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The vortex-entrainment sheet in an inviscid fluid:
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In this paper a model for viscous boundary and shear layers in three dimensions
is introduced and termed a vortex-entrainment sheet. The vorticity in the layer is
accounted for by a conventional vortex sheet. The mass and momentum in the layer
are represented by a two-dimensional surface having its own internal tangential flow.
Namely, the sheet has a mass density per-unit-area making it dynamically distinct from
the surrounding outer fluid and allowing the sheet to support a pressure jump. The
mechanism of entrainment is represented by a discontinuity in the normal component
of the velocity across the sheet. The velocity field induced by the vortex-entrainment
sheet is given by a generalized Birkhoff–Rott equation with a complex sheet strength.
The model was applied to the case of separation at a sharp edge. No supplementary
Kutta condition in the form of a singularity removal is required as the flow remains
bounded through an appropriate balance of normal momentum with the pressure
jump across the sheet. A pressure jump at the edge results in the generation of
new vorticity. The shedding angle is dictated by the normal impulse of the intrinsic
flow inside the bound sheets as they merge to form the free sheet. When there is
zero entrainment everywhere the model reduces to the conventional vortex sheet
with no mass. Consequently, the pressure jump must be zero and the shedding angle
must be tangential so that the sheet simply convects off the wedge face. Lastly, the
vortex-entrainment sheet model is demonstrated on several example problems.

Key words: general fluid mechanics, vortex dynamics

1. Introduction

An inviscid fluid is governed by the Euler equations, which permit surfaces of
discontinuity or jumps in physical quantities as part of the solution. While these
solutions are only mathematical idealizations, their study is of practical use because
they can serve as approximations to physical viscous phenomena, particularly at high
Reynolds number (Re). For example, combinations of jumps in the fluid density,
velocity, pressure, entropy can be cast to represent shocks, boundary/shear layers or
interfaces between fluid media. Here, we focus on the inviscid modelling of viscous
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The vortex-entrainment sheet 661

layers and flow separation, which has long been a challenging interest in the general
fluid dynamics community.

Typically, the high-Re or inviscid approximation Re→ ∞ of viscous layers has
been the infinitely thin vortex sheet. Namely, the actual distribution of the velocity
and vorticity fields within the layer are lost and the sheet is characterized by a
jump in the tangential velocity, which is the local sheet strength representing the
integral of vorticity across the layer. In this way, the vortex sheet strength preserves
the total circulation. Stated differently, the vortex sheet strength is the circulation
per-unit-length of sheet.

In general, the evolution equation for a conventional vortex sheet is given by
a Biot–Savart integral. Pozrikidis (2000) discusses several of the difficult aspects
of computing three-dimensional vortex sheet dynamics including treatments of the
principal value integral. For a two-dimensional domain this integral is known as the
Birkhoff–Rott equation when expressed in a complex analysis formulation. Pullin
(1978) used this approach and obtained a similarity solution for the shape of a
rolled-up semi-infinite free vortex sheet as well as the shapes of vortex sheets shed
from the apex of infinite wedges. Baker, Meiron & Orszag (1982) used a vortex sheet
to represent the interface between a stratified flow to study breaking water waves.
Jones (2003) computed the truly unsteady vortex sheet shedding from the cusped
edges of a moving, finite-chord flat plate where the plate was also represented as a
vortex sheet of known geometry. DeVoria & Mohseni (2018) proposed a model of the
local self-induced velocity of a vortex sheet segment that allows integration through
the singularity of the Birkhoff–Rott equation.

Calculation of the dynamics of vortex sheets may be simplified with an approxima-
tion obtained by discretizing the vortex sheet into point vortices, a technique that
dates back to Rosenhead (1931) and Westwater (1935) in the 1930s and represents the
beginning of what is now referred to as vortex methods (Leonard 1980). Multi-vortex
shedding models have become commonplace (e.g. Clements 1973; Sarpkaya 1975;
Katz 1981; Cortelezzi & Leonard 1993; Nitsche & Krasny 1994; Haroldsen & Meiron
1998; Michelin & Llewellyn Smith 2009; Wang & Eldredge 2013; Xia & Mohseni
2013). These models have been used to great effect for fairly accurate predictions in
physical problems, especially the load prediction on and shedding of vorticity from
airfoils.

For the conventional vortex sheet the statement of mass conservation is given by the
boundary condition of a continuous normal velocity (Saffman 1992), namely a no-flux
condition. Therefore, vortex sheets are mass-less ‘contact discontinuities’ (Wu, Ma &
Zhou 2006) that remain dynamically indistinct from the surrounding fluid(s). However,
real boundary/shear layers contain mass and momentum, which are entrained into the
layer. Here, we propose a model that provides a fuller description of the dynamics of
a viscous layer by explicitly representing the mass and momentum within the layer.
Since entrainment is an inherently viscous process, such a model relaxes the constraint
of Re→∞ and could be applicable to a range of Reynolds numbers provided the
entrainment is modelled sufficiently well.

A physical example that highlights the need for a dynamic model is given by the
shedding angle at the non-cusped trailing edge of an airfoil. Basu & Hancock (1978)
considered the shedding of a conventional vortex sheet and, based on the works
of Giesing (1969) and Maskell (1971), concluded that the shedding angle must be
tangential to one of the edge faces. This result was also proven by Pullin (1978) for
the self-similar shedding problem. On the other hand, physical intuition suggests that
the shedding angle ought to vary continuously between the tangential limits, which
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was experimentally observed by Poling & Telionis (1986). In this paper we show that
if the sheet contains mass then a non-tangential shedding angle is indeed possible.

Xia & Mohseni (2017) recently studied the formation of vortex sheets at the
trailing edge of airfoils. They applied conservation laws to a wye-shaped control
volume encompassing the two boundary layers at the trailing edge that merge to
create the free shear layer. In addition to a conventional vortex sheet with a jump in
tangential velocity, they also proposed a generalized sheet model for viscous layers,
whereby sheets that have jumps in other physical quantities, for example a jump in
the streamfunction representing entrainment into the layer, can be superimposed onto
each other.

The objective of this study is to present and formalize the theory for the surface of
discontinuity that we term the vortex-entrainment sheet. In regard to flow separation,
the focus in this paper will be on separation at a sharp edge. The paper is organized
as follows. In § 2 the vortex-entrainment sheet is defined in a three-dimensional
domain as a dividing surface containing mass and momentum and thus has its own
intrinsic flow within the sheet. Sections 2.1–2.3 present the dynamics and kinematics
of the sheet as well as the coupling of the internal flow with the flow outside the
sheet. The model is then applied as a representation of the self-similar Falkner–Skan
boundary layers in § 3. Followed by this are two complementary methods of solving
the outer flow via a Laplace equation in § 4.1 and a boundary integral formulation
in § 4.2. A general solution algorithm is discussed in § 4.3. The conditions that
determine shedding/separation of a sheet from a sharp edge are given in § 5. Lastly,
some example calculations are presented in § 6.

2. The vortex-entrainment sheet
Here, we propose the vortex-entrainment sheet as a dynamic inviscid model of

viscous layers. To exemplify the physics of entrainment consider the viscous wake left
behind a body, where the drag on the body may be determined from a wake survey
(Batchelor 1967, pp. 348–353). The expression for the (steady) drag is proportional
to the net entrainment rate from infinity, say Q∞, into the wake: D= ρUQ∞. Paired
with a similar expression for the lift L= ρUΓ , where Γ is the circulation, these two
conjugate relations have been referred to as the Joukowski–Filon formulae (Liu, Zhu
& Wu 2015). There are many explanations of d’Alembert’s paradox, but this drag law
offers a clear interpretation of resistive forces as due to entrainment of fluid owing
to the action of viscosity.

Hence, Q∞ implicitly depends on the Reynolds number, Re, through the viscous
entrainment process. For example, the wake of a flat plate at zero incidence was
calculated by Goldstein via the boundary layer method (Schlichting 1955, pp.
138–142). The total drag on the plate of length l and width w is D=ρU(1.33w

√
νUl)

from which we identify and rewrite Q∞= 1.33wν
√

Rel where Rel=Ul/ν. The explicit
appearance of the viscosity ν reiterates that entrainment is an inherently viscous
process and, in general, we ought to expect that the boundary conditions could be
functions of ν (see Saffman 1981, p. 53). Hence, the drag could be recovered by
equating the net entrainment rate of the vortex-entrainment sheet representing the
wake to the value Q∞. This overly simple example conceptually demonstrates how
the vortex-entrainment sheet could be used to provide an improved model of viscous
layers.

As an initial step towards defining the vortex-entrainment sheet we consider the
mass within a control volume surrounding a viscous layer and seek to preserve the
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FIGURE 1. (Colour online) Schematic of the cross-section of a viscous layer of finite
thickness h being collapsed to a vortex-entrainment sheet of zero thickness. The fluid
inside the viscous layer has density ρ and velocity u. The mass and momentum in the
layer are preserved by assigning to the vortex-entrainment sheet a surface mass density
ρs and surface velocity v. The fluid velocities on either side of the sheet, u±, may be
discontinuous.

mass within the layer as its thickness h is collapsed to zero; figure 1. This concept
was applied by Xia & Mohseni (2017) to the case of an airfoil trailing edge that
resulted in a discontinuity of the streamfunction, or equivalently the normal velocity,
which represents entrainment into the sheet. The distribution of fluid with density ρ
across the layer is preserved by assigning a surface mass density ρs with units of
mass per-unit-area of sheet. The actual distribution of flow u in the layer becomes an
‘intrinsic’ flow v confined on the sheet and may possess properties that are different
from its bulk surroundings. Surfaces of this type commonly appear in other fields,
such as electrodynamics (e.g. a capacitor with surface charge density and discontinuity
in the normal component of the electric field, Jackson 1998). While such surfaces have
also been considered in fluid mechanics, for example the Boussinesq–Scriven surface
fluid model (Scriven 1960), they are less frequently encountered.

