
J. Fluid Mech. (2013), vol. 727, pp. 379–406. c© Cambridge University Press 2013 379
doi:10.1017/jfm.2013.217

Invariants for slightly heated decaying grid
turbulence

R. A. Antonia1, S. K. Lee1, L. Djenidi1,†, P. Lavoie2 and L. Danaila3

1School of Engineering, University of Newcastle, NSW, 2308, Australia
2Institute for Aerospace Studies, University of Toronto, ON, Canada M3H 5T6
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The paper examines the validity of velocity and scalar invariants in slightly heated
and approximately isotropic turbulence generated by passive conventional grids. By
assuming that the variances 〈u2〉 and 〈θ 2〉 (u and θ represent the longitudinal velocity
and temperature fluctuations) decay along the streamwise direction x according to
power laws 〈u2〉 ∼ (x− x0)

nu and 〈θ 2〉 ∼ (x− x0)
nθ (x0 is the virtual origin of the flow)

and with the further assumption that the one-point energy and scalar variance budgets
are represented closely by a balance between the rates of change of 〈u2〉 and 〈θ 2〉 and
the corresponding mean energy dissipation rates, the products 〈u2〉λ−2nu

u and 〈θ 2〉λ−2nθ
θ

must remain constant with respect to x. Here λu and λθ are the Taylor and Corrsin
microscales. This is unambiguously supported by previously available data, as well as
new measurements of u and θ made at small Reynolds numbers downstream of three
different biplane grids. Implications for invariants based on measured integral length
scales of u and θ are also tested after confirming that the dimensionless energy and
scalar variance dissipation rate parameters are approximately constant with x. Since the
magnitudes of nu and nθ vary from grid to grid and may also depend on the Reynolds
number, the Saffman and Corrsin invariants which correspond to a value of −1.2 for
nu and nθ are unlikely to apply in general. The effect of the Reynolds number on nu is
discussed in the context of published data for both passive and active grids.
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1. Introduction
An important objective in turbulence research is to predict statistical quantities

at the simplest level (or the lowest order). For decaying homogeneous isotropic
turbulence, a long-standing issue has been the prediction of the rate of decay of
the kinetic energy, i.e. the prediction of the exponent nu when 〈u2〉 ∼ (x− x0)

nu .
Experimental and numerical results lead to a relatively wide range of values for
nu. Our understanding of these values, as a function of different initial conditions,
requires analytical developments that establish a link between nu and quantities called
invariants, which in essence reflect the permanence of the big eddies and remain
constant throughout the decay. In an experimental context, the term ‘initial conditions’
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refers to the flow conditions immediately upstream of the grid, the geometry and
dimensions of the grid and the Reynolds number at the grid. In the majority of the
numerical simulations that have been performed, the effect of initial conditions is set
by the slope of the initially assumed energy spectrum as the wavenumber k approaches
zero.

1.1. Brief history on the permanence of big eddies
Kolmogorov (1941) obtained a simple prediction for the initial period of decay of
isotropic turbulence based on the following assumptions (here we use the distance x
from the grid instead of the time t to allow direct comparison with grid turbulence).

(A1) The Loitsyansky (1939) integral is constant, namely

I4 =
∫ ∞

0
r4〈u(x)u(x+ r)〉 dr = constant, (1.1)

where 〈u(x)u(x + r)〉 is the two-point longitudinal velocity correlation; u is the
velocity fluctuation in the x direction and the angular brackets denote time
averaging. The subscript ‘4’ denotes the power exponent of the scale r.

(A2) The velocity correlation function at large r is self-similar with a length scale that
is proportional to the integral length scale L, namely

〈u(x)u(x+ r)〉 = 〈u2〉f (r/L). (1.2)

(A3) The mean energy dissipation rate 〈ε〉 is related to L, namely

Cε = 〈ε〉L〈u2〉3/2 ∼ constant. (1.3)

Relation (1.3) is based on the assumption that the Taylor microscale Reynolds
number Rλu = 〈u2〉1/2λu/ν, where λu = (〈u2〉/〈(∂u/∂x)2〉)1/2 is the Taylor microscale
associated with u and ν is the kinematic viscosity, is large enough to produce an
inertial subrange (Kolmogorov 1941) so that 〈u(x)u(x + r)〉/〈u2〉∼1 − 〈ε〉2/3r2/3/〈u2〉.
However, Sreenivasan (1984) indicated that Cε may be constant at relatively small
values of Rλu (& 50) although the possibility that it depends on initial conditions
could not be ruled out (Sreenivasan 1998). This possibility was confirmed by Burattini,
Lavoie & Antonia (2005), who further showed that, for direct numerical simulations
(DNS) of box turbulence, Cε appears to be constant for Rλu & 200. Also, it should be
noted that for turbulence generated by a class of multiscale grids (Valente & Vassilicos
2011), Cε is not constant.

By combining (1.1) and (1.2), it follows that

〈u2〉L5 = constant, (1.4)

provided the integral AL =
∫∞

0 (r/L)4f (r/L) d(r/L) is constant during the decay. For
grid turbulence, the transport equation for 〈u2〉 is given, to a close approximation, by

〈ε〉 = −3
2

U0
d〈u2〉

dx
, (1.5)

where U0 is the constant local mean velocity. It follows from (1.3)–(1.5) that 〈u2〉 and
L exhibit the power-law variations

〈u2〉 ∼ (x− x0)
−10/7, L∼ (x− x0)

2/7. (1.6)
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A more general derivation of Kolmogorov’s decay law is given by Frisch (1995, §7.7).
He enunciated the principle of permanence of large eddies which, in Fourier space,
states essentially that if initially the energy spectrum behaves as E(k) ∼ C′ks (for
k→ 0) with

s=−2+ 3nu

2+ nu
, (1.7)

then this property will hold at later times with the same s.
Batchelor (1948) obtained the relations (1.6) via a complete self-preserving solution

of the inviscid (high Rλu) Kármán & Howarth (1938) (K–H) equation; the ratio L/λu

was allowed to vary with x. Batchelor assumed (1.1) but did not use (1.3), although
(1.3) is satisfied by (1.5) and (1.6).

Comte-Bellot & Corrsin (1966) indicated that since (1.1) does not hold (see also
Proudman & Reid (1954) and Batchelor & Proudman (1956)), relations (1.6) have not
received much attention. They noted that the decay exponent ‘−10/7’ is smaller than
their values (−1.15 to −1.33) obtained for different grids with the use of a secondary
contraction to improve the isotropy at the large scales.

Saffman (1967a,b) confirmed Birkhoff’s (1954) speculation that Loitsyansky’s
integral is in general divergent and that it exists only for a restricted type of isotropic
turbulence. For isotropic turbulence at large Rλu , Saffman proposed

I2 =
∫ ∞

0
r2R(r) dr = constant, (1.8)

where R(r) is the trace of the 2-point velocity correlation tensor. Using (1.2) and (1.3),
and observing (1.5), it follows that

〈u2〉 ∼ (x− x0)
−6/5, L∼ (x− x0)

2/5, (1.9)

where (1.4) is now replaced by

〈u2〉L3 = constant. (1.10)

The idea that I2 is conserved has been challenged by Davidson (2000, 2009) who
concluded that, for certain initial conditions, freely evolving turbulence can reach an
asymptotic state in which the variation of I2 is negligible. Numerical simulations
(Ishida, Davidson & Kaneda 2006) of decaying turbulence with a domain much larger
than L and with E(k→ 0)∼ k4 as a prescribed initial condition, indicate that it may be
possible to reach a state characterized by I4 = constant with 〈u2〉 ∼ t−10/7. This would
support Davidson’s (2000) idea that long-range pressure forces may not be important
and that the general impression that I2 could not be conserved is in part due to a
misinterpretation of the analysis of Batchelor & Proudman (1956).

