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For atwo-node tandem fluid model with gradual inpué compute the joint steady-
state buffer-content distributio®@ur proof exploits martingale methods developed
by Kella and Whitt For the case of finite buffeysve use an insightful sample-path
argument to extend an earlier proportionality result of Zwart to the network case

1. INTRODUCTION

In this article we study a tandem fluid network which operates in a two-state ran-
dom environmentDepending on the state of the environmeiné content in the first
buffer either increases according to some general stochastic process or it decreases
linearly. The output of the first buffer is fed into a second buftdter which it leaves
the systemFor this modelwe compute the Laplace—Stieltjes transform of the joint
steady-state buffer-content distribution

The model in this article can be put in the context of tandem queues where the
service at the various queues is determinjstia the probabilistic behavior is only
due to the stochastic arrival procéss. These systems may typically be used to
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model a sequence of multiplexers in a communication network or a sequence of
production lines that operate in a deterministic manner

The first of these systems to be analyzed were classical tandem queues with
deterministic service timeseg for example Rubin[22], Shalmon and Kaplai24],
Boxma and Resing8] and references thereifhese may be viewed as slotted
(discrete-time versions of the model considered helme the last decadeanother
class of modelsoperating in continuous timevas studied successfullfere net-
works of fluid queues are driven Kynstantaneoys.évy input see for example
Kella and Whitt[18,19], and Kella[15].

Several recent articles were concerned with a third class of mddeiich
fluid networks are fed byradual input; this type of model is considered in the
present articleKroese and Scheinharf20] (see also Scheinharf23]) analyzed
several systems of fluid queues that are driven by a two-state Markov probess
framework included a two-node tandem system for which the joint stationary dis-
tribution of the buffer contents was founthe transform version of this result was
generalized to feedforward networks with Markov-modulated input by K&Ba A
different extension can be found in Aalto and Scheinhftiltwhere a multinode
tandem fluid queue fed by homogeneous On-Off sources with general On-time
distribution was analyzed

The mainresults in this study are strongly related to thogEdhand[ 1], but there
are some difference¥he main difference withl] is that we find thgoint Laplace—
Stieltjes transform of the buffer contemigherea$1]is mainly concerned with mar-
ginal resultsCompared t¢16], we study a simpler network topolog®n the other
hand our input process is more general than tharkov-additivg input process of
[16]. In particulay our assumptions allow one to consider non-Markovian infpoit
examplethe semi-Markov input process as considered recently by Boxelka, and
Perry{ 6] falls within the framework considered hesee Section.2. Non-Markovian
input processes are currently particularly relevantin communication netwdrkse
itis now quite commonto assume that On-periods of On—Off sources are heavy tailed
hence not of phase typé/e refer to Boxma and Dum§s] for a survey on fluid queues
with heavy-tailed input characteristicsee also the recent book by Park and Wil-
linger[21]. Inaddition toits intrinsic interesthe tandem fluid queue considered here
seems to play a key role in more complicated networks of fluid quesaesfor ex-
ample Van Uitert and Borsf26], which is concerned with networks of fluid queues
under the generalized processor-sharing discipline

The way in which we derive our results is as followisrst, we show that the
joint steady-state buffer-content distribution satisfies a decomposition progasty
distribution can be written as the sum of two random vecteee alsd6] for a
similar result for the single-buffer casd he first term can be viewed as the steady-
state buffer-content distribution of a tandem network with instantaneous Lévy input
at both nodesThe joint buffer-content distribution of this particular tandem network
is obtained by applying the powerful martingale that was introduced by Kella and
Whitt [19], which is also applied if15,16]. The second term in the decomposition
is associated with the stationary distribution of a clearing model
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We also treat the case in which the buffer sizes are fifBe means of an
insightful sample-path argumeittis shown that the steady-state distributions of the
finite and infinite buffer models are proportion@his extends the approach in Zwart
[27], where the corresponding result for the single-node case was ohtdined
intuition behind the proof is reminiscent of many articles dealing with traditional
(i.e., nonfluid) finite-capacity systemsuch as those in Boots and Tijir&4], Gou-
weleeuw and Tijm$11], Hooghiemstrd12], and Keilson and Seryil3,14]. Our
approach can also be applied to the finite-buffer equivalents of the networks con-
sidered in15,16,18].