We will assume that the flow outside the sheet u is an irrotational, incompressible
flow that may be discontinuous across the sheet. However, we note that this is not to
be interpreted as a Re→∞ limit, but rather that the viscous, rotational portion of the
fluid has been ‘cut out’ and sutured up by the vortex-entrainment sheet. In this regard,
it is especially important to note that the vortex-entrainment sheet is not a streamline.
Next, in §§ 2.1–2.2 we more rigorously define the vortex-entrainment sheet.

2.1. Sheet dynamics
Let x be the position vector of an arbitrary point in three-dimensional space. The sheet
is immersed in an irrotational, incompressible fluid with density ρ and velocity u(x, t),
where t is time. A right-handed orthogonal coordinate system (s, n, b) is defined on
the sheet such that the basis ŝ-b̂ spans the local tangent manifold that is the sheet and
n̂ is the corresponding sheet normal vector. The sheet is a two-dimensional surface
whose location is specified by x= xs(s, b, t); see figure 2.

The jump in a quantity f across the sheet is defined as

Jf K= f+ − f−, (2.1)

where f+ and f− are the limiting values of f as approached from the different sides of
the sheet with n̂ pointing to the (+) side. The surface velocity on the sheet is v(xs, t)
and given our choice of coordinates this can be decomposed as

v =w+ (v · n̂)n̂= (vsŝ+ vbb̂)+ vnn̂. (2.2)
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FIGURE 2. Schematic of a vortex-entrainment sheet (shaded surface) embedded in an outer
fluid. The ‘intrinsic’ surface flow w is in the tangent space (s, b) of the sheet. The sheet
position is given by x = xs(s, b). The surface velocity of the sheet is v = w + (v · n̂)n̂.
The sheet has a surface density ρs (mass per-unit-area). The outer fluid velocity is u
and is discontinuous across the sheet. The fluid density ρ and pressure p may also be
discontinuous.

where w(xs, t) = vsŝ + vbb̂ is the intrinsic velocity of the flow inside the sheet and
vn(xs, t) = v · n̂ is the normal velocity component. The surface operator ∇s, which
only acts in the tangent space of the sheet, is given by:

∇s =

(
1
hs

∂

∂s

)
ŝ+
(

1
hb

∂

∂b

)
b̂, (2.3)

with hs and hb as the scale factors for the chosen surface coordinate system. The
operator giving the surface material derivative of the quantity f on the sheet is defined
as:

Dsf
Dt
=
∂f
∂t
+w · ∇sf . (2.4)

Given our specific choice of the coordinate system we have (vnn̂) · ∇sf = 0 and thus
we may write w · ∇sf = v · ∇sf . The reader is referred to Aris (1962) and Slattery,
Sagis & Oh (2007) for further details regarding these surface operators as well as the
sheet conservation equations discussed next.

Now, we define the mass within the sheet by integrating across the layer in the
normal direction to give

ρs(xs, t)=
∫
ρ(x, t) dn. (2.5)

The quantity ρs is the sheet mass density and has units of mass per-unit-area of
sheet. In this way, the mass that was originally in the viscous layer is preserved by
‘collapsing’ it to the sheet; recall figure 1. Fluid may enter the sheet via entrainment
and the mass conservation equation on the sheet is:

Dsρs

Dt
+ ρs(∇s · v)=−Jρ(u− v) · n̂K. (2.6)

The left-hand side has the familiar form of mass conservation in the bulk fluid, but
with the understanding of the intrinsic sheet-tangent operators. In contrast, the right
side is non-zero with −Jρ(u− v) · n̂K representing a source of ρs due to entrainment
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The vortex-entrainment sheet 665

from the outer flow. While the fluid velocity may have a discontinuity, the sheet
velocity is continuous meaning that JvK= 0.

The conservation of momentum on the sheet also takes on a similar form to the
usual equation for the bulk fluid, but again with additional source terms associated
with the flux and entrainment of momentum from the flow outside the sheet:

ρs
Dsv

Dt
− (∇s · Ts + ρsf s)=−Jρ(u− v)(u− v) · n̂K− JpKn̂+ JτK, (2.7)

where JpK is the pressure jump across the sheet and τ = JTv · n̂K is the shear stress
vector with Tv as the deviatoric stress tensor outside the sheet. In general, the sheet
may also have its own phenomena, such as a surface stress tensor Ts (yielding a
surface tension force, for example), or a ‘body’ force f s that acts only on the sheet
mass density ρs, as well as different surface fluid properties (Slattery et al. 2007).
For simplicity we shall neglect each of these terms in (2.7). The surface flow v is
clearly dynamically coupled to the outer flow u, which must also be solved. The main
unknowns to be solved for are u, ρs, v and JpK. For a free sheet we have τ+= τ−= 0
since the outer flow is potential. When the sheet is bound to a surface its normal
velocity will be known from the motion U of that surface as vn = n̂ ·U and the wall
shear stress τw = JτK is then appended to the list of unknowns.

At this stage it is useful to discuss the occurrence and interpretation of entrainment
by examining the jump source term on the right-hand side of (2.6). Using the
properties of jumps and averages of products (e.g. Wu et al. 2006, p. 34) we may
write

Jρ(un − vn)K= JρK(un − vn)+ ρJunK, (2.8)

where (·)= [(·)+ + (·)−]/2 is the arithmetic mean of the values of a quantity across
the sheet. Throughout, an overline will indicate this type of average unless otherwise
noted. The sheet must coincide with the discontinuity JunK 6= 0 for entrainment to
occur meaning that fluid will not pass through the sheet. However, since fluid may be
entrained into the sheet, then vn will take a value between u+n and u−n . To elucidate
this, consider a weighted average:

vn =

[
1+ α

2

]
u+n +

[
1− α

2

]
u−n = un +

α

2
JunK, (2.9)

where α is a weighting parameter with −1 6 α 6 1 as similarly used by Baker et al.
(1982). Substituting (2.9) into the preceding equation gives:

Jρ(un − vn)K= JunK
(
ρ −

α

2
JρK
)
= JunK

([
1− α

2

]
ρ+ +

[
1+ α

2

]
ρ−
)

(2.10)

so that fluid with a weighted average density is entrained at a rate JunK. However,
notice the weighting is opposite to that of vn: for example, if α > 0 then vn moves
with a velocity closer to u+n , but in doing so the sheet entrains or ‘consumes’ more
fluid with the density ρ−. In a similar fashion, substitution of (2.9) into the momentum
flux term in (2.7) yields:

Jρ(u− v)(un − vn)K= JunK(ρ(u− v)−
α

2
Jρ(u− v)K) (2.11)

so that JunK simultaneously entrains a weighted average of the difference momentum
ρ(u− v) from either side of the sheet. If there is no mass in a free sheet, ρs= 0, then
(2.6) dictates that JunK= 0. Then (2.7) gives a zero pressure jump JpK= 0. Of course,
these are the kinematical and dynamical features of a conventional vortex sheet. Note
that each was consequently obtained from the assumption that ρs = 0.
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2.2. Sheet kinematics
In order to solve the surface flow equations in (2.6)–(2.7) we must also determine the
outer flow u. A vector field is determined from its essential characteristics, namely its
divergence, curl, discontinuities and boundary values (Phillips 1959). In general, the
field can be expressed by the sum of a divergence-free part and a curl-free part via a
Helmholtz–Hodge decomposition, and if the full vector is known on the boundary a
harmonic part can be distinguished (Bhatia et al. 2013). As such, the decomposition
can be made unique in several ways depending on the known boundary conditions.

While u is an irrotational, incompressible flow with no distribution of vorticity (ω)
or dilatation rate (∆) by definition, it is discontinuous across the sheet. Therefore,
the decomposition of u has distinct contributions from its discontinuities. These
contributions can be rigorously derived (e.g. Phillips 1959), but for simplicity we
employ a straightforward, albeit crude device that yields the same result. If we insist
on allowing the fluid to possess a singular curl and divergence we can represent the
discontinuity in u across the sheet with a Heaviside function. Then the singular parts
of the curl and divergence are (see appendix A):

ω=∇× u= (n̂× JuK)δ(n), ∆=∇ · u= (n̂ · JuK)δ(n), (2.12a,b)

where δ(n) is the Dirac delta function and n is the sheet normal coordinate. These
components of the curl and contribution to the divergence are those affected by normal
derivatives across the sheet. The intrinsic surface operators ‘remove’ these singular
parts as each is obtained from the appropriate projection of the full spatial operator
onto the sheet. These expressions afford a convenient way to define the strengths of
the vortex and entrainment sheets as:

γ (xs, t)=
∫
ω(xs, t) dn= n̂× JuK= JubKŝ+ (−JusK)b̂, (2.13)

q(xs, t)=
∫
−∆(xs, t) dn=−n̂ · JuK=−JunK. (2.14)

The negative sign in the definition of q is so that q > 0 corresponds to entrainment
into the sheet (also see appendix B). Relative to the outer flow this will appear as a
sink-like motion. The flux into the vortex-entrainment sheet is what sets it apart from
a contact discontinuity (no flux) and from a shock (through flux).

The vectorial vortex sheet strength γ = γsŝ+ γbb̂ is tangent to the sheet, however,
the surface flow may also have finite intrinsic vorticity normal to the sheet: ωnn̂ =
(∂vs/∂b− ∂vb/∂s)n̂. When (2.12) is substituted into the decomposition of u, the fluid
volume integrals reduce to surface integrals over the sheet area S. Then using the
definitions (2.13)–(2.14) we can combine the decomposition contributions from the
curl/vortex sheet and divergence/entrainment sheet as:

uω(x, t)+ u∆(x, t)=
1

4π

∫
S

γ (xs, t)× (x− xs)− q(xs, t)(x− xs)

|x− xs|
3

dA, (2.15)

where xs is the position of S. The prescribed boundary conditions on a given problem
will then determine whether or not these contributions are sufficient to describe u,
for example if a harmonic contribution is needed to impose a boundary condition at
infinity.