Equation (1.7) indicates that when the slope s of the spectrum (k→ 0) assumes
values of 4 and 2, the corresponding values of nu are −10/7 and −6/5, as given by
(1.6) and (1.9). The value s = 1 corresponds to nu = −1, the decay exponent expected
for very large Rλu (this is discussed in the following subsection). It is generally
believed that the decay exponent should be influenced, at least in the initial period of
decay, by the large-scale motion or the manner in which the spectrum behaves at low
wavenumbers. In spite of the result obtained by Ishida et al. (2006) and leaving aside
the case s = 1, the DNS of Huang & Leonard (1994), who used initial spectra with
either s= 4 or s= 2, imply that there is little, if any, correlation between s and nu, the
latter tending to depend rather on Rλ(t = 0). The DNS results of Antonia & Orlandi
(2004), where the initial spectrum was chosen to have the same form as that used by
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Huang & Leonard (1994) and Mansour & Wray (1994) yielded a value of nu close to
−1.1 even though s was set equal to 4.

For a ‘conventional’ grid made of a sheet-metal plate with perforated square holes,
which is different from the biplane square grid of Comte-Bellot & Corrsin (1966)
and Lavoie, Djenidi & Antonia (2007), Krogstad & Davidson (2010) obtained a
decay exponent of −1.13 for 〈q2〉 (〈q2〉 = 〈u2〉 + 〈v2〉 + 〈w2〉 is the total kinetic
energy). The deviation from −6/5 was ascribed to a slight departure from constancy
(with respect to (w.r.t.) x) of Cε . Also, Krogstad & Davidson (2011) studied the
turbulence downstream of two multiscale grids and found that, once homogeneity is
established, the decay exponent is slightly closer to −6/5 than for their conventional
grid. Krogstad & Davidson (2011) concluded that there is no significant difference in
the behaviour between the three grids, notwithstanding the different initial conditions,
reinforcing the idea that grid turbulence satisfies (1.9) and (1.10).

This conclusion, however, was contested by Valente & Vassilicos (2012) who
reanalysed the data of Krogstad & Davidson (2010, 2011) and found that in fact
the exponent of L in (1.10) is larger than 3, varying between 3.7 and 4.4, underlining
the expectation that initial conditions matter.

At first sight, all of these studies seem to indicate that neither I4 = constant nor
I2 = constant have strong claims to generality, at least for the grid flows that have been
examined in the literature.

There are two possible explanations for the fact that these invariants are not
conserved.

(i) The possibility that 〈u2〉Lαu is an invariant (with αu ≡ m+ 1 not necessarily equal
to 3 or 5) has been discussed (Llor 2011; Vassilicos 2011). It is straightforward to
infer that nu = −2αu/(2 + αu). Relations (1.4) and (1.10) correspond to nu = −10/7
and −6/5, respectively. This brings us to a broader context of invariants Im, with m not
necessarily equal to 2 or 4.

(ii) The possibility that not only does the power law αu of 〈u2〉Lαu vary from flow to
flow, but the scale involved in this relation may also differ from the integral scale L.
Both of these scenarios are considered in § 1.2.

1.2. The general context of invariants at any order
The possibility of the existence of an infinite number of invariants has been
mathematically demonstrated by Vassilicos (2011). The initial point of departure is
that quantities such as

Im =
∫ ∞

0
rm〈u(x)u(x+ r)〉 dr, (1.11)

remain constant during the decay. This can be reduced to two mathematical
requirements, which must be satisfied simultaneously, namely∫ ∞

0
(r/l)m〈u(x)u(x+ r)〉/〈u2〉 d(r/l)= constant, (1.12)

〈u2〉lm+1 = constant, (1.13)

where l is the self-preserving scale.
We should first note that (1.12) represents a weak formulation of the complete

self-preservation requirement, f (r/l) = constant w.r.t. x, where f represents the
normalized two-point correlation. In other words, if f (r/l) = constant w.r.t. x, then
(r/l)mf (r/l)= constant w.r.t. x and, hence, the integral from 0 to ∞ of this quantity is
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conserved, ∀m. Yet, the next obvious question is what is l? Kolmogorov indicated that,
as far as the invariant I4 is concerned, the most adequate scale is the integral scale L.
As already discussed in § 1.1, many studies have been devoted to the ‘permanence of
big eddies’ and the associated invariants, i.e. those involving the integral scale L. Since
there has only been equivocal support for this approach, the question of what is the
appropriate choice for l remains open.

It is pertinent to recall here that since l should be the similarity scale for f whose
dynamics is described by the Kármán–Howarth equation, one could argue that l
may be more suitably represented by the Taylor microscale, λu, than by L. Indeed,
George (1992a,b) proposed an equilibrium similarity solution, valid for any Reynolds
number: the kinetic energy decays as 〈u2〉 ∼ (x− x0)

nu , with nu determined by the
initial conditions, and the self-similarity length scale is λu.

George’s solution was tested in physical space for small Rλu grid turbulence
by Antonia et al. (2003) via the transport equation for 〈(δq)2〉. Here, 〈(δq)2〉 =
〈(δu)2〉+〈(δv)2〉+〈(δw)2〉 and δψ = ψ(x+r)−ψ(x) is a velocity (or scalar) increment;
ψ ≡ u, v, w (or θ ). The measurements of 〈(δq)2〉 and 〈(δuδq)2〉 satisfied similarity
fairly closely over a wide range of r/λu, where r is the separation between the two
points (Antonia et al. 2003). At small r, Kolmogorov scaling was more appropriate
(Antonia & Orlandi 2004) while at large r, when 〈(δuδq)2〉 is negligible, the integral
length scale becomes more relevant. Speziale & Bernard (1992) noted that George’s
solution is incomplete at least for small values of Rλu usually achieved in the majority
of passive grid turbulence experiments. Nonetheless, it is of interest since a family of
incomplete self-preserving states appears possible, each state corresponding to a given
set of initial conditions.

Speziale & Bernard (1992) used a fixed-point analysis and numerical integration of
exact one-point transport equations for the mean energy and energy dissipation rate
to show that nu = −1 is the asymptotically consistent high-Rλu solution and represents
the state towards which a complete self-preserving isotropic turbulence is driven. An
analytical derivation of this result is given by Ristorcelli (2003) whilst numerical
support for the x−1 decay rate was provided by Lesieur & Schertzer (1978) and
Lesieur & Ossia (2000). Speziale & Bernard (1992) found that the Taylor microscale
λu is the only similarity length scale that can yield complete self-preserving solutions
to the full viscous equations of motion for isotropic turbulence. Speziale & Bernard
(1992) also indicated that nu = −6/5 is not consistent with a complete self-preserving
solution to the inviscid K–H equation.

In the light of the above-mentioned studies, there is support for λu as the relevant
self-preserving scale. Note however that, for the weaker requirement (r/l)mf (r/l) =
constant w.r.t. x, and for large values of m, the behaviour of f at large scales is
increasingly important, thus leaving open the possibility that the integral scale L may
be the appropriate self-preserving scale.

Experimentally, it is difficult to check the constancy w.r.t. x of Im since the
integrands are unlikely to approach zero in a smooth fashion due in part to the
lack of convergence of the correlations at large r and also to the adverse effect of the
test section boundaries on these correlations. Wang & George (2002) have suggested
that almost all reported integral scales in isotropic turbulence are questionable.

As far as (1.13) is concerned, it can be more easily tested with experimental data.
Given an adequate expression of the scale l, the aim is to find the value of the
exponent αl

u ≡ m + 1 so that 〈u2〉lαl
u = constant during the decay. The notation αl

u
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indicates that the invariant 〈u2〉lαl
u (involving the velocity component u and the scale l)

holds.

1.3. Our approach
As already underlined, the tests carried out in the present paper, like those of Krogstad
& Davidson (2010, 2011) and Valente & Vassilicos (2012) simply focus on relations
(1.13) rather than on (1.12).

