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High-speed free-shear-flow turbulence, laden with droplets or particles, can radiate
weaker pressure fluctuations than its unladen counterpart. In this study, Eulerian–
Lagrangian simulations of high-speed temporally evolving shear layers laden with
monodisperse, adiabatic, inertial particles are used to examine particle–turbulence
interactions and their effect on radiated pressure fluctuations. An evolution equation
for gas-phase pressure intensity is formulated for particle-laden flows, and local
mechanisms of pressure changes are quantified over a range of Mach numbers
and particle mass loadings. Particle–turbulence interactions alter the local pressure
intensity directly via volume displacement (due to the flow of finite-size particles)
and drag coupling (due to local slip velocity between phases), and indirectly through
significant turbulence changes. The sound radiation intensity near subsonic mixing
layers increases with mass loading, consistent with existing low Mach number
theory. For supersonic flows, sound levels decrease with mass loading, consistent
with trends observed in previous experiments. Particle-laden cases exhibit reduced
turbulent kinetic energy compared to single-phase flow, providing one source of
their sound changes; however, the subsonic flow does not support such an obvious
source-to-sound decomposition to explain its sound intensity increase. Despite its
decrease in turbulence intensity, the louder particle-laden subsonic flows show an
increase in the magnitude and time-rate-of-change of fluid dilatation, providing a
mechanism for its increased sound radiation. Contrasting this, the quieter supersonic
particle-laden flows exhibit decreased gas-phase dilatation yet its time-rate-of-change
is relatively insensitive to mass loading, supporting such a connection.

Key words: aeroacoustics, compressible turbulence, particle/fluid flow

1. Introduction
Pressure fluctuations from high-speed flows pose serious risks and design challenges

in many engineering applications. For example, there is a need to reduce the sound
intensity near aircraft during take-off and landing to protect personnel (Kaltenbach,
Maschke & Klinke 2008). In addition, regulations are placed to reduce environmental
noise pollution from commercial aircraft near cities, described in Bowes et al. (2009).
Launch pad configurations for rockets address some of these issues by using water
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injection systems to reduce pressure fluctuations and thermal loading (Himelblau et al.
2001; Ignatius, Sathiyavageeswaran & Chakravarthy 2014). In such configurations,
sound reduction depends on the injection geometry, injection flow rate and mass flux
ratio (Zoppellari & Juve 1997; Krothapalli et al. 2003; Norum 2004), in addition
to jet temperature (Norum 2004; Henderson 2010). Microjet injection of water into
high-speed jet turbulence has been observed to reduce far-field sound levels by 2–6
dB using 5 %–17 % of the mass of the gas jet (Krothapalli et al. 2003). At even
larger mass loadings (>100 % of jet mass), a 12 dB reduction of the sound near
rocket engine exhausts was achieved (Zoppellari & Juve 1997). However, in similar
jet configurations, sound radiation has been observed to increase due to fluid injection,
suggesting its control and mechanisms toward noise reduction are not universal (e.g.
Gilinsky, Bhat & Seiner 1994, and references therein).

Velocity fluctuations in high-speed shear-flow turbulence provide sources of
radiated pressure fluctuations (Lighthill 1952). For supersonic jets injected with water
azimuthally near the jet exit, particle image velocimetry (PIV) data show a reduction
in turbulence intensity without a sizable change to the mean flow profile (Krothapalli
et al. 2003), which has implications for the radiated sound. Turbulence correlation
length scales also decrease from water droplet-injected shear layers (Krothapalli
et al. 2003). In addition, micro-jet injection leads to a streamwise oriented vorticity
pattern. Without fluid injection, similar vorticity structures have been observed through
geometric modifications to the jet nozzles. By adding chevrons (Alkislar & Butler
2007) or likewise using contoured nozzle inserts (e.g. Murray & Lyons 2016), aimed
to augment near-nozzle shear layer development, these strategies also achieve a sound
reduction, which suggests a shared reduction mechanism with water injection via
changes to the turbulence. In isolation, the sensitivity of sound radiation to reduced
turbulence correlation, intensity and relative convection velocity are known to a degree
(Lighthill 1952; Ffowcs Williams 1963). However, the mechanisms of how a disperse
phase (e.g. droplets or particles) couple to the turbulence and pressure field are not
fully understood, which limits advancements toward controlling such flows.

Since inertial particles are known to modify incompressible turbulence (see e.g.
Balachandar & Eaton 2010, and references therein), these effects, when translated
into a compressible regime, are expected to change the pressure fluctuations and
sound field radiation. Drag induced by individual particles in turbulent flows can
enhance or suppress velocity-fluctuation amplitudes over a wide range of scales, which
depend on, for example, the particle size relative to the Kolmogorov length scale,
the mean velocity difference between the phases and the particle-to-fluid mass ratio
(Elghobashi & Truesdell 1993; Balachandar & Eaton 2010; Capecelatro, Desjardins
& Fox 2015, 2018). In the dilute limit, gas-phase turbulence accumulates particles
in high-strain regions of the flow (Eaton & Fessler 1994; Rouson & Eaton 2001;
Marchioli & Soldati 2002; Balachandar & Eaton 2010), and at higher particle loading
it can give rise to the spontaneous generation of densely packed particle regions
(Glasser, Sundaresan & Kevrekidis 1998; Noymer & Glicksman 2000; Agrawal et al.
2001; Capecelatro et al. 2015), i.e. clusters, which have been observed to hinder
mixing between the phases (Agrawal et al. 2013; Shaffer et al. 2013) and amplify
the aforementioned two-way-coupled effects. Recent data show that large-scale
velocity gradients affect the turbulent transport of small (Kolmogorov-scale) heavy
particles and the clustering process at small scales (Nicolai, Jacob & Piva 2013).
Gualtieri, Picano & Casciola (2009) demonstrated that large-scale shear generates
anisotropic velocity fluctuations which, in turn, arrange particle configurations in
directionally biased clusters. In temporally developing shear layers, the mixing layer
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growth rate and turbulent kinetic energy (TKE) were observed to reduce with mass
loading; however, these changes were insensitive to the Stokes numbers considered
(Miller & Bellan 1999; Okong’o & Bellan 2004; Leboissetier, Okong’o & Bellan
2005). Similarly, for homogeneous shear turbulence, Battista et al. (2018) recently
demonstrated that particles with Stokes number Stη =O(1), based on the Kolmogorov
scale, suppress TKE across the entire range of resolved scales as the mass loading is
increased.

Using the foundational aeroacoustics theory of Lighthill (1952), Crighton & Ffowcs
Williams (1969) showed that a disperse phase (such as air bubbles or dust particles)
flowing in turbulence has additional sources of sound via volume fraction and
interphase force mechanisms. Atop the sound from the turbulence, these additional
sound sources are anticipated to be substantial, with an up to 20 dB increase
in sound pressure levels (Crighton & Ffowcs Williams 1969). Contrary to these
theoretical estimates, micro-droplet water injection into the high-speed-jet shear layers
reduce sound intensity (Krothapalli et al. 2003), suggesting, in part, unknown sound
reduction mechanisms. This contradiction has consequence and begs the question:
are observed sound reductions near high-speed jets, injected with water droplets,
formed from a mixture of sound reduction mechanisms that outpace theoretically
large sound sources from the disperse phase itself? The answer has implications for
sound-reduction strategies applied to single-phase turbulence, which inherently lack
potentially loud sound sources due to particles. As will be shown, results indicate
an important Mach number and mass loading dependence for sound and turbulence
changes, which suggests extensions to theoretical expectations for regimes considered
here. These concepts will be revisited in § 4.

Eulerian–Lagrangian simulations of particle-laden free-shear-flow turbulence are
used to provide the space–time dynamics leading to changes in the near-field pressure
fluctuations compared to unladen turbulence. In the following section, starting from a
mesoscale description for compressible two-phase flows, a transport equation for the
gas-phase pressure intensity in the presence of particles is derived. The free-shear-flow
turbulence configurations and numerical methods are discussed in § 3. Analysis of
turbulence statistics for the parametric study based on Mach number (M), mass
loading (Φm) and Stokes number (St) are provided in § 4. This is followed by an
analysis of the mechanisms of local pressure intensity changes in the turbulence using
the transport budget derived in § 2. The effect of particles on the near-field pressure
characteristics are then provided. Finally, the results are summarized in § 5.