The article is organized as followSection 2 provides a detailed model descrip-
tion and states a number of preliminary resu@sir main results are in Section 3
where we show the decomposition propeRyrthermorewe use this property to
find an expression for the transform of the joint distributibonSection 4we apply
the results of Section 3 to some examples which allow for explicit computations
namely the two respective cases where the input into the first buffer is regulated by
an On—Off process and by a semi-Markov proc&esction 5 treats the finite buffer
case

2. MODEL DESCRIPTION AND PRELIMINARIES

We start with a detailed model descriptiorhe content process of the first buffer
falls within the framework of Kella and WhiffL 7], because it operates in a two-state
random environmentn particular the first buffer is fed by a general source which
operates in two modewhich we call On and Offand it has a constant output rate
c;. During Off periods of the sourcevhich are exponentially distributed with pa-
rameten, no fluid enters the buffeso its content decreases linearly with slapas
long as the buffer is not emptWhen the source is Quhe buffer content has the
same increment$n distribution as the generic stochastic procéss {X(t), t= 0},
which has nondecreasing sample palhate thatX(t) is distributed as the rise of the
fluid level in the firstt time units of an On periqdo the total amount of fluid that
was added is distributed &Kt) + c;t. Obviously during different On periodshe
fluid level behaves according to different realizationsgfall starting att = 0.
Furthermorean On period is terminated after sorfgenerig time A, which may
depend ont and has finite mearfor Reu,»v = 0, we define

v(u,v) = E{e WA —vAL (2.1)

as the Laplace-Stieltjes transfor(hST) of (X(A),A). It is easy to see that the
steady-state probability that the source is @hich we denote by, is given by

AE{A}

P T AR(AY (2.2)

As long as the first buffer is not empte processed fluid is fed into a second buffer
at ratec,. The second buffer also has a constant output retmelyc,, as long as it
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is not emptyTo avoid a trivial modelwe will assume that; > ¢,, so that the second
buffer is the bottleneck

The content of buffer (i = 1,2) at timet is denoted by, (t). The process of
interest is then given by = {V(1),t = 0}, whereV(t) = (Vi(t),V,(t)). A typical
sample path is depicted in the first part of Figuré is clear that both buffer-content

Vi(?)

o

Va(t)

o~

Va(t)

FiGURE 1. Construction of the procegsfrom V.
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processes have negative drift if and only if the expected amount of fluid that flows
into the first buffer per unit of time is less thap; that is iff

E{X(A)} + ¢, E{A}

E(A < C,. (2.3)
This may be rewritteyusing(2.2), as

which we assume to hold throughout the remainder of the artiitarly the pro-
cessVis regenerativgas regeneration epochge take the instants when the On—Off
source starts an On period in an empty netwbidking standard regenerative process
theory(seg e.g., Asmusser2] and Coher10]) it now follows thatV(t) converges

in distribution to a random vectd¥ = (V,V,). Choosing 0 to be a regeneration
epoch and denoting(@enerig regeneration cycle bg, the distribution oV can be
written as

C

1
]P{Vl > Xl;VZ > X2} = m E{fo 1[V1(l)>X1,V2(t)>X2] dt}, (25)

where lg; is the indicator function of the eve® For later referenceve find the
probability that the first buffer is empty

o, — AE{X(A)}

p
P{V,=0}=1-—=—"—"—"—""— 2.6
=0} C, C +CAE{A}’ (2.6)
seg[17]. Similarly, we find for the second buffer that
C, — AE{X(A)} — A(c; — ) E{A
oy, = Op 1 P T B - Al - ) E(AY 27

C, C, + G, AE{A}

Since we assumeg > c,, the latter probability isin fact, equal taP{V, = 0,V, = 0},
the probability that the entire system is empty

We define the joint LST oV asw (u,v) = E{e""1"*V2} , As mentioned in Sec-
tion 1, the main goal of this article is to compuigu,v). In doing sQ we need two
additional random variables that are closely related samdX(A). We define them
as follows First, A* is distributed as the equilibrium distribution Af that is