More generally, we ask the question, similar to that posed by George (1992a,b):
what is the optimum value of αL

u which corresponds to a particular value of nu and
therefore a particular set of initial conditions?

The starting point is the one-point kinetic energy budget (1.5), together with
the assumption that 〈u2〉 decays according to a power law. It follows that 〈ε〉 ∼
(x− x0)

nu−1. By recalling that λ2
u ∼ 〈u2〉/〈ε〉, it is straightforward to deduce that

λ2
u ∼ x− x0. (1.14)

Therefore, there is an immediate invariant which involves the Taylor microscale, i.e.

〈u2〉λαλuu = constant, (1.15)

with

αλu =−2nu. (1.16)

Equation (1.15) represents one possible form of (1.13), which does not require any
particular assumption about the large scales. Note that the assumptions underlying
(1.15) have received strong experimental support (George 1992b; Antonia et al.
2003). Also the emergence of λu as the relevant length scale of the invariants is
not inconsistent with the support that the λu-based equilibrium similarity of George
(1992b) has received in both spectral and physical spaces.

Developing possible invariants involving the integral scale L requires the connection
between λu and L to be established. This can be done by assuming that Equation (1.3)
holds. It follows that

L

λu
∼ Rλu, (1.17)

and for the following invariant to be valid

〈u2〉LαL
u = constant, (1.18)

it is necessary that (Vassilicos 2011)

nu =− 2αL
u

2+ αL
u

, (1.19a)

αL
u =−

2nu

2+ nu
. (1.19b)

1.4. Extension to the passive scalar field
The extension of Kolmogorov’s (1941) prediction to the scalar field is straightforward.
The following assumptions are needed.
(B1) The Corrsin (1951) integral is constant, namely

I2θ =
∫ ∞

0
r2〈θ(x)θ(x+ r)〉 dr = constant, (1.20)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

21
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.217


Invariants for slightly heated decaying grid turbulence 385

where θ denotes the scalar fluctuation and 〈θ(x)θ(x + r)〉 is the two-point
scalar correlation; I2θ is analogous to I4 (Corrsin 1951) or more correctly, it
is analogous to I2 (Hinze 1975, p. 288), i.e. if the velocity characteristics of grid
turbulence are Saffman-like, the scalar characteristics are Corrsin-like.

(B2) The scalar-correlation function is self-similar, namely

〈θ(x)θ(x+ r)〉 = 〈θ 2〉fθ(r/Lθ), (1.21)

where 〈θ 2〉 is the scalar variance and Lθ is the integral length scale of θ .

From (1.20) and (1.21), together with the assumption that the normalized scalar
dissipation rate is constant, we obtain (with ξ = L/Lθ = 1)

〈θ 2〉L3 = constant. (1.22)

By using (1.22) and the transport equation for 〈θ 2〉, namely

〈χ〉 = −U0

2
d〈θ 2〉

dx
, (1.23)

we arrive at (with ξ = 1)

〈θ 2〉 ∼ (x− x0)
−6/5, L∼ x2/5. (1.24)

That (1.22) and (1.24) are similar to (1.9) and (1.10) is not surprising in view of the
similarity between the transport equations for 〈q(x)q(x + r)〉 and 〈θ(x)θ(x + r)〉 (Rey
et al. 1976; Fulachier & Antonia 1984) (q is the velocity vector ui + vj + wk, where
u, v and w are the velocity fluctuations in the x, y and z directions, respectively) or
between the transport equations for 〈(δq)2〉 and 〈(δθ)2〉 (Antonia et al. 1996, 1997;
Danaila et al. 1999). This similarity, which is reflected in the analogy between the
Saffman and Corrsin invariants or in the analogous forms of the inhomogeneous
terms in the transport equations for 〈(δq)2〉 and 〈(δθ)2〉 (Antonia et al. 2000; Danaila
et al. 1999; Danaila, Antonia & Burattini 2004), provides an analytical framework to
compare between the decay characteristics of the velocity and the scalar fields.

However, the published data have not provided unambiguous support for (1.10) that
is consistent with the departures, albeit small, of the decay exponent for 〈u2〉 from
−6/5 nor have the data provided clear support for (1.22) and (1.24). Nonetheless,
from their fixed-point analysis on the transport equations for 〈θ 2〉 and 〈χ〉, Gonzalez &
Fall (1998) found that, in the asymptotic case of large Reynolds and Péclet numbers,
〈θ 2〉 ∼ (x− x0)

−1/R, where

R= 〈θ
2〉/〈χ〉
〈q2〉/〈ε〉 (1.25)

is the scalar-velocity timescale ratio, and the invariant (Gonzalez & Fall 1998)

〈θ 2〉L2/R = constant (1.26)

is reconcilable with (1.22) if R = 2/3. If 〈u2〉 and 〈θ 2〉 are introduced in the flow in a
similar manner, the timescale ratio R can be expected to be close to one so that, for
complete self-preservation of the velocity and scalar fields, αL

u = αL
θ = 2. The inference

is that the Saffman and Corrsin invariants are only likely to hold if Rλu is finite, in
contrast to the original assumptions made by Saffman and Corrsin, and for a specific
set of initial conditions.
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Our approach developed in the previous subsection can be easily extended to the
scalar field. If 〈θ 2〉 decays according to a power law

〈θ 2〉 ∼ (x− x0)
nθ , (1.27)

then λ2
θ , like λ2

u, varies linearly with x, namely

λθ
2 ∼ x− x0. (1.28)

The linearity of λθ 2 provides a simple way to estimate x0. Therefore, there is an
immediate invariant which involves λθ , i.e.

〈θ 2〉λαλθθ = constant, (1.29)

with

αλθ =−2nθ . (1.30)

The normalized scalar dissipation rate is defined as

Cχ = 〈χ〉Lθ
〈θ 2〉〈u2〉1/2 . (1.31)

Provided that Cχ is constant, we obtain

〈u2〉1/2(x− x0)

Lθ
∼ constant. (1.32)

It follows that Lθ , like L, also varies according to

Lθ ∼ (x− x0)
1+nu/2 (1.33)

and so, for 〈θ 2〉Lθ αL
θ to remain constant,

αL
θ =−

2nθ
2+ nu

. (1.34)

One therefore expects αL
θ to be identical to αL

u when nθ and nu are equal.
The road-map of the paper is as follows. The addressed question concerns the

validity of Saffman and Corrsin invariants in passive grid turbulence. For that, we
appraise the validity of (1.10) and (1.22) using new grid-turbulence data for u and θ as
well as previously published data (e.g. Antonia et al. 2003, 2004; Lavoie et al. 2007)
for all three components of the velocity fluctuation (u, v and w) and θ . More exactly,
we explore the possibility that the relations

〈u2〉λu
αλu = constant, 〈θ 2〉λθ αλθ = constant, (1.35)

as well as their counterparts involving the integral scales L and Lθ

〈u2〉LαL
u = constant, 〈θ 2〉Lθ αL

θ = constant (1.36)

are tenable with the exponents αL
u 6= 3 and αL

θ 6= 3 without invoking the invariant
assumptions (1.8) and (1.20).

The experimental details for the new measurements are given in § 2. The most
stringent assumptions that are needed to relate αλu and αL

u to nu (as well as their
counterparts for the scalar) are assessed in § 3. These assumptions are: global isotropy
(§ 3.1) as well as the constancy of the dimensionless dissipation rates, Cε and Cχ w.r.t.
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Grid Rd44w

xz

y

Grid Rd35Grid Sq35

x

M

x

d

x

d M

Mz

y

Flow

1.36:1 secondary
contraction

Mandoline
heater

Grid

Wind
tunnel

Test
section

FIGURE 1. The wind-tunnel test section installed with the biplanar grid (mesh solidity is
σ = d/M(2− d/M)) and the 1.36:1 secondary contraction.

the location x (§ 3.2). In § 4, we present the results for the exponents αλu , αL
u and their

counterparts for the scalar field. In § 5, the effect of increasing Rλu on the exponents
are discussed in light of the available data for grid turbulence. A summary of the main
findings as well as concluding remarks are given in § 6.

