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SUMMARY
The paper presents a self-contained approach for the
dynamics identification of six degrees of freedom (DOF)
parallel robots. Major feature is the consequent consideration
of structural properties of such machines to provide an
experimentally adequate identification method. The known
periodic excitation is modified and enhanced to take
the actuator coupling as well as the numerical solution
of the direct kinematics into account. The benefits of
explicit frequency-domain data filtering are demonstrated.
Additionally, a new implementation of the maximum-
likelihood estimator allows for automatic tuning of the data
filter. The issue of optimal input experiment design is also
discussed and substantiated with extensive experiments.

KEYWORDS: Parallel manipulators; Dynamics; Identifica-
tion; Optimal experiment design.

1. Introduction
It is well known that model-based controller and simulation
environments perform as well, as a reliable estimation of
model parameters is available. In the last two decades an
impressive progression has been achieved, concerning the
dynamics identification of open-chain robotic manipulators.
The expression of the dynamics in parameter linear form,
the use of linear estimation techniques and the appropriate
design of excitation trajectories became standard procedures
and state of the art.1–5

The portability of the research progress is, however, not
yet achieved on the recently emerging class of closed-loop
and parallel kinematic manipulators (PKM). The important
structural and architectural variety of such robots complicates
the task. To our opinion and concerning the identification of
dynamics models, two main categories can be addressed:
lower mobility and higher mobility PKM. The first have
at most one rotational degree of freedom (DOF) for the
endeffector, whereas their counterpart, the higher mobility
robots possess at least two rotational DOFs. For lower
mobility PKM and in the majority of cases, the actuated
(or articulated) variables are sufficient to determine the
manipulator’s configuration. They coincide with the set of
generalized coordinates. Consequently, the dynamics and
therefore the regressor of the estimation can be directly
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expressed with respect to the measurable actuated joint
variables. From the identification point of view there is
no significant difference between serial robots and lower
mobility PKM. This has been demonstrated by some recent
publications.6–9 The situation is not that favorable for higher
mobility robots, i.e., for 6-DOF parallel manipulators. In
such case the actuated variables are not independent and
yields ambiguous solution of the direct kinematics.10 In that
sense the generalized coordinates are chosen to be the pose
of the endeffector, which is usually not measurable and has to
be calculated numerically from the actuation variables.11 As
a result, the estimation regressor has to be built up using
nonmeasured variables that are corrupted additionally to
noise by numerical imprecisions. By considering the classic
case of 6-DOF parallel robot, i.e., the famous Stewart–Gough
platform, so it is interesting to state the missing of systematic
identification methodologies in the literature, despite all the
progress made in dynamics identification.

This paper addresses the subject of dynamics identification
for 6-DOF nonredundant parallel manipulators. The
presented approach exploits the progress of the established
identification theory to provide an experimentally adequate
and appropriate method for the investigated class of dynamic
systems. Therefore, the paper emphasizes on the practical
issues and the experimental proceeding. It is the goal to
provide the interested reader with the hints for a successful
dynamics identification of 6-DOF PKM, since accurate
dynamics identification is highly crucial for the improvement
of control performance of such machines.12

Beyond the recall of some basics on robot dynamics
and estimation theory, which we have published in refs.
[13–15], the paper illustrates the subject of appropriate
signal processing for the dynamics identification of spatial
parallel robots. A novel discussion is given that considers
the relationship between data filtering and the use of
the numerical direct kinematics that provides the state
coordinates of parallel robots. By proposing strict frequency-
domain data processing, a novel formulation of the
maximum-likelihood estimation can be derived. This new
formulation increases the parameter set to be identified by a
single new value that corresponds to the cutoff-frequency of
the data filter. In such manner, a considerable computational
efficiency is achieved, compared to already established
approaches in the literature.5,16

The paper is structured such that some discussion and
experimental examples are provided within algorithmic
development. In such manner, the reader is provided with
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a substantiated motivation of the ideas behind the proposed
proceeding. Section 2 gives a brief review on identification
approaches well-known in robotics. Additionally, the
dynamics model of parallel robots is revisited. We focus
on the form that is necessary for linear identification, namely
the linear-in-the-parameter (LP) form. It is recalled that the
model is given analytically only at the level of generalized
forces. The actuation forces and the estimation regressor are
calculated by using the manipulator’s Jacobian. The latter is
obtained numerically, such that gradient-based maximum-
likelihood estimators—as proposed in ref. [16]—are not
useful.