2. Pressure intensity transport in the presence of particles
In this study, mechanisms of pressure intensity changes are examined via a

detailed analysis of a transport budget, which necessitates deriving a consistent
Reynolds-averaged pressure intensity equation. Unlike in single-phase flows where the
Navier–Stokes equations can be directly averaged to obtain a macroscopic description
(i.e. a model for the mean flow), special care needs to be taken for turbulent
multiphase flows. As discussed in Fox (2014), averaging the microscale equations (a
model that solves the Navier–Stokes equation for the fluid with appropriate boundary
conditions at the two-phase interface), omits important interphase coupling terms (e.g.
Capecelatro et al. 2015). As such, deriving the averaged equations starting from a
mesoscale description retains physics by explicitly accounting for volume fraction
and interphase coupling terms. In this section, the volume-filtered compressible flow
equations are presented and are used to derive the pressure intensity transport that
explicitly include multiphase effects.
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2.1. A mesoscale description for compressible two-phase flows
To arrive at a mesoscale description for compressible particle-laden flows, the Navier–
Stokes equations are split into microscale processes that take place on the scale of a
particle and below, and meso- to macroscale processes that take place on a scale much
larger than the particle size. Anderson & Jackson (1967) provide such a basis for this
approach by applying a local volume filtering operator to the incompressible Navier–
Stokes equations, thereby replacing the point variables (fluid velocity, pressure, etc.)
by filtered fields. Applying a similar approach to the viscous compressible Navier–
Stokes equations, the volume-filtered conservation equations can be expressed as (see
appendix A for details)

∂αρ

∂t
+∇ · (αρu)= 0, (2.1)

∂αρu
∂t
+∇ · (α{ρu⊗ u+ pI− τ })= (pI− τ ) · ∇α +F, (2.2)

and

∂αρE
∂t
+∇ · α({ρE+ p}u− u · τ )+ α∇ · q= (τ − pI) : ∇(αpup)+ up ·F, (2.3)

where α is the fluid-phase volume fraction, ρ is the fluid density, u the fluid velocity,
up is the particle-phase velocity (in an Eulerian frame of reference) and E the total
energy. Interphase heat transfer (based on the flow configuration in § 3) had negligible
effect on the results and is neglected here. Flow variables in equations (2.1)–(2.3) have
been non-dimensionalized by ambient density ρ?

∞
, speed of sound c?

∞
, a characteristic

length scale L? (based on vorticity thickness defined in equation (3.3)) and heat
capacity at constant pressure C?

p. Dimensional quantities are denoted by a superscript
?, and the subscript ∞ indicates reference quantities (taken to be air). The source
term F appearing in equations (2.2) and (2.3) accounts for momentum coupling
between the particle and gas phases, and its form will be discussed in § 3.2. The
non-dimensional viscous stress tensor is given by

τ =
µ

Rec
(∇u+∇uT)+

λ

Rec
∇ · u (2.4)

and the heat flux q is

q=−
µ

RecPr
∇T, (2.5)

where Pr≡C?
pµ

?/k?= 0.7 is the Prandtl number, with µ? and k? the dynamic viscosity
and thermal conductivity, respectively. The Reynolds number used in the formulation
is defined as Rec = Re/M, where Re = ρ?

∞
1U?L?/µ?

∞
is the flow Reynolds number

with 1U? a characteristic velocity defined later, and M=1U?/c?
∞

is the Mach number.
The non-dimensional viscosity is modelled as a power law µ = [(γ − 1)T]n, with
n = 0.666 as a model for air and γ = 1.4 is the ratio of specific heats. The second
coefficient of viscosity is given by λ = µB −

2
3µ, where the bulk viscosity µB =

0.6µ is chosen as a model for the bulk viscosity of air. Assuming an ideal gas, the
thermodynamic pressure and temperature depend on

p= (γ − 1)(ρE− 1
2ρu · u) (2.6)
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and

T =
γ p

ρ(γ − 1)
. (2.7)

Since pressure is a key observable in the simulations, its transport equation is
useful for examining the competition of the mechanisms generating it. Differentiating
equation (2.6) with respect to time and substituting equations (2.1)–(2.3) yields the
pressure evolution equation in the presence of a disperse phase,

Dp
Dt
=−γ p∇ · u+D− γ p

D ln α
Dt
+
γ − 1
α

(up − u) ·F, (2.8)

where D/Dt = ∂/∂t + u · ∇ is the material derivative operator and terms involving
molecular transport effects are combined into

D=
γ − 1
α

(τ : ∇αu+ τ : ∇αpup)+ γ∇ ·
µ

Rec Pr
∇(p/ρ). (2.9)

Compared to the single-phase pressure transport equation (e.g. Pantano & Sarkar
2002), the last two terms on the right-hand side of equation (2.8) represent new
contributions due to the presence of particles. The second-to-last term on the
right-hand side involves convection aligned with volume fraction gradients as well as
a mechanism associated with the so-called pDV work term (Lhuillier, Theofanous &
Liou 2010). The last term on the right-hand side represents work due to drag which
is only active when the slip velocity magnitude between the phases is |up − u|> 0.

2.2. Averaged pressure intensity
For examining mechanisms affecting the pressure intensity in turbulence, we use
Reynolds decomposition with spatial averaging operator (·), such that any quantity A
can be decomposed into A = A + A′ as is often used to examine Reynolds stress or
turbulent kinetic energy transport.

Using this decomposition, multiplying equation (2.8) by p and rearranging yields
the following pressure intensity transport equation

∂p′p′

∂t
+ u · ∇(p′p′)=−2γ p p′∇ · u′ − (2γ − 1)p′p′∇ · u′

− 2u′p′ · ∇p−∇ · (p′p′u′)− 2γ p′p′∇ · u+ 2p′D′︸ ︷︷ ︸
viscous and heat conduction

× −2γ

(
p′p′

D ln(α)
Dt

+ p p′
D ln(α)

Dt

)
︸ ︷︷ ︸

volume displacement

+ 2(γ − 1)

(
p′F
α
· (up − u)+

p′F
α
· (u′p − u′)

)
︸ ︷︷ ︸

drag coupling

. (2.10)

The first two lines of equation (2.10) have the same form as for single-phase flows,
and they have been analysed for several turbulence configurations (e.g. Sarkar 1992).
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As shown by Sarkar (1992), p′∇ · u′ acts to transfer energy between the kinetic
and internal energy of turbulence. The term ∇ · (p′p′u) has a turbulent-flux-like
form for pressure intensity, −2γ p′p′∇ · u has a production-like form for pressure
intensity, although depending on mean flow expansion rather than mean shear,
and 2p′D′ combines all of the heat conduction and viscous mechanisms based
on (2.9). The terms involving D/Dt(ln α) show how pressure intensity is modified
from the material transport of volume fraction (depending on its correlation to the
local pressure) and the last term describes the effects due to drag. The analysis
of equation (2.10) in subsequent sections focuses on groups of terms: (i) volume
displacement; (ii) drag coupling; (iii) viscous and heat conduction; and (iv) remaining
terms without (p′p′)t that comprise what we call the inviscid hydrodynamics. The
following sections introduce the simulations used in evaluating the terms in (2.10);
their relative importance on modifying pressure fluctuations will be presented in § 4.2.