1 X
P{A* = x} = @fo P{A>y}dy. (2.8)

We interpretA* as the elapsed time that the source is @hen we observe the
system in steady state at an arbitrary epoch during an On péidde same time
epochone can also observe the increase of the buffer content since the beginning of
that On periodwhich we denote by (A*). The distributionX(A*) is also known

sed 17]; howeverin the sequelve will need the joint distribution afX(A*), A*) as
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well. For completeness sak&e give expressions for this distribution and its trans-
form, which we denote by *(u,v):

1 A
P{X(A*) > X, A > y} = _]E{A} ]E{J; 1[X(t)>x,t>y] dt}. (29)
. 1 A
y*(u,v) — E{e—ux(A*)—uA*} — m ]E{JO e—ux(t)—vl dt} (2_10)

In the sequelwe will assume thay* is known Section 4 provides explicit expres-
sions fory™ in some special casess an asidewe note thaX (A*) can be interpreted
as the stationary workload of fluid ) queue fed byx, where all the work is removed
after a random timé\. Such a model is called a clearing modete for example
Stidham[25]. The random variabl&* can then be interpreted as the time elapsed
since the last clearing

Finally, we need an expression for the transfom(s) = E{e S"}, where the
random variablé is a generic busy period of the first buffércan be shown as in
[5,7] that# (s) is the unique solution in the unit circle of the equation

s+ A(1—m(9) )
—,s].

1

m(s) = 7( (2.11)

Note that it follows immediately froni2.11) that

 GE{A} + E{X(A)
E{P} = BT (2.12)

3. THE JOINT STEADY-STATE BUFFER-CONTENT DISTRIBUTION

In this sectionwe give our main resultwhich is an explicit expression for the
transforme (u,v) of the steady-state buffer-content distributi@iis expression is
obtained in two stepd$-irst, we give a decomposition property @f which reduces
the problem to the computation of the steady-state distribution gfventhat the
source is Off In the second stepthis problem is solved following the approach in
[15] by applying the martingale that was introduced19].

For the first stepwe defineJ(t) to be a 0—1 variablewvhich equals 1 if the
source is On at time (i.e., if the content of the first buffer is increasipgnd 0
otherwise Clearly, in steady statel (t) is distributed as a random variahlewhich
is 1 with probabilityp and 0 with probability - p, wherep is given in(2.2). Also,
we introduce the proceds= {V(t), t = 0}, with V(t) = (Vy(t), Vi(t)), as the process
obtained fromy after deleting the On periodAs an illustration of this “deleting
procedur¢ we refer to Figure 1rather than giving the precise detaW§e refer to
[17] or[27] for a detailed description of this procedure in the single-node.case

It can be shown that this proceBsalso has a steady-state distributibet V =
(V1,V,) denote a generic random vector with this distribugiamd leta (u,v) denote
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the correspgnding LSTWe are now ready to state the decomposition resuiere
we will use = to indicate equality in distributian

THEOREM 3.1: The stationary buffer content V can be written as

V2V 4+ IX (X(A"),(Cy — Co)AY), (3.1)
whereV, J, and(X(A*),(c; — ¢c,) A*) are independent. In terms of transforms,

w(Uv) = &(U,0)(1—p+py*(u(c, — c)v)). (3.2)

Proor: Note that]J can be identified with the indicator of the event that the input
source is On in steady statebserve thatV|J = 0) 4v. Using PASTA the steady-

state buffer-content distribution observed at the end of Off periods has the same
distribution asV. This implies(using the definitions oA* andX(A*)) that

(V[I=1) 2 V+ (X(A"),(c; — C) A"),

with Vand(X(A*), (c; — c;) A*) independentCombining these results yield3.1),
from which(3.2) follows easily u

In view of this it suffices to comput& (u,v). Hence in the remainder of this
section we concentrate on the steady-state distributiol.of

The crucial observation is thatcan be identified with the joint buffer-content
process of a tandem network with dependent Lévy input as stud[d&jnin order
to apply the results of15], we defineZ,(t) = Vi(t), Z,(t) = Vi(t) + Vi(t), and
Z(t) = (Z4(1), Z,(t)). Observe thatZ,(t)} can be identified with the buffer-content
process of atM/G/1 queue with Poissdi) arrivals generic service tim&(A) +
(c1 — ¢»)A, and service speet).