In Section 3 follows the adaptation of the powerful
approach of periodic excitation trajectories proposed by
Swevers et al.5 to 6-DOF PKM. For such systems the issue
of data processing and filtering plays a central role for
the experimental success of the identification. For example,
the use of numerical direct kinematics yields a spectral
distortion in the calculated data, such that the filtering method
given by refs. [5, 16] will lead to leakage effects. Thus, a
strict frequency domain data processing is proposed. The
approach passes on the exact knowledge of the excitation
frequencies. Furthermore, the high coupling between the
actuators does not allow for SISO disturbance models, like it
is often done in the case of serial robots.3,5,17 The additional
consideration of cross-correlated data is suggested. The
estimated covariances are useful for accurate identification
and also for the optimal input design of the experiments and
helps to overcome the classic excitation design paradigm
that uses the condition number of the regressor.4,7,6 The
new approach for implementing the maximum-likelihood
estimator for parallel robots is discussed in Section 5.

The last Section 6 is dedicated the experiments. The
proposed methodology is substantiated on the directly driven
hexapod PaLiDA (see Fig. 3). The effects of filtering and
experiment design on the accuracy of the identified models,
as well as on the improvement of tracking control are
demonstrated by means of experimental results.

2. Identification of Dynamics Models for Parallel Robots
The use of linear estimators in robotics is widely spread,
since the dynamics equations can be written in a linear form
with respect to model base parameters. For all robot classes
this can be obtained as follows

τ = A(z, ṡ, s̈) p, (1)

with the model output being the generalized forces τ , the
model input being the generalized coordinates z, velocities ṡ
and accelerations s̈, and the parameter vector p regrouping
a base set of rigid-body and friction parameters.3 The case
is favorable for serial robot manipulators, since all inputs
and outputs correspond to the actuation space. Furthermore,
Eq. (1) is obtained analytically and in a closed form.3,5 The
situation changes for the case of higher mobility PKM, where
the configuration space, the actuation space and the joint
space are all different.12 The parameter linear closed form
is obtained for the rigid-body dynamics with respect to the

configuration space:

τ rb = Arb(x, v, a) prb, (2)

where z, ṡ, and s̈ have been set to be the pose x, the velocity
v and the acceleration a of the endeffector, respectively.
The friction dynamics are obtained with respect to the joint
space

Qf = Af(q̇) pf, (3)

with q denoting all joint variables including the passive qp
and the active ones qa. From the estimation point of view
Eqs. (2) and (3) consist in models that are linear with respect
to their parameters (subsequently abbreviated LP models)
but with different input spaces. For a uniform formalism Eq.
(3) can be rewritten in

Qf = Af(x, v) pf, (4)

which is possible since all joint variables and velocities q̇ can
be directly obtained in a closed form by means of the inverse
kinematics.10 Because both τ and Qf are not measurable, the
former equations need to be transformed with respect to the
actuation space, where at least the output of the final model
is measurable. We obtain for the rigid-body dynamics

Qa,rb =
(

∂v

∂ q̇a

)T

Arb(x, v, a) prb,

= JT Arb(x, v, a) prb, (5)

and for friction

Qa,f =
(

∂ q̇
∂ q̇a

)T

Af(x, v) pf,

=
(

∂ q̇
∂v

∂v

∂ q̇a

)T

Af(x, v) pf,

= JT JT
L Af(x, v) pf . (6)

For 6-DOF parallel robots, the jacobian of the manipulator
J is not available analytically and has to be obtained by
numerical inversion10 of J−1. This means that the final linear
form of the dynamics, which relates the input to the output
is not available in a closed form due to the presence of J

Qa = JT

[
Arb 0
0 JL Af

]
︸ ︷︷ ︸

A

[
prb
pf

]
︸ ︷︷ ︸

p

= A(x, v, a) p. (7)

By considering N noisy measurements at N configurations,
the formulation of the estimation problem can be derived
from Eq. (7) as⎡

⎢⎣ Qa1
...

QaN

⎤
⎥⎦

︸ ︷︷ ︸
�

=

⎡
⎢⎣ A(x1, v1, a1)

...
A(xN, vN, aN )

⎤
⎥⎦

︸ ︷︷ ︸
�

p +

⎡
⎢⎣ e1

...
eN

⎤
⎥⎦

︸ ︷︷ ︸
η

, (8)
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with the measurement vector �, the information or regression
matrix � and the error vector η that accounts for output
additive disturbances. By assuming the disturbance η to be
gaussian with zero-mean the Gauss–Markov (GM) approach
yields the best unbiased solution

p̂GM = (�T�−1
ηη �
)−1

�T�−1
ηη �, (9)

of the overdetermined linear equations system, Eq. (8).18,19

Here �ηη = E(ηηT) is the covariance of the disturbance
vector η. The application of the linear techniques assumes
not only a linear observation model but it assumes also
output additive noise, which means noise-free or at least
noise-poor regressor �. When such condition is not fulfilled,
the maximum-likelihood estimator should be adopted (see
Section 5).