3. Simulation details
3.1. Flow configuration

The simulations are designed to provide a model flow to represent phenomenology
of full-scale droplet-injected jet applications. To this end, we focus on what can
be considered the near-nozzle exit region of a high-speed shear layer. Assuming
the turbulent mixing layers from these jet exits are thin relative to their curvature,
the turbulence would develop similarly as a planar spatially developing shear layer.
Using a coordinate transformation based on the mean streamwise flow, we consider
the temporally developing frame of reference, as shown in figure 1. Focusing on
the thin shear layer turbulence enables the direct simulation of a broader range
of turbulence scales than could be represented in a full jet simulation; the largest
scales there being the size of the jet diameter rather than the shear layer thickness.
Thus, the present configuration provides a Reynolds-number realistic representation
of a section of a high-Reynolds-number jet, and it enables probing of the sound
generation mechanisms of high-Reynolds-number turbulence. We mention that the
acoustic far field from the current mixing layers will not include any geometric
propagation associated with that from a round jet nor from the closing of shear
layers at the end of the potential core. For the very near-field analysis considered
here (i.e. within 20 δm where the momentum thickness δm is given in equation (3.2)),
results are expected to compare well with those near jets. One such comparison was
made between temporally developing shear layer direct numerical simulation and
round jet large-eddy simulation (LES) which showed similar pressure skewness Sk
with Mach number (Buchta & Freund 2017). Although such a configuration precludes
a one-to-one comparison to far-field jet sound, it provides a detailed description of
underlying particle–turbulence and acoustic interactions and motivates analysis for
more complex configurations.

In practice, water droplets are introduced into the jet exit shear layers by water-jet
injection ports positioned azimuthally near the nozzle exit (Krothapalli et al. 2003;
Greska 2005), which would be challenging to consider in the planar temporally
developing configuration here. However, experimental measurements (Krothapalli et al.
2003) indicate that the injected liquid breaks up quickly in the high-speed shear layer
and forms a cloud of small droplets (mainly dp < 5 µm) at the end of the injection
region where turbulence attenuation is observed. Therefore, by seeding particles
directly inside developed turbulence, focus is placed on turbulence–particle coupling
mechanisms, multiphase development in a compressible regime and near-field sound
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Ly = 1600∂o
m

Lx = 768∂o
m

Detail

ÎU/2

-ÎU/2

Lz = 192∂o
m

(a) (b)

(c)

FIGURE 1. (Colour online) Shear layer configuration: (a) iso-view of the computational
domain, (b) zoomed-in view of the x–y plane and (c) detail of (b). The vorticity magnitude
is coloured by (∇× u) < 0.51U/δm increasing from blue to red with particle position in
black. Grey scales of dilatation are from |∇ · u|< 0.011U/δm decreasing from black to
white.

changes under such conditions. Future work may be warranted to assess how the
current turbulence–particle–acoustic coupling generalizes to other injection–turbulence
interactions and for evaporation in heated jets.

The gas phase is initialized with velocity

[u, v,w](x)=
[
1U

2
tanh

(
y

2δo
m

)
+ u′(x), v′(x),w′(x)

]
, (3.1)

with 1U the velocity difference between the upper and lower streams and velocity
perturbations ([u′(x), v′(x), w′(x)]) are comprised of a broadband Fourier based form
localized in the shear layer. Details of the additive perturbations used for triggering
turbulence are explained in full elsewhere (Capecelatro & Buchta 2017). The initial
pressure is assumed constant and density is computed from the Crocco–Busemann
relationship, which is an established initialization of similar shear layer turbulence
simulations (Vishnampet, Bodony & Freund 2015; Buchta & Freund 2017).

For each simulation presented herein, the domain lengths in the x (streamwise),
y (cross-stream) and z (spanwise) directions are Lx = 768δo

m, Ly = 1600δo
m and Lz =

128δo
m with 768× 1601× 192 grid points, respectively, based on the initial momentum

thickness (δo
m) using

δm(t)=
1

ρ∞1U2

∫ Ly/2

−Ly/2
ρ

[
1
2
1U − ũ(y, t)

] [
1
2
1U + ũ(y, t)

]
dy, (3.2)
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evaluated at t = 0. Tests indicated that near-field pressure fluctuations of the
single-phase (unladen) case were independent of the domain size; moreover, they
are similar to those parameters used in previous single-phase shear layer direct
numerical simulations (DNS) (Buchta 2016; Buchta & Freund 2017). The Reynolds
number based on the velocity difference and the initial momentum thickness is set
to Reδo

m
= 120. Turbulence spectra discussed in § 4.1 support a sufficient grid for

resolving turbulence based on this initial Reynolds number. To model water droplets
in air, the particle density is taken to be ρp = 1000 ρ∞. The particle diameter, dp, is
then chosen to yield a desired initial Stokes number St= τp/τf based on the particle
and fluid time scales, τp = ρpd2

p/(18µ) and τf = δω/1U, respectively. The fluid time
scale τf is based on the vorticity thickness of the shear layer

δω(t)=
1U

|dũ(y, t)/dy|max
, (3.3)

with ũ(y, t) the Favre-average streamwise velocity. For the majority of the simulations,
the initial Stokes number is set to St = 1.0. Sensitivity to Stokes number for 0.25 6
St 6 4 is also examined for M = 1.5. The Stokes number based on the Kolmogorov
time scale (τη), Stη = τp/τη, is in the range 3.4 6 Stη 6 4.4 (for St= 1) at the time of
particle seeding, where τη depends on the local dissipation rate in the shear layer. For
reference, the Stokes number for the water-droplet injection in high-speed jets, based
on 10 δo

w and dp = 4 µm, was estimated to be 0.2 (Krothapalli et al. 2003). Initially,
all of the simulations developed from vorticity thickness δo

w ≡ δw(t = 0) = 1, based
on equations (3.1) and (3.3), to thickness δw(t = t•) ≈ 10, which was sufficient time
to establish turbulence; at this time, t = t•, the particles were positioned inside the
shear layer as previously described in Capecelatro & Buchta (2017). Rather than add
particles at t = 0, which can affect turbulence transition, seeding them in turbulence
is similar to micro-jet injection application for high-Reynolds-number full-scale jets.
The total number of particles considered in each simulation is based on the volume
fraction Φv within the shear layer, defined as

Φv =
Npπd3

p

6LxLzδo
ω

. (3.4)

A summary of relevant parameters used in each case is provided in table 1. Across
all of the laden simulations considered, the total number of particles varies in the
range 3× 106 . Np . 250× 106 depending on mass loading and Stokes number. The
corresponding mass loading within the shear layer

Φm =
ρp

ρ

Φv

1−Φv

, (3.5)

ranges from Φm = 0.1 to 10. Most of the statistics reported throughout § 4 will
concentrate on Φm = 0, 1 and 10 for clarity. However, results for intermediate mass
loadings will be included to highlight intermediate behaviour especially regarding
sound intensity and TKE reduction.

3.2. Particle-phase description
In this work we consider monodisperse, spherical, rigid particles with diameters
smaller than the Kolmogorov length scale. The displacement of an individual particle i
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M St St•η dp/η
• Φm Np × 106

0.9 — — — 0.0 0
1.5 — — — 0.0 0
2.5 — — — 0.0 0
0.9 1.00 4.4 0.28 0.1 2.5
1.5 1.00 4.0 0.26 0.1 2.5
2.5 1.00 3.4 0.22 0.1 2.5
0.9 1.00 4.4 0.28 0.5 13
1.5 1.00 4.0 0.26 0.5 13
2.5 1.00 3.4 0.22 0.5 13
0.9 1.00 4.4 0.28 1.0 25
1.5 1.00 4.0 0.26 1.0 25
2.5 1.00 3.4 0.22 1.0 25
0.9 1.00 4.4 0.28 2.0 50
1.5 1.00 4.0 0.26 2.0 50
2.5 1.00 3.4 0.22 2.0 50
0.9 1.00 4.4 0.28 10 250
1.5 1.00 4.0 0.26 10 250
2.5 1.00 3.4 0.22 10 250
1.5 0.25 1.0 0.13 1.0 70
1.5 4.00 16.0 0.51 1.0 3.1

TABLE 1. Simulation configurations and corresponding initial fluid–particle parameters.
The superscript ‘•’ corresponds to the particle introduction time when the shear layer
growth reaches δm/δ

o
m = 10. The Kolmogorov length scale at this time (η•) is computed

from midplane (y= 0) turbulence data.

