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For a two-node tandem fluid model with gradual input,we compute the joint steady-
state buffer-content distribution+Our proof exploits martingale methods developed
by Kella and Whitt+ For the case of finite buffers, we use an insightful sample-path
argument to extend an earlier proportionality result of Zwart to the network case+

1. INTRODUCTION

In this article, we study a tandem fluid network which operates in a two-state ran-
dom environment+Depending on the state of the environment, the content in the first
buffer either increases according to some general stochastic process or it decreases
linearly+The output of the first buffer is fed into a second buffer, after which it leaves
the system+ For this model, we compute the Laplace–Stieltjes transform of the joint
steady-state buffer-content distribution+

The model in this article can be put in the context of tandem queues where the
service at the various queues is deterministic, and the probabilistic behavior is only
due to the stochastic arrival process~es!+ These systems may typically be used to
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model a sequence of multiplexers in a communication network or a sequence of
production lines that operate in a deterministic manner+

The first of these systems to be analyzed were classical tandem queues with
deterministic service times; see, for example,Rubin@22# ,Shalmon and Kaplan@24# ,
Boxma and Resing@8# and references therein+ These may be viewed as slotted
~discrete-time! versions of the model considered here+ In the last decade, another
class of models, operating in continuous time, was studied successfully+ Here, net-
works of fluid queues are driven by~instantaneous! Lévy input; see, for example,
Kella and Whitt@18,19# , and Kella@15# +

Several recent articles were concerned with a third class of models, in which
fluid networks are fed bygradual input; this type of model is considered in the
present article+ Kroese and Scheinhardt@20# ~see also Scheinhardt@23# ! analyzed
several systems of fluid queues that are driven by a two-state Markov process+ Their
framework included a two-node tandem system for which the joint stationary dis-
tribution of the buffer contents was found+ The transform version of this result was
generalized to feedforward networks with Markov-modulated input by Kella@16# +A
different extension can be found in Aalto and Scheinhardt@1# , where a multinode
tandem fluid queue fed by homogeneous On–Off sources with general On-time
distribution was analyzed+

The main results in this study are strongly related to those in@16# and@1# ,but there
are some differences+ The main difference with@1# is that we find thejoint Laplace–
Stieltjes transform of the buffer contents,whereas@1# is mainly concerned with mar-
ginal results+ Compared to@16# , we study a simpler network topology+ On the other
hand, our input process is more general than the~Markov-additive! input process of
@16# + In particular, our assumptions allow one to consider non-Markovian input+ For
example, the semi-Markov input process as considered recently by Boxma,Kella,and
Perry@6# falls within the framework considered here;see Section 4+2+Non-Markovian
input processes are currently particularly relevant in communication networks,where
it is now quite common to assume that On-periods of On–Off sources are heavy tailed,
hence not of phase type+We refer to Boxma and Dumas@5# for a survey on fluid queues
with heavy-tailed input characteristics; see also the recent book by Park and Wil-
linger@21# + In addition to its intrinsic interest, the tandem fluid queue considered here
seems to play a key role in more complicated networks of fluid queues; see, for ex-
ample,Van Uitert and Borst@26# ,which is concerned with networks of fluid queues
under the generalized processor-sharing discipline+

The way in which we derive our results is as follows+ First, we show that the
joint steady-state buffer-content distribution satisfies a decomposition property; this
distribution can be written as the sum of two random vectors~see also@6# for a
similar result for the single-buffer case!+ The first term can be viewed as the steady-
state buffer-content distribution of a tandem network with instantaneous Lévy input
at both nodes+The joint buffer-content distribution of this particular tandem network
is obtained by applying the powerful martingale that was introduced by Kella and
Whitt @19# , which is also applied in@15,16# + The second term in the decomposition
is associated with the stationary distribution of a clearing model+
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We also treat the case in which the buffer sizes are finite+ By means of an
insightful sample-path argument, it is shown that the steady-state distributions of the
finite and infinite buffer models are proportional+This extends the approach in Zwart
@27# , where the corresponding result for the single-node case was obtained+ The
intuition behind the proof is reminiscent of many articles dealing with traditional
~i+e+, nonfluid! finite-capacity systems, such as those in Boots and Tijms@3,4# ,Gou-
weleeuw and Tijms@11# , Hooghiemstra@12# , and Keilson and Servi@13,14# + Our
approach can also be applied to the finite-buffer equivalents of the networks con-
sidered in@15,16,18# +