The regressor is built up using x, v, and a which are not
directly measured. Numerical direct kinematic algorithms
can be used to calculate the pose from the measured actuated
variables qa.11,20 The use of the Newton–Raphson algorithm,
e.g., is here recommended, since it is performed offline.
Hence, it is not critical to achieve appropriate choice of
the initial values and algorithm resolution. More critical
is the calculation of v and a. Numerical differentiation
is not convenient, because possible oscillations of the
direct kinematic solution introduce additional noise, even
in the case of highly accurate actuator measurements.13

Appropriate methods for the reconstruction of the velocities
and acceleration are proposed in the following (see
Section 3). The direct dependency of the regressor �

on x, v, and a demands a planning of the excitation or
identification trajectories with respect to the workspace
that is for parallel manipulators equal to the configuration
space.

Another interesting issue with 6-DOF parallel robots is
the presence of passive joints that produce additional but
nonmeasurable friction forces. The detection of all friction
forces could be achieved only indirectly by using appropriate
kinematic coupling models and actuation forces.21 Since in
addition the number of passive joints exceeds that of the
actuators, it is plausible to ask, whether all joint effects can be
significantly detected in the noisy measurements of actuator
forces. Optimal parameter number and identifiable structures
should be investigated before starting the identification.
The determination of identifiable minimal parameter for
rigid-body dynamics is a standard procedure.4,15,22, For
friction model no uniform or standard approach is known
in the literature yet. In a previous paper,14 we proposed the
following a methodology that is based on the estimation
uncertainty. The covariance P of the GM parameter estimate
is given for the LP model structure Eq. (7) and by
ref. [19]:

P( p̂ = p̂GM ) = (�TE−1(ηηT)�
)−1

. (10)

The asymptotical distribution of the ith model parameter is
a expected to be normal with the variance σ 2

pi
that is equal

to the ith diagonal entry of the covariance matrix Pii . The
correlation coefficients between the estimated ith and j th

parameter are

−1 ≤ �ij = Pij√
PiiPjj

= Pij√
σ 2

pi
σ 2

pj

≤ 1, (11)

which constitute the entries of the correlation coefficient
matrix ρ. Since all diagonal entries of ρ are equal to 1 and
ρ is symmetric, its condition number υ = cond(ρ) is chosen
as criterion for the eligibility of the respective model. At first
an excitation trajectory is optimized for the identification of
a basic model (see Section 3). This trajectory is used for
the analysis of parameter correlation while varying model
complexity, i.e., the parametrization of the friction model
in passive joints. The use of the condition number allows
comparable results by different dimensions (respectively to
different models) of ρ. The efficiency and practicability of
the proposed approach has been approved by experimental
results (see ref. [14] for more details).

3. Using Periodic Excitation: Implementation Issues
and Data Processing
The methodology proposed by Swevers et al.5,16 for the
design of periodic excitation trajectories has been proved
to be powerful by many researchers.23–25 In this section the
approach is extended and adapted to the case of parallel
robots, since additional challenges have to be considered.
Furthermore, it is emphasized on the data processing in order
to improve the efficiency of periodic excitation for 6-DOF
parallel manipulators.

3.1. Definition of periodic excitation for 6-DOF parallel
robots
Since the dynamic model and therefore the regressor � can be
only built up by using x, v, and a, it is recommended to define
the excitation trajectories with respect to the pose of the
endeffector. For each generalized coordinate corresponding
to the ith element of x a respective trajectory with nh

harmonics is defined as

xi = xi
0 +

nh∑
k=1

(
μi

k

kωf
sin(kωf t) − νi

k

kωf
cos(kωf t)

)
, (12)

providing a proper trajectory parameter vector

�i = [xi
0, μi

1, . . . , μi
nh

, νi
1, . . . , νi

nh

]T
(13)

that contains the trajectory offset xi
0, the trajectory coeffi-

cients μi
1...nh

and μi
1...nh

as well as the fundamental frequency
ωf that is common to all DOF.5 An example of a harmonic
trajectory with order nh = 5 is depicted in Fig. 1. The
velocities and accelerations can be obtained in a first step
by analytical derivation of Eq. (12):

ẋi =
nh∑

k=1

(
μi

k cos(kωf t) + νi
k sin(kωf t)

)
, (14)

ẍi =
nh∑

k=1

(−μi
kωfk sin(kωf t) + νi

kωfk cos(kωf t)
)
. (15)
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Fig. 1. Example of a periodic excitation trajectory nh = 5, top left:
translational coordinates, bottom left: rotational coordinates, right:
three-dimensional presentation.

Given the pose as x = [rT ϕT]T, with r being the cartesian
position of the endeffector and ϕ = [φ, θ, ψ]T containing
the roll pitch yaw (RPY) orientation variables, the velocities
and accelerations resulting from the excitation trajectories
are obtained from Eq. (14) and (15) by

v = Hẋ and a = Hẍ + Ḣẋ, (16)

with ref. [11]

H =

⎡
⎢⎢⎣

I3×3 0

0

⎡
⎣1 0 sin θ

0 cos ψ − sin ψ cos θ

0 sin ψ cos ψ cos θ

⎤
⎦
⎤
⎥⎥⎦ .

