: X x --- x X = Y, let
Pr: X — Y denote the n-homogeneous polynomial associated with T'. For the basic ter-
minology about n-linear operators and n-homogeneous polynomials we refer the reader
to [9, §§1.1 and 1.2].

Let Ey,..., E, and F be Riesz spaces. An n-linear operator T: E; x --- x B, — F'is
called positive if T(x1,...,7,) € F* whenever vy € Ef,... x, € E}f. T is called regular
if T'is the difference of two positive n-linear operators (see [12,13]). Let L"(E1, ..., E,; F)
denote the space of all regular n-linear operators from E; x---x E,, to F. If, in addition, F’
is Dedekind complete, then L£"(Ey,..., E,; F) is a Dedekind complete Riesz space (see
[13, Lemma 2.12)). If, moreover, E,..., E, and F are Banach lattices with F' Dedekind
complete, then L£"(F1,..., E,; F) is a Banach lattice with its regular n-linear operator
norm (see [5]).

Let F and F be Riesz spaces. An n-homogeneous polynomial P: F — F' is called
positive if its associated symmetric n-linear operator Tp is positive. P is called reqular if it
is the difference of two positive polynomials (see [12,13]). Let P" (" E; F') denote the space
of all regular n-homogeneous polynomials from E to F. If, in addition, F' is Dedekind
complete, then P"("E; F) is a Dedekind complete Riesz space (see [13, Lemma 2.15]).
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If, moreover, E and F are Banach lattices with F' Dedekind complete, then P"("E; F')
is a Banach lattice with its regular polynomial norm (see [5]).

Let E be a Riesz space and let « € E, D C E. Recall that the symbol D 1 z (or
D | x) means that D is directed upward (or directed downward) and x = sup D (or
x = inf D) holds (see, for example, [2, p. 15]). The lattice operations of L"(E; F') are
expressed in terms of directed sets (see [2, p. 17, Theorem 1.21]). Similar to the proofs
of Proposition 2.14 and Lemma 2.16 in [13], we have the following two propositions in
which the lattice operations of L"(F1, ..., E,; F) and P"("E; F) are expressed in terms
of directed sets.

Proposition 2.1. Let E, ..., E,, F be Riesz spaces such that F' is Dedekind complete
and let T,S € L"(E1, ..., E,; F). Then, for every x1 € Ef,...,x, € Ef,

{ Z T(uLiu e ,umin) V S(uul, e ,umin):

B1yeenyin

uy € Hxy, 1<k<n}T(T\/S)(w17...,xn),

{ Z T(’U,Lil, e ,unﬂ'n) A\ S(ul,ila e ,unﬂ-n) :

11,e0yln

uy € Ixy, 1<k<n}¢(T/\S)(x17...,xn),

where uy = (u1,4,) 2y € a1, Uy = (Ui, )i my € Hwg.

Proposition 2.2. Let E and F be Riesz spaces such that F' is Dedekind complete
and let P,R € P"("FE; F). Then, for every x € E™T,

{ . Z Tp(Viyy--s0i, ) VIR, yvi,): (V1,00 0p) € Hx} T (PV R)(x),

{ ‘Z Tp(Viys 00, ) ATR(Vi,, 5 05): (V1. 0m) € Hx} 1 (P AR)(z).

Let FE be a Riesz space and let Y be a vector space. An n-linear operator T: E X
- x E =Y is called orthosymmetric if T(x1,...,2x,) =0 whenever z1,...,z, € E with
x; L x; for some i # j, i,j = 1,...,n. It is shown in [4] that every positive orthosym-
metric n-linear operator with values in a vector lattice is symmetric. An n-homogeneous
polynomial P: E — Y is called orthogonally additive if P(x+y) = P(x)+ P(y) whenever
z,y € Fwitha 1L y.

For Banach lattices F, E1, ..., E,, let E1®|7T| e ®‘W|En denote the positive n-fold pro-
jective tensor product of E, ..., E, and let ®n,s7|ﬂ|E denote the positive n-fold symmetric
projective tensor product of E. For the basic terminology about positive projective tensor
products we refer the reader to [5,10,11,18].
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3. AM- and AL-spaces of multilinear operators and polynomials

Recall that a Banach lattice E is called an AL-space if |z + y|| = ||z|| + ||ly|| whenever
x,y € ET. E is called an AM-space if ||z V y|| = max{||z||, ||y||} whenever z,y € ET.