The article is organized as follows+Section 2 provides a detailed model descrip-
tion and states a number of preliminary results+ Our main results are in Section 3,
where we show the decomposition property+ Furthermore, we use this property to
find an expression for the transform of the joint distribution+ In Section 4, we apply
the results of Section 3 to some examples which allow for explicit computations,
namely the two respective cases where the input into the first buffer is regulated by
an On–Off process and by a semi-Markov process+ Section 5 treats the finite buffer
case+

2. MODEL DESCRIPTION AND PRELIMINARIES

We start with a detailed model description+ The content process of the first buffer
falls within the framework of Kella and Whitt@17# , because it operates in a two-state
random environment+ In particular, the first buffer is fed by a general source which
operates in two modes, which we call On and Off, and it has a constant output rate
c1+ During Off periods of the source, which are exponentially distributed with pa-
rameterl, no fluid enters the buffer, so its content decreases linearly with slopec1 as
long as the buffer is not empty+ When the source is On, the buffer content has the
same increments~in distribution! as the generic stochastic processX 5 $X~t !, t $ 0% ,
which has nondecreasing sample paths+Note thatX~t ! is distributed as the rise of the
fluid level in the firstt time units of an On period, so the total amount of fluid that
was added is distributed asX~t ! 1 c1t+ Obviously, during different On periods, the
fluid level behaves according to different realizations ofX, all starting att 5 0+
Furthermore, an On period is terminated after some~generic! time A, which may
depend onX and has finite mean+ For Reu, v$ 0, we define

g~u, v! 5 E$e2uX~A!2vA% (2.1)

as the Laplace–Stieltjes transform~LST! of ~X~A!,A!+ It is easy to see that the
steady-state probability that the source is On, which we denote byp, is given by

p 5
lE$A%

11 lE$A%
+ (2.2)

As long as the first buffer is not empty, the processed fluid is fed into a second buffer
at ratec1+ The second buffer also has a constant output rate, namelyc2, as long as it
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is not empty+To avoid a trivial model,we will assume thatc1 . c2, so that the second
buffer is the bottleneck+

The content of bufferi ~i 5 1,2! at time t is denoted byVi ~t !+ The process of
interest is then given byV 5 $V~t !, t $ 0% , whereV~t ! 5 ~V1~t !,V2~t !!+ A typical
sample path is depicted in the first part of Figure 1+ It is clear that both buffer-content

Figure 1. Construction of the processPV from V+
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processes have negative drift if and only if the expected amount of fluid that flows
into the first buffer per unit of time is less thanc2; that is, iff

r 5 p
E$X~A!% 1 c1E$A%

E$A%
, c2+ (2.3)

This may be rewritten, using~2+2!, as

lE$X~A!% 1 l~c1 2 c2!E$A% , c2, (2.4)

which we assume to hold throughout the remainder of the article+ Clearly, the pro-
cessV is regenerative; as regeneration epochs,we take the instants when the On–Off
source starts an On period in an empty network+Using standard regenerative process
theory~see, e+g+,Asmussen@2# and Cohen@10# ! it now follows thatV~t ! converges
in distribution to a random vectorV 5 ~V1,V2!+ Choosing 0 to be a regeneration
epoch and denoting a~generic! regeneration cycle byC, the distribution ofV can be
written as

P$V1 . x1;V2 . x2% 5
1

E$C%
EHE

0

C

1@V1~t !.x1,V2~t !.x2# dtJ , (2.5)

where 1@S# is the indicator function of the eventS+ For later reference, we find the
probability that the first buffer is empty:

P$V1 5 0% 5 1 2
r

c1

5
c1 2 lE$X~A!%

c1 1 c1lE$A%
; (2.6)

see@17# + Similarly, we find for the second buffer that

P$V2 5 0% 5 1 2
r

c2

5
c2 2 lE$X~A!% 2 l~c1 2 c2!E$A%

c2 1 c2lE$A%
+ (2.7)