Equations (12)–(16) are necessary for the trajectory
optimization and for the calculation of the information matrix
from the collected experimental data. The interested reader
may ask, why not keep the definition of the trajectory with
respect to the actuated joints and directly measurable qa,
as originally proposed in.5 The answer is quite simple:
if only the actuated coordinates are used, the closure
constraints of the parallel manipulator have to be regarded
while the optimization to provide a feasible trajectory.
This demands solving additional equations with respect
to a considerable number of lagrangian multipliers which
increases the solution cost of the problem significantly.
Furthermore, there is no possibility to avoid the numerical
calculation of direct kinematics to provide the regression
model. If the excitation trajectory is defined with respect to
qa the direct kinematics must be performed at each iteration
of the trajectory optimization and also before identification.
With our proposed modification, the direct kinematics is
needed only once for extracting x from the measurement
of qa. The related impact of data processing is discussed in
the following.

3.2. Analysis of measured signals and calculated
information
A necessary step in identification is the determination of
the statistical properties of measured data (here the actuator

positions qa and forces Qa). A powerful feature of periodic
excitation is the possibility of data averaging that provides a
solid estimate of the measurement errors covariances.5,16 In
the classic industrial robotics and due to the decoupling effect
of high gear ratios, the measurement errors are often assumed
of not being cross correlated. As a result the corresponding
covariance matrix is approximated by a diagonal one.5,24,26,27

Such approach is hard to maintain for 6-DOF parallel
manipulators that are characterized by a high coupling among
the actuators. Therefore, the method given by Swevers
et. al for estimating the variances of measurement errors
is extended to the complete covariance matrix, i.e., �ηη for
the output additive force measurement errors and �δδ for
the actuator position errors δ, respectively. Averaging Nm

periods of data yields for each actuator j = 1 . . . 6 :

q̄aj
= 1

Nm

Nm∑
k=1

qaj,k
and Q̄aj

= 1

Nm

Nm∑
k=1

Qaj,k
.

The generalization for the estimate of the covariance is
obtained by

σ̂ 2
ij (η)= 1

N

1

Nm − 1

Nm∑
k=1

(
Qai,k

− Q̄ai

)T(
Qaj,k

− Q̄aj

)
,

σ̂ 2
ij (δ) = 1

N

1

Nm − 1

Nm∑
k=1

(
qai,k

− q̄ai

)T (
qaj,k

− q̄aj

)
,

where σ̂ 2
ij (η) and σ̂ 2

ij (δ) are the elements of �ηη and �δδ ,
respectively. The validation of the provided equations for our
case study PaLiDA has shown that the calculated covariance
matrices deviate more or less significantly from the diagonal
structure.

3.3. Data processing in the frequency domain for the
calculated information
It is supposed now, the excitation experiment has been
achieved on the parallel robot providing the measurements of
the actuator position and forces. The necessary information
about x, v, and a has to be extracted or filtered. The first
step consists in calculating the direct kinematics to provide
an estimate of the pose x̂. Here, the terminal condition
of the numerical calculation has to be set less than the
resolution of the used sensors.11 The obtained estimate is of
course noisy and has to be filtered. In their paper, Olsen and
Swevers exploit the Fourier form of the excitation trajectory
to achieve implicit frequency-domain filtering.16 Since the
trajectory harmonics correspond to the DFT transform of the
signals they propose estimating the coefficients �i of the
real executed trajectory. Such method would be equivalent
to the selection of the first Nh + 1 DFT coefficients. Applied
to the considered case of parallel manipulators, one obtains
for each DOF or each element x̂i of the pose the following
set of equations (see ref. [16] for more details):

x̂i = B �i , (17)
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Fig. 2. Calculated and differentiated position x of the endeffector. Comparison between top: approximate frequency-domain filtering,
middle: exact frequency-domain filtering and bottom the corresponding spectral differences.

where

x̂i = [xi(1) · · · xi(N)]T

B =

⎡
⎢⎣

1 s(t1)
ωf

· · · s(nht1)
nhωf

c(t1)
ωf

· · · c(nht1)
nhωf

...
...

...
...