Finally the circulation vector Γ and net entrainment rate Q are defined as:

Γ = Γsŝ+ Γbb̂=
∫
γ dl, Q=

∫
S

q dA, (2.16a,b)

where l(s, b) is a prescribed integration path in the sheet.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.134


The vortex-entrainment sheet 667

2.3. Evolution equations for the sheet strengths
Here, the evolution equations for the sheet strengths are given. To this end, the jump
operator in (2.1) is applied to the governing Euler equation for the outer flow u. Alben
(2009) used this form of the unsteady Bernoulli equation to obtain a scalar vortex
sheet evolution equation to study two-dimensional flexible propulsive appendages. The
jump Euler equation is:

∂JuK
∂t
=−

s
u · ∇u+∇

p
ρ

{
. (2.17)

Note that the del operator is inside the jump brackets. While the identity u · ∇u =
∇(1/2)|u|2 is valid on each side of the sheet, we cannot use it to write Ju · ∇uK=
∇J1/2|u|2K, since normal derivatives across the sheet are not defined. Therefore, we
isolate the tangential and normal components of the right side by making use of the
surface-tangent operator ∇s in (2.3) to allow the jump operator inside on the tangential
part:

s
u · ∇u+∇

p
ρ

{
=∇s

s
1
2
|u|2 +

p
ρ

{
+

s(
∇ · (unu)+ n̂ · ∇

p
ρ

){
n̂, (2.18)

and we have used the identity u ·∇u=∇ · (u⊗u) for the normal component. We can
effectively take the curl and divergence of (2.17) by the cross-product and dot product,
respectively, with n̂. Using the sheet strength definitions in (2.13)–(2.14) along with
the properties of jumps of product quantities and the triple vector product we have
the following identities:

J 1
2 |u|

2K= u · JuK= u · (γ × n̂− qn̂). (2.19)

We then obtain:

n̂×
s

u · ∇u+∇
p
ρ

{
=
∂

∂b

(
u · JuK+

s
p
ρ

{)
ŝ−

∂

∂s

(
u · JuK+

s
p
ρ

{)
b̂ (2.20)

n̂ ·
s

u · ∇u+∇
p
ρ

{
=
∂

∂s
JunusK+

∂

∂b
JunubK+

s
∂

∂n

(
u2

n +
p
ρ

){
. (2.21)

In the event that there is no entrainment, then (2.21) would be zero since the
pressure jump immediately communicates normal momentum from one side of the
vortex-entrainment sheet to the other. To see this, consider the normal component of
the sheet momentum equation (2.7):

ρs
Dsvn

Dt
=−Jρ(un − vn)

2K− JpK=−2ρ(un − vn)JunK− JpK. (2.22)

With q=−JunK= 0 then JpK delivers the acceleration Dsvn/Dt to the sheet mass ρs.
On the other hand, when q 6= 0 then the last term in (2.21) represents a gradient of
energy across the sheet meaning that the pressure jump must expend additional energy
to also accelerate the newly entrained sheet mass. Obviously we cannot evaluate this
gradient directly. However, from what has been said about the q = 0 case we can
conclude that the normal component of the jump in the Euler equation is equal to the
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amount of normal momentum that is lost or entrained into the sheet. Therefore, after
defining

µ≡ u · JuK+
s

p
ρ

{
= u · (γ × n̂− qn̂)+

s
p
ρ

{
(2.23)

we recombine the tangential and normal components to obtain the evolution equation
for the vectorial strength α = γ + qn̂ of the vortex-entrainment sheet as:

ρs
∂α

∂t
= (ρs∇sµ)× n̂+ (Jρ(un − vn)

2K)n̂. (2.24)

Evidently the evolution of the sheets are coupled to each other through the quantity
µ, which partly represents the jump in dynamic pressure. For the vortex sheet (2.24)
represents the familiar result that tangential pressure gradients generate vorticity
components bi-normal to the gradient direction (Lighthill 1963). For the entrainment
sheet the pressure jump acts to ‘push’ or entrain fluid into the sheet.

2.4. Physics of inviscid separation: interpretation of the Kutta condition
We now briefly discuss inviscid flow separation at a sharp edge from a physical point
of view. Regardless of the shedding problem or its formulation, the requirement of
a bounded flow at the sharp edge should be imposed. This constraint is the Kutta
condition, which we note has no fundamental basis. However, from (2.21)–(2.22) we
see that the condition of a regular flow is ensured by an appropriate balance of normal
momentum with the pressure jump. For the conventional vortex sheet with JunK =
JpK= 0 this is trivially satisfied by the condition of mass conservation, namely ρs= 0.

Next, consider the inviscid mechanism that eliminates the singular pressure gradient,
but not the jump, and allows the flow to separate from the surface. To see how this
neutralization of the normal pressure gradient to its jump value relates to vorticity, we
again employ the simple device of allowing the fluid to have a singularity in the form
of a delta function as was done for the curl and divergence in (2.12). Namely, the
singular part of the pressure gradient is ∇(p/ρ)= n̂Jp/ρKδ(n). Since p is not C2 at the
irregular sharp edge point, then ∇×∇(p/ρ) is not necessarily zero there (Greenberg
1998) and thus contributes to the (singular) vorticity equation for ω= γ δ(n) as:

∇×∇
p
ρ
=

(
∂

∂b

s
p
ρ

{
ŝ−

∂

∂s

s
p
ρ

{
b̂
)
δ(n), (2.25)

which are the pressure terms on the right-hand side of (2.20). Hence, a non-zero
pressure jump at the edge generates new vorticity and will result in a loading there
(e.g. see Sears 1956). For the conventional vortex sheet JpK= 0 and while ω is still
singular the above pressure terms are in fact zero. Therefore, in this case the vorticity
in a vortex sheet simply convects off the edge.

Lastly, an interesting physical interpretation of separation arises when a wall-
bounded vortex-entrainment sheet is represented as a dipole sheet or ‘double layer’
(Kellogg 1929). The singularity in the pressure gradient field at the edge can be
represented by adding the potential of a doublet to the vector potential decomposing
∇p (Phillips 1959). Hence, the finite strength of the doublet would be equal to the
pressure jump. Then the neutralization of the pressure gradient singularity ‘tears apart’
the double layer and sheds one sheet into the fluid and the other sheet inside the
wall as its image.
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3. Falkner–Skan boundary layers
Before moving on to the solution of the outer flow in § 4, we apply the vortex-

entrainment sheet model to the self-similar Falkner–Skan boundary layer solutions.
This also serves the purpose of revealing details of an actual viscous entrainment
process. We will obtain the sheet strengths γ and q directly from the solutions. The
driving outer flow U(x)= axm is from left-to-right and the local Reynolds number is
Rex =Ux/ν and is based on the distance x from the leading edge.

On the solid surface we have u = u−s = 0 and v = u−n = 0 due to the no-slip and
no-penetration conditions. The Cartesian components of velocity at the outer edge of
the boundary layer are u+ = U(x) and v+ = cvU(x)/

√
Rex where cv is a numerical

coefficient. In order to calculate the proper vortex and entrainment sheet strengths
given in (2.13)–(2.14), we must use the tangential and normal components. In other
words, we use the known shape of the boundary layer, which we write as δ(x) =
cδx/
√

Rex. Hence, u+s = u+ · ŝ+ and u+n = u+ · n̂+ where ŝ+ = (cos θ, sin θ) and
n̂+ = (− sin θ, cos θ) with tan θ = dδ/dx. After some algebra we obtain:

γ (x)= 0− u+s =−U(x)


√

Rex + cm
cvcδ
√

Rex
√
(cδcm)2 + Rex

 (3.1)

q(x)= 0− u+n =U(x)
[

cδcm − cv
√
(cδcm)2 + Rex

]
, (3.2)

where cm = (1−m)/2. When Rex→∞ the entrainment dies out and the vortex sheet
strength becomes −U(x) as expected from the infinite Reynolds number assumption
associated with vortex sheets. As Rex decreases the entrainment strength becomes
relatively more significant. However, the limit Rex → 0 cannot be interpreted with
any real physical meaning since the boundary layer equations breakdown and are
invalid at the leading edge, which leads to the singular behaviour of the vortex sheet
strength.

Hence, we can safely assume the region of validity to begin at some downstream
location such that Rex � (cδcm)

2. We computed numerical solutions of the Falkner–
Skan equation for −0.0904 6 m 6 2 and indeed find that |cδcm| ∼ o(10); the edge of
the boundary layer was defined with the 99 % rule. Using this approximation and upon
substituting the definitions of the coefficients cδ and cv the

√
Rex factor cancels out

and the sheet strengths can be written in terms of the non-dimensional boundary layer
thickness δ/x and vertical velocity v+/U at the edge of the layer as:

γ (x)≈−U(x)
[

1+ cm
δ

x
v+

U

]
, q(x)≈U(x)

[
cm
δ

x
−
v+

U

]
. (3.3a,b)

The first and second terms in the square brackets of each expression correspond to the
horizontal and vertical Cartesian components u+ = U(x) and v+(x), respectively. For
q there is a competition between the acceleration of the imposed flow ‘pushing’ fluid
into the boundary layer and the growth of the layer displacing fluid upwardly.