Theorem 3.1. If E, Fy,..., E, are AL-spaces and F is a Dedekind complete AM-
space, then L"(Ey, ..., Ey; F) and P"("E; F) are AM-spaces.

Proof. Take T,S € L(Ey,...,En;F)Y, a1 € Ef ...z, € Ef and y* € F** with
|ly*|| < 1. By Proposition 2.1,

Yy (TVS)(x1,...,25))

Z T(Uiigy---sUnyi,) \/S(Ul,z‘l,~~~,un,zn)> tup € oy, 1<k < n}

11,eyln

> NT Wiy, tnin )V S(Uriy, - U,

|: ug € May, 1<k‘<n}

I
=

Z 1T (urirs - Una )V IS (Wi tngin )l ue € Hag, 1<k < n}

B1yeenyin

ug € Iz, 1<k<n}

= (ITIv IS lim{ > luvall- g,
7;17---71.71

— (7] v ||S||>hm{(2 |u1,i1|> (Z u|> cup € Mg, 1< k< n}
i1 in
‘ S

pILEES
i1
where ug = (ug,, )i ©q € Hay, for 1 < k < n. Thus,

tug € Iy, 1<k<n}

= (Il v ||S||>nm{‘

suy € Hxy, 1<k<n}

=TIV ISzl llznll,
ip=1

TV S) @y, - za) | < (ITIHV ISzl -l

and hence [TV S| < ||T]| V ||S]- It follows that || TV S|| = [|T|| V ||S||, which implies that
|7V S| =TV ||S]||- Therefore, L™(E1, ..., Ey; F) is an AM-space. It can be shown
in a similar way that P"("E; F) is an AM-space. (]

In particular, if in Theorem 3.1 F = R, then [5, Propositions 3.3 and 3.4] yields the

following corollary (which was obtained by Fremlin in [11] for n = 2).

Corollary 3.2. If E, Fy, ..., E, are AL-spaces, then E1®w - -®|,T‘En and ®n,s,|7r|E
are AL-spaces.
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Theorem 3.3. If E,E4,...,FE, are AM-spaces and F' is a Dedekind complete AL-
space, then L"(Eq, ..., Ey; F) and P"("E; F) are AL-spaces.

Proof. Take any T,5 € L(Ei,...,E,;F)T. For every ¢ > 0 there exist z; €
BEfr,...,xn € Bp+ and y1 € BET,...,yn € Bp+ such that

1T < [T(x1, ... zn)ll +€/2 and  |IS]| < [[S(y1,- .- yn)l +2/2.
Then,
171+ 1SI < T (21, - @)l + 1S, - un)ll + e

<|T(@1Vyr,- 2o Vy)ll FI1S(@1 Vyr,...,zn Vyn)| +€
=|T(@x1 VY, @ Vyn)+S(@1 Vyr,...,zq Vyn)|l+ €

<AT+ Sz vyl - llen Vyal + €
= T+ Sl IV llyall) - - (leall Vlignll) + &
<|T + S|+,

which implies that | T+ S|| = ||T|| + ||S||, and hence that | T"+ S|, = [|T||» + [|S]],-
Therefore, L™ (E1,...,E,; F) is an AL-space. It can be shown in a similar way that
PT("E; F) is an AL-space. O

In particular, if, in Theorem 3.3, F' = R, then [5, Propositions 3.3 and 3.4] yields the
following corollary (which was obtained by Fremlin in [11] for n = 2).

Corollary 3.4. IfE, Fy, ..., E, are AM-spaces, then E1®‘ﬂ| e ®‘,T|En and ®n75,‘ﬂ|E
are AM-spaces.

4. Bounded variation of multilinear operators and polynomials

Let E be a Banach lattice and let Y be a Banach space. For P € P("E;Y’) the variation
of P is defined by

T € E+,

Var(P) = sup {

D i TP s,

m
D
k=1

Let P ("E;Y) denote the space of all P in P("E;Y) for which Var(P) is finite. Then
Pvar("E:Y) is a Banach space with the norm Var(-) (see [5]).