is calculated according to Newton’s second law of motion by

dx(i)p

dt
= v(i)p , (3.6)

and

du(i)p

dt
=

f (i)drag

mp
−

1
ρp
∇p[x(i)p ] +

1
ρp
∇ · τ [x(i)p ], (3.7)

where x(i)p and v(i)p are the instantaneous position and velocity of the ith particle,
respectively, and mp is the particle mass. Here, the fluid-phase velocity, pressure
gradient and viscous stress tensor are taken at the centre position of particle i. The
particle equations are non-dimensionalized using the same reference quantities used
in equations (2.1)–(2.3). The drag force is given by

f (i)drag

mp
=
α

τp
(u[x(i)p ] − v(i)p )F(α, Rep), (3.8)

where F is the dimensionless drag force coefficient of Tenneti, Garg & Subramaniam
(2011), which has a nonlinear dependence on the particle Reynolds number Rep =

ρdpRec‖u− vp‖/µ.
This drag coefficient reduces to the classic Schiller & Naumann (1933) correlation

in the limit of small particle concentration, and reduces to Stokes drag as Rep
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approaches 0. For all simulations presented in this work, the particle Mach number
and Knudsen number were found to be small (i.e. < 0.05 for particle Mach number),
and thus compressibility effects on the drag force (e.g. Clift, Grace & Weber 2005)
can be neglected. Other models for particle motion in compressible, inhomogeneous
flows have been analysed (e.g. Parmar, Haselbacher & Balachandar 2012), which
include important physical mechanisms for which compressible hydrodynamics
couple to particle scales. Based on the current shear layer configuration, the primary
energetic pressure wavelengths, for example, are O(103) greater than the particle
diameter, suggesting a scale separation (see figures 8 and 14). From high-speed shear
layer turbulence, intense sound waves steepen (e.g. Lighthill (1956)) and form weak
shocks that have shorter wavelength. This effect shrinks the scale separation, and the
particle-phase description would need modified. However, in the current simulations,
particles reside in the shear layer turbulence, |y|. 3δm (see figure 9) and such weak
shock wave and particle interactions are absent.

The Basset force and added mass effects are neglected due to the large density
ratios considered, which is appropriate when the particle diameter is significantly
smaller than the acoustic wavelengths (Cleckler, Elghobashi & Liu 2012). It should
also be noted that the current numerical approach precludes exact particle–acoustic
interaction (e.g. acoustic scattering by solid bodies) since boundary conditions
(e.g. no-slip condition) are not applied at the particle surface. Omitting these
mechanisms are not anticipated to have large effect on the current results. Again,
this is supported, to a degree, by the scale separation between particle diameter
and hydrodynamic scales. For heated jets or shear layers, which are not considered
here, other mechanisms like droplet evaporation and heat transfer between phases
may contribute to changes in turbulence and sound radiation. However, the current
configuration considers equal temperature between particles and the ambient gas
phase; thus, these effects are also anticipated to be small and are therefore neglected.

Finally, all the reported results neglect particle collision effects. In the small
volume fraction limit αp � 1, this approximation is reasonable, and it has been
applied in similar shear layer turbulence configurations (Dai et al. 2018). However,
for the largest mass loading considered here, Φm = 10 with Φv =O(10−2), collisions
are abundant. Despite this, numerical tests, including particle collisions, indicate a
negligible statistical effect on the turbulence and near-field pressure radiation for
coefficient of restitution in the range 0.2 6 e 6 0.8; thus, our conclusions appear
insensitive to particle collisions. Different injection scenarios, higher Stokes numbers
or a mixture of these with particle collisions may reveal a sound radiation sensitivity.

3.3. Numerical implementation
Spatial derivatives in equations (2.1)–(2.5) are approximated by high-order finite-
difference operators that satisfy the summation-by-parts (SBP) property (Strand
1994). An explicit, sixth-order, centred finite difference is used in the domain
interior, and third-order, one-sided finite differences are applied at the boundary.
The SBP scheme is combined with the simultaneous-approximation-term (SAT)
approach (Svärd, Carpenter & Nordström 2007; Vishnampet et al. 2015) at the lateral
domain boundaries which provides provable stability. The outflow SAT at ±y= Ly/2
employs a characteristic boundary condition that weakly enforces a stationary target
solution Qtarget(y)=Q(y, t= 0), where Q=[αρ, αρu, αρE]T is the vector of fluid-phase
conserved variables. To assist in the asymptotic convergence of the SAT condition
and further avoid spurious reflections into the domain, an additional sponge zone
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(Freund 1997) of width w = 50δo
m is added to the flow equations (denoted N for

brevity) according to

N (Q)=−σ(y)[Q−Qtarget(y)]. (3.9)

The sponge strength increases quadratically toward the domain extent by

σ(y)=
(
|y| − (Ly/2−w)

w

)2

. (3.10)

Second derivative approximations apply first-order derivative operators consecutively,
which necessitates using artificial dissipation to damp the highest wavenumber
energetics supported by the grid. To this end, high-order accurate SBP dissipation
operators are used to provide artificial dissipation which are based on the third
derivative (Mattsson, Svärd & Nordström 2004; Vishnampet 2015). The fluid and
particle equations, (2.1)–(2.3) and (3.6)–(3.7), are advanced in time with a constant
time step using a standard fourth-order explicit Runge–Kutta scheme. The acoustic
Courant–Friedrichs–Lewy (CFL) number was monitored throughout the simulation
and remained below CFL< 0.5.

Fluid quantities appearing in equation (3.8) are interpolated to the location of
each particle via trilinear interpolation. The interphase exchange terms appearing in
equations (2.1) and (2.3) are computed by projecting the Lagrangian data onto the
computational grid according to

α = 1− αp = 1−
Np∑
i=1

G(|x− x(i)p |)Vp, (3.11)

F=−
Np∑
i=1

G(|x− x(i)p |)f
(i)
drag, (3.12)

and

up ·F=−
Np∑
i=1

G(|x− x(i)p |)v
(i)
p · f

(i)
drag, (3.13)

where G is a filter kernel, Np is the total number of particles and Vp is the particle
volume. In this work, G is taken to be Gaussian with a characteristic size δf = 10dp,
defined as the full width at half the height of the kernel. For computational efficiency,
the filtering procedure is solved in two steps (Capecelatro & Desjardins 2013).
First, the particle data are transferred to the nearest neighbouring cells via trilinear
extrapolation. The data are then diffused such that the final width of the filtering
kernel is independent of the mesh size. To ensure unconditional stability and reduce
computational cost, the diffusion process is solved implicitly during each Runge–Kutta
sub-iteration by utilizing the approximate factorization scheme of Briley & McDonald
(1977). When the particle diameter is sufficiently smaller than the grid spacing
(dp < 1x/10), the diffusion process is not considered and the projection method
reverts to trilinear extrapolation. Details on the interphase exchange process can be
found in (Capecelatro & Desjardins 2013).
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FIGURE 2. (Colour online) Shear layer growth (a) near the particle introduction time and
(b) for the full simulation time. The shaded region in (b) indicates when the statistics are
averaged based on δm. The number of time steps between symbols is approximately 300.

4. Results
Temporally developing shear flows, albeit representing a simpler configuration than

jet turbulence, require some explanation for analysis of their time-dependent statistics.
The averaging of simulation data takes place in two stages. First, discrete time data are
averaged in the statistically homogeneous x- and z-directions either by Favre averaging
(denoted by a tilde) or Reynolds averaging (denoted by an overbar). Symmetry is often
invoked in the averaging above and below the shear layer (see figure 3 as an example).
Second, unless otherwise indicated, the spatially averaged data are then time averaged
in a self-similar coordinate y/δm(t) at discrete time intervals during the shear layer
growth 15 6 δm/δ

o
m 6 30. The conclusions reported in this section are unchanged for

reduced time sampling, supporting a level of statistical convergence.