...
1 s(tN )

ωf
· · · s(nhtN )

nhωf

c(tN )
ωf

· · · c(nhtN )
nhωf

⎤
⎥⎦ ,

and s(t)
= sin(ωft) and c(t)

= cos(ωf t). The coefficient are
estimated to

�̂i = (BT B
)−1

BT x̂i , (18)

and then used to calculate the filtered data according to
Eqs. (12), (14), and (15). This procedure is called implicit
since it is actually a time-domain processing, where the
transformation in the frequency domain does not occur. The
equivalence to the frequency domain as claimed in ref. 16
is given only and only if the fundamental frequency ωf of
the real motion is exactly known and is exactly equal to that
provided by the nominal optimized trajectory. This crucial
condition is mostly fulfilled for directly measured data, as the
case e.g. for encoder values. However, for the considered case
of calculated signals this is not the case. Due to the terminal
condition of the numerical direct kinematics the period of the
calculated motion x̂ is not exactly the same as the nominal
one. Furthermore, it varies from repetition to repetition
depending on when the numerical procedure has stopped.
As a result, applying Eq. (18) will lead to leakage errors.
Therefore, we recommend the explicit calculation of the DFT
transform x̂i → X̂i(jω). Afterwards the spectrum is filtered
by a frequency-domain low-pass filter. Ideal filtering can be
achieved by means of a rectangular window with a desirable
cutoff frequency fc. The latter may be chosen (but is not
limited to) to correspond the nominal fundamental frequency:

fc
= nhωf/2π . The windowed and filtered spectrum Xi(jω)

is multiplied twice by jω

Ẋi(jω) = jωXi(jω),

Ẍi(jω) = −ω2Xi(jω).

Transforming back to the time domain yields the filtered
signals ˙̂xi = DFT−1(Ẋi(jω)) and ¨̂xi = DFT−1(Ẍi(jω)).
The pose estimate is also updated according to x̂i =
DFT−1(Xi(jω)). The filtered estimates of the velocities
and accelerations of the endeffector are provided by using
Eq. (16)

v̂ = H(x̂) ˙̂x and â = H(x̂) ¨̂x + Ḣ(x̂) ˙̂x.

Additional to its simplicity, there are many advantages of an
explicit or strictly frequency-domain data processing. First,
it is possible to achieve ideal and exact low-pass filtering that
guarantees the rejection of all frequency components beyond
fc. Such feature is of course due to the periodic excitation
approach. Second, no leakage effects are introduced even in
the case of biased ωf . This property is demonstrated in Fig. 2
by comparing the spectra of x1, ẋ1 and ẍ2 resulting from
the approximate Eq. (18) and from the here proposed exact
frequency-domain processing, respectively. The example is
given for experimental data using a trajectory with nh = 7.
The used cutoff corresponds to the nominal fundamental
frequency. As it can be noticed there exists spectral difference
for all frequency components. Since it is sure that the exact
frequency-domain approach provides zero signals beyond
the nh + 1 frequency component, the difference is clearly
caused by leakage. The latter is due to the mistuning of ωf

introduced by the direct kinematics. The bias δωf corresponds
to the constant difference in ‖Ẋ(jω)‖ beneath the cutoff. By
using the proposed explicit frequency-domain processing,
the consideration of the realistic case, when the measured
trajectory contains more than the nominal nh harmonics
is straightforward. Adjusting the desired cutoff is then
sufficient. This flexibility in data processing will be exploited
later to provide a new implementation of the maximum-
likelihood approach that allows for tuning automatically the
cutoff frequency fc. Finally, it is worthy to mention that there
is no need to filter the actuator forces since the respective
noise does not affect the regressor and is additive to the
output. The linear estimation techniques are adequate for
such case. All our experiments have shown that filtering the
actuator forces yields higher biased estimates.13 The main
reason is the filtering of discontinuous friction dynamics in
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the measurement vector �, such that a mismatch is introduced
between the estimation equation and the assumed dynamics
model.

At this stage, information on x, v, and a can be
calculated accurately. Furthermore, statistical properties
of all necessary signals are provided by full covariance
matrices. A disturbance-poor information matrix that can
be additionally used to determine best identifiable model
structure as suggested in Section 2. The identification is
achieved by Eq. (9) to obtain the parameter estimates. Before
showing the results, the influence of the experiment design
should be first discussed.

4. Optimal Input Experiment Design
The optimal experiment design is the methodology to
determine an experiment for collecting N measurements
in order to achieve “best” identification results. This is
equivalent to the generation of optimal excitation trajectories
T (�) by adjusting the trajectory parameter vector