2. Experimental details
Figure 1 is a schematic diagram of the test section of a low-speed open-circuit

wind tunnel as well as the three different biplanar grids used for the present study. A
detailed description of the tunnel is given by Lavoie (2006) and Lavoie et al. (2007).
The primary contraction has an area ratio of 9:1. The test section downstream of the
secondary contraction has a nominally square cross-section of width W ' 0.31 mm (or
12M) with an adjustable floor which allows the mean pressure gradient to be set to
zero. The first grid (Sq35) is made of square bars with a solidity ratio (σ ) of 0.35, the
second grid (Rd35) has round bars (σ = 0.35) and the third grid (Rd44w) consists of
round bars with a thin wire wrapped helicoidally around each bar (σ = 0.44). For each
grid, the mesh size is M = 24.76 mm. In this paper, we also consider the isothermal
data obtained in earlier studies for Sq35 (Antonia et al. 2003) and for Rd35 (Antonia,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

21
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.217


388 R. A. Antonia, S. K. Lee, L. Djenidi, P. Lavoie and L. Danaila

Zhou & Zhu 1998); in the latter, all three fluctuating velocity and vorticity components
were measured simultaneously. For all measurements, the mean velocity U0 upstream
of the grid is '6 m s−1, corresponding to a value of RM (=U0M/ν) of '104.

To introduce the scalar, the grid flow is heated with a mesh of 0.5 mm diameter
Chromel-A wires placed at 1.5M downstream of the grid (figure 1). The method
of heating is based on the ‘mandoline’ technique (Warhaft & Lumley 1978). The
horizontal and vertical wires of the mandoline heater are separated by a gap of
0.6M and have the same mesh size as the grids. The temperature is controlled by a
variable-voltage (0–275 V) power supply. For the temperature to be passive, the grid
flow is just slightly warmer than the ambient air; the temperature difference, 1T , is
' 2◦C. The Prandtl number, Pr = ν/κ , is '0.7; κ is the thermal diffusivity.

To improve the isotropy of the large scales, the test section includes a (1.36:1)
secondary contraction located at a distance of 11M downstream of the grid (figure 1).
The design of the contraction is based on a linear theory (Batchelor 1953; Uberoi
1956) and empirical data (Comte-Bellot & Corrsin 1966). With the contraction, the
velocity in the test section is not constant (Lee et al. 2012a,b) and the time for
turbulence to be convected from the grid (at position s = 0) to a downstream location
(s= x) is defined as (Comte-Bellot & Corrsin 1966; Lavoie et al. 2007)

t =
∫ x

0

1
U(s)

ds. (2.1)

The non-dimensional timescale, tU0/M (U0 is the constant local velocity immediately
upstream of the grid), allows direct comparison between results obtained downstream
of the contraction and those obtained with no contraction (Lee et al. 2012a). In the
absence of a contraction, equation (2.1) simplifies to tU0 = x. Improvements to the
large-scale isotropy for the three grids considered here are reported by Lavoie (2006)
and Lavoie et al. (2007).

The temperature field produced by the mandoline heater approximately
satisfies homogeneity, where the mean-square temperature derivatives, 〈(∂θ/∂x)2〉 =
〈(∂θ/∂y)2〉 = 〈(∂θ/∂z)2〉, have been verified by Danaila et al. (2000). The departure
from 〈(∂θ/∂x)2〉 = 〈(∂θ/∂y)2〉 = 〈(∂θ/∂z)2〉 is significant only when a mean
temperature gradient is present, e.g. using an array of wire ribbons located upstream
in the plenum, known as a ‘toaster’ (Mydlarski & Warhaft 1998). For the most part,
the level of (local) isotropy of the temperature derivatives is tested by examining
the skewness and kurtosis of the temperature derivatives (Danaila et al. 2000; Zhou
et al. 2003), i.e. Sα = 〈α3〉/α′3 and Kα = (〈α4〉/α′4) − 3, where α = ∂θ/∂x and the
prime denotes the r.m.s. value. For turbulence which is Gaussian and isotropic, both
skewness (Sα) and kurtosis (Kα) is expected to be equal to zero. For the present
measurements, the skewness falls in the range −0.04. Sα .−0.10 and is independent
of streamwise distance from the grid for 22 . x/M . 110; the kurtosis falls in the
range 0.8. Kα . 1.6 (Lee et al. 2012a).

The streamwise velocity (u) and the temperature (θ ) fluctuations are measured
simultaneously using hot and cold (Wollaston Pt-10 %Rh) wires. The hot wire
(diameter dhot ' 2.50 µm; length lhot ' 200dhot) is operated at constant temperature
with an overheat ratio of 1.5. To minimize contamination by velocity, the cold
wire (dcold ' 0.63 µm; lcold ' 1000dcold) is operated at a constant current of 0.1 mA
(the sensitivity is 1�/ ◦C). The length-to-diameter ratios of the hot/cold wires are
sufficiently large to minimize end conduction losses. To avoid interference of the
measurement signals, the wires are parallel with a spanwise separation of 1 mm and
the cold wire is placed just upstream of the hot wire. The distance between the wires

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

21
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.217


Invariants for slightly heated decaying grid turbulence 389

is 1.5–3.0 Kolmogorov lengths (η = ν3/4/〈ε〉1/4); the lengths of the wires, from the
measurement position nearest to the grid to the position furthest from the grid, are
0.6 . η/lhot < 1.5 and 0.5 < η/lcold . 1.1. The signals from the hot/cold wires are
digitized with a 12 bit analogue-to-digital (A/D) converter and sampled at twice the
cut-off frequency of the low-pass filter. The cutoff frequency is determined by the
response time of the cold wire (Antonia, Browne & Chambers 1981); it is close to but
usually smaller than the Kolmogorov frequency, i.e. 0.8 . fK(2πη/U0) < 1. Note that
the cutoff frequency of the hot wire as determined by the square-wave test is higher
than that of the cold wire.

For each experimental run, the total record duration is ∼106/fs, where fs is the
sampling frequency. Based on twice the integral timescale, the number of independent
samples, (106/fs)/(2Lu/U0), is ∼2 × 104–3 × 104. To ensure that the records are of
sufficient duration, we have verified that the integrands associated with 〈u2〉, 〈θ 2〉, 〈ε〉
and 〈χ〉 have converged. For each grid, a total of nine points (for 〈u2〉 and 〈θ 2〉)
are measured in the range 22 . x/M . 110. Each data point for the mean dissipation
rates (〈ε〉 and 〈χ〉) is calculated by using the three-point centre-difference scheme; the
outer point on each end of a batch of nine data points is calculated by extrapolating
a power-law curve fit to the data points for 〈u2〉 and 〈θ 2〉. This avoids potential bias
estimates of 〈ε〉 and 〈χ〉 as well as the need to drop measurement points using either
forward or backward–difference schemes.

To summarize, the length-to-diameter (l/d) ratios of the wires are selected to
minimize attenuation at high frequencies while maintaining η/l as close to one as
practicable. For η/l & 0.5, the effect of attenuation underestimates 〈u2〉 by no more
than ±2–4 % (Wyngaard 1968). For a cold wire of l/d ' 1000, the error in measuring
〈θ 2〉 is ±5 % (Browne & Antonia 1987). The uncertainty in 〈ε〉 and 〈χ〉, estimated by
method of propagation of errors (Moffat 1988), is no more than ±10 %.