Figure 3(a) plots cδ and cv against m along with cq ≡ cmcδ − cv, which is the
numerator of (3.2) and represents the sign of q, which is positive for any m. The
decreasing trend in cδ is the collapsing boundary layer thickness corresponding to a
stronger outer flow and thus larger Rex. For decelerating and slowly accelerating flows
cv > 0 meaning that displacement outpaces entrainment. There is a positive vertical
velocity at the edge of boundary layer and thus an efflux of fluid at infinity. For larger
accelerations the trend reverses with cv, v+ < 0 above m≈ 0.2 and there is an influx
flow at infinity to compensate for the entrainment.
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FIGURE 3. (Colour online) (a) Numerical coefficients representing quantities at the edge
of the Falkner–Skan boundary layers as functions of m; see text for detail. (b) The wall
shear stress τw predicted by the vortex-entrainment sheet model compared with the Blasius
solution: τw,B/(ρU2

o) = 0.33/
√

Rex. Inset: the per cent relative error on a logarithmic
horizontal scale.

3.1. Blasius boundary layer with and without suction
Here, we consider the intrinsic flow in the vortex-entrainment sheet representing the
Blasius boundary layer with m= 0 and so U(x)=Uo. First the case without suction
is discussed. Noting that the problem is two-dimensional, steady and vn= 0 since the
sheet is bound to the stationary plate (u−s = u−n = 0), then the mass and momentum
equations in (2.6)–(2.7) reduce to:

∂

∂s
(ρsvs)= ρq, τw = ρqus + ργ un −

∂

∂s
(ρsv

2
s ), JpK= 2ρunq. (3.4a−c)

Note that the sheet coordinate is also the plate coordinate s= x. The sheet strengths γ
and q are obtained from (3.1)–(3.2) and we can use the plate boundary conditions to
give us= u+s /2=−γ /2 and un= u+n /2=−q/2. Since the entrainment strength decays
significantly for x� 1, the normal momentum equation gives JpK ≈ 0 which is the
boundary layer assumption that the pressure gradient is zero across the layer, or more
precisely O(Re−1/2

x ). Of course this small pressure jump due to entrainment is balanced
by an equal and opposite one on the other side of the plate.

For a time-dependent problem, we must be given an initial condition for ρs and vs.
In this steady case we can obtain the distribution of ρs from (2.5) so that ρs = ρδ.
Integrating the mass equation yields ρs(x)vs(x) and subsequently we obtain:

vs(x)− vs(0)=
1

ρs(x)

∫ x

0
ρq ds =

1
cδ
√

Rex

∫ Rex

0
q d(Res)

=
2Uo(cδcm − cv)

cδ
√

Rex
[

√
(cδcm)2 + Rex − cδcm]. (3.5)

Although the imposed boundary condition on the flat plate is v−= 0, the edge of the
boundary layer also exists on the plate at x = 0. Hence, the vertical velocity at the
edge, v+(x, δ(x))= cvUo/

√
Rex, also exists at x= 0. This would indicate that v+(0, 0)

becomes infinite. However, the limit of v+(0, 0) should be a finite, non-zero value
and with a net flux occurring through the leading edge point. Recognizing that the
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horizontal velocity Uo is also incident to the leading edge we arrive at the following
form of a mass balance at this point:

vs(0)=Uo − v
+(0, 0). (3.6)

If we take v+(0, 0) = cvUo, then we obtain vs(0) = Uo(1 − cv) as a boundary
condition. This means the horizontal velocity Uo is partly ‘deflected’ or displaced
into the vertical velocity cvUo, while the remainder is entrained into the leading edge
point.

Figure 3(b) plots the computed wall shear stress τw from the vortex-entrainment
sheet model and compares favourably with the Blasius result: τw,B/(ρU2

o)=0.33/
√

Rex.
The stress is still singular at x= 0 since the tangential velocity discontinuity of u−−
u+ = 0 − Uo remains. The inset plot shows that the relative error between the two
calculations is bounded below 2 % for Rex>100, which is consistent with our assumed
region of validity [Rex ≈ 100]� [(cδcm)

2
≈ 6].

Next, we present the case with uniform suction at the plate: −vo < 0. The viscous
solution obtained from the boundary layer equations is also an exact solution of the
full Navier–Stokes equations. This flow field is characterized by ∂u/∂x = 0 and so
the vertical velocity field is constant and equal to the suction value: v(x, y) = −vo
(Schlichting 1955, pp. 230–235). We can then write (u+s , u+n ) = (Uo, −vo) and (u−s ,
u−n ) = (0, −vo) and the quantities relevant to the vortex-entrainment sheet become:

γ =−Uo, us =
Uo

2
, q= 0, un =−vo. (3.7a−d)

The sheet governing equations are again those in (3.4), and since q=0 we see that the
mass flux along the sheet is constant: ρsvs= const. This feature represents the constant
displacement thickness associated with the viscous solution. Similarly, the momentum
thickness is also constant so that vs = const. as well and substitution of all variables
into the tangential sheet momentum equation yields

τw = ργ un = ρvoUo, (3.8)

which is exactly the wall shear stress obtained from the viscous solution and is notably
independent of the viscosity or Re.

4. The outer flow solution
This section considers the mathematical formulation for the problem of determining

the outer fluid velocity u. We discuss two different formulations, namely a Laplace
equation and a boundary integral formulation. For a given problem, there may be
certain advantages to using one or the other or a combination. For simplicity, we will
now assume a two-dimensional flow. Hence, the vortex-entrainment sheet becomes a
one-dimensional surface with b̂ becoming the constant out-of-plane vector k̂ so that
the fluid and sheet velocities have zero b̂ component and those relative to the ŝ-n̂ basis
are u = (us, un) and v = (vs, vn). Likewise γ = γ k̂ and we can deal with the vortex
sheet strength as a scalar quantity γ (s, t) = u−s − u+s . The section concludes with a
suggested solution algorithm of the dynamically coupled system.

4.1. The Laplace equation
The problem is defined by specifying the governing equation and boundary conditions.
The conjugacy of the harmonic potential φ and the streamfunction ψ allows two
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Inner boundary: Si

Sharp edge: xo

Free boundary: S√

Fluid domain: D

Outer boundary: C∞ C

(a) (b)

FIGURE 4. (a) Definition of the fluid domain D and its boundary ∂D= Si ∪ Sv ∪C∞. Si:
inner boundary, Sv: free sheet boundary, C∞: outer boundary, xo: sharp edge location. C∞
is arbitrary and is not a surface of discontinuity. (b) The contour integral path C laying
entirely in the analytic fluid domain. The path is able to cross itself at the irregular point
xo to pass on both sides of Si.

equivalent formulations of the problem since both functions satisfy a Laplace equation.
Here, we move forward with the φ framework, but provide a summary showing the
duality with the ψ framework. Some useful definitions relating Γ and Q to γ and q
as well as to φ and ψ may be found in appendix B.

Let the open fluid domain be D with boundary/closure defined as the union ∂D=
Si ∪ Sv ∪C∞ (figure 4a), where Si and Sv correspond to the vortex-entrainment sheets
representing the surface with a sharp edge and the free sheet shed from the edge,
respectively, and C∞ is a large arbitrary boundary ‘at infinity’ that does not represent
a surface of discontinuity. Usually, the boundary condition on Si and Sv is prescribed
as continuity of normal velocity, namely (∂φ/∂n)+ = (∂φ/∂n)−. Under this condition
no entrainment occurs, and for a solid surface the normal velocity of that surface,
Un = (∂φ/∂n)±, is specified.

However, the vortex-entrainment sheet is characterized by jumps in both the
tangential and normal velocity components across the sheet. Hence, the values of
(∂φ/∂n)± and thus the entrainment rate q are assumed as given boundary conditions
(however, see end of § 4.3) . The special conditions for the sharp edge will be
discussed in § 5. With a fluid of infinite extent, the specification of the flow there
serves as a boundary condition on C∞, which may be expressed using an asymptotic
form of the potential (Batchelor 1967, chap. 2.10). The statement of the problem thus
far is:

∇
2φ = 0 x ∈D (4.1)

φ(x)− φ∞(x)→Cφ +
Γ∞θ

2π
−

Q∞
2π

log(r)+O(r−1) x ∈C∞ (4.2)

∂φ

∂n

∣∣∣∣± = u±n (x) x ∈ Si ∪ Sv, (4.3)

where Cφ is a constant, φ∞ is an external potential representing a non-zero flow at
infinity, Γ∞ and Q∞ are, respectively, the net circulation along C∞ and the net flux
across C∞ into D. In the case of a semi-infinite geometry Si intersects C∞ at infinity
where the potential asymptotically becomes compatible with (4.2).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.134


The vortex-entrainment sheet 673

Conjugate function: φ ψ

Preserved quantity: Mass flux: ∇ · u= 0 Circulation: ∇× u= 0

Governing equation: ∇
2φ = 0 ∇

2ψ = 0

Boundary condition:
∂φ

∂n
= f (s)

∂ψ

∂n
= g(s)

Velocity expression: u=∇φ u=∇× (ψ k̂)

Compatibility condition: QC =−

∮
C

∂φ

∂n
ds= 0 ΓC =

∮
C

∂ψ

∂n
ds= 0

TABLE 1. Conjugate frameworks for potential flow governed by Laplace equations for
the harmonic potential φ and the streamfunction ψ .

Now consider a contour C residing entirely within the analytic fluid region and
bounding the open domain D as defined in figure 4(b). By mass conservation the
total flux QC across C must be zero. This yields a ‘compatibility condition’ required
for a solution φ to this Neumann problem to exist (e.g. Stakgold 1968). Similarly,
by circulation conservation (Kelvin’s theorem) the total circulation ΓC around C must
also be zero. Since C= ∂D, then with u=∇φ these conditions can be written as:

QC =−

∮
C

u · n̂ds=−
∮

C

∂φ

∂n
ds= 0, ΓC =

∮
C

u · ŝds=
∮

C

∂φ

∂s
ds= 0, (4.4a,b)

where s-n is an orthogonal coordinate system along C. The QC equation can be
derived from the Laplace equation itself upon using the divergence theorem. In
general, the integration path is allowed to cross itself at the irregular point xo in
order to trace both sides of Si. When Si represents a solid, no-slip surface this is not
necessary because ∇φ =U on the inside of Si. Since ∂φ/∂n is given everywhere on
the boundary, then u(x)=∇φ is uniquely determined throughout the domain D.