4.1. Shear layer growth and turbulence
Shear layer growth and dynamics near the particle introduction time are shown in
figure 2. After an initial transient in the range 0 < t1U/δo

m . 1000, the unladen
(Φm= 0) shear layers grow approximately linearly, indicating a level of self-similarity,
and as expected from experiments (Elliott & Samimy 1990; Goebel & Dutton
1991; Debisschop, Chambres & Bonnet 1994) and previous simulations (Pantano
& Sarkar 2002; Kleinman & Freund 2008) the growth decreases with increasing
M. After loading the shear layers when δm/δ

o
m ≈ 10, a short transient persists for

approximately 100δo
m/1U (see figure 2a) before establishing an approximate linear

growth in figure 2(b). We note that the transient associated with seeding particles is
small relative to the full simulation and acoustic propagation. Based on the distance
from the centre of the shear layer (y = 0) to the domain boundary (y = ±200δo

m), it
would take approximately 50δm/c∞ to expel any disturbance by the particles. Tests
have indicated that initial perturbations from the particle seeding transients are over
an order of magnitude smaller than the sound generated from the turbulence and thus
are not expected to impact conclusions.

Particle loading modifies the average growth rate of the shear layers for they
attain δm/δ

o
m earlier in time with steeper slopes (growth rate increases) as shown in

figure 2(b). The effect appears more pronounced for M = 0.9 and 1.5 and Φm = 1
and 10. Analysis by Vreman, Sandham & Luo (1996) for single-phase shear layers
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FIGURE 3. (Colour online) (a) Streamwise and (b) cross-stream average velocity.
Antisymmetry of these profiles about the y = 0 plane has been used for the ensemble
average in the similarity coordinate |y|/δm(t). The legend is the same as figure 2.

indicated that the growth rate is affected by cumulative effects of ũ′′v′′ ∂ ũy across the
shear layer, for sufficiently high Reynolds number, where the double prime denotes
a fluctuation about a Favre-averaged quantity. The mean flow in figure 3 shows
modest changes for Φm . 1. Yet for the largest mass loading, the mean streamwise
velocity has a stronger velocity deficit for |y|/δm . 2. This change in velocity shape
has implications for the stability of the flow since the inflectional instability is
fundamental to its development. However, these changes do not provide evidence for
the increase in growth rates for which turbulence fluctuations are examined next.

Profiles of Reynolds stresses and TKE (figures 4 and 5) reveal that gas-phase
velocity fluctuations are reduced by the addition of particles. The TKE within the
mixing layer (at y = 0) is reduced by 70 %–78 % for M = 0.9 and 1.5 and less so
for M = 2.5. For a fixed number of particles and comparing different Mach number,
it might be anticipated that the particle–turbulence coupling effect at higher-speed
flow might be subdued by its larger momentum. Reduction in the magnitude ũ′′v′′,
which is one mechanism, as previously mentioned, for affecting single-phase shear
layer growth (Vreman et al. 1996), seems to contradict the changes in shear layer
growth observed in figure 2. Thus, other particle–turbulence interactions, absent in
the Vreman et al. (1996) analysis, such as volume displacement, must cause a rise
in the growth rate of δm, especially at Φm = 10, which motivates further analysis for
mechanisms of multiphase compressible shear layer growth rates.

The turbulence for all of the simulations becomes broadband in the streamwise
and spanwise directions as shown in figure 6. For the Mach numbers considered,
particles act to reduce the energy across significant energy-containing length scales.
This is consistent with TKE reduction observed in incompressible shear flow (Battista
et al. 2018). Not unexpectedly, the particle-laden cases add energy into the highest
wavenumbers kδm & 40 which has also been observed in other turbulence simulations
(Gualtieri, Battista & Casciola 2017; Capecelatro et al. 2018).

To motivate further analysis of these interactions, visualizing the flow at the
centreline of the mixing layer (y = 0), figure 7 shows preferential concentration of
particles by the turbulence (i.e. accumulation in regions of low vorticity). Note that
at δm/δ

o
m = 10 the particles were positioned randomly within the shear layer and

have since migrated during the growth of the shear layers. Particle position relative
to local vorticity magnitude and pressure fluctuations reveal a tendency for particles
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FIGURE 4. (Colour online) Reynolds stresses: (a) streamwise, (b) cross-stream (c) and
streamwise normal. The line legend is the same as figure 2.
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FIGURE 5. (Colour online) Mass loading effects on turbulent kinetic energy (relative to
unladen cases) in the shear layers: (a) M = 0.9, (b) M = 1.5 and (c) M = 2.5. Stokes
number effects are also included for M = 1.5 in (b). Arrows indicate increasing mass
loading. All cases are St= 1 unless otherwise indicated.

to accumulate in low vorticity regions (high strain) and appear absent in the high
vorticity, low pressure cores, as shown in figure 7(c). Based on the Stokes numbers
considered here, this tendency is expected. Coupling between particles and pressure is
also observed across similar length scales in figure 8 for 2. kxδm . 20 (0.3. l/δm . 3),
which show a pressure decrease compared to the Φm= 0 case. Corresponding changes
in the near-field sound (above the turbulence) are examined in the following section.

Average particle volume fraction, shown in figure 9, indicates a mass loading
effect on the distribution of particles throughout the shear layer, and it is relatively
insensitive to Mach number 0.9 . M . 2.5. For Φm = 10, there is higher relative
concentration for |y|<δm, while Φm= 1 distributes the particles more evenly between
|y|. 3δm. This mass loading dependence on the concentration distribution may be a
result of changes in the turbulence variation across the shear layer, since there is a
significant decrease in TKE near the centreline in figure 5. Also, vorticity magnitude
fluctuations decreases at y = 0 with increasing Φm for 0.9 6 M 6 2.5 as shown in
figure 10. Between Φm = 0 and 1, the fluctuations decrease from ≈ 0.71U/δm down
to |∇× u|′rms≈ 0.41U/δm, where ‘r.m.s.’ denotes root mean square. The highest mass
loadings show an even larger deficit at y = 0. However, near the edges of the shear
layers (3 < |y|/δm < 5), the vorticity fluctuations follow similar levels of unladen
flows, which might be due, in part, to the majority of particles remaining close to
the centreline (|y|/δm < 2) and less near the edges, as shown in figure 9 for Φm = 10.
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FIGURE 6. (Colour online) (a,c,e) Streamwise and (b,d, f ) spanwise u- and w-velocity
spectra, respectively, at y = 0 when δm/δ

o
m = 20: (a,b) M = 0.9, (c,d) M = 1.5 and

(e, f ) M= 2.5. The dashed line corresponds to a slope of −5/3. All spectral components
are normalized by 1U2δm.

These observations support a turbophoresis effect for which particle concentration
gradients are opposite in sign to turbulence gradients (Reeks 1983), suggesting a
mode for particle migration.

4.2. Local turbulence transport of p′rms

Combined terms of the pressure intensity budget introduced in § 2 are shown in
figure 11. The terms have been grouped into their main physical mechanism for
clarity. As discussed previously, the inviscid hydrodynamic coupling terms correspond
to remaining terms not involved with molecular effects (e.g. momentum transport
through viscosity), volume displacement effects or drag coupling through slip velocity.
The average residual (which is the difference between the left and right sides of
equation (2.10)) indicates the degree to which the intensity transport budget is
accounted for, which is over an order of magnitude less than the largest contributors;
thus its magnitude is immaterial to the conclusions here. Tests have indicated that
these small imbalances are due, in part, to commutation of finite-difference derivatives
and application of the chain rule to quantities that are not discretely transported.
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FIGURE 7. (Colour online) Visualization of the x–z plane for M = 1.5 at y = 0 when
δm/δ

o
m = 20 for Φm = 1: (a) vorticity magnitude coloured by |∇ × u|δo

w/1U < 0.4 and
particle positions are shown in white; (b) pressure fluctuations coloured from −0.03 <
p′/ρ∞1U2< 0.03 with particle position in blue; (c) enlarged regions as indicated in (a,b).