3. Assessment of flow characteristics
Prior to determining of the magnitudes of the exponents αL

u , αλu (and their
counterparts for the temperature field), we present in § 3.1 experimental estimates of
some of the quantities involved in the analytical approach described in § 1. Particular
attention is paid to the assessment of global isotropy, a basic assumption of the
theory. No attention is paid to the isotropy of the small scales since it appears to
be reasonably well satisfied, regardless of whether a secondary contraction is used
(e.g. Antonia et al. 2010). The behaviour of the normalized velocity and scalar
dissipation rates is assessed in more detail in § 3.2.

3.1. Basic flow characteristics

We first indicate the basic characteristics of the flow (variances of u and θ , as well
as length scales such as λu, λθ , L and Lθ ).

Figures 2 and 3 depict 〈u2〉 and 〈θ 2〉 as functions of (x − x0)/M, respectively.
For convenience, (t − t0)U0 is replaced by (x − x0) in figures 2 and 3 and all
subsequent figures which present results obtained with the use of the contraction;
it should be kept in mind however that, with the contraction, x no longer represents
the physical distance downstream of the grid. The virtual origin is determined via the
Taylor/Corrsin microscale method (Antonia et al. 2004; Lee et al. 2012a,b), i.e. by
plotting λ2

u/(x − x0) and λ2
θ/(x − x0) versus x for different choices of x0, the optimum

choices yielding the most convincing plateaux for these ratios. For each grid, the same
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Sq35
Rd35
Rd44w

100

10 –2

10 –4

10–6

20 20050 100

FIGURE 2. Velocity variance, mean energy dissipation rate and the Taylor microscale for
different grids with the contraction. Here RM ' 104.

100

10 –2

10 –4

10–6

20 20050 100

Sq35
Rd35
Rd44w

FIGURE 3. Temperature variance, mean temperature dissipation rate and the Corrsin
microscale for different grids with the contraction. Here RM ' 104.

optimum value of x0/M satisfies both 〈u2〉 and 〈θ 2〉; changing x0/M by ±1.0 alters nu

and nθ by no more than ±0.03.
For the present grids with the contraction, Lavoie et al. (2007) established

that the turbulence is very nearly globally isotropic (ruw = 〈u2〉/〈w2〉 ' 1) and that
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Sq35
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Rd44w

FIGURE 4. Taylor microscale Reynolds number (Rλu), Péclet number (Peλθ ) and Kolmogorov
microscale (η) for different grids with the contraction. Here RM ' 104.

both 〈q2〉 ∼ (x− x0)
nq and 〈u2〉 ∼ (x− x0)

nu have similar rates of decay, i.e. nq ' nu.
We have assumed axial symmetry (〈v2〉 = 〈w2〉) to estimate 〈q2〉, i.e.

〈q2〉 = 〈u2〉 + 2〈w2〉 = [1+ (2/ruw)] 〈u2〉 (3.1)

using the present measurements of 〈u2〉.
For grid turbulence, the turbulent energy budget is approximated by (1.5), see Zhou

et al. (2000), and the Taylor microscale is given by

λq
2 = 5ν〈q2〉/〈ε〉. (3.2)

For isotropy at both large and small scales, i.e. 〈q2〉 = 3〈u2〉 and 〈ε〉 =
15ν〈(∂u/∂x)2〉, respectively, relation (3.2) reduces to the more common definition
of the longitudinal Taylor microscale, namely λq = λu or λu

2 ≡ 〈u2〉/〈(∂u/∂x)2〉, see
Monin & Yaglom (1975). Under these conditions, the Taylor microscale Reynolds
number Rλq = (〈q2〉/3)1/2λq/ν reduces to the more usual definition Rλu = 〈u2〉1/2λu/ν.
Although only Rλu is plotted in figure 4, its magnitude differs from that of Rλq by no
more than 10 %.

For the passive scalar, the Corrsin microscale is given by

λθ
2 = 6κ〈θ 2〉/〈χ〉. (3.3)

For 〈χ〉 = 3κ〈(∂θ/∂x)2〉 (assuming isotropy at small scales), equation (3.3) can be
identified with the more common definition λθ

2 = 2〈θ 2〉/〈(∂θ/∂x)2〉, see Monin &
Yaglom (1975, p. 145).

Included in figures 2 and 3 are the dissipation rates of the kinetic energy and of
the scalar variance, as well as the scales λu and λθ . There is only a small effect of
grid geometry on these quantities. In particular, the decay rate of 〈ε〉 is larger for
Rd35 than for the other two grids, reflecting the larger magnitude of nu for this grid.
Also, the decay rate for 〈χ〉 is slightly larger for Rd35 than for the other two grids,
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Krogstad & Davidson (2010)

0.3

1.0

0.3

1.0

20 20050 100

Sq35

Rd35
Rd44w

Sq35

Rd35
Rd44w

FIGURE 5. Integral length scales (Lu and Lθ ) for different grids. For clarity, the Lu data (×) of
Krogstad & Davidson (2010) are vertically offset by a factor of two.

reflecting a slight difference in the magnitude of nθ between the three grids (refer
to § 4).

Figure 4 shows the effect of grid geometry on the Taylor microscale Reynolds
number Rλu and the Corrsin microscale Péclet number

Peλθ =
λθ

κ

( 〈q2〉
3

)1/2

. (3.4)

For all of the measurements, the grid-mesh Reynolds number RM =MU0/ν is constant
('104). Although η is only slightly affected by the initial conditions, the magnitudes
of Rλq and Peλθ appear to be more affected than η (represented in figure 4). For each
grid, 〈u2〉 (or 〈θ 2〉) and 〈ε〉 (or 〈χ〉) undergo changes and the resulting values of Rλq

and Peλθ also change.
Figure 5 displays the integral length scale associated with the correlation function

Bψψ (for ψ ≡ u or θ ), namely

Bψψ(r)= 〈ψ(x)ψ(x+ r)〉, Lψ =
∫ rψ

0

Bψψ(r)

〈ψ2〉 dr, (3.5)

where rψ is the separation corresponding to the first zero crossing of Bψψ(r). Figure 5
shows that, for (x− x0). 30M, the trends exhibit a slight curvature that is reminiscent
of that noted in the literature (Krogstad & Davidson 2010, 2011; Valente & Vassilicos
2012). The curvature is possibly due to initially developing turbulence and the
acceleration due to the secondary contraction. In § 4, we show that this translates
to a mild departure from constancy of relations (1.36) for (x − x0) . 30M. For
measurements obtained nearest to the wind-tunnel exit, the integral length scale (Lψ )
does not exceed 8 % of the width (W ' 12M) of the test section.

In this paper, we consider grid data obtained with and without a contraction. Using
a contraction improves the isotropy at large scales for all of the grids, as reported by
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20 20050 100
0

1

2

 Sq35 with no contraction; Antonia et al. (2004) 
 Rd35 with no contraction; Antonia et al. (2003) 

FIGURE 6. Mean energy and temperature variance dissipation-rate parameters, Cε and Cχ ,
for grids Sq35 and Rd35; data from Antonia et al. (2003, 2004).

Lavoie (2006) and Lavoie et al. (2007). The departure from global isotropy can be as
large as 15 % without the contraction. The length scales for Sq35 are larger than for
the other two grids, most likely due to differences in the large-scale structures. Grid
Rd44w is characterized by the smallest correlation length scales, as well as the best
global isotropy (Lavoie et al. 2007).

3.2. Dissipation-rate parameters
Figure 6 shows the data of Antonia et al. (2004) for Sq35 with no contraction. The

dissipation-rate parameters Cε and Cχ are approximately independent of (x − x0)/M
when the latter exceeds about 40. The magnitude of Cε depends on the grid geometry;
it is larger for Sq35 ('1.24) than for Rd35 ('1.03). For Sq35, the magnitude of Cχ

('0.29) is smaller than that of Cε by a factor slightly larger than three. From (1.3)
and (1.31), the ratio Cε/Cχ can be expressed as 3R(Lu/Lθ) using the definition of the
timescale ratio R given by (1.25). The departure of this ratio from three reflects slight
departures from one of R and the length scale ratio (Zhou et al. 2000).