Lastly, in the ψ problem formulation the normal derivative ∂ψ/∂n is given
everywhere on the boundary and corresponds to the tangential velocity component.
The conditions in (4.4) can be written with derivatives of ψ via the Cauchy–Riemann
relations. Table 1 summarizes the two different frameworks, which are essentially two
different, yet unique decompositions (Bhatia et al. 2013).

4.2. Boundary integral formulation
Now we write the outer flow u as a complex conjugate velocity field w= u− iv and
the contribution from the vortex-entrainment sheet is given by a Cauchy-type boundary
integral. Jones (2003) obtained an elegant solution in this manner for the case of a
moving flat plate with no entrainment by representing both the free and plate-bound
vorticity as conventional vortex sheets. Namely, the two vortex sheets on each side of
the plate were combined into a single sheet by coupling the plate and fluid velocities
via a tangential boundary condition representing no slip.

First, the velocity induced by the vortex-entrainment sheet in the two-dimensional
version of (2.15) is expressed in a convenient complex form. Namely, x is replaced
with z= x+ iy and the sheet position xs with ζ = xs(s)+ iys(s) where s is the arclength
coordinate. Introducing θ(ζ ) as the angle measured from the horizontal to the local
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unit tangent vector on the sheet we have ∂ζ/∂s= eiθ(s). The conjugate velocity w(z)=
u− iv at an analytic fluid point can then be written as:

w(z)−w∞(z)=
1

2πi

∫
S

γ (s)− iq(s)
z− ζ (s)

ds=
1

2πi

∫
S

χ(ζ )

z− ζ
dζ , (4.5)

where χ(ζ ) = (γ − iq)e−iθ is the complex sheet strength and the integration is over
all sheets: S = Si ∪ Sv. Also, w∞(z) = dΦ∞/dz is the velocity of an external flow
that need not decay at infinity. When z→ ζ this singular integral is a generalized
Birkhoff–Rott equation for the vortex-entrainment sheet with complex strength.
Following Muskhelishvili (1946) the left and right sides of the sheet are relative
to an observer traversing the sheet in the positive direction of integration in (4.5) and
the limits of any quantity approached from the left and right will be denoted with
(+) and (−) superscripts, respectively. For any point on a sheet besides the sharp
edge at ζo we have the following by the smooth-arc Plemelj formulae (see comment
in appendix C):

χ(ζ )= (w− −w+)= (γ − iq)e−iθ

w(ζ )= 1
2(w

+
+w−)= (us − iun)e−iθ

}
for ζ ∈ Si ∪ Sv\ζo, (4.6)

where us and un are the averages of the fluid velocity components. With this
formulation it is easy to see how the sheet strength χ(ζ ) relates to the jump in
the complex potential Φ = φ + iψ across the sheet (see appendix B):

Φ− −Φ+ = (φ− − φ+)+ i(ψ− −ψ+)= Γ − iQ (4.7)
∂

∂s
(Φ− −Φ+)= (u−s − u+s )− i(u−n − u+n )= γ − iq. (4.8)

Note that ∂JΦK/∂n= i(∂JΦK/∂s), again highlighting the conjugacy of the problem.
Now, the normal boundary condition (4.3) on a sheet S can be expressed by:

Re
{

1
2(w

+
+w−)ieiθ

}
=

1
2(u
+

n + u−n )= un, (4.9)

where each of the functions is evaluated at a position ζ on the sheet. Since we have
supposed the normal velocities u±n to be given, and thus the entrainment strength q to
be known, the boundary condition can be rearranged as:

f (ζ )≡Re
{

eiθ(ζ )

2π

∫
S

γ (ξ)e−iθ(ξ) dξ
ζ − ξ

}
= un(ζ )−w∞,n(ζ )

+Re
{

eiθ(ζ )

2π

∫
S

iq(ξ)e−iθ(ξ) dξ
ζ − ξ

}
, (4.10)

where ξ ∈C is a dummy integration variable along the sheet. This equation is to be
solved for γ (ζ )= γ (s). The inversion formula and subsequent manipulations used by
Jones (2003) are specific to the case of a plane boundary with θ(ζ ) constant along
the sheet. As such, equation (4.10) is more amenable to numerical solution via, for
example, expansion of f (ζ ) as a Chebyshev series, which was also done by Jones as
well as others since the series converges rapidly for smooth functions (Alben 2008).
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4.3. Solution algorithm
We now present a brief solution algorithm for the coupled system of the vortex-
entrainment sheet and the outer fluid. First, the outer flow u is solved according
to the specified normal boundary conditions with either the Laplace formulation
(4.1)–(4.3) or the boundary integral formulation (4.5)–(4.10). For a free sheet we
assume that it acquires circulation only as a result of having been shed from a body.
Hence, γ and q will be known for these sheets. For a surface-bound sheet, the
solution of the Laplace formulation will yield the velocity on the fluid side of the
sheet, say u+. Then, the additional boundary conditions on the surface side of the
sheet are imposed to yield the sheet strengths. More specifically, we have u− = U
with U as the known surface velocity and thus u− − u+ = γ ŝ + qn̂. The imposed
conditions will typically be the no-slip and no-penetration conditions for a solid body,
but in general we may model actual fluid slip on or porosity of the surface.

When the boundary integral formulation is used the specification of u−n = Un on
the surface side of the sheet will uniquely solve the flow inside that surface. Then
the solution for γ will correspond to the u−s − u+s of these two flows. To obtain the
desired vortex sheet strength, the tangential boundary condition can be imposed by
using the relative velocity (us −Us) in the evolution equation (2.24) as was done by
Jones (2003). For a solid body, the harmonic potential φb inside the body will be
such that ∇φb=U; this is most easily seen in the reference frame of the body or for
a stationary body where φb = const. and thus the flow inside vanishes (Lamb 1945).

Equipped with u, γ and q the solution for the sheet flow quantities can be obtained.
The sheet mass and momentum equations (2.6)–(2.7) along with the evolution equation
(2.24) represent 4 equations for the 4 unknowns ρs, v = (vs, vn) and JpK; in three
dimensions the system is augmented by the third component vb and the corresponding
vortex sheet strength component γs. Again, these equations are coupled through the
pressure jump and the entrainment strength. An initial condition at t0 is required for
the intrinsic flow quantities ρs and v=w+ vnn̂. In most cases, such as a flow started
from rest, these initial conditions will simply be ρs(xs, t0) = w(xs, t0) = 0 since no
entrainment will have occurred yet anywhere in the domain.

Lastly, we note that it is theoretically possible to obtain both the vortex and
entrainment sheet strengths if supplemental conditions are given elsewhere in the
domain. In particular, if we are given the full velocity vector on C∞ ‘at infinity,’
recall figure 4(a), then we may remove the requirement of a priori specification of
the normal boundary conditions on the sheets. By (4.2) and (4.5) we obtain:

w(z)−w∞(z)=
(
Γ∞ − iQ∞

2πiR

)
e−iθ(z)

=
1

2πi

∫
S

γ (s)− iq(s)
z− ζ (s)

ds (4.11)

for |z| = R→∞. The above integral is non-singular since z /∈ S and we note that by
writing z− ζ (s)≈ Reiθ(z) then:

Γ∞ − iQ∞ =
∫

S
[γ (s)− iq(s)] ds, (4.12)

which states that the circulation and flux in the sheets are equal to those at infinity or
that the total of these quantities in the domain D is zero; recall (4.4). This condition
makes the inversion formula of the singular integral equation in (4.10) unique (Jones
2003). The boundary conditions at infinity, for example by specification of Γ∞ and
Q∞ on C∞ would then determine the sheet strengths. However, the determination of
γ − iq from (4.11) is the solution to a class of inverse problems, which are usually
ill-conditioned. For this reason we do not pursue this option further.
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FIGURE 5. The variation of the surface-normal vector for a rounded corner of radius ε�1
where the black dot represents the location of an irregular point. (a) Irregularity inside the
surface, (b) irregularity on a smooth boundary and (c) irregularity on a sharp boundary
as ε→ 0.

5. Separation at the sharp edge

We now shift our focus to applying the vortex-entrainment sheet to the problem of
separation at a sharp edge xo = ζo. While the normal vector n̂ is uniquely defined
on the wedge faces, x 6= xo, it is multivalued at the sharp edge. In order to have a
well-posed problem this ambiguity must be removed. To see this, consider a wedge
of interior angle βπ with a rounded off corner of radius ε� 1 and with an irregular
point existing somewhere in the domain as in figure 5. When the irregularity remains
inside the surface (case i), n̂ varies continuously between the two limits n̂±. When
the irregularity is on the boundary of the ‘dulled’ edge (case ii), this point must be
omitted to maintain an analytic fluid domain. As such, n̂ varies through values with a
total change in argument of π and may have a direction outside those of n̂±. As ε→0
the irregularity and geometric singularity merge (case iii), and not only does n̂ become
ambiguous, but the change in argument is now 2π−βπ. Hence, the boundary normal
vector at the sharp edge, or equivalently the shedding angle, must be defined such
that (4.3) is compatible with the interaction of the flows approaching the corner. This
process is governed by the intrinsic flow inside the sheets as is shown next. Unlike
the case of a cusped edge the shedding angle for the wedge geometry will not, in
general, be tangential to either face.