Since we assumedc1 . c2, the latter probability is, in fact, equal toP$V150,V250% ,
the probability that the entire system is empty+

We define the joint LST ofV asv~u, v! 5 E$e2uV12vV2 % + As mentioned in Sec-
tion 1, the main goal of this article is to computev~u, v!+ In doing so, we need two
additional random variables that are closely related toA andX~A!+We define them
as follows+ First, A* is distributed as the equilibrium distribution ofA; that is,

P$A* # x% 5
1

E$A%
E

0

x

P$A . y% dy+ (2.8)

We interpretA* as the elapsed time that the source is On, when we observe the
system in steady state at an arbitrary epoch during an On period+ At the same time
epoch, one can also observe the increase of the buffer content since the beginning of
that On period, which we denote byX~A*!+ The distributionX~A*! is also known,
see@17#; however, in the sequel,we will need the joint distribution of~X~A*!,A*! as
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well+ For completeness sake, we give expressions for this distribution and its trans-
form, which we denote byg*~u, v!:

P$X~A* ! . x,A* . y% 5
1

E$A%
EHE

0

A

1@X~t !.x, t.y# dtJ + (2.9)

g *~u, v! 5 E$e2uX~A* !2vA* % 5
1

E$A%
EHE

0

A

e2uX~t !2vt dtJ + (2.10)

In the sequel, we will assume thatg* is known; Section 4 provides explicit expres-
sions forg* in some special cases+As an aside,we note thatX~A*! can be interpreted
as the stationary workload of a~fluid! queue fed byX,where all the work is removed
after a random timeA+ Such a model is called a clearing model; see, for example,
Stidham@25# + The random variableA* can then be interpreted as the time elapsed
since the last clearing+

Finally, we need an expression for the transformp~s! 5 E$e2sP% , where the
random variableP is a generic busy period of the first buffer+ It can be shown as in
@5,7# thatp~s! is the unique solution in the unit circle of the equation

p~s! 5 gS s1 l~12 p~s!!

c1

,sD+ (2.11)

Note that it follows immediately from~2+11! that

E$P% 5
c1E$A% 1 E$X~A!%

c1 2 lE$X~A!%
+ (2.12)

3. THE JOINT STEADY-STATE BUFFER-CONTENT DISTRIBUTION

In this section, we give our main result, which is an explicit expression for the
transformv~u, v! of the steady-state buffer-content distribution+ This expression is
obtained in two steps: First, we give a decomposition property ofV, which reduces
the problem to the computation of the steady-state distribution ofV, giventhat the
source is Off+ In the second step, this problem is solved following the approach in
@15# by applying the martingale that was introduced in@19# +

For the first step, we defineJ~t ! to be a 0–1 variable, which equals 1 if the
source is On at timet ~i+e+, if the content of the first buffer is increasing! and 0
otherwise+ Clearly, in steady state, J~t ! is distributed as a random variableJ, which
is 1 with probabilityp and 0 with probability 12 p, wherep is given in~2+2!+Also,
we introduce the processPV5 $ PV~t !, t $ 0%,with PV~t ! 5 ~ PV1~t !, PV2~t !!, as the process
obtained fromV after deleting the On periods+ As an illustration of this “deleting
procedure,” we refer to Figure 1, rather than giving the precise details+We refer to
@17# or @27# for a detailed description of this procedure in the single-node case+

It can be shown that this processPV also has a steady-state distribution+ Let PV5
~ PV1, PV2! denote a generic random vector with this distribution, and let Tv~u, v! denote
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the corresponding LST+We are now ready to state the decomposition result, where
we will use5

d
to indicate equality in distribution+

Theorem 3.1: The stationary buffer content V can be written as

V 5
d PV 1 J 3 ~X~A* !, ~c1 2 c2!A* !, (3.1)

where PV, J, and~X~A*!, ~c1 2 c2!A*! are independent. In terms of transforms,

v~u, v! 5 Tv~u, v!~12 p 1 pg *~u, ~c1 2 c2!v!!+ (3.2)