We now find the following useful martingale from the fact tHai(t)} is a
two-dimensional reflected Lévy procead. Lemma 21 of [15]).

LEmMA 3.1: The processM = {M(t)}, given by

t
M(t) = $(u,v) f e Az s + ] — @ VAl 2
0

t t
- uclf e %21, g ds— vczf Li7,9-0 dS (3.3)
0] 0

with
¢ (u,v) = uc, +vc, — A(L—y(u+o,(c; — C)v)),

is a martingale.
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Proor: LetY(t) = (Yi(t),Ys(t)) be atwo-dimensional Lévy process with exponent
¢ (u,v); that is

E{equl(t)quz(t)} = @)t
Furthermorewe define
li(t) = max(—Yi(s)), i=12
O=s=t

Then Z(t) may be represented as follosote thatZ(0) = 0):
Z(t) = Yi(t) +Ii(t), i=12
Noting thatdl;(t) = ¢; 1,z «)-o dtfor i = 1,2, the lemma follows fronj19]. u

Using this martingalgit is possible to obtain an expression for the LST of the sta-
tionary distribution ofZ(t)}, which is given in the following theorem

THEOREM 3.2: The joint LST of Z is given by
E{e—uzl—vzz}

_ UQAE{X(A)} — c)E{e "?2|Z; = 0} + v(AE{X(A)} + A(c; — C) E{A} — Cz)
B uc, + v, — A(L— y(u+v,(c, — ¢)v))

Proor: We mimic the proof of Corollary 3 in[15]. As a stopping time we take
some epochl with Z,(T) = Z,(T) = 0. Applying Doob’s optional stopping theorem
as in[15] and using regenerative process theory d&.ib), one gets for Re,v = 0,

¢(u,v)E{e "%} = uP{Z, = 0} E{e **2|Z, = O}
+vP{Z,=0}E{e “%|Z,=0}. (3.4)

Keeping the definitions af; andZ,in mind, the two respective probabilities {8.4)
can be found by dividing the right-hand sideg2®6) and(2.7) by 1— p. The result
now follows after noting thak{e “4|Z, =0} = 1. |

The translation of Theorem 3to the transform ofV,, Vs) is done by noting
that E{fe""4%} = &(u + v,v) and E{e*%2|Z, = 0} = E{e*%2|V, = 0.
Hence the only unknown we have to find &{e~*"2|V, = 0}. By Theorem 31,
(V,V,) = ((Vl,VZ)\J = 0). Hence(noting thatV, = 0 impliesJ = 0),

E{e” UV2|V1 0} = E{e V2|V, =

Note that the second buffer can be identified with a fluid queue fed by a single
On-Off source having constant input rateduring On periodsThese On periods
are busy periods of the first buftekppropriately scaling timesuch that the output
rate becomes, this means that the distribution 6f,|V, = 0) can be identified with
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the steady-state workload distribution of iiG/1 queue with arrival rata/c, and
service timegc; — ¢,)P (see als$1,18]). Hence we have

(C; — Alc, — )E{P}Hv

e =0 = (@ - %0

(3.5)

If we combine our findingswe arrive at the main conclusion of this section

THEOREM 3.3: The LST ofV,,V,) is given by

(U,v) = @(u,v)(1—p+ py*(u,(c, — c)v)),

_ (U= ) AB{X(A)} — c)E{e 2|V = O} + v (AR{X(A)} + A(Cy — G)E{A} — C)

() (U—0)C 06— AL 7(0 (G — G)v)

andE{e *\2|V, = 0} given in (3.5).

From Theorem 3, it is straightforward to derive expressions for the moments
marginal distributionsand correlationsTo compute the original steady-state prob-
abilities from Theorem 3, one may use the multidimensional transform-inversion
technique described in Choudhukbypcantonj and Whitt[9].