� = [�T
1 , . . . �T

6 , ωf
]T

, (19)

containing the coefficients of all DOFs and the fundamental
pulsation and having the dimension dim(�) = 6 · (2 nf +
1) + 1 = 12nf + 7. The design consists in a constrained
nonlinear optimization.5,18 The required constraints are
expressed with respect to the actuation variables

qmin
a ≤ qa(t, �) ≤ qmax

a ,

q̇min
a ≤ q̇a(t, �) ≤ q̇max

a
q̈min

a ≤ q̈a(t, �) ≤ q̈max
a ,

, ∀ � and t ∈ [0, Tf], (20)

to account for actuator limitation and therefore indirectly
for workspace constraints and dynamics capabilities of the
manipulator. The inverse kinematics has to be performed
while the optimization, which does not introduce any
significant computational cost due to its simplicity. Of course,
it is possible to express the constraints ad hoc with respect
to x, v, and a. It depends on the considered manipulator,
whether such approach is preferable or not, since it results in
different constraints than Eq. (20), which can accelerate the
convergence of the optimization process. The optimization
or the experiment design criterion should contribute to the
reduction of parameter uncertainty. A recent overview on
optimal input design is given in ref. [28] as well as in.19,29

It is focused in the following on the reputed approaches
in robotics that chose the condition number of � as a
minimization criteria:4,13–25

�(de) = arg

{
min

�
(cond(�(�)))

}
. (21)

A direct relationship to parameter uncertainty can be
derived under the assumption of noise-free regressor.
Using the condition number aims the orthogonalization of
the estimation confidence ellipsoid and can be therefore
considered as a kind of modified C-optimal design.29 In
ref. [5] the minimization of the condition number was
called deterministic design since it assumes a deterministic

noise-free regressor. This terminology is kept here. In
contrast, statistical or D-optimal design accounts for
measurement disturbances and aims increasing the volume
of the asymptotic confidence ellipsoid for the parameter
estimates,18,19,28 which is equivalent to the determinant of
P

�(s) = arg

{
min

�

(− ln det
(
�T�−1

ηη �
))}

. (22)

No matter which criterion is used, the optimization is
mostly a nonconvex one and the obtained results will
not correspond to the global minimum. This is however
not critical since for experimental identification just a
sufficiently good excitation trajectory is needed. The most
important difference between the discussed criteria is that
the statistical design is independent from any nonsingular
scaling or reparametrization that does not depend on the
experiment itself.19 This is not the case for the method using
the condition number that is already a scaled value. Our
experience demonstrated that the scaled property leads to
slower but a more robust optimization process. In contrast,
optimizing the confidence ellipsoid volume is quicker but
get often stuck in local minima that violate the constraints.
For the statistical design trial-and-error steps are eventually
necessary. In the experimental results section, the influence
of both design methodologies on the obtained parameter
estimates is presented. The trajectory depicted in Fig. 1 is
optimized according to the statistical design and is used for
experimental investigations in the next sections.

5. On the Use of Maximum-Likelihood Estimator for
Parallel Robots
More general to the discussed linear estimation is the
maximum-likelihood approach.19 Olsen has proposed the
direct application of the maximum-likelihood estimates
to serial-link robots.16,24,27 To reduce the computational
burden he proposed the elegant analytical linearization of
the complete dynamics and related constraints with respect
to measured (or calculated) observations. Unfortunately,
such approach won’t work for the case of 6-DOF parallel
manipulator. This is not only due to the highly more complex
dynamics but mostly to the lack of a final closed form
with respect to the actuation variables. The presence of the
numerically obtainable J in Eq. (7) inhibits the possibility of
building the gradient or partial derivatives of the dynamics
to apply maximum-likelihood estimate like suggested in
ref. [27].

A practical implementation consists in considering only
the measured variables of position and actuation forces.
Giving the measurement errors δ(k) of the actuator position
and the output additive disturbances η(k) with respective
covariances �δδ and �ηη a maximum-likelihood expression
ca be derived as follows

p̂ML = arg

{
min

p

(
1

2

N∑
k=1

(
δT(k)�−1

δδ δ(k)

+ ηT(k, p)�−1
ηη η(k, p)

))}
. (23)
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Since the real values are unknown, the considered
measurement errors present only an estimate that has been
obtained by data processing. The latter should be then
involved in Eq. (23) by extending the parameter vector to
be estimated

[
p̂T

ML p̂T
z

]T = arg

{
min

p

(
1

2

N∑
k=1

(
δT(k, pz)�−1

δδ δ(k, pz)

+ ηT(k, p, pz)�−1
ηη η(k, p, pz)

))}
, (24)

where pz accounts for data processing parameters. They
depend on the used approach for filtering or calculating
the necessary information. The proposed implementation
is coherent with the approach proposed by Swevers et
al.5 that can be derived from Eq. (24) by simply setting

pz

= �̂ − {ωf} and yields the simultaneous estimation of
model parameters and the coefficients of the real executed
trajectory by the manipulator. In contrast to such method and
as a consequence of the proposed strict frequency domain
filtering we suggest the following choice

pz

= fc

that yields the automatic tuning of the filter cutoff to
the relevant bandwidth of the measurements. This novel
proposition has several advantages. First, it helps enhancing
the computational efficiency of the maximum-likelihood
procedure considerably. The dimension of the nonlinear
optimization is reduced by 12nh + 6 for any excitation
trajectory with nh harmonics, which is considerable. Second,
it adjusts automatically and without any additional effort
the information bandwidth. That is, in the case when the
real trajectory contains relevant frequencies beyond the
nominal fundamental one. In the alternative approach,5 many
optimization trials are necessary to determine the optimal
dimension of pz.