Proof: Note thatJ can be identified with the indicator of the event that the input
source is On in steady state+Observe that~V 6J5 0! 5

d PV+ Using PASTA, the steady-
state buffer-content distribution observed at the end of Off periods has the same
distribution as PV+ This implies~using the definitions ofA* andX~A*!! that

~V 6 J 5 1! 5
d PV 1 ~X~A* !, ~c1 2 c2!A* !,

with PV and~X~A*!, ~c1 2 c2!A*! independent+ Combining these results yields~3+1!,
from which~3+2! follows easily+ n

In view of this, it suffices to computeTv~u, v!+ Hence, in the remainder of this
section, we concentrate on the steady-state distribution ofPV+

The crucial observation is thatPV can be identified with the joint buffer-content
process of a tandem network with dependent Lévy input as studied in@15# + In order
to apply the results of@15# , we defineZ1~t ! 5 PV1~t !, Z2~t ! 5 PV1~t ! 1 PV2~t !, and
Z~t ! 5 ~Z1~t !,Z2~t !!+Observe that$Z2~t !% can be identified with the buffer-content
process of anM0G01 queue with Poisson~l! arrivals, generic service timeX~A! 1
~c1 2 c2!A, and service speedc2+

We now find the following useful martingale from the fact that$Z~t !% is a
two-dimensional reflected Lévy process~cf+ Lemma 2+1 of @15# !+

Lemma 3.1: The processM 5 $M~t !% , given by

M~t ! 5 f~u, v!E
0

t

e2uZ1~s!2vZ2~s!ds1 1 2 e2uZ1~t !2vZ2~t !

2 uc1E
0

t

e2vZ2~s!1@Z1~s!50# ds2 vc2E
0

t

1@Z2~s!50# ds, (3.3)

with

f~u, v! 5 uc1 1 vc2 2 l~12 g~u 1 v, ~c1 2 c2!v!!,

is a martingale.
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Proof: Let Y~t ! 5 ~Y1~t !,Y2~t !! be a two-dimensional Lévy process with exponent
f~u, v!; that is,

E$e2uY1~t !2vY2~t ! % 5 ef~u, v!t+

Furthermore, we define

Ii ~t ! 5 max
0#s#t

~2Yi ~s!!, i 5 1,2+

Then, Z~t ! may be represented as follows~note thatZ~0! [ 0!:

Zi ~t ! 5 Yi ~t ! 1 Ii ~t !, i 5 1,2+

Noting thatdIi ~t ! 5 ci 1@Zi ~t !50# dt for i 5 1,2, the lemma follows from@19# + n

Using this martingale, it is possible to obtain an expression for the LST of the sta-
tionary distribution of$Z~t !% , which is given in the following theorem+

Theorem 3.2: The joint LST of Z is given by

E$e2uZ12vZ2 %

5
u~lE$X~A!% 2 c1!E$e2vZ2 6Z1 5 0% 1 v~lE$X~A!% 1 l~c1 2 c2!E$A% 2 c2!

uc1 1 vc2 2 l~12 g~u 1 v, ~c1 2 c2!v!!
+

Proof: We mimic the proof of Corollary 2+3 in @15# + As a stopping time we take
some epochT with Z1~T ! 5 Z2~T ! 5 0+Applying Doob’s optional stopping theorem
as in@15# and using regenerative process theory as in~2+5!, one gets for Reu, v$ 0,

f~u, v!E$e2uZ12vZ2 % 5 uP$Z1 5 0% E$e2vZ2 6Z1 5 0%

1 v P$Z2 5 0% E$e2uZ1 6Z2 5 0%+ (3.4)

Keeping the definitions ofZ1 andZ2 in mind, the two respective probabilities in~3+4!
can be found by dividing the right-hand sides of~2+6! and~2+7! by 12 p+ The result
now follows after noting thatE$e2uZ1 6Z2 5 0% 5 1+ n