Figure 7 shows, for Sq35, the effect of the contraction on the parameters Cε and
Cχ . It is clear that the use of the contraction reduces the magnitude of Cε by ∼10 %,
whereas it has almost no effect of Cχ . The present data for Cε and Cχ with a
contraction, are shown in figure 8. Several comments can be made. First, the present
values of Cε are in close agreement with those obtained from the larger velocity data
set of Lavoie (2006). The figure confirms that Cε is affected by the grid geometry;
in particular, Cε is closer to one for Rd44w, for which isotropy is nearly satisfied
by all of the scales. Further, it confirms that Cχ is essentially unaffected by the grid
geometry. As for figure 6, the ratio of Cε and Cχ in figures 7 and 8 departs from three
due to small departures from one of R and Lu/Lθ (Lee et al. 2012a).

Figure 9 shows that, for Rd35, the longitudinal velocity correlation function
Buu(r)/〈u2〉 first becomes negative at r & 10λu before returning to zero, whereas for
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0

1

2

20 20050 100

 Sq35 with no contraction; Antonia et al. (2004) 
 Sq35 with contraction; present data

FIGURE 7. Mean energy and temperature variance dissipation-rate parameters, Cε and Cχ ,
for grid Sq35 with and without the secondary contraction.

Lavoie et al. (2007) 

0

1

2

20 20050 100

 Sq35
 Rd35           With contraction; present data
 Rd44w

FIGURE 8. (Colour online) Dissipation-rate parameters Cε and Cχ . Symbols are defined in
the legend; the data of Lavoie et al. (2007) are shown as grey (brown online) symbols.

Sq35, it approaches zero monotonically. With the contraction, Buu(r)/〈u2〉 behaves
in a similar manner but the ‘overshoot’ at r & 10λu is less evident. The overshoot
suggests some form of large-scale (quasi-periodic) organization; flow visualizations
(Lavoie 2006) have indicated that, for a grid constructed from circular cylinders, the
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0

1.0

0

1.0

10–1 100 101 10 2

Sq35; no contract.
Rd35; no contract.
Sq35; with contract.
Rd35; with contract.
Rd44w; with contract.

Sq35; no contract.
Sq35; with contract.
Rd35; with contract.
Rd44w; with contract.

FIGURE 9. (Colour online) Correlation functions Buu(r)/〈u2〉 and Bθθ (r)/〈θ 2〉 for grids
without (Antonia et al. 2003, 2004) and with the contraction (present data), with x/M ' 80
and RM ' 104.

periodicity due to vortex shedding is discernible at larger values of x/M than for a grid
of square bars. With the contraction, and also if a small diameter wire is helicoidally
wrapped around the circular cylinders (i.e. grid Rd44w), the overshoot/periodicity is
reduced. Unfortunately, since no measurements without the secondary contraction with
this grid are available, one cannot attribute the reduction of the overshoot to either the
secondary contraction and/or the wire wrapping.

In figure 9, the temperature correlation function Bθθ(r)/〈θ 2〉 is obtained at the
same downstream location (80M) as for the velocity correlation function. For Sq35,
Bθθ(r)/〈θ 2〉 is not visibly affected by the contraction except for a slightly steeper ‘roll
off’ in the range 10 . r/λθ . 20. With the contraction, Bθθ(r)/〈θ 2〉, like Buu(r)/〈u2〉,
approaches zero monotonically for Sq35; for grids Rd35 and Rd44w that produce the
more periodic turbulence, there is a distinct local minimum, where the correlation is
negative, at r/λθ (or r/λu) of about 10. For the present measurements, Lθ/Lu lies
between 0.9 and 1.2; for the same x/M, Lθ is larger for Sq35 than for Rd35 and
Rd44w.

4. Testing the invariants
The methodology adopted here is as follows. First, for each experiment, we

determine the decaying exponents nu and nθ (e.g. see table 1 for values of nu). Second,
the values of αλu and αλθ are determined directly via (1.16) and (1.30), respectively.
Third, the values of αL

u and αL
θ are determined directly via (1.19b) and (1.34),

respectively. With these values of αL
u , αL

θ , αλu and αλθ , we check the validity of the
corresponding invariants over the range of (x − x0)/M for which homogeneity and
isotropy apply.

In figure 10, the parameters (〈u2〉/U0
2)(λu/M)

αλu and (〈θ 2〉/1T2)(λθ/M)
αλ
θ are

constant w.r.t. (x − x0)/M, both for the present measurements and those of Lavoie
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(× 10–5)

0
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Sq35; 2.36
Rd44w; 2.28

Rd35; 2.46

Sq35; 2.42

Rd44w; 2.36

Rd35; 2.54

FIGURE 10. (Colour online) Plots of (〈u2〉/U0
2)(λu/M)

αλu and (〈θ 2〉/1T2)(λθ/M)
αλ
θ for

different grids with the contraction; αλu = −2nu and αλθ = −2nθ . The present data are shown
as black or white symbols. The data of Lavoie et al. (2007) are shown as grey (brown online)
symbols with −nu = αλu/2= 1.18 (Sq35), 1.22 (Rd35) and 1.10 (Rd44w).

et al. (2007), where a large number of data points was used with small increments
for (x − x0)/M. The values of αλu and αλθ that yield plateaux are those given by
(1.16) and (1.30); the different magnitudes of the plateaux reflect the dependence on
the grid geometry. Figure 10 shows that, for the present velocity data, the values of
−nu = αλu/2 (=1.18, 1.23 and 1.14 for Sq35, Rd35 and Rd44w, respectively; see also
table 1) are in close agreement with those obtained from the data of Lavoie et al.
(2007); for the present temperature data, −nθ = αλθ /2 = 1.21, 1.27 and 1.18 for Sq35,
Rd35 and Rd44w, respectively.

As an example, the effect of changing the values of αλu and αλθ is shown in figure 11
for Rd44w; Sq35 and Rd35 produce similar trends. It is clear that the optimum values
of αλu and αλθ are indeed those given by (1.16) and (1.30).

Figure 12 shows that the parameters (〈u2〉/U0
2)(Lu/M)

αL
u and (〈θ 2〉/1T2)(Lθ/M)

αL
θ

are constant for (x − x0)/M & 30, i.e. over the range where homogeneity should hold.
The different magnitudes of the plateaux reflect the effect of grid geometry. The slight
curvature exhibited by the distributions of Lu and Lθ (figure 5) for (x− x0)/M < 30 can
be observed in figure 12. The curvature of Lu over the region (x− x0)/M < 30 is most
likely due to the changes that occur to the large scales in this development region.
The Taylor microscale λu (figure 2) does not seem to be significantly affected by these
changes, as the evolution with (x− x0)/M < 30 in figure 2 indicates. Consequently, the
plateaux in figure 10 are more extensive than in figure 12.

For a round-bar grid of the same solidity as Rd44w and with mandoline heating
of the flow downstream of this grid with no contraction, Sreenivasan et al. (1980)
obtained the relations 〈u2〉/U0

2 = 0.04(x/M − 3)−1.20, 〈θ 2〉/1T2 = 0.124(x/M − 3)−1.44,
Lu/M = 0.13(x/M − 3)0.4 and Lθ/Lu ' 0.825. The data of Sreenivasan et al.
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Rd44w; with secondary contraction

20 20050 100

(× 10–5)

0

1

0

3

2.28

2.10

2.50
2.70

2.36
2.20
2.10

2.60

FIGURE 11. Plots of (〈u2〉/U0
2)(λq/M)

αλu and (〈θ 2〉/1T2)(λθ/M)
αλ
θ with different values of

αλu and αλθ for grid Rd44w with the contraction. Values that yield the plateaux (i.e. horizontal
lines) are given by αλu =−2nu and αλθ =−2nθ .