The sheet Si is divided in two: S1 and S2 representing the wedge faces as depicted
in figure 6(a). The subscripts (1), (2) and (v) will refer to quantities associated with
S1, S2 and Sv, respectively. The complex sheet strengths are then χ1, χ2 and χv, and
the arguments of these sheets are θ1, θ2 and θv. The entrainment strength is known
everywhere except at the sharp edge because the normal direction there is as yet
undetermined. Imposing the normal boundary condition on the wedge faces will yield
the corresponding vortex sheet strengths γ1 and γ2. It is assumed that the source of
the vorticity in the free sheet Sv results solely from the merging/shedding of the two
bound sheets S1 and S2. Hence, the remaining unknowns to be determined are γv, qv
and θv.

First, we address the potential outer flow quantities relating to u and then discuss
the flow v inside the sheets. By definition the sheets are characterized by the limiting
values just outside the sheets. Hence, we have constraints to impose to ensure the
consistency of S1 and S2 merging into Sv. Figure 6(b) shows the tangential and normal
components of the left and right limit velocities for each sheet. Next, we define w±v =
(u±s,v − iu±n,v)e

−iθv as the velocities on either side of Sv. While w (i.e. u) may be
discontinuous across a sheet it is still required to be smooth when (z± ∈D)→ (ζ ∈ ∂D)
since w is sectionally holomorphic (Muskhelishvili 1946). This means that the w±v are
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FIGURE 6. (a) Schematic definition of the sheets comprising the wedge of interior angle
βπ. The directions of the arrows indicate the direction of positive integration in (4.5).
(b) The left and right limits of the tangential and normal velocities of each sheet. The
velocities exist at the sharp edge but are shown displaced from it for clarity.

related to the velocities just outside of S1 and S2 as:

w+v eiθv = (u+s,1 − iu+n,1)e
−i(θ1−θv), w−v eiθv = (u−s,2 − iu−n,2)e

−i(θ2−θv). (5.1a,b)

The no-slip and no-penetration boundary conditions on the solid wedge faces can now
be imposed since u−s,1, u+s,2, u−n,1 and u+n,2 will be known from the velocity of the wedge.
Adding these components to the above equations, then subtracting and taking real and
imaginary parts yields:

γv = u−s,v − u+s,v = γ1 cos(θ1 − θv)+ γ2 cos(θ2 − θv)

− [q1 sin(θ1 − θv)+ q2 sin(θ2 − θv)] (5.2)
qv = u−n,v − u+n,v = γ1 sin(θ1 − θv)+ γ2 sin(θ2 − θv)

+ [q1 cos(θ2 − θv)+ q2 cos(θ2 − θv)]. (5.3)

That γv depends on (q1, q2) and qv on (γ1, γ2) is expected from the coupled sheet
strength evolution equations in (2.24). Using the definition of the complex sheet
strength in (4.6) these equations can be repackaged as:

χv = χ1 + χ2. (5.4)

In appendix C it is shown that this requirement is precisely the condition that removes
the singularities in the velocity induced at the sharp edge. Hence, equation (5.4) might
as well be called the Kutta condition. However, note that the sheet strengths are not
arbitrary, but are related to the balance of normal momentum and the pressure jump
as discussed in § 2.3 and referred to as the ‘neutralization of the singular pressure
gradient’ in § 2.4.

Now consider the intrinsic flows v inside the sheets. Here we use vector notation
to reiterate that v is not part of the outer flow, but is confined to the sheet embedded
within this flow. When the tangential flows vs,1 and vs,2 in the bound sheets merge at
the edge point there must be no normal impulse relative to the shedding free sheet
Sv. For otherwise there would be flow out of the sheet. The impulse represents the
instantaneous or ‘ballistic’ merging of S1 and S2. This dynamic condition is expressed
as:

0= [(ρs,1vs,1)ŝ1 + (ρs,2vs,2)ŝ2] · n̂v. (5.5)
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Noting from figure 6(a) that θ2 = βπ/2 and θ1 = −βπ/2, then (5.5) yields an
expression for the shedding angle as:

tan θv = A tan(βπ/2), A=
(
ρs,2vs,2 − ρs,1vs,1

ρs,2vs,2 + ρs,1vs,1

)
. (5.6a,b)

Next, we have the mass and momentum boundary conditions of the merging process,
which state that the ρs and ρsvs from each of the bound sheets are carried into the
free sheet by their respective convective velocities vs:

ρs,vvs,v = ρs,1vs,1 + ρs,2vs,2, ρs,vv
2
s,v = [(ρs,1v

2
s,1)ŝ1 + (ρs,2v

2
s,2)ŝ2] · ŝv. (5.7a,b)

With the intrinsic flow quantities ρs,j and vj ( j = 1, 2) known from the solution of
the coupled system, then (5.2), (5.3) and (5.6) represent three equations for the three
unknowns γv, qv and θv. Then (5.7) gives boundary conditions to calculate the flow
into Sv as it is shed.

5.1. Discussion on special cases of entrainment
In this subsection we discuss some sets of simplified circumstances pertaining to
separation at a sharp edge that are of practical interest. When β = 0 then (5.6)
simply gives θv = 0 irrespective of the intrinsic flow v and thus JpK. Of course this
corresponds to the usual tangential shedding result for a cusped edge.

Now consider zero entrainment everywhere so that there is no intrinsic flow v = 0
or mass ρs=0 in the sheets, namely the conventional vortex sheet. Equation (5.6) then
becomes indeterminate and a new condition for the shedding angle is required. This
is obtained from (5.3), which with each qj = 0 reduces to:

γ1 sin(βπ/2+ θv)= γ2 sin(βπ/2− θv). (5.8)

There is the trivial solution with γ1 = γ2 = 0 meaning no flow at the edge. The only
other solutions that put θv in a physical range are θv=±βπ/2 and with the respective
consequences of γ1= 0 or γ2= 0. This corresponds to a tangential shedding angle and
that the flow is stagnated on one side of the vortex sheet depending on the sign of
shed circulation. Hence, as mentioned in § 2.4 the vortex sheet from one wedge face
convects off the surface with no contribution from the opposing face. These features
are consistent with the results of Pullin (1978) in which there was zero entrainment.

Lastly, consider the onset of motion at t= 0 when no vorticity has been shed from
the sharp edge and Sv does not yet exist. As used by Rott (1956) and Pullin (1978) the
attached potential flow responsible for separation is obtained as the leading-order term
in an expansion of the complex potential near the sharp edge: Φ ∼ (z − ζo)

n where
n= 1/(2− β) for the wedge of angle βπ. The imposed pressure gradient at infinity
that drives this flow suggests the windward wedge face will ‘feel’ the pressure at t=
0+ before the leeward face. Hence, we would expect more significant entrainment to
occur on the windward face, say S2, so that vs,2� vs,1 and (5.6) gives A≈ 1 and θv ≈
βπ/2. This is again consistent with the small-time similarity solution. In a real flow
the ensuing roll-up would be sure to quickly induce a pressure and so entrainment on
the leeward face thus changing θv.
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6. Example calculations
This section presents two example calculations to demonstrate the vortex-entrainment

sheet concept as applied to separation at a sharp edge. For simplicity we make some
further assumptions on the dynamics for a free sheet. This is accomplished by
enforcing a relation between v and u. To this end, we recognize that the conventional
vortex sheet has the Birkhoff–Rott equation as its evolution equation, which says the
sheet moves with the average fluid velocity. Motivated by this, we simply set v = u
and we then have the generalized Birkoff–Rott equation (4.5) to convect the free
sheet.

To see the dynamical consequences of our assumption we apply them to the mass
and momentum equations (2.6)–(2.7) to give:

∂ρs

∂t
+
∂

∂s
(ρsvs)= ρq, ρs

Dsvs

Dt
= JτK, ρs

Dsvn

Dt
=−JpK. (6.1a−c)

We see that the normal momentum equation remains unchanged regardless of the value
of the entrainment strength q. Hence, the pressure jump is exactly that required to
move the mass in the sheet with vn= un. For a free sheet we have τ+= τ−= 0 since
the outer flow is potential and thus JτK= 0 means the tangential motion of particles
in the sheet move materially.

6.1. Set-up of computed simulations
First we present the problem set-up for a case with zero entrainment that is given in
§ 6.2. A case with non-zero entrainment is then considered in § 6.3 and the required
modifications to the problem setup are also discussed there. The geometry of each
problem is a wedge of infinite extent.

We use a combination of the Laplace and boundary integral formulations. The
wedge is stationary and a boundary condition is imposed at infinity to drive the
flow in the form of a known harmonic potential function φ∞(r, θ, t)= Re{Φ∞(z, t)}
that represents the attached flow. Since there is no entrainment S1 and S2 have
no-penetration conditions and Sv has a continuity of normal velocity condition.
Moreover, by construction the potential φ∞ satisfies homogeneous Neumann boundary
conditions on the wedge faces. Hence, after each new free vortex sheet segment is
shed, we need only to account for the normal velocity induced by Sv on the walls.
We can then arrange the problem for a potential φw, which represents the image
system of the free vortex sheet inside the wedge. This φw satisfies:

∇
2φw = 0 for r> 0, θ ∈ [−θw, θw] (6.2)

1
r
∂φw

∂θ
=−Re{ieiθwv(r, θ)} for r> 0, θ =±θw (6.3)

φw→ 0 for r→∞, θ ∈ [−θw, θw], (6.4)

where θw =π(1− β/2) and (±) corresponds to the angular coordinates of S1 and S2,
and so wv(r,±θw) is the velocity induced by Sv on the wedge faces. For brevity we
will write ζw = re±iθw for the coordinate on either S1 or S2.