The translation of Theorem 3+2 to the transform of~ PV1, PV2! is done by noting
that E$e2uZ12vZ2 % 5 Tv~u 1 v,v! and E$e2vZ2 6Z1 5 0% 5 E$e2v PV2 6 PV1 5 0% +
Hence, the only unknown we have to find isE$e2v PV2 6 PV1 5 0% + By Theorem 3+1,
~ PV1, PV2! 5

d
~~V1,V2!6J 5 0!+ Hence~noting thatV1 5 0 impliesJ 5 0!,

E$e2v PV2 6 PV1 5 0% 5 E$e2vV2 6V1 5 0%+

Note that the second buffer can be identified with a fluid queue fed by a single
On–Off source having constant input ratec1 during On periods+ These On periods
are busy periods of the first buffer+Appropriately scaling time, such that the output
rate becomes 1, this means that the distribution of~V26V15 0! can be identified with
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the steady-state workload distribution of anM0G01 queue with arrival ratel0c2 and
service times~c1 2 c2!P ~see also@1,18# !+ Hence, we have

E$e2vV2 6 V1 5 0% 5
~c2 2 l~c1 2 c2!E$P%!v

c2v2 l~12 p~~c1 2 c2!v!!
+ (3.5)

If we combine our findings, we arrive at the main conclusion of this section:

Theorem 3.3: The LST of~V1,V2! is given by

v~u, v! 5 Tv~u, v!~12 p 1 pg*~u, ~c1 2 c2!v!!,

with

Tv~u, v! 5
~u 2 v!~lE$X~A!% 2 c1!E$e2vV2 6V1 5 0% 1 v~lE$X~A!% 1 l~c1 2 c2!E$A% 2 c2!

~u 2 v!c1 1 vc2 2 l~12 g~u, ~c1 2 c2!v!!
,

andE$e2vV2 6V1 5 0% given in (3.5).

From Theorem 3+3, it is straightforward to derive expressions for the moments,
marginal distributions, and correlations+ To compute the original steady-state prob-
abilities from Theorem 3+3, one may use the multidimensional transform-inversion
technique described in Choudhury, Lucantoni, and Whitt@9# +

We end this section with a brief outline of how to extend Theorem 3+3 to the
multinode tandem case+ Considern nodes with capacitiesc1 . c2 . {{{ . cn and
assume that the stability condition~2+4! holds withc2 replaced bycn+ If we let Vi

denote the steady-state buffer content of bufferi, i 51, + + + , n, we find a decomposi-
tion result as in Theorem 3+1, which leads to

v~u1, + + + ,un! [ E$e2u1V12{{{2unVn %

5 Tv~u1, + + + ,un!~12 p 1 pg *~u1, ~c1 2 c2!u2 1 {{{ 1 ~cn21 2 cn!un!!,

where Tv is defined in the obvious way+ To find Tv, one can study the multidimen-
sional martingaleM 5 $M~t !% , given by

M~t ! 5 f~u1, + + + ,un!E
0

t

e2u1 Z1~s!2{{{2un Zn~s! ds1 1 2 e2u1 Z1~t !2{{{2un Zn~t !

2 u1c1E
0

t

e2u2 Z2~s!2{{{2un Zn~s!1@Z1~s!50# ds

2 u2c2E
0

t

e2u3 Z3~s!2{{{2un Zn~s!1@Z2~s!50# ds2{{{2 uncnE
0

t

1@Zn~s!50# ds,

(3.6)
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where theZi ~t !, i 5 1, + + + , n, are defined similarly as earlier andf is given by

f~u1, + + + ,un! 5 u1c1 1 {{{ 1 uncn

2 l~12 g~u1 1 {{{ 1 un, ~c1 2 c2!u2 1 {{{ 1 ~cn21 2 cn!un!!+

This martingale leads to a generalized version of~3+4! ~one can also directly apply
Corollary 2+3 of @15# !+ This equation can be solved in a similar way as in the proof
of Theorem 3+2+

4. EXAMPLES

In the previous section, we derived an expression forv~u, v! in terms ofg~{,{!,
g*~{,{!, andp~{!+The main goal of this section is to give some examples of the input
processX for which it is possible to get tractable expressions for these transforms+
Together with Theorem 3+3, this provides an explicit expression forv~u, v! in these
cases+ In the next two subsections, we treat~i! input from an On–Off source and
~ii ! semi-Markov input+

4.1. Input from a Simple On–Off Source

Our first example,which was the original motivation for this work, is the case where
the first buffer is fed by a single On–Off source+ If this source is On, it feeds fluid
into the first buffer with constant rater . c1+ For this special case, we takeX~t ! 5
~r 2 c1!t, t $ 0+ If we denote the LST ofA by a~s! 5 E$e2sA% , we get

E$X~A!% 5 ~r 2 c1!E$A%, (4.1)

g~u, ~c1 2 c2!v! 5 a~~r 2 c1!u 1 ~c1 2 c2!v!, (4.2)

g *~u, ~c1 2 c2!v! 5
12 a~~r 2 c1!u 1 ~c1 2 c2!v!