For the flows without particles (Φm= 0), contributions from inviscid hydrodynamics
play the largest role in the transport of pressure intensity, while molecular transport
effects (D) have a smaller effect, acting to reduce local pressure fluctuations. Similarly,
for (M, Φm)= (0.9, 10), changes to (p′p′)t are due to changes in the turbulence (and
its inviscid hydrodynamics) and not from the local sources and sinks that directly
arise from particle coupling (i.e. volume displacement and drag). Drag coupling
produces a large sink that approximately cancels the source by volume displacement
in figure 11(c). For M = 2.5, the volume displacement effect is attenuated. For fixed
number of particles across the M simulations, the time rate of change of volume
fraction does not increase with M. However, the drag coupling in M= 2.5 remains a
large factor due an increase in average slip velocity with larger 1U.

4.3. Near-field pressure fluctuations
Sound fields and turbulence of laden and unladen simulations are shown in figure 12.
As the Mach number increases, the waves above the turbulence (depicted with
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FIGURE 8. (Colour online) (a,c,e) Streamwise and (b,d, f ) spanwise pressure spectra,
respectively, at y= 0 when δm/δ

o
m = 20: (a,b) M = 0.9, (c,d) M = 1.5 and (e, f ) M = 2.5.

The dashed line corresponds to a slope of −7/3. All spectral components are normalized
by 1U4ρ2
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FIGURE 9. (Colour online) Average particle volume fraction through the shear layers for
the intermediate Φm = 1 and largest Φm = 10 mass loadings.

∇ · u) are more intense. For supersonic flows, the waves appear sharper and angled,
consistent with Mach wave radiation (Phillips 1960; Laufer 1961; Ffowcs Williams
& Maidanik 1965). For similar single-phase temporally developing shear layers, wave
angle statistics with M have been quantified elsewhere (Buchta & Freund 2017).
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FIGURE 11. (Colour online) Mechanisms of pressure intensity transport: (a–c) M = 0.9,
(d–f ) M = 1.5 and (g–i) M = 2.5 for (a,d,g) Φm = 0, (b,e,h) Φm = 1 and (c, f,i) Φm = 10.
All components have been scaled by δo

w/(ρ
2
∞
1U5). Note the y-scale changes with respect

to Mach number.

For M & 1.5 and Φm = 1, the waves above the turbulence (y . 10δm) are fewer and
appear smoother than Φm = 0. Changes in the vorticity magnitude are also apparent
and show a decrease with particle loading, which is quantified in figure 10.

Sound field changes are likewise shown by instantaneous, pressure fluctuations in
figure 13. The subsonic case (M, Φm)= (0.9, 10) shows a large increase in amplitude
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FIGURE 12. (Colour online) Dilatation (greys) shown in the range −0.005 < ∇ ·
uδo

w/1U < 0.005 and vorticity magnitude (colour) in the range |∇ × u|δo
w/1U < 0.4 at

z = Lz/2 mid-plane for Φm = 0 (a,c,e) and Φm = 1 (b,d, f ) when δm/δ
o
m = 20. Unladen

(left) and laden (right), with Mach number increasing from top to bottom: (a,b) M= 0.9,
(c,d) M=1.5 and (e, f ) M=2.9. Compressions, ∇ ·u<0, are shown in white. To highlight
turbulence changes between left and right columns, particle positions are omitted in (b,d, f ),
and approximately one third of the full y-domain is shown.
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FIGURE 13. (Colour online) Mass loading effects on pressure variation in x for the
subsonic and supersonic shear layers at (y, z)= (15, 0) δm when (a) δm/δ

o
m= 20 for M= 0.9

and when (b) δm/δ
o
m = 30 for M = 2.5.

and appears at shorter wavelengths. For M = 2.5, the largest pressure peaks near the
shock-like waves appear to decrease. These observations in the pressure trace concur
with spectral changes that will be examined next.

The effect of particle–turbulence interactions on the spectral components of
near-field pressure are shown in figure 14. With increasing Mach number, the
spectrum broadens due to the Mach wave radiation mechanism (Laufer, Schlinker
& Kaplan 1976); Mach-like waves are indeed apparent in visualizations provided in
figure 12(c–f ). The universal decrease observed in the mid-plane pressure spectra
with the addition of particles (see figure 8) does not hold for the pressure outside of
the turbulence, suggesting that a source-to-sound decomposition is not straightforward
for M . 1.5. The subsonic case shows an increase in spectral components and slight
spectral broadening while M = 2.5 shows the opposite effect which has implications
for perceived sound levels. The perceived sound field changes from M = 2.5 might
be significant if the Mach wave radiation is reduced, as evidenced by the reduction
of Ep for wavenumbers 5 . kxδm . 40.

To quantify the changes in sound pressure levels, figure 15(a) shows the decibel
difference, based on average pressure intensity, with respect to the unladen (Φm = 0)
cases as defined by

1SPL(y, t)= 10 log10

(
p′p′(y, t, Φm)

p′p′(y, t, Φm = 0)

)
, (4.1)

taken at y = 20δm. A similar quantity for the degree of sound reduction in jet
turbulence has been used previously (Papamoschou 2000). For (4.1), negative values
of 1SPL indicate sound level reduction relative to the baseline. The sound field
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FIGURE 14. (Colour online) (a,c,e) Streamwise and (b,d, f ) spanwise pressure spectra,
respectively, at y= 20δm when δm/δ

o
m= 20: (a,b) M= 0.9, (c,d) M= 1.5 and (e, f ) M= 2.5.

All spectral components are normalized by 1U4ρ2
∞
δm.

changes in figure 15(a) are observed to have Mach number and mass loading
dependence. For Mach numbers M & 1.5, sound reduction is observed for Φm & 1,
which is consistent with previous experimental observations (Krothapalli et al. 2003;
Greska 2005). Contrasting this, subsonic flows show a sound level increase with mass
loading, by as much as ≈6 dB. These observations occur despite universal decrease
in the mid-plane average turbulent kinetic energy as quantified in figure 15(b). In the
following section, possible mechanisms for the observed sound changes, especially
the sound level increase for M = 0.9, are considered.

4.4. A pithy discussion of 1SPL and low-speed aeroacoustics theory
Crighton & Ffowcs Williams (1969) provided a theoretical prediction for sound
changes in two-phase turbulence using Lighthill’s acoustic analogy framework. Instead
of sound reduction, which was later observed in high-speed jets (Krothapalli et al.
2003), their theory predicted enhancement of sound radiation: up to 70 dB increase
for air bubbles in water and up to 20 dB increase for solid particles in air. Based
on their theory, the largest sound modification was linked to increasing the mixture

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

46
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.467


Sound and turbulence modulation by particles in high-speed shear flows 275

10110010-1 10110010-1

6

4

2

0

-2

1.0

0.8

0.6

0.4

0.2

0

Ïm Ïm

Î
SP

L

(T
K

E/
TK

E o
)1/

2

M = 0.9
M = 1.5
M = 2.5
Reduction

(a) (b)

FIGURE 15. (Colour online) (a) Sound pressure level change at y/δm = 20 and
(b) reduction in turbulence level at y/δm = 0. All data are presented for St= 1.

density by the mass fraction

ρm = ρ(1+Φm), (4.2)

which affects the speed of sound ratio between the disperse-phase–fluid mixture (cm)
and the fluid phase (c∞) (

cm

c∞

)2

=
1

(1+Φm)
. (4.3)

Without presenting the full details of the formulation, which is a consequence of the
governing equations (i.e. mass and momentum conservation), the acoustic efficiency is

η=
I

ρU4L2
∼

1
4π
(TKE1/2M)5

(
c∞
cm

)c (L
lo

)
, (4.4)

with I the acoustic intensity, U = 1U for shear layers, L the large-scale length, lo
the turbulence length scale and the power c of the speed of sound ratio depends
on the mass loading. The efficiency increases from the sound-speed ratio depending
on the mass loading with power c = 6 for Φm > 1 and c = 2 for Φm < 1 (Crighton
& Ffowcs Williams 1969). It also scales with M5, consistent with the expected
behaviour for single-phase flow (Lighthill 1952). For large mass loadings Φm > 1,
the acoustic intensity is I ∝ (c∞/cm)