Let F1,..., E, be Banach lattices. Let Y be a Banach space. For T' € L(E1, ..., E,;Y)
the variation of T is defined by

<1, €6, = il}-

Var(T) = sup {

‘Z €i17-<~7in, = :tl,

.....

my
E : Uk iy,

ip=1

+
Uk,i), € Ek s

<1, 1<k<n},
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from which it follows that ||T'|| < Var(T). Let LY*(En,...,E,;Y) denote the space
of all T in L(Ey,...,E,;Y) such that Var(T) is finite. If F' is a Dedekind complete
Banach lattice, then it is easy to see that L7(Ey,..., Ey; F) C LY (Ey,. .., Ey; F) with
Var(T) < ||T||, for every T € L7(En,...,E,; F).

Buskes and Rooij [6] gave the above definition of Var(T') for n = 2 and showed that
LY (Ey, E9yY) = ﬁ(E1®‘W|E2; Y') isometrically. Similarly, we have the following propo-
sition.

Proposition 4.1. Let E1, ..., E, be Banach lattices. Let Y be a Banach space. Then
for every T € LY (E4,...,E,;Y) there exists a unique T® in E(E1®|ﬁ| ~'®\W|En;Y)
such that Var(T) = ||T?®|| and

T(x1,...,2) =T®%(11 @ - @xy), =1 € Ey,...,10, € .

Moreover, LY (E1,...,E,;Y) Is isometrically isomorphic to E(E1®|ﬁ| ~'®\W|En;Y)
under the mapping T — T®.

Lemma 4.2. Let Eq,...,FE, be Banach lattices, let Y be a Banach space and let T
be an element in L(Ey, ..., E,;Y). Then T belongs to LY (E, ..., E,;Y) if and only if,
for every y* € Y*, y*T € L"(Ey,...,En;R) and sup{||y*T||,: y* € By+} < oo. In this
case,

Var(T) = sup{||ly*T||,: y* € By+}.

Proof. Let T € LY (Ey,...,E,;Y) and let y* € Y*. Take z; € Ef,...,z, € Ef

and let (u14,);'Ly € Hxy,. .., (Uny, )i "y € Ilzy,. Then,
Z |y*T(u11i1 PR 7un7in)| = Z 6117---7iw,y*T(u17i1v ce 7u”7in)
i1yemyin i1yemsin
<l T T )|
ila“'yin
< My 2l - - - [zl Var(T)
< 00,

where €;, i, =sign(y*T(u1,iy5- -, Uns, ). Thus, by [5, (2.10)],

J

ly*T|(z1,...,2,) = sup { Z 1Y T (Ut iys ooy Ungiy)| s (ki )iy € Doy, 1 <k < n}
i1emin
exists, and hence y*T" € L7 (E, ..., E,;R). Moreover,
Y™ [l = Iyl
= sup{|y*T|(z1,...,2n): 21 € Bp+,...,on € Bp+}
< lly* | Var(T),

which implies that
sup{[ly*T|-: y* € By+} < Var(T).
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On the other hand, suppose that sup{||y*T||,: y* € By-} < oo. Take ¢;, .. ; = £1,
Upi, € By with |37 up s, || <1 for 1<k <n. Write 2, = Y00 ugy, for 1 <k <.
Then z) € E; with |z <1 for 1 <k < n and

*
Z 67;17--<7iny T(ul,i1 9 7un,7)n)
U1,eeeyln

> €irnnin (U, U,

zsup{

< SUP{ Z ly" T|(uiys- - Uni,): Y € BY*}

T1yeenyin

= sup {|y*T|(Zulyil,...,Zumn) cy* e By*}
in

i1

:y*EBy*}

= sup{|y*T|(z1,...,2n): y* € By~}
<sup{lly"Tpl[zoll - - lzall: y* € By-}
< sup{|ly*T||: y* € By-}.

Thus, T € LY (E,...,E,;Y) and

Var(T) < sup{||y*T||,: y* € By+}.

Similarly, we have the following result for polynomials.

Lemma 4.3. Let E be a Banach lattice, let Y be a Banach space and let P be an
element in P("E;Y). Then P belongs to P¥*("E;Y) if and only if, for every y* € Y*,
y*P € P"("E;R) and sup{||y*P||,: y* € By~} < co. In this case,

Var(P) = sup{|ly"P|,: y* € By-}.
Combining Lemmas 4.2 and 4.3 with the polarization inequality (see, for example, [5]),
we have the following theorem.