E$A%~~r 2 c1!u 1 ~c1 2 c2!v!
+ (4.3)

The latter equation follows immediately from the obvious identity~X~A*!,A*! [
~~r 2 c1!A*,A*!+ An explicit expression for the LST ofV1 andV2 follows by com-
bining ~4+2! and~4+3! with Theorem 3+3+ Finally, p~{! follows from

p~s! 5 a~~r 2 c1!~s1 l~12 p~s!!! 1 s!+

Several other studies contain results for this canocical model which are strongly
related to the problem addressed here: The marginal distributions ofV1 andV2 and
the correlation betweenV1 andV2 have been computed in@1# + The joint distribution
of ~V1,V2! in caseA has a phase-type distribution has been found in@16# +WhenA is
exponentially distributed, it is possible to invertv to find an expression for the
distribution ofV, see@20,23# +

38 W. R. W. Scheinhardt and B. Zwart

https://doi.org/10.1017/S0269964802161031 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964802161031


4.2. Semi-Markov Input

In this subsection, we assume that the content of the first buffer is regulated by a
semi-Markov process+This is motivated by a recent study@6# , in which a single fluid
buffer is analyzed that is fed by the same type of input+Hence,we will follow @6# and
consider the Markov renewal process$~Yn,tn11! 6 n$ 0% with state space$0, + + + ,K %3
@0,`!+ We let T0 5 0 andTn 5 (k51

n tk, n $ 1, and introduce the corresponding
counting process byN~t ! 5 sup$n : Tn # t % + Then the semi-Markov process~SMP!
$Y~t !, t $ 0% is defined byY~t ! 5 YN~t !+ The behavior of this process is given by the
stochastic matrixP consisting of the transition probabilitiespij 5 P$Y1 5 j 6 Y0 5 i %,
0 # i, j # K ~we assume thatpii 5 0!, and the functionsFij ~t !, defined by

Fij ~t ! 5 P$t1 # t 6 Y0 5 i,Y1 5 j %+ (4.4)

It is convenient to also define

Fi ~t ! 5 P$t1 # t 6 Y0 5 i % 5 (
j50

K

pij Fij ~t !,

Eij ${% 5 E${6Y0 5 i,Y1 5 j %,

Ei ${% 5 E${6Y0 5 i %,

tij ~u! 5 Eij $e
2ut1 %,

ti ~u! 5 Ei $e
2ut1 %,

ti
e~u! 5

12 ti ~u!

uEi $t1%
,

mij 5 Eij $t1%,

mi 5 Ei $t1%+

An important assumption is that the sojourn time in state 0~say! is exponentially
distributed and independent of the next jump@i+e+, F0j ~t ! 5 F0~t ! 5 1 2 e2lt# +

The SMP regulates the content of the first buffer in our tandem queue in the
following way+ If Y~t ! 5 i, i $1, then the buffer content increases at rateqi 5 ri 2 c1,
whereri $ c1+When the SMP is in the special state 0, the buffer content decreases at
ratec1+ Hence, we can construct our processX as follows+ Suppose that the SMP
jumps from state 0 at time 0+ Then,

X~t ! 5E
0

t

qY~u! du, t $ 0,

A 5 inf $t . 0 :Y~t ! 5 0%+
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We now compute the LSTs of~X~A!,A! and~X~A*!,A*!, extending the approach of
@6# by which the marginal LSTs ofX~A! andX~A*! were found+ Keeping~2+10! in
mind, we define for 1# i # K,

bi
*~u, v! 5 Ei HE

0

A

e2uE
0

t

qY~s! ds2vt dtJ + (4.5)