(1980) yield constant values of Cε ' 1.17 (assuming 〈q2〉 = 3〈u2〉), Cχ ' 0.39,

(〈u2〉/U0
2)(Lu/M)

αL
u ' 0.9 × 10−4 and (〈θ 2〉/1T2)(Lθ/M)

αL
θ ' 0.4 × 10−4 which are

not too different from the present measurements for Rd35 and Rd44w (figure 12).
Krogstad & Davidson (2010, figure 10) noted that Cε decreased slightly with

increasing x/M. Valente & Vassilicos (2012) suggested that there are non-negligible
effects due to inhomogeneity in the region ((x − x0)/M < 70) and (electronic) noise
when (x − x0)/M > 180. A statistical hypothesis test of Krogstad & Davidson’s
(2010, figures 10 and 11) data shows that, at a 99 % level of confidence, Cε and
(〈u2〉/U0

2)(Lu/M)
αL

u are independent of (x− x0)/M for 70. (x− x0)/M . 180.
From figures 10 and 12, it is clear that there is an advantage in opting for (1.35)

rather than (1.36) since the Taylor microscale can be determined more reliably than the
integral length scale Lu provided that reliable estimates of 〈ε〉 and 〈χ〉 can be made.
The former scale requires knowledge of 〈u2〉, 〈θ 2〉, 〈ε〉 and 〈χ〉; for the majority of
passive grid experiments, the mean dissipation rates are readily available via (1.5) and
(1.23). In estimating Lu, there is inevitable arbitrariness when integrating the velocity
correlation function Buu(r) up to its first zero crossing. While the exponents αL

u and αL
θ

are given by (1.19b) and (1.34), the exponents αλu and αλθ are simply proportional to nu

and nθ , as expressed by (1.16) and (1.30).

5. Effect of the Reynolds number on nu

The issue of how nu behaves as Rλu increases deserves some attention. Mohamed &
LaRue (1990) examined a wide range of passive grid data and found that −nu ('1.30)
was approximately constant over a factor of 10 variation in RM (the maximum Rλu

was about 100). George (1992b, figure 2) plotted the variation of −nu with RM for
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Krogstad & Davidson (2010)

Sirivat & Warhaft (1983)

(× 10–4)

0

6

0

6

20 20050 100

Sreenivasan
et al. (1980) 

Sreenivasan
et al. (1980) 

Sq35

Rd44w

Rd35

Sq35

Rd44w

Rd35

FIGURE 12. Plots of (〈u2〉/U0
2)(Lu/M)

αL
u and (〈θ 2〉/1T2)(Lθ/M)

αL
θ for different grids; the

present data are shown as black and white symbols; αL
u and αL

θ are given by (1.19b) and (1.34),
respectively. The data of Sirivat & Warhaft (1983) (+Rλu ' 36.5) and Krogstad & Davidson
(2010) (×Rλu ' 75) are vertically offset by 0 and 4× 10−4, respectively.

the square-bar grid data of Comte-Bellot & Corrsin (1966) and Kistler & Vrebalovich
(1966) (maximum Rλu = 670) and concluded that the trend of −nu is clearly downward
as RM increases. Although the dependence of −nu on the grid geometry cannot be
dismissed, it would appear that RM has the major effect on −nu. George & Davidson
(2004) pointed out that there is no evidence that the turbulence evolves toward the
final period of decay for which −nu = 5/2. This latter behaviour has been observed
only when RM is sufficiently small (Bennett & Corrsin 1978). In figure 13, values of
−nu are plotted against Rλu for all of the passive grid data listed in table 1. The plot
suggests that −nu approaches one when Rλu exceeds ∼500, although it is evident that
more passive grid data points in the range 100 . Rλu . 1000 (only the measurements
of Kistler & Vrebalovich (1966) and Schedvin et al. (1974) fall in this range) are
needed to confirm this trend.

Active grid turbulence experiments (such as those of Makita (1991), Mydlarski
& Warhaft (1996), Kang et al. (2003) and Larssen & Devenport (2011, referred to
hereafter as LD11)) have yielded quite a large number of data in this range. The main
tendency has been to provide statistics at one location in the flow and only a few
estimates of nu have been inferred from the spatial decay rate of 〈u2〉; correspondingly
few estimates of 〈ε〉 have been made via relation (1.5). Table 1 shows that, apart
from Makita (1991), the range of x/M used for these estimates is smaller than that
used in passive grid experiments. In figure 13, we have collated values of nu for these
experiments; all of the grid designs are essentially based on that of Makita (1991),
which uses rotating grid bars equipped with agitator wings. The integral length scale
of the resulting turbulence is generally larger than for conventional passive grids. For
all of the data in table 1, we have obtained our estimates of nu from the decay rate of
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(a)

(b)

1.0

1.2

1.4

1.0

1.2

1.4

30 100 300 1000

FIGURE 13. The decay exponent (nu) as a function of Rλu ; (a) the decay method
〈u2〉 ∼ (x− x0)

nu and (b) the microscale method (5.1) are used. Table 1 defines the symbols.

〈u2〉 ∼ (x− x0)
nu , where the choice of x0 ensures that nu is constant in the power-law

decay range; the approach is the same as that described by Mohamed & LaRue (1990),
Lavoie et al. (2007) and Lee et al. (2012a); the values of nu obtained from this ‘decay’
method are shown in figure 13(a).

Makita (1991) estimates of nu (10 . x/M . 100) are associated with rather large
magnitudes of the virtual origin, i.e. −nu = 1.28 with x0/M = 11.5 for the passive grid,
and −nu = 1.43 with x0/M = −9.2 for the active grid. This is most likely due to flow
inhomogeneity (the flow is still developing and anisotropic) in the range x/M < 20
since the data of Makita (1991, figure 9) deviate considerably from the power-
law decay in this range. To circumvent this problem, we have discounted Makita’s
data points at x/M < 20 when estimating nu. In table 1, all estimates are obtained
by using data points at x/M & 20 (this range ensures that the flow is reasonably
homogeneous while retaining most of the data points to allow a satisfactory curve fit);
the 95 % confidence limit for the estimated values of nu is about ±0.05. For nearly all
experiments using a passive grid (Kistler & Vrebalovich 1966; Sreenivasan et al. 1980;
Sirivat & Warhaft 1983; Antonia et al. 2003, 2004; Krogstad & Davidson 2010) and
one with an active grid (Mydlarski & Warhaft 1996), the values of nu are very close to
those reported by these authors; the difference is no more than ±0.04.

Figure 13(a) and table 1 show that, for the experiments at high Rλu of about
600–800 (Kistler & Vrebalovich 1966; Kang et al. 2003; LD11), the value of −nu

obtained from the decay method is 1.0. For the Kistler & Vrebalovich (1966) data
point (labelled ©), we estimated nu using all of the 〈u2〉 data from their figure 1. For
Kang et al. (2003) (�), we used the values of 〈u2〉 from their table 1 to estimate
nu, although they quoted a larger decay exponent of 1.25 from their power-law curve
fit of 〈q2〉 = ∫ π/10 E(k) dk using different filter scales 1 (figure 7 of their paper).
For LD11, we have estimated nu from their table 1 at five streamwise locations for
two different free stream velocities, nominally 12 and 15 m s−1. In each case, RM is
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constant ('1.7 × 105 and 2.1 × 105) as are all other parameters associated with the
operational protocol for the rotating elements of the grid. The value of nu, inferred
from the decay rates of 〈u2〉, is 1.02 (labelled �) and 1.00 (×) for the respective
RM values. Surprisingly, Schedvin et al. (1974) obtained −nu = 1 (�) despite the
uncertainty associated with the rather narrow range of x/M (= 35, 38, 40 and 41).
Due to this narrow range, Schedvin et al. (1974) indicated that a range of values
(e.g. −nu = 1.00 and 1.25; x0/M = 0, 2 and 4) can give equally satisfactory fits to the
data.