Theorem 4.4. Let E be a Banach lattice, let Y be a Banach space and let T: E x
-+ X E =Y be a symmetric n-linear operator. Then T € LY (E, ..., E;Y) if and only
if Pr € PY("E;Y). In this case,

Var(Pr) < Var(T) < n—|Var(PT).
n!
As vector spaces, LY (Ey,...,E,;Y) C L(E4,...,EnY) with ||T|| < Var(T), and
Par("EY) C P(™E;Y) with ||P|| < Var(P). The next theorem gives a sufficient con-

dition for which £V (E,,...,E,;Y) = L(F4,...,Ey;Y) and P ("E;Y) = P("E;Y),
which answers the implicit question asked in the last line of [6].
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Theorem 4.5. Let E,FEq,...,E,_1 be AL-spaces, let E, be a Banach lattice and
let Y be a Banach space. The following then hold.

(i) LY (Ey,...,En;Y) = L(Ey,...,E,;Y). In this case, Var(T) = ||T|| for every T €
L(E1,....,Ey;Y).

(ii) P ("E;Y) = P("E;Y). In this case, Var(P) = ||P|| for every P € P("E;Y).

Proof. Take any T' € L(Eh,...,E,;Y). Let €, ;. = £1 and ug,, € E,’: with
IS0 ugq |l <1 for 1 < k < n. Note that

ip=1

My My
Z €iryerrinUnyin || < Z Unpi, || < 1.
in=1 in=1

Then,

E T(Ut iy s Un—1yin_ys iy i Unsiy )

115 5tn

E T(ul,i17~-~,un—1,z’n1,§ eil,...,inun,in>H
B1yeeny Gn—1 in
E €it\ennyin Un,iy

< D0 Tl -,
in

i17~~~77:n71

<7 (Z ||u1,i1||) (Z |un_1,%1||)
il 7;77—1
> u
i1

E €irrernsin T (ULiys oo s Un—14,_y Uni,)

_ ||T||\

E Un—1,ip_1
in—1

< |7

Thus, Var(T) < ||T|| and hence T € LY (Ey, ..., Ey,;Y). The proof of the polynomial
statement follows similarly. (I

Bu and Buskes [5, Theorem 6.4] show that if E is a o-Dedekind complete Banach lattice
and Y is a Banach space, then every orthogonally additive n-homogeneous polynomial
P: E — Y is of bounded variation, that is, P € P ("E;Y). The next theorem is
for the multilinear operator case, which follows from Theorem 4.4 and [5, Lemma 4.1,
Theorem 6.4].

Theorem 4.6. Let E be a 0-Dedekind complete Banach lattice and let Y be a Banach
space. Then, for every orthosymmetric n-linear operator T: E X --- X E =Y,

nn
I < Var(T) < [T
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Example 4.7. If E; is not an AL-space and E; = £, or L,[0,1] (1 < p < 00), then
[_:VM(El, EQ; R) g [,(El, EQ; R)

Proof. By Proposition 4.1 and by [17, p. 204, Theorem 3.2],
LY (E1, E2;R) = L(E1®)r B2 R) = (B1®)r E2)* = L7 (Ey; E3).

Note that L(FEi, FEy;R) = L(Ep; E}). Now, if we assume that LY*'(Ep, Eq;R) =
L(E1, E9;R), then L7(Ey; E3) = L(Eq; E3). Tt follows from [7, Theorem 1] and [14,
p. 169, Corollary 3.2.2] that E; must be an AL-space. O

As vector spaces, L7 (E1,...,E,; F) C LY (E4,. .., Ep; F) with Var(T) < ||T)|,, and
Pr("E;F) C P ("E; F) with Var(P) < ||P||,. The next theorem provides a suffi-
cient condition for which L"(Ey,...,Ep; F) = LY(Ey,...,Ep F) and PT("E; F) =
PYr(mE; F).

Theorem 4.8. Let F, Fy, ..., E, be Banach lattices and let F' be a Dedekind complete
AM-space with an order unit. The following then hold.

() L(Ey,...,En; F) = LY (Ey,...,E,; F). In this case, Var(T) = ||T||, for every
T € L™ (Ey,...,E,;F).