By conditioning uponY1 andt1, we obtain

bi
*~u, v! 5 mi ti

e~qi u 1 v! 1 (
j51

K

pij tij ~qi u 1 v!bj
*~u, v!, 1 # i # K+ (4.6)

This system of equations has a unique solution+ To obtain an expression forg*~u, v!,
note thatE$A% can be computed as

E$A% 5 (
i51

K

p0i ai , (4.7)

where theai 5 Ei $A%, i 5 1, + + + ,K, form the unique solution of

ai 5 mi 1 (
j51

K

pij aj + (4.8)

Combining~2+10!, ~4+6!, and~4+7!, we obtain

g*~u, v! 5

(
j51

K

p0j bj
*~u, v!

(
j51

K

p0j aj

+ (4.9)

The computation ofg is similar but easier~see also@6# ! so we only state the final
result: g can be written as

g~u, v! 5 (
j51

K

p0j bj ~u, v!, (4.10)

with bj ~u, v!, j 5 1, + + + ,K, the unique solution of

bi ~u, v! 5 pi 0ti 0~qi u 1 v! 1 (
j51

K

pij tij ~qi u 1 v!bj ~u, v!, 1 # i # K+ (4.11)

Recursive expressions for the moments ofA, X~A!, andX~A*! can be found in@6# +

5. FINITE BUFFERS

In this section, we look at the case in which the buffers have respective sizesK1 and
K2+ Using obvious notation, we will denote the transient process that describes both
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buffer contents byVK1,K2+ It can be shown that this process has a stationary distri-
bution and we letV K1,K2 5 ~V1

K1,K2,V2
K1,K2! be distributed accordingly+

The main result of this section is Theorem 5+1+ In this theorem, we relate the
steady-state distribution ofVK1,K2 to that ofV+ Hence, it is still assumed that~2+4!
holds, even though this is no longer required for stability+ Furthermore, we need to
make the following additional assumption+

Assumption 5.1: K1, K2, andX are such that the second buffer fills before the first
one does; that is, for all t,

P$V2
K1,K2~t ! 5 K2 6 V1

K1,K2~t ! 5 K1% 5 1+

If X~t ! [ ~r 2 c1!t ~the scenario considered in Section 4+1!, and if the system is
empty at timet 5 0, this assumption is satisfied iff

K1

r 2 c1

$
K2

c1 2 c2

+ (5.1)

A similar characterization holds for the model considered in Section 4+2+
The main result of this section now states that the distributions ofV andV K1,K2

areproportional:

Theorem 5.1: If Assumption 5.1 holds, then for0 # x , K1, 0 # y , K2,

P$V1
K1,K2 # x;V2

K1,K2 # y% 5
P$V1 # x;V2 # y%

P$W1 # K1%P$W2 # K2%
, (5.2)

with W1 5
d

~V1 6 J 5 0! and W2 5
d

~V2 6 V1 5 0! .

Both this theorem and its proof below are an extension of the single node case
which is treated in@27# +

Proof: The proof consists of two steps:

1+ First, we consider the fluid tandem queue with buffer sizesK1 5 ` and
K2 , `+ Denote this process byV`,K2 and letV`,K2 5 ~V1

`,K2,V2
`,K2! be

distributed according to its stationary distribution+We show that, for y , K2,

P$V1
`,K2 # x;V2

`,K2 # y% 5
P$V1 # x;V2 # y%

P$W2 # K2%
+ (5.3)

2+ In our second step, we show that if Assumption 5+1 holds, for x , K1 and
y , K2,

P$V1
K1,K2 # x;V2

K1,K2 # y% 5
P$V1

`,K2 # x;V2
`,K2 # y%

P$W1 # K1%
+ (5.4)

The proof is then completed by combining~5+3! and~5+4!+
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Step 1.From each sample path ofV, we construct a sample path ofV`,K2+ This
construction is done as follows~see also Fig+ 2!:Given a sample path ofV, consider
the excursions of$V2~t !% above levelK2+ These excursions consist of two parts~a!
and~b!, corresponding to~a! and~b! in Figure 2:

Figure 2. Construction of the processV`,K2 from V+
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~a! is the time it takes until the first buffer becomes empty~i+e+, the remaining
busy period of the first buffer!