5,16 It is rather to notice that in the case when
δ ≈ 0 the solution of Eq. (24) corresponds exactly to the GM
estimates. This was observed in our experimental studies for
some trajectories, where the remaining disturbances of the
filtered actor positions were negligible.

6. Experimental Results
In this section the proposed strategy of dynamics
identification for a 6-DOF parallel robot is substantiated with
experimental results achieved on the hexapod PaLiDA (see
Fig. 3 and ref. 30). The parallel robot has been designed to
be a mixture between a high-speed manipulator and a tool
machine. The application area covers fast handling and light
cutting machining tasks with low-process forces. To achieve
high-manoeuvrability and high-dynamics ability, PaLiDA
has been equipped with fast electromagnetic direct drives.30

These drives lacks however of accurate measurement sensors
(only internal hall sensors are used), such that model-based
control is necessary to achieve satisfactorily high-tracking
accuracy. Fortunately, the study of the measurement noise
of position (δ) and current (proportional to η) demonstrated
their gaussian and zero-mean quality. Thus, the assumptions

Fig. 3. Case study: Hexapod PaLiDA. Left: presentation in the
Hannover industrial fair, 2001. Right: CAD model.

Table I. Rigid-body and friction model parameters for the parallel
robot PaLiDA.

Rigid body Friction

p1 = Izz1 + Iyy2 + Izz3 [kg m2] rα [N]
p2 = Ixx2 + Ixx3 − Iyy2 − Izz3 [kg m2] rβ [N]
p3 = Izz2 + Iyy3 [kg m2] r1 [N]
p4 = sy2 [kg m] r2 [N]
p5 = sy3 [kg m] r3 [N]
p6 = IxxE

+ m3
∑6

j=1(r2
Byj

+ r2
Bzj

) [kg m2] r4 [N]

p7 = IyyE
+ m3

∑6
j=1(r2

Bxj
+ r2

Bzj
) [kg m2] r5 [N]

p8 = IzzE
+ m3

∑6
j=1(r2

Bxj
+ r2

Byj
) [kg m2] r6 [N]

p9 = szE
+ m3

∑6
j=1 rBzj

[kg m] v1 [Ns/m]
p10 = mE + 6 m3 [kg] v2 [Ns/m]

v3 [Ns/m]
v4 [Ns/m]
v5 [Ns/m]
v6 [Ns/m]

on applying the above proposed estimation techniques are
fulfilled.

The dynamics model of the robot consists in 10 rigid-body
minimal parameters and 14 friction coefficients (see Table I).
Its long and place consuming derivation is omitted here. The
interested reader is referred to our former publications.14,15

For space reasons we will present in the following three
important experimental results: the effect of data processing
on the prediction quality of the model, the effect of
experiment design on the accuracy of the parameter estimates
and the influence of the estimator on the identification results.

First, three identified models are considered that were
obtained from the same trajectory but according to different
data processing. The first one results from rough and
nonfiltered data. For the second, the measurements of
the actuator lengths were filtered in the time domain by
a low-pass filter as suggested e.g. in refs. [7, 17]. The
third model has been identified according to the frequency
domain method, as proposed in Section 3.3. The validation
of the models on a circular bench-mark trajectory, which
was not used for identification, is depicted in Fig. 4.
The frequency-domain processing yields the best prediction
quality corresponding to the smallest error variance σ 2.
Time-domain filtering is not accurate enough to extract all
information at the relevant frequencies.

Another important result is related to the experiment
design. It has been suggested earlier that from the theoretical
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Fig. 4. Prediction accuracy of three different models for an
arbitrarily chosen actuator. Top: by using rough data, middle: by
using time-domain filtering, bottom: by using frequency-domain
filtering.

point of view the statistical design of the excitation
trajectories Eq. (22) yields parameter estimates with less
uncertainty. We achieve the experimental proof by using the
same set of initial parameters to optimize two excitation
trajectories of the fifth order according to Eqs. (21) and
(22), respectively. To obtain statistically sensible results
each trajectory was measured and evaluated 100 times. The
identification procedure was achieved for each measurement
trial to obtain parameter sets corresponding to each design
approach. The resulting normal distributions estimated from
the identified parameters over the trials can be compared
as illustrated exemplarily for the rigid-body parameters (see
Fig. 5). It is obvious that the trajectory corresponding to the
statistical criterion yields smaller standard deviations, which
means smaller estimation uncertainty. This was observed for
almost all parameters.