(ii) P"("E; F) = P¥("E; F). In this case, Var(P) = ||P||, for every P € P¥"("E;F).

Proof. Take any T € LY (Ey,..., Ey; F). By Proposition 4.1 there exists a unique
T® in L(E\®yg| - Qx| Ep; F) such that Var(T) = [|T®]. It follows from [14, p. 48,
Theorem 1.5.11] that 7% € LT(E1Qz -+ QB F) with |[T®], = [ T®]]. Thus,
T € L7(Ey,...,Ey; F) with ||T|), = || T®|» by [5, Proposition 3.3]. The proof for the
polynomial statement is similar. a

Example 4.9. ‘CT(LQ[Oa 1]7 L2 [07 1]7 CO) g £var(L2 [07 1}7 L2[07 1]7 CO)'

Proof. In fact, define T: L0, 1] X L3[0,1] — ¢¢ by

T(f, 9)k :/0 f(t)g(t)sin(2fxt)dt, k€N,

where T'(f,g)r denotes the kth coordinate of T(f,g) for every k € N. It follows
from [8, p. 60] that T is a bounded bilinear operator with ||T(f,¢)llcc < IIfllllgll-
It is easy to see that T is also orthosymmetric, which, by Theorem 4.6, implies that
T € LY (Ly[0,1], L2]0, 1]; ¢p).

Now let Ay, = {t € [0,1]: [sin(2¥7t)| > 1/v/2}. Then, for every k € N, m(4;) = 1
(here m denotes the Lebesgue measure on [0,1]) and

1
1 1
T , = sin(2%7t)| dt 2/ sin(287t)|dt > —=m(Ar) = —=,
Tl xoe = [ lsn@rtlar> [ pinirlar> Zoman = o
which implies that [T'|(xo,1], X[0,1]) & co- Thus, T' & L"(L2[0, 1], L2[0, 1]; co). a
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It would be interesting to know when continuous n-linear operators and continuous
n-homogeneous polynomials are regular. Combining Theorem 4.8 with Theorem 4.6 and
[5, Theorem 6.4] we have the following corollary.

Corollary 4.10. Let E be a o-Dedekind complete Banach lattice and F' a Dedekind
complete AM-space with an order unit. Then the following hold:

(i) all continuous orthosymmetric n-linear operators T: E x --- X E — F are regular
with [T < [T, < (n"/n)||T];

(ii) all continuous orthogonally additive n-homogeneous polynomials P: E — F are
regular with | P|| < || P, < (n"/n!)||P].

Recall that a Banach lattice F' is said to have property (P) if there exists a positive
contractive projection from F** to F'. Every Kantorovich-Banach space has property (P)
and every Banach lattice with property (P) is Dedekind complete (see [14, p. 47]).

Theorem 4.11. Let E, E,, ..., E, be AL-spaces and let F be a Banach lattice with
property (P). Then all continuous n-linear operators T: E1 X --- X E, — F and all

continuous n-homogeneous polynomials P: E — F are regular with ||T|| = ||T||, and
1Pl = 1Pl

Proof. Take any T' € L(E1,...,En; F). By Theorem 4.5, T € LY (Ey,...,E,; F)
with Var(T') = ||T|| and we also have, by Proposition 4.1, that there exists a unique
T® € L(E1®)| -+ Qx| En; F) such that ||T®| = Var(T). Note that E1®| - Q) Ey
is an AL-space by Corollary 3.2. It follows from [14, p. 48, Theorem 1.5.11] that T® €
LT (E1@)r| -+ Q) Ens F) with || T®]|, = |T®|. Thus, T € L"(Ey, ..., Ey; F) with | T, =
|T®||, by [5, Proposition 3.3]. The proof of the polynomial statement follows similarly.