8 using (4.3), which assumes that the scales of
turbulence (intensity and length) and mean driving velocity (U) are independent of
mass loading. Figure 16 shows that the theory overpredicts 1SPL compared to the
M= 0.9 shear-flow turbulence, which was chosen as a candidate to compare with the
low-speed theory. Although there are relatively modest changes to the mean flow u(y)
and energetic scales (see § 4), the particle-laden flow turbulence intensity decreases
with Φm, shown in figure 15(b), which is one cause for discrepancy with the theory.
Including the relative turbulence intensity effect and using 1SPL in (4.1) yields a
modified estimate

1SPL∼ 10 log10

[
(1+Φm)

a

(
TKE
TKEo

)b/2
]
, (4.5)
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FIGURE 16. (Colour online) Models of low-speed sound modulation compared to the M=
0.9 case: Φm & 1 models in red and Φm . 1 models in blue. Factors a (Φm effect) and b
(TKE effect) apply to equation (4.5): original model neglected TKE modulation (b= 0).

where (a, b) = (4, 5) for Φm > 1 and (a, b) = (2, 5) for Φm < 1, respectively. This
modification trends closer to the M = 0.9 simulation in figure 16. Note that setting
b= 0 in (4.5) yields the original expectation of Crighton & Ffowcs Williams (1969)
for which turbulence intensity is assumed Φm-independent. For Φm < 1, the increase
in sound is much less significant following I ∝ (1+Φm)

2 and the effect of turbulence
modification small since TKE/TKEo ≈ 1 for very small mass loadings (Φm < 0.1),
which is consistent with expectation and simulations for which Φm � 1 has little
effect on the sound. Improvements can still be made since the Crighton & Ffowcs
Williams (1969) theory omits turbulence convection effects and assumes sources
are acoustically compact. Although this is a reasonable approximation for M � 1,
at high-speed, turbulence convection affects acoustic efficiency (Ffowcs Williams
1963). Furthermore, the theory also assumes that the particles exactly follow the flow
(i.e. up = uf ) and that the volume displacement due to particles is small. Based on
the local pressure intensity budget in figure 11(c, f,i), volume displacement effects
and drag coupling due to local slip velocity |up − uf | > 0 are sizable sources and
sinks. Although, their combined causal effect in retarded time on the radiated acoustic
intensity remains to be seen. In the current framework, a flow closer to what Crighton
& Ffowcs Williams (1969) envisioned, for M � 1, could be designed by reducing
the particle diameter so that Φv � 1 and St � 1. However, the computational cost
to maintain 0.1 < Φm < 10, reducing dp, would be significant and outside the scope
of the paper for which finite-sized, inertial particles, based on water droplets, in
high-speed turbulence are of interest. Thus, a direct comparison to the Crighton &
Ffowcs Williams (1969) theory was not made beyond this, nor for situations extending
beyond the low-speed theory. In a M� 1 limit, there are additional important effects
(e.g. non-compactness of acoustic sources).

As discussed, particles in high-speed shear flows can affect the sound radiation
by sound-speed effects (cm due to Φm) and due to turbulence changes. For micro-jet
injection into round jets, data show that the sound-speed effect is weak; that is, sound
radiation for micro-jet gas injection (with gas sound speed approximately equal to the
jet) is similar to that of liquid micro-droplet injection (Greska 2005), which supports a
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primary hydrodynamic effect for sound changes. Likewise, in the current simulations,
which do not account for speed of sound effects, viz., a mixture equation of state in
(4.3), the changes in sound intensity are due to changes in the nature of the turbulence
and to additional sound sources from particle interactions.

For subsonic flows, sound changes can come from subtle modifications to the
turbulence; the time rate of change of the eddies leads to sound radiation (e.g.
Crighton 1975). Thus, the turbulence sources, based on its dilatation and rate of
changes, are shown in figure 17 since they can provide sources of sound (Ribner
1962; Ristorcelli 1997). In the turbulence, the rate of dilatation changes in the M= 0.9
case in figure 17(b) increases, by over an order of magnitude in the domain, due to
the presence of particles, which can provide a source to its increased radiated p′p′
beyond y & 5 δm. For M = 2.5 in figure 17( f ), these rates of change are already
large for Φm = 0 so the effect of particles, beyond that of the baseline turbulence,
is relatively small. The M = 2.5 sound changes can be linked to the domain-wide
decrease in dilatation (and turbulence decrease), shown in figure 17(e), which concurs
with its decrease in sound intensity. Similar observations for dilatation were made
from particle-laden supersonic convecting spatially developing turbulence simulations
for Φm = 0.5 (Dai et al. 2018).

5. Conclusions and discussion
Numerical simulations of particle-laden high-speed planar shear-flow turbulence

are used to examine the particle–turbulence coupling effects on velocity and pressure
fluctuations. Interphase coupling has a broadband effect on the turbulence and pressure
fields – reducing the turbulence by over 70 % for mass loading Φm = 10. Analysis
of pressure intensity transport mechanisms show that changes in the intensity follow
primarily from changes to the turbulence. Local pressure intensity sources and sinks
from volume displacement and drag coupling, respectively, are only substantial
for Φm & 1. For subsonic shear layers (M = 0.9), these two effects approximately
cancel, obfuscating possible mechanisms for their near-field sound changes; however,
significant changes to fluid dilatation rates (with Φm) indicate a potential mechanism
for increasing net sound radiation for Φm & 1. These results motivate alternative
descriptions of sound-reducing mechanisms and source-to-sound decompositions for
guiding design, especially for more complex configurations. For example, simplified
turbulence source descriptions (e.g. wave packets) may facilitate analysis for the
growing–decaying turbulence dynamics which underpin sound radiation in subsonic
single-phase flow (Jordan & Colonius 2013). Contrasting lower-speed particle-laden
flow turbulence simulations, sound radiation decreases with 0.1 . Φm . 10 for
supersonic convection shear layers (M > 1.5) as well as a decrease in turbulence
and dilatation levels. Modest sound reductions, .2 dB for M = 2.5 concur with
observations that sound radiation in supersonic flows is relatively insensitive to
source changes, for example, due to its turbulence structure (Buchta & Freund 2019).
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Appendix A. Volume filtering the compressible flow equations
This section provides the volume-filtered derivation of the viscous compressible

Navier–Stokes equations used in the simulations. Attention is paid to the energy
equation as the majority of work to this date has focused on incompressible flows.
Here we extend the local averaging procedure of Anderson & Jackson (1967) to the
compressible Navier–Stokes equations,

∂ρ∗

∂t
+∇ · (ρ∗u∗)= 0, (A 1)
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∂ρ∗u∗

∂t
+∇ · (ρ∗u∗ ⊗ u∗ + p∗I− τ ∗)= 0, (A 2)

and

∂ρ∗E∗

∂t
+∇ · ({ρ∗E∗ + p∗}u∗ + q∗ − u∗ · τ ∗)= 0, (A 3)

where superscript ∗ indicates a microscale quantity (i.e. a scalar or vector field
resolved at the scale of an individual particle), and I is the identity matrix. The
relation between microscale pressure and total energy is

p∗ = (γ − 1)
(
ρ∗E∗ − 1

2ρ
∗u∗ · u∗

)
. (A 4)

Finally, the ideal gas law (in non-dimensional form) is given by

T∗ =
γ p∗

ρ∗(γ − 1)
. (A 5)

In order to account for the effect of particles without requiring to resolve the
fluid-phase equations on the scale of the particle surface, the Navier–Stokes equations
are split into microscale (particle-scale) processes, and mesoscale processes, i.e.
processes that take place on a scale much larger than the particle diameter. To
facilitate a description of this length-scale separation, a filtering kernel G is used with
a characteristic length δf , such that G(r) > 0 decreases monotonically with increasing
r, and is normalized such that its integral over the entire physical space is unity. The
local voidage at a point x and time t is defined as

α(x, t)=
∫
Vf

G(|x− y|) dy, (A 6)

where Vf indicates that the integral is taken over all points y occupied by the fluid.
Due to contributions at the particle surface, there is no commutation between filtering
and differentiation. Consequently, filtering derivatives of point variables will lead to
additional terms in the form of integrals of the pointwise quantity about the surface
of the particle. Volume filtering the gradient, divergence and time derivative of a point
property of the fluid a∗ are respectively given as∫