We end this section with a brief outline of how to extend Theore®nt@8 the
multinode tandem cas€onsidem nodes with capacities, > ¢, > --- > ¢, and
assume that the stability conditig@.4) holds withc, replaced byc,. If we let V,
denote the steady-state buffer content of buffer1,..., n, we find a decomposi-
tion result as in Theorem.B which leads to

w(Ul,...,un) = E{e‘ulVl—“~—unvn}
- CT)(ul""’un)(l_ p + py*(ul’ (Cl - CZ)UZ + ..+ (Cn—l - Cn)un))’

wherea is defined in the obvious wayo find @, one can study the multidimen-
sional martingaleVt = {M(t)}, given by

t
M() = ¢ (Uy, .., Un) f e St Ze(9) g ] — @ ZiD U2l
6]

t
_ ulclf e—uzzz(s)—..._unZn(s)]_[Zl(S):o] ds
0

t t
_ UZCZL e—U323(s)—‘--—unZn(S)l[Zz(S):o] ds—...— unan 1[Zn(s):0] ds

(3.6)
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where thez;(t),i =1,...,n, are defined similarly as earlier amfdis given by
d(Ug,...,Uy) = UsCy + -+ + U, Gy
—ALl—y(Us+ - F Uy (Cr— Uz + -+ +(Chy — Co)Up)).

This martingale leads to a generalized versiof304) (one can also directly apply
Corollary 23 of [15]). This equation can be solved in a similar way as in the proof
of Theorem 2.

4. EXAMPLES

In the previous sectignve derived an expression far(u,v) in terms ofy(-,-),
v*(-,-), ands (-). The main goal of this section is to give some examples of the input
processX for which it is possible to get tractable expressions for these transforms
Together with Theorem.3, this provides an explicit expression fefu,v) in these
casesln the next two subsectionge treat(i) input from an On—Off source and
(i) semi-Markov input

4.1. Input from a Simple On-Off Source

Our first examplewhich was the original motivation for this waris the case where
the first buffer is fed by a single On—Off sourdéthis source is Onit feeds fluid
into the first buffer with constant rate> c;. For this special caseve takeX(t) =
(r —cpt, t = 0. If we denote the LST of by «(s) = E{e"54}, we get

E{X(A)} = (r — c))E{A}, (4.1)
YU, (¢, — C)v) = a((r —c))u+ (¢, — G)v), (4.2)

1-—a((r—cy)u+(c,—cy)v)
E{AH(r —c)u+ (¢, — C)v)

y*(u,(c, — ¢)v) = (4.3)

The latter equation follows immediately from the obvious identi(A*), A*) =
((r — c1) A%, A*). An explicit expression for the LST of, andV, follows by com-
bining (4.2) and(4.3) with Theorem 33. Finally, 7 (-) follows from

m(s) =a((r —c)(s+ A(1—m(9)) +9).

Several other studies contain results for this canocical model which are strongly
related to the problem addressed hdiee marginal distributions of, andV, and

the correlation betweevh, andV, have been computed jd]. The joint distribution

of (V4,V,) in caseA has a phase-type distribution has been fourfd &. WhenA is
exponentially distributedit is possible to invert to find an expression for the
distribution ofV, seg[20,23].
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4.2. Semi-Markov Input

In this subsectionwe assume that the content of the first buffer is regulated by a
semi-Markov procesJhis is motivated by a recent stuf], in which a single fluid
bufferis analyzed that is fed by the same type of inpieince we will follow [6] and
consider the Markov renewal procg6%,, 7.+ 1) | n= 0} with state spacfD, ..., K} X
[0,00). We let T, = 0 andT,, = Xr_1 7, N = 1, and introduce the corresponding
counting process bM(t) = sup{n: T, = t}. Then the semi-Markov proce$SMP)
{Y(t), t = 0} is defined byY(t) = Y. The behavior of this process is given by the
stochastic matri¥ consisting of the transition probabilitigg = P{Y; =] | Yo =1},
0=i, j = K(we assume thas; = 0), and the functions; (t), defined by

F,l(t):P{Tlst|YO:|,Y1:]}. (44)

It is convenient to also define

F(t)=P{rn=t|Yo=i}= _Zopij Fi (1),
iz
]Eij{'} =E{:[Yo=iY. =]},
Ei{-} = E{-[Yo=i},
my(u) = Ej{e "},

7 (u) = E{e "},

o 1=m7i(U)
R
m; = [ {7},
m; = Ei{7}.