O

5. Extension of Grecu and Ryan’s results
For every T € L(Ey,...,E,;Y), define Ty: By — L(Es, ..., E.;Y) by
Ty (x)(z2, ..., xn) =T(x,22,...,2,), x€ E1,290 € Fa,...,2, € E,,.
Then T7 is a continuous linear operator.
Proposition 5.1. Let Fy,...,FE, be Banach lattices, let Y be a Banach space and

let T € L(Ey,...,E;;Y). If Ty: By — LY (E,,. .., Ey;Y) is absolutely summing, then
T e L™ (B,... By Y).

https://doi.org/10.1017/50013091514000297 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091514000297

Polynomials on Banach lattices 627

Proof. Let ¢;,,  ;, = £1 and let uy;, € E;' with HZZ’:’;lumkH <lforl<k<n
Then,

E €inrosin T (Uiyiys ooy Un i) ‘ < E

D10 0in i1 ey

< Var(Ty(u,))

i1

< W(Tl)Sup{‘ Z)\ilul,il DA | < 1}
i1
< (1) Z|u17i1|
i1
< ”T(Tl)v

where 7(7T7) is the absolutely summing operator norm of Ty. Thus, Var(T) < n(T3) and
hence T € LY (E1, ..., Ey;Y). O

For every P € P("E;Y), define P: E — P(""'E;Y) by
P (z)(u) =Tp(z,u,...,u), xz,uckE.

Then P is a continuous linear operator (see [12]). Similarly to Proposition 5.1, we have
the following proposition.

Proposition 5.2. Let E' be a Banach lattice, let Y be a Banach space and let P €
P(E;Y). If P.: E — PY™("~1E;Y) is absolutely summing, then P € P ("E;Y).

Recall that (see [8, p. 165] and [1]) an n-linear operator T': X1 X -+ -x X, — Y is said to
be Pietsch integral if there exists a regular countably additive Y-valued Borel measure v
of bounded variation on the product Bx; x --- x Bx: (with the weak *-topology) such
that

T(xl,...,xn)z/ 2y (x1) - xy () dv(e], ... 2)) (%)
BXTX"'XBX;;

for every (x1,...,2,) € X7 X -++ X X,. Let Lpr(Xy,...,X,;Y) denote the space of all
Pietsch integral n-linear operators from X; x --- x X,, to Y endowed with the norm

ITllpr = inf [v[(Bx; x - - x Bx;),

where the infimum is taken over all vector measures v satisfying the above definition.

Proposition 5.3. Let E1,...,E, be Banach lattices, let Y be a Banach space and
let T € Lpr(Ey,...,E,;Y). Then T € LY (Eq,...,En;Y) and Var(T) < ||T||pr-

Proof. Take any T € Lp;(F1,...,E,;Y). There exists a vector measure v satisfy-
ing (x). Let €, ,;, = +1 and uy,;, € E; with 1220 up || < 1 for 1 < k< n
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Then,
Z Eil,u-,inT(ul,il yoe 7un,in) ‘
ila“-:in
</ Sl )+, Al )
By XX Bxx 41 i
</ ot (L )il (S un, ) etz
BXIX"'XB&*L i in
S/ |21 ]] Zm,il el l Zum dlv[(z],...,2,)
BXIX"'XBXii i in
< |V|(BXf X X BX:L)’
which implies that T' € LY (Ey, ..., E,;Y) and Var(T) < ||T||pr- |

It is known that a Banach space with a 1-unconditional basis is also a Banach lattice
with the order defined coordinate-wise. Now, let £; and Fs be two Banach spaces, each
with 1-unconditional bases. Grecu and Ryan [12] introduced B, (E; x E3), the space of all
unconditional bilinear forms on F; X Ey, and the unconditional norm v(-) on B, (Fy X E5).
It is easy to see that B, (Fy X Eg) = LY"(E1, F3;R) and v(T') = Var(T') for every bilinear
form T € B,(E; x Ey) = LY (E, E2; R). Thus, [12, Proposition 2.1] is a special case of
Proposition 5.1 in this paper and [12, Corollary 2.2] is a special case of Proposition 5.3
in this paper.

Now let E be a Banach space with a 1-unconditional basis. Grecu and Ryan [12] also
introduced P, ("E), the space of all unconditional n-homogeneous polynomials on E,
and the unconditional polynomial norm v(-) on P,("E). It is easy to see that P,("E) =
Pvar("E;R) and v(P) = Var(P) for every n-homogeneous polynomial P € P,("E) =
Pvar(mE;R). Thus, [12, Proposition 3.1] is a special case of Proposition 5.2 in this paper
and [12, Proposition 4.2 and Proposition 4.3] are special cases of Theorem 4.8 in this

paper.
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