Vf

∇a∗(y, t)G(|x− y|) dy=∇(αa(x, t))−
Np∑
i=1

∫
Si

n⊗ a∗(y, t)G(|x− y|) dy, (A 7)

∫
Vf

∇ · a∗(y, t)G(|x− y|) dy=∇ · (αa(x, t))−
Np∑
i=1

∫
Si

n · a∗(y, t)G(|x− y|) dy, (A 8)

and∫
Vf

∂a∗(y, t)
∂t

G(|x− y|) dy=
∂

∂t
(αa(x, t))+

Np∑
i=1

∫
Si

n · v(i)p a∗(y, t)G(|x− y|) dy, (A 9)

where Si represents the surface of particle i, n is the unit normal vector outward from
the surface of the particle and v(i)p is its velocity.
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Applying these definitions to the microscale density equation (A 1) yields

∂αρ

∂t
+∇ · (αρu)= 0. (A 10)

Volume filtering the pressure gradient term in the momentum equation yields

∫
Vf

∇p∗G(|x− y|) dy=∇(αp)−
Np∑
i=1

∫
Si

np∗G(|x− y|) dy, (A 11)

where np∗ represents the interfacial pressure. Decomposing the local pressure p∗ =
p+ p′, the second term on the right-hand side can be expressed as

Np∑
i=1

∫
Si

np∗G(|x− y|) dy=
Np∑
i=1

∫
Si

npG(|x− y|) dy+
Np∑
i=1

∫
Si

np′G(|x− y|) dy, (A 12)

where the last term involving surface contributions of the sub-filtered pressure p′ is
unclosed. Assuming the characteristic size of the filter kernel δf � dp, p varies little
over the surface of the particle and can be taken out of the integral of the first term
on the right-hand side. Applying the divergence theorem, the volume-filtered pressure
gradient can be expressed as

∫
Vf

∇p∗G(|x− y|) dy=∇(αp)− p∇α −
Np∑
i=1

∫
Si

np′G(|x− y|) dy, (A 13)

where the last term on the right-hand side of (A 13) needs to be modelled. Here, p∇α
represents a nozzling term that accelerates the gas due to particles restricting the area
where fluid can flow (Houim & Oran 2016). Applying the same procedure to the
viscous stress tensor, the volume-filtered momentum equation can be expressed as

∂αρu
∂t
+∇ · (α{ρu⊗ u+ pI− τ +R})= (pI− τ ) · ∇α +F, (A 14)

where R is akin to a Reynolds stress in the context of large-eddy simulations
(referred to as the pseudo-turbulent Reynolds stress (Mehrabadi et al. 2015)) and
contains sub-filtered velocity fluctuations due to, for example, wakes past particles;
F represents a sub-filtered momentum exchange term that is typically modelled
using drag correlations based on local Reynolds number, Mach number and volume
fraction (Clift et al. 2005). In low Mach number flows, it is common to simplify the
momentum equation by employing the product rule, i.e. ∇(αp) = p∇α + α∇p, such
that the non-conservative nozzling term (p∇α) cancels with the first term on the
right-hand side of equation (A 14) (Capecelatro & Desjardins 2013). Therefore, under
the assumption of an incompressible disperse phase, and neglecting R as is typically
done in simulations of fluid–particle flows, the momentum equation can be expressed
as

∂αρu
∂t
+∇ · (αρu⊗ u)+ α∇ · (pI− τ )=F. (A 15)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

46
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.467


Sound and turbulence modulation by particles in high-speed shear flows 281

For the gas-phase energy equation (A 3), volume filtering the work done by pressure
yields ∫

Vf

∇ · (p∗u∗)G(|x− y|) dy=∇ · (αpu)−
Np∑
i=1

∫
Si

n · (p∗u∗)G(|x− y|) dy. (A 16)

The fluid-phase velocity at the surface of the particle can be decomposed into u∗|Si =

v(i)p + ṙ(i)p n, where ṙ(i)p is the rate of change of the radius of particle i. Decomposing
the pressure into its filtered and sub-filtered contributions, and assuming rigid particles
(i.e. ṙp = 0), the last term on the right-hand side of (A 16) becomes

Np∑
i=1

∫
Si

n · (p∗u∗)G(|x− y|) dy

= p
Np∑
i=1

∫
Si

n · v(i)p G(|x− y|) dy+
Np∑
i=1

∫
Si

p′n · v(i)p G(|x− y|) dy. (A 17)

Applying (A 9) to the first term on the right-hand side of (A 17) with a∗ = 1 yields∫
Vf

∇ · (p∗u∗)G(|x− y|) dy=∇ · (αpu)+ p
∂α

∂t
−

Np∑
i=1

∫
Si

p′n · v(i)p G(|x− y|) dy, (A 18)

where p∂α/∂t represents a pDV work term due to particles entering and leaving a
control volume (Lhuillier et al. 2010). Because vp is constant over the surface of the
particle, it can be brought outside of the integral in the last term on the right-hand
side of equation (A 18), resulting in

∑Np
i=1 v(i)p ·

∫
Si

p′nG(|x − y|) dy. This sub-filtered
term is now identical to the closure appearing in the momentum equation (A 12) (but
multiplied by the particle velocity). As described by Ling, Balachandar & Parmar
(2016), multiplying F by the particle velocity ensures the microscale kinetic energy is
dissipated and transferred to the internal energy of the fluid. Using a similar procedure
for the viscous stress tensor, the volume-filtered energy equation can be expressed as

∂αρE
∂t
+∇ ·α({ρE+ p}u−u · τ )+α∇ · q=−p

∂α

∂t
+ τ :∇(αpup)+up ·F+Q, (A 19)

where Q is a sub-filtered heat exchange term that can be modelled using Nusselt
number correlations based on local Reynolds number and volume fraction (Gunn 1978;
Tenneti et al. 2013), and up is an Eulerian representation of the particle-phase velocity.
Here we neglect sub-filter terms that involve correlations between particle-scale
velocity, temperature and viscous stresses. The Eulerian particle-phase velocity up can
be obtained via

αpup =

Np∑
i=1

v(i)p G(|x− x(i)p |)Vp, (A 20)

where Vp is the particle volume. Houim & Oran (2016) replaced the pDV work
term by employing the disperse-phase continuity equation assuming constant particle
density, i.e.

p
∂α

∂t
=−p

∂αp

∂t
= p∇ · (αpup). (A 21)
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Expressing this source term in terms of volume fraction gradients as opposed to the
rate of change of volume fraction facilitates its solution.

Filtering the equation of state (A 4) is now considered by applying the following
decomposition to microscale quantities

p+ p′ = (γ − 1){ρE+ ρE′ − 1
2(ρ + ρ

′)(ui + u′′i )(ui + u′′i )}, (A 22)

which also invokes decomposition u∗ = u+ u′′, indicating a density-weighted (Favre)
filter for the velocity components. Volume filtering (A 22) yields

αp = (γ − 1)
{
αρE− α

1
2
ρuiui

−
1
2

∫
Vf

[2ρuiu′′i + 2uiρ
′u′′i + ρ

′uiui + ρu′′i u′′i + ρ
′u′′i u′′i ]G(|x− y|) dy

}
, (A 23)

which simplifies to

p= (γ − 1)(ρE− 1
2ρu · u− 1

2 Rii). (A 24)

Neglecting the sub-filtered mechanisms contained in Rii, as done in (A 15), yields the
volume-filtered equation of state in equation (2.6). Finally, a similar decomposition is
applied to the ideal gas law (A 5),

p+ p′ =
γ − 1
γ

(ρ + ρ ′)(T + T ′′), (A 25)

where Favre decomposition is used for temperature. Volume filtering (A 25) and using
the definition of a Favre filter yields the closed-form gas law (equation (2.7) in § 2)

T =
γ p

ρ(γ − 1)
. (A 26)
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