However, the data points for 〈u2〉 are not given in Schedvin et al. (1974)’s paper, we
have not been able to check their values of nu.

As a consistency check, estimates of −nu for the passive and active grid data have
also been made using the relation (also known as the ‘Taylor microscale’ method),

− nu = 10ν
λ2

u

(x− x0)

U0
≡ 2

1+ (2/ruw)

〈ε〉
〈u2〉

(x− x0)

U0
, (5.1)

derived from (1.5) and (3.1). The results obtained from (5.1) are presented in
figure 13(b) and table 1. Where the value of ruw is not provided by the authors,
we assumed it is one, an assumption that is strictly justifiable only for isotropic grid
turbulence. This assumption seems acceptable for LD11 who measured values of ruw

quite close to one, because of the placement of the grid in the wind-tunnel contraction.
The choice of x0 ensures that λ2

u/(x− x0)∼ (−ν/nu) is constant in the power-law decay
range (x& 20M), where the flow is expected to be sufficiently homogeneous. Note that
the uncertainty in measuring 〈ε〉 is a source of error in estimating −nu from (5.1). For
a fixed value of x0, varying 〈ε〉 by ±20 % changes nu by no more than ±0.2. With
the exception of LD11, the values of 〈ε〉 reported by the authors have led to values of
−nu which are in general agreement with those inferred from the decay method; the
difference is no more than ±0.08.

For the LD11 data, we have focused on only two cases (U0 ' 12 and 15 m s−1)
where the measurements of 〈u2〉 are made at x/M = 21.3, 29.3, 37.3, 41.0 and 47.5.
For these two cases, we only used our estimates of 〈ε〉 from (1.5) to determine nu

with (5.1). This is prompted by Larssen & Devenport (2002)’s comment that their
estimates of 〈ε〉 are in error by at least 20 % (this error increases with distance
upstream) and therefore unreliable because the low-frequency end of the spectrum
shows the greatest departure from the ‘standard homogeneous isotropic form’. In fact,
using LD11’s measurements of 〈u2〉, our estimates of 〈ε〉 differ from their estimates
by 33–45 % for the furthest three (x/M) locations and by 81–110 % for the closest
two locations (this is checked using forward and backward difference schemes). LD11
noted that the lowest wavenumbers are attenuated due to the limited size of the test
section (their table 1 indicates that the integral length scale is essentially constant
with x) whilst the major injection of energy by the grid is at the start of the inertial
range. Be that as it may, it is difficult to dismiss the possibility that the dissipative
end of the spectrum is attenuated due to the finite lengths of the hot wires. Larssen
& Devenport (2002)’s observation that estimates of 〈ε〉iso as obtained from single hot
wires with lengths equal to 1.7 mm and 0.5 mm (η is about 0.2 mm at Rλu ' 800)
differ by only 9 % is not easily reconcilable with Wyngaard (1969) results for the
effect of lw/η on 〈(∂u/∂x)2〉. As most of the LD11 data on 〈u2〉 (at different U0) are
provided at only one x/M location in the grid flow, it is difficult to have confidence
in the estimates of nu with (5.1) because of the large combined uncertainties in 〈ε〉
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and x0. For example, for the LD11 case with the largest Rλu (= 1362; x/M = 21.3;
U0 ' 20 m s−1), using (5.1) with ruw = 1, x0 = 0 and their values for 〈u2〉 and 〈ε〉
yields a value of −nu ('0.4) which is significantly smaller than one. To summarize,
equation (5.1) is useful provided that 〈u2〉 is available for a sufficient range of x/M;
this is so that 〈ε〉 can be satisfactory estimated/checked via (1.5) before choosing x0 to
ensure that the value of nu is constant in the power-law decay range.

Notwithstanding the scatter, figure 13 shows that, for both methods of estimating
nu, the overall trend of −nu is downward as Rλu increases, which is consistent with
George (1992b)’s observation. Both active and passive grid data seem to imply that a
value of −nu close to one could be reached when Rλu is ∼1000.

6. Conclusions and discussion
The present study of the initial period of decay for passive grid turbulence at

relatively small values of the grid-mesh Reynolds number, RM, allow three major
conclusions to be drawn.

(1) First, the measured products 〈u2〉λu
αλu and 〈θ 2〉λθ αλθ , with αλu = −2nu and αλθ =−2nθ are independent of x. This seems to highlight the importance of the Taylor

and Corrsin microscales in the context of determining the invariants for this
flow. We recall that earlier work (Antonia et al. 2003; Antonia & Orlandi 2004)
confirmed the adequate similarity of the transport equations for the second-order
velocity and temperature structure functions with λu and λθ as the relevant length
scales. The invariance w.r.t. x of 〈u2〉λu

−2nu and 〈θ 2〉λθ−2nθ can certainly be tested
with confidence since there is no ambiguity in determining λu and λθ .

(2) The values of the exponents αL
u and αL

θ required for 〈u2〉Lu
αL

u and 〈θ 2〉Lθ αL
θ to

remain constant with x are given by relations (1.19b) and (1.34) provided that the
non-dimensional dissipation rate parameters Cε and Cχ do not vary with x. This
constancy is adequately supported by all of the data examined in this paper. There
is however some uncertainty associated with the constancy w.r.t. x of 〈u2〉Lu

αL
u and

〈θ 2〉Lθ αL
θ due mainly to the ambiguity in determining the integral length scales. The

departures of αL
u and αL

θ from the value of 3 which essentially correspond to the
deviations of αλu and αλθ from the value of 2.4, underline that the Saffman and
Corrsin invariants are not strictly satisfied by the data. These departures reflect
mainly the dependence of nu and nθ on the initial conditions, i.e. the particular
type of grid that is used and, more likely, the magnitude of RM.

(3) The magnitude of Cε appears to be more sensitive to the grid geometry than that
of Cχ . The latter is essentially the same for the three grids that have been used,
possibly due to the use of the same initial heating conditions. Also, the effect of
the secondary contraction is smaller on Cχ than Cε .

The overall trend in figure 13(a,b) does not, in spite of the scatter, rule out the
possibility that the magnitude of −nu decreases towards 1 as the initial Reynolds
number of the experiment increases. This Reynolds number is proportional to RM for
conventional passive grids, but is more correctly represented by the peak value of Rλ,
(Rλu)max immediately downstream of the grid, irrespectively of whether it is passive or
active.

In particular, our analysis of the LD11 data for which the local value of Rλu reaches
the largest value ('1300) obtained for grid turbulence suggests that −nu is close
to 1 when Rλu approaches 1000. One should however keep in mind that, for the
available passive and active grid data at large Rλu , the estimation of −nu is tainted
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by various sources of uncertainty, arising mainly from the narrow range of x/M used
and errors in the estimation of x0 and 〈ε〉. It would certainly be highly desirable to
remedy this situation in future experiments. We should also note that the decrease
of −nu with (Rλu)max indicated in figure 13 confirms the observation of Burattini
et al. (2006), based on a number of numerical simulations of decaying homogeneous
isotropic turbulence, that −nu decreases towards one as (Rλu)max increases.

For the present data, at small Rλu , the timescale ratio R is close to one. This value
should also apply at larger Rλu provided the flow is heated in the same way. For
passive grids with this type of heating, it would be reasonable to expect, for very large
Rλu , complete self-preservation of the velocity and scalar fields (Speziale & Bernard
1992; Gonzalez & Fall 1998) with nu = −1, nθ = −R−1 or −1 (for R = 1). The
corresponding invariants should then be

〈ψ2〉λψ 2 = constant, 〈ψ2〉Lψ 2 = constant,

where ψ ≡ u or θ .
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