In § 5.1 we saw that for zero entrainment the shedding angle equation (5.6) becomes
indeterminate and θv is instead obtained by (5.3) with qv = q1= q2= 0. Specifically θv
is necessarily tangent to one wedge face and the flow is stagnated at the apex on the
other face. This second condition could be imposed by ∂φ/∂r=0 on the S1 side where
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φ is the total potential. However, it is automatically satisfied by imposing θv ≡ βπ/2.
We note that this is a result of having to impose the no through-flow condition on
both S1 and S2 as well as the continuity of normal velocity on each side of Sv, all
of which exist at the same location. As a consequence of all these constraints, the
strength of the new vortex sheet segment of Sv is γv = γ2 by (5.2), which represents
S2 convecting off to form Sv.

The calculation procedure is as follows. Given at time t0 = 0 is the vortex sheet
strength γw on S1 and S2 from φ∞(ζw, t0) and an initialized position ζv and vortex
sheet strength γv of the free sheet Sv. The flow is initialized by representing the first
shed segment of Sv as a point vortex as was similarly done by Jones (2003). Then,
for each k > 1 time step:

(i) Compute new velocity on wedge faces due to Sv as

wv(ζw)=
1

2πi

∫
Sv

γv(s) ds
ζw − ζv(s)

. (6.5)

(ii) Solve the Laplace equation for φw in (6.2) with boundary conditions (6.3)–(6.4).
(iii) Compute new γw along S1 and S2, i.e. γ1(r) and γ2(r), as:

γw(ζw)=
∂

∂r
(φw(ζw)+ φ∞(ζw))+Re{wv(ζw)eiθ(ζw)}. (6.6)

(iv) Set γv = γ2(r= 0) and θv = βπ/2 of new sheet segment of Sv.
(v) Compute new total induced velocity on free sheet Sv as

w(ζv)=
∂ζv

∂t
=

dΦ∞
dz
+

1
2πi

∫
Sv

γv(s) ds
ζv − ξv(s)

+
1

2πi

∫
S1∪S2

γw(s) ds
ζv − ζw(s)

. (6.7)

(vi) Time integrate ∂ζv/∂t to advect free sheet Sv to tk+1.

In steps (v) and (vi) ζ v is the complex conjugate of the sheet position. Due to
the simple geometry we use the method of images that maps the domain outside the
wedge to a semi-infinite plane as z∗ = zn. This combines steps (i)–(iii) to obtain γw
directly. The integrals may be computed with a discrete sheet method or as a system
of point vortices. Lastly, the free sheet Sv is advected with a fourth-order Runge–Kutta
scheme.

6.2. Starting flow past an infinite wedge
As validation we first reproduce a result from the similarity solutions of Pullin
(1978) for a starting flow over an infinite wedge of interior angle βπ. There is
zero entrainment everywhere for all time and the attached flow complex potential is
Φ∞(z, t)=−iatmzn where n= 1/(2−β). We simulate a time-dependent flow beginning
from t= 0.

Figure 7(a) shows a comparison of the streamlines and vortex sheet location for
the case with m = 0 and βπ = π/2. The computed simulation is at t = 1 and is
scaled to the similarity space ω = ξ + iη (for more detail see Pullin 1978). There is
good agreement between the visual character of the flow field. For a more quantitative
comparison figure 7(b) plots the total and rate of shed circulation, again showing
excellent agreement with the similarity laws given by Pullin. The inset shows the
velocity along the upper wedge surface (i.e. S1), which stagnates at the leeward side
of the apex as expected from the boundary condition for the case of zero entrainment.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.134


The vortex-entrainment sheet 681

-0.8 -0.4 0 0.4 -0.8 -0.4 0 0.4 0 0.2 0.4 0.6 0.8 1.0

1.4
1.2
1.0
0.8
0.6
0.4
0.2

0
-0.2
-0.4

1.4
1.2
1.0
0.8
0.6
0.4
0.2

0
-0.2
-0.4 0 1 2 3 4 5

0.5
0

-0.5
-1.0
-1.5

r/Lb

ur
ReattchmentCurrent sim.

Current sim.

Pullin (1978)

Pullin (1978)

Sep. bubble: ur < 0

d˝/dt

˝

≈

˙

≈ t

(a) (b) (c) 101

100

10-1

FIGURE 7. (a) Comparison of streamlines (solid) and vortex sheet position (dashed) for
the case with m=0 and βπ=π/2 (=90◦) at t=1 scaled to the similarity space ω= ξ + iη.
(b) The total and rate of shed circulation as a function of time. The inset shows the radial
velocity along the upper wall, ur, as a function of distance from the apex normalized by
the separation bubble length Lb. The flow is stagnated at the apex and the reattachment
point r= Lb with reversed flow in the separation bubble.

6.3. Oscillating flow with estimated entrainment
Technically the entrainment strengths are to be given as boundary conditions. However,
we may estimate the entrainment qv of the free sheet by relaxing the condition of
stagnated flow on the leeward side of the apex. In other words, a non-zero wall-
tangent velocity is allowed just outside both S1 and S2 at the apex: γ1 6= 0 and γ2 6=

0. Each of these velocities then has a normal component relative to the free sheet
and must merge to form Sv. Hence, the merging of the S1 and S2 sheets is a form
of entrainment. This means a non-tangential shedding angle is possible and this is
determined next.

These wall-tangent flows are in the outer potential flow u just upstream of the sharp
edge point and thus must be entrained through the sharp edge to become the intrinsic
flow v. Therefore, since there cannot be flow through Sv the normal impulse relative
to Sv of these incoming flows must be equal just as was the case for (5.5). Hence,
we obtain an analogous equation for the shedding angle:

tan θv = B tan(βπ/2) B=
(

u−s,2 − u+s,1
u−s,2 + u+s,1

)
. (6.8a,b)

Although we have assumed JρK = 0 we could accommodate a stratified flow by the
substitution u±→ ρ±u±. The above equation is equivalent to the one used by Xia &
Mohseni (2017); the two relations are related by the trigonometric identity arctan(x)=
arccos(1/

√
1+ x2). However, there it was not recognized that this necessarily requires

entrainment into the shed sheet.
Since θv is now determined by (6.8) instead of prescribed as βπ/2, then step (iv)

of the procedure given in § 6.2 must be updated as:
(iv)′ Compute γv and qv from (5.2) and (5.3) from γ1, γ2, θv with q1 = q2 = 0.
In the same way that a segment of vortex sheet must be of finite length to possess

circulation, Γ =
∫
γ ds, so too must an entrainment sheet segment have a finite

length to have an entrainment rate, Q =
∫

q ds. By confining the entrainment over
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FIGURE 8. (Colour online) (a) Wake of an oscillatory trailing edge flow. (Top)
Experimental flow visualization of a NACA 0012 airfoil oscillating at f = 6 Hz from
Koochesfahani (1989). (Bottom) Qualitative comparison of a simulated wake at t= 2 with
wedge angle 16◦ to approximate the airfoil trailing edge. (b) Zoomed in view of the sharp
edge showing the sheet shapes at different times t with corresponding shedding angles
θv(t) as labelled with (t, θv).

some small sheet segment 1s to the point at the sharp edge means we are essentially
approximating a net entrainment rate Q as

Q=
∫
1s

qv ds≈ qv1s. (6.9)

Then the amount of mass of fluid with density ρ that is entrained is 1m ≈ ρQ1t.
Hence, the sheet mass density ρs,v =1m/1s put into Sv in a given amount of time
is:

ρs,v ≈ ρqv1t, (6.10)

which is equivalent to integrating the mass equation in (6.1) over 1t. Therefore,
with a constant 1t and ρ the behaviours of ρs,v and qv are synonymous with the
understanding that qv exists only at the edge and puts ρs,v in the sheet which then
convects downstream. In other words, the time trace of qv is analogous to the trace
of ρs,v along the sheet arclength at a given time.

Having physically explained the estimated entrainment through the sharp edge, we
now compute a solution that is similar to the wake created by the trailing edge of an
oscillating airfoil. The driving potential flow is given by

Φ(z, t)= A1(t)(z− ζo)
n
+ A2(t)(z− ζo)

2n, (6.11)

where A1(t) = Ao cos(2πft) is the oscillating component and A2 = U∞ represents
the translational velocity of the airfoil. To provide a qualitative comparison we
matched the oscillation frequency from one of the dye visualization experiments of
Koochesfahani (1989). The experiments used a NACA 0012 airfoil with chord-based
Reynolds number Rec = 11 400 and 2◦ oscillation amplitude and frequencies f = 4,
5 and 6 Hz. We ran a simulation with f = 6 Hz and where qv was estimated as
described above. Due to the more complicated sheet shape, we used a point vortex
method to approximate the sheet.

Figure 8(a) plots a comparison of the simulated wake structure at t= 2 and shows
reasonably good agreement with the experiment. Figure 8(b) shows a zoomed in view
of the sharp edge and plots the free sheet shape at several times through a period
of oscillation. We can clearly see the smooth variation of the shedding angle θv. The
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FIGURE 9. Computed quantities for the simulated flow in figure 8. (a) The entrainment
sheet strength at the sharp edge, (b) shedding angle θv where the dashed lines are the
tangential limits βπ/2 = ±8◦, and (c) vortex sheet strength at the edge. All are plotted
against time. The solid circles and open triangles respectively mark where the entrainment
strength is strongest and weakest.

computed entrainment sheet strength qv, shedding angle θv and vortex sheet strength
γv are the top, middle and bottom plots in figure 9, respectively. First, we see that
qv oscillates with twice the frequency as the oscillating flow, but is shifted upward
by a positive mean, qv ≈ 0.159, such that qv(t) > 0. This is to be expected since
entrainment is a viscous process that cannot be reversed such that the fluid is returned
to an irrotational state. The shedding angle θv shows the expected oscillatory behaviour
within the two tangential shedding limits of ±βπ/2 and about a zero mean, namely
the wedge bisector and likewise for the vortex sheet strength.