~b! is the remaining part of the excursion+

Now, construct a sample path of a processZV from a sample path ofV as follows:

• Time epochs whereV2~t ! # K2 remain unchanged+
• Part~a! of the excursions as described earlier is modified as follows: ZV2~t ! 5

K2 and ZV1~t ! 5 V1~t !;
• Delete the remaining parts of the excursions ofV2~t !+

The constructed processZV has the same law asV`,K2 : Every time ZV2~t ! leaves state
K2, the environment process is Off~in fact, the first buffer is empty!, and the re-
maining Off time is exponentially distributed with ratel—as it should be+ Hence-
forth, takeVK1,K2 [ ZV+ Denote a regeneration cycle of this process byC`,K2+ An
immediate consequence of the construction ofVK1,K2 is that, sample-path-wise, for
y , K2,

E
0

C`,K2

1@V1
`,K2~t !#x,V2

`,K2~t !#y# dt 5E
0

C

1@V1~t !#x,V2~t !#y# dt+ (5.5)

Combining this with regenerative process theory~as in~2+5!!, we get, for all x and
y , K2,

P$V1
`,K2 # x;V2

`,K2 # y% 5
E$C%

E$C`,K2 %
P$V1 # x;V2 # y%+ (5.6)

In particular, for x r `, we get

P$V2
`,K2 # y% 5

E$C%

E$C`,K2 %
P$V2 # y%+ (5.7)

From Theorem 5+2 of @27# , we obtain

E$C%

E$C`,K2 %
5

1

P$W2 # K2%
,

which proves~5+3!+
Step 2+This step is similar to Step 1 and gives a sample-path construction of the

processVK1,K2 from V`,K2+ For each sample path of the latter process, consider the
excursions of$V1

`,K2~t !% above levelK1+ Note that Assumption 5+1 ensures that
the second buffer is full during these excursions~our method would break down if
this would not be the case!+As earlier, divide the excursions into two parts; the first
part ends when an Off period is finished+ Truncate the first part of the excursion of
V1
`,K2~t ! to K1 ~while V2

`,K2~t ! remains unchanged! and delete the second part of
the excursion+
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Due to exactly the same argument as in Step 1, the constructed process can be
identified withVK1,K2+ This construction ofVK1,K2 implies that, sample-path-wise,

E
0

CK1,K2

1@V1
K1,K2~t !#x,V2

K1,K2~t !#y# dt 5E
0

C`,K2

1@V1
`,K2~t !#x,V2

`,K2~t !#y# dt+ (5.8)

Using regenerative process theory, this implies

P$V1
K1,K2 # x;V2

K1,K2 # y% 5
E$C`,K2 %

E$CK1,K2 %
P$V1

`,K2 # x;V2
`,K2 # y%+ (5.9)

What remains is to identify the prefactor on the right-hand side of~5+9!+ From Theo-
rem 5+2 of @27# , it follows that forx , K2,

P$V1
K1,K2 # x% 5

P$V1 # x%

P$W1 # K1%
5

P$V1
`,K2 # x%

P$W1 # K1%
+ (5.10)

Also, note that

P$V1
K1,K2 5 0,V2

K1,K2 5 K2% 5 P$V1
`,K2 5 0,V2

`,K2 5 K2% 5 0+ (5.11)

Combining~5+10! and~5+11!, we obtain

P$V1
K1,K2 5 0;V2

K1,K2 , K2% 5 P$V1
K1,K2 5 0%

5
P$V1

`,K2 5 0%

P$W1 # K1%

5
P$V1

`,K2 5 0;V2
`,K2 , K2%

P$W1 # K1%
+

Invoking~5+9! for x5 0 andy5 K2 yields that the unknown prefactor in~5+9! equals
P$W1 # K1%21+ This completes Step 2 and the proof of the theorem+ n

It can be shown that analogs of Theorem 5+1 also hold for the networks consid-
ered in@15,16,18# , after obvious modifications of Assumption 5+1+ These results
may be derived in a similar way as Theorem 5+1+
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