The same statistically optimized trajectory is used to
compare the estimates resulting from the Markov nd
the proposed maximum-likelihood approach (Table II).
Additionally, a priori values of the rigid-body model ar

Table II. Comparison of the identified parameter corresponding to
different estimators.

pk p̂GM p̂ML a priori

p1 [kg m2] −0.0447 −0.0444 0.0074
p2 [kg m2] 1.0892 1.0915 0.9439
p3 [kg m2] 1.0077 1.0106 0.9458
p4 [kg m] 0.5995 0.6029 0.6201
p5 [kg m] −1.2885 −1.2898 −1.2295
p6 [kg m2] 0.3078 0.3084 0.2878
p7 [kg m2] 0.3021 0.3018 0.2878
p8 [kg m2] 0.1176 0.1173 0.1217
p9 [kg m] 1.8896 1.8874 1.9012
p10 [kg] 16.3081 16.2966 16.1920
rα [Nm] 0.5756 0.5593 –
rβ [Nm] 0.9195 0.9339 –
r1 [N] 11.9772 12.1195 –
r2 [N] 4.8071 5.1917 –
r3 [N] 20.1528 20.1773 –
r4 [N] 5.1518 5.4981 –
r5 [N] 1.5857 1.7191 –
r6 [N] 5.0057 4.9622 –
v1 [Ns/m] 16.8771 16.7115 –
v2 [Ns/m] 16.7406 16.1764 –
v3 [Ns/m] 6.3408 6.2864 –
v4 [Ns/m] 23.1662 22.6607 –
v5 [Ns/m] 26.4675 26.3370 –
v6 [Ns/m] 22.8053 22.8194 –

fc [Hz] 1.6182 1.6195 –

given, which do not present the true parameters, since
they were calculated by using CAD-Data. The estimate
of the appropriate filter-cutoff fc is also presented, is
only obtainable by using the proposed maximum-likelihood
approach (Eq. (24)). It can be noticed that fc was very
finely tuned by an amount that is much smaller than
an additional harmonic corresponding to the fundamental
frequency. This tuning is very hard to obtain via trial-and-
error procedures. To be fair, in our experiments, the use
of the maximum-likelihood estimation did not lead to a
sensible improvement of the model prediction quality. Our
proposed method is therefore meant to be an additional idea
that is at least much more computationally efficient than

Fig. 5. Estimated normal distribution N ( p̂) for parameter resulting from deterministic design p̂(de) (dashed line) and parameter resulting
from statistical design p̂(s) (continuous line). All x- and y-axis relate to the parameter value, and to the corresponding distribution density.
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Fig. 6. Influence of model accuracy on the improvement of tracking
quality: using different feedforward models with underlaying
proportional integral derivative (PID) control.

other approaches.5,16 It may also yields higher improvement
in the case of other systems or measuring conditions. In
our case the Markov estimate was the best compromise
in terms of model prediction quality and computational
effort. The study of parameter bias is however not quite
simple because the real values are missing. This is especially
the case for friction parameters that vary depending on
operating conditions. Furthermore and since all measurement
are carried out in closed loop, the dynamics of the controller
affects the resulting estimates, such that all parameter sets
are expected to be more or less biased.18 The latter issue
is however less critical for control purposes, since the
model prediction quality is more interesting than the exact
parameter values. A related experiment shows the important
role of identification for improving control accuracy. The
parameter set p̂GM provided by the Markov estimate for the
inverse model is used as a feedforward compensator. The
validation motion of Fig. 4 is executed at different velocities
while collecting the mean-squares tracking error eMSE of all
actuators over the trials. The results are depicted by Fig. 6.
It is clear that the identification contributes enormously
to the improvement of control performance. The tracking
accuracy is very poor when no model knowledge is used.
The nominal model with a priori parameters is also unable to
achieve high-quality tracking. A dependency of the errors on
the endeffector velocity is still noticeable. Only accurately
identified model allows keeping good tracking performance
over the investigated range of dynamics.

7. Conclusions
The aim of this paper is to give a self-contained approach
for the identification of the dynamics model of 6-DOF
parallel robots. The structural properties of such systems
were stressed to motivate the developed methodologies
and the proposed extensions of known approaches. The
paper proves that periodic excitation is a powerful method
for parallel robots. Due to the actuator coupling, the
consideration of cross-covariances in the measurement
becomes necessary. Furthermore, the need of calculating the
direct kinematics suggests an explicit or strict frequency-
domain filtering of the measurement to avoid leakage effects.
Extensive experiments have demonstrated that the excitation

trajectories should be optimized in a statistical frame work
to provide less parameter uncertainty, especially when used
in combination with the Markov estimate. Additionally, a
new and computationally highly efficient implementation
of the maximum-likelihood estimation is provided. Here,
the cutoff-frequency of the data filtering can be optimized
automatically.
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