The solid circles mark when qv is strongest and the open triangles mark when qv
is weakest. Although we have oscillated the flow, we will now speak as if the trailing
edge were oscillating instead. Hence, entrainment is strongest when the trailing edge is
passing through the zero incidence position. At these times the edge is moving with its
highest velocity and changes sign of acceleration. This deceleration is known to cause
an impingement of the flow onto the leeward side of the wedge and a corresponding
significant normal force (DeVoria & Ringuette 2013). This large pressure/normal force
on the wedge is then responsible for the strong entrainment. The vortex sheet displays
the opposite behaviour showing maxima and minima when the wedge changes sign of
velocity at the largest amplitudes of the oscillation. This conjugacy between the vortex
sheet and entrainment sheet, or in general tangential and normal quantities, is a feature
that we have repeatedly observed throughout this work.

7. Concluding remarks
This study proposed the vortex-entrainment sheet as a model of viscous boundary

and shear layers in three-dimensional flow. The sheet differs from the conventional
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vortex sheet by allowing mass and consequently momentum in the sheet. The process
of entrainment is the mechanism that allows fluid to enter the sheet, thus endowing
it with inertia. Hence, there is an intrinsic flow confined to the tangential manifold
defining the sheet position. This internal flow is dynamically coupled to the flow
outside the sheet and may also have physical properties and phenomena that are
different from the bulk fluid and that exist only on the sheet.

The physical concept motivating the entrainment sheet definition is the preservation
of the mass within a finite-thickness viscous layer in the limit as the layer collapses
to zero thickness. In other words, the sheet has a mass per-unit-area of sheet, ρs. The
essential characteristics of the sheet are the vectorial vortex sheet strength representing
tangential discontinuities in the velocity, and the scalar entrainment sheet strength
corresponding to a discontinuity of the normal velocity. The latter strength is obviously
responsible for the entrainment and acts as a source of ρs relative to the flow inside
the sheet.

The velocity field induced by the vortex-entrainment sheet is given by a generalized
Birkhoff–Rott equation where the sheet has a complex strength with the real part
corresponding to the vortex sheet as usual and the imaginary part to the entrainment
sheet. However, this generalized equation is not necessarily the evolution equation
for the sheet since it contains mass, which also allows it to support a pressure
jump. Another major physical consequence of the sheet mass is that no additional
Kutta condition is required as the flow remains finite due to a balance of normal
momentum with the pressure jump. For the specific case of separation at a sharp
edge, the shedding angle is dictated by the normal impulse of the intrinsic flows in
the sheets merging at the edge to form the free sheet. These features represent stark
differences from the conventional vortex sheet, which remains dynamically indistinct
from the surrounding fluid. A mass-less vortex sheet, ρs ≡ 0, is essentially decoupled
from a governing momentum equation and thus is said to ‘move with the fluid’. For
the same reason, an explicit Kutta condition at irregular points is required to replace
the degenerate momentum equation for the conventional vortex sheet.

Throughout this work a theme of conjugacy between the vortex sheet/tangential
quantities and the entrainment sheet/normal quantities was observed. We interpret this
to mean the entrainment sheet is a natural extension of the conventional vortex sheet
as a model of viscous layers. The vortex-entrainment sheet concept was applied to
some example calculations and showed encouraging results about representing the
viscous phenomenon of entrainment with an inviscid model.

This paper is the first part in a planned two-part series. The second part will extend
the vortex-entrainment sheet model to the case of separation on a smooth surface
where the separation point is able to move relative to the surface. In addition, the
problem of predicting the location of the separation point is considered.
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Appendix A. Singular parts of the curl and divergence

This appendix represents the discontinuity in u across the sheet as a Heaviside
function to obtain the singular parts of the curl and divergence operators as given in
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(2.12). The following derivation essentially parallels that given by Howe (2007) for a
vortex sheet. Near the sheet the discontinuous fluid velocity can be expressed as:

u=H(n+)u+ +H(n−)u−, (A 1)

where n = 0 specifies the sheet location and H(n) is the Heaviside function with
defining property H(n > 0) = −H(n < 0) = H(n). Substituting this into the curl and
divergence of the velocity gives:

ω=∇× u=∇H(n)× (u+ − u−) ∆=∇ · u=∇H(n) · (u+ − u−) (A 2a,b)

since u+ and u− are incompressible, irrotational flows existing in the open region
defined by the fluid domain D whose closure contains the sheet. Substituting ∇H(n)=
δ(n)n̂ gives:

ω= n̂× JuKδ(n)= γ δ(n) ∆= n̂ · JuKδ(n)=−qδ(n), (A 3a,b)

where γ (s, b) is a sheet-tangent vector giving the strength of the vortex sheet, and
q(s, b) is the strength of the entrainment sheet as given by (2.13) and (2.14).

Appendix B. Conjugate definitions

Let s and n be the tangential and normal sheet coordinates on a one-dimensional
sheet immersed in a two-dimensional flow. The amount of circulation within and the
flux into a sheet segment are:

Γ =

∮
u · dl=

∫
γ ds, Q=−

∮
u · n̂dl=

∫
q ds. (B 1a,b)

Using u = ∇φ and the Cauchy–Riemann relations, the tangential and normal
components of velocity, us and un, are

us =
∂φ

∂s
=
∂ψ

∂n
, un =

∂φ

∂n
=−

∂ψ

∂s
. (B 2a,b)

As such, the integrands in (B 1) can be written as exact differentials of φ and ψ ,
respectively. Therefore, integrating on each side of the sheet we have:

Γ =−(φ+ − φ−)=−JφK, Q= (ψ+ −ψ−)= JψK. (B 3a,b)

Taking the partial derivative of these quantities along the tangential coordinate gives
the vortex and entrainment sheet strengths, γ and q, as:

γ =
∂Γ

∂s
= u−s − u+s , q=

∂Q
∂s
= u−n − u+n . (B 4a,b)

It is worth reiterating that Q> 0, q> 0 corresponds to entrainment into the sheet as
signified by the negative sign in the equation defining Q.
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Appendix C. Removal of singularities
Comment: in the theory of singular integral equations the sheet strength is

conventionally defined as the jump in w, that is χ = JwK and the Cauchy kernel
is (ζ − z)−1. However, in (4.5) and (4.6) we defined the sheet strength to be minus
the jump so that the kernel is (z − ζ )−1. This was done so as to avoid introduction
of a superfluous minus sign. Without loss of generality and to be consistent with
the equations of Muskhelishvili (1946) and others, we here adopt the conventional
definition.

This appendix examines the behaviour of the complex velocity w(ζ ) as the sharp
edge is approached, ζ → ζo. In general there are discontinuities in the strengths at
ζo since this point represents the confluence of the sheets S1, S2 and Sv. As such,
the sheet strength χ(ζ ) does not satisfy the Hölder condition (Muskhelishvili 1946)
exactly at ζo and so the Plemelj formulae for a corner point do not apply. However,
each sheet strength may be said to satisfy the Hölder condition on its respective closed
arc S1, S2 and Sv, in which case formulae are known for the behaviour near the end
points (see ibid).

The velocity induced by a given sheet at a point ζ near the corner point is:

w(ζ )=
1

2πi

∫ ζo χ(ξ)

ξ − ζ
dξ =

χ(ζo)

2πi

∫ ζo dξ
ξ − ζ

+
1

2πi

∫ ζo χ(ξ)− χ(ζo)

ξ − ζ
dξ

=
χ(ζo)

2πi
log(ζ − ζo)+G(ζ ), (C 1)

where G(ζ ) satisfies the Hölder condition near and at ζo. The velocities of this form
induced by the individual sheets are physically meaningless as ζ → ζo, becoming
logarithmically infinite, and the approaches from the left and right are not well
defined. The singularity may be of a more general form if it is assumed that
χ(ζ )= χ∗(ζ )/(ζ − ζo)

α near the corner where α ∈C is a complex constant. Although
this may yield a finite w(ζo), we take the physical significance of the sheet strengths
χ to imply that they too remain bounded, so that α = 0 and the singularity is
logarithmic.

Therefore, we must consider the collective behaviour of the total induced velocity.
Let ζ1, ζ2 and ζv be positions on the sheets S1, S2 and Sv such that ε = |ζ1 − ζo| =

|ζ2 − ζo| = |ζv − ζo| are short equidistant lengths from the corner point ζo. Then:

w(ζo)=
χ1 + χ2 − χv

2πi
log ε +G(ζo), (C 2)

where χ1, χ2 and χv are each evaluated at ζo. Hence, the constraint χv = χ1 + χ2
ensures that this logarithmic singularity in the velocity is removed, and is the same
condition given in (5.4) of § 5.

Now, the complex potential Φ(z) is determined by the same Cauchy-type integral as
the conjugate velocity w(z), so that Φ has an analogous logarithmic singularity. This
is the source of the inverse square-root singularities in the velocity as mentioned by
Jones (2003). More specifically since w= dΦ/dz, then:

d
dζ

log |ζ − ζo| ∼
1

|ζ − ζo|
=

1√
(x− xo)2 + (y− yo)2

, (C 3)

where recall that ε = |ζ − ζo|. However, these singularities are also removed by the
conditions imposed on the χj. This is due to the relationship between the doublet sheet
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strength and the vortex-entrainment sheet strength as χ = ∂λ/∂ζ . In fact, this is what
allows the velocity to be written as:

w(z)=
dΦ
dz
=

1
2πi

∫
S

χ(ζ ) dζ
z− ζ

=
1

2πi

∫
S

(∂λ/∂s) ds
z− ζ (s)

. (C 4)
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