An important assumption is that the sojourn time in stats&) is exponentially
distributed and independent of the next jufie., Fg;(t) = Fo(t) =1 — e *].

The SMP regulates the content of the first buffer in our tandem queue in the
following way. If Y(t) =i, i =1, then the buffer contentincreases at igte r; — ¢,,
wherer; = ¢;. When the SMP is in the special statglie buffer content decreases at
ratec,. Hence we can construct our procedsas follows Suppose that the SMP
jumps from state 0 at time.@hen

t
X(t) = f qY(u) du, t= Oa
0

A=inf{t>0:Y(t) =0}
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We now compute the LSTs ¢K(A), A) and(X(A*), A*), extending the approach of
[6] by which the marginal LSTs ok(A) andX(A*) were found Keeping(2.10) in
mind, we define for 1= i = K,

A t
Bi'(u,v) = E {f e‘“fo Oy(s) ds—ut dt}. (4.5)
0
By conditioning upony; andr,, we obtain
K
Bi(u,v) = mre(qu+v) + >, pi T (Gu+v)B(uv), 1=i=K (4.6)
j=1

This system of equations has a unique soluti@wobtain an expression for‘(u,v),
note thafE{A} can be computed as

K
E{A} = E Poi &i, (4.7)
i=1
where theg; = E;{A},i = 1,...,K, form the unique solution of
K
=1
Combining(2.10), (4.6), and(4.7), we obtain

K
_:21 Po; B (U,v)

Y (Uv) = - (4.9)

K
2 Poj &
=1

The computation of is similar but easietsee alsd6]) so we only state the final
result y can be written as

y(uv) = é Po; B; (U,v), (4.10)

with B;(u,v),j =1,..., K, the unique solution of
Bi(u,v) = pieTio(giu+v) + ,él pimi(qu+to)Bi(ue), 1=i=K  (4.11)
Recursive expressions for the moment®\pK(A), andX(A*) can be found ij6].

5. FINITE BUFFERS

In this sectionwe look at the case in which the buffers have respective &izasd
K. Using obvious notatigrwe will denote the transient process that describes both
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buffer contents by ¥z_ |t can be shown that this process has a stationary distri-
bution and we leV XKz = (VK2 X K2) e distributed accordingly

The main result of this section is Theoreni.An this theoremwe relate the
steady-state distribution af¥+¥= to that of V. Hence it is still assumed thaf2.4)
holds even though this is no longer required for stabilfyrthermorewe need to
make the following additional assumption

AssuMPTION 5.1: K;, K5, andX are such that the second buffer fills before the first
one doesthat is for all t,

P{V;0 e (t) = Ky | VY e(t) = Ky} = 1.

If X(t) = (r — cy)t (the scenario considered in Sectiori)4 and if the system is
empty at timet = 0, this assumption is satisfied iff

Ky Kz
= —.
r— C]_ Cl - Cz

(5.1)

A similar characterization holds for the model considered in Sectidn 4
The main result of this section now states that the distributionsasfdV ¥ X2
areproportionat

THeoreMm 5.1: If Assumption 5.1 holds, then for= x < K, 0 =y < K,,

P{V; =XV, =y}
P{W, = K JP{W, = Ky}’

IP{VlKl’ Ko < X;VZKl’ Ko < y} = (52)

withW, 2 (v, |J=0)and W 2 (V, |V, =0).

Both this theorem and its proof below are an extension of the single node case
which is treated if27].

Proor: The proof consists of two steps

1. First, we consider the fluid tandem queue with buffer sikgs= oo and
K, < oo. Denote this process by= ¥z and letV =Xz = (V,>*2 \/;>¥2) be
distributed according to its stationary distributid¥le show thatfory < K,

P{Vi = x;V, =y}

PV = ;o e <y} =
{ 1 2 y} ]P){WZSKz}

(5.3)

2. In our second stepve show that if Assumption.b holds for x < K; and
y < KZ’

PV = x; V™ e < y}
P{W; = Ky}

]P{VlKl’ Ky < X;VZKl’ Ko < y} = (54)

The proof is then completed by combinifg3) and(5.4).
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Step 1.From each sample path bf we construct a sample path3f> ¥z, This
construction is done as followsee also Fig2): Given a sample path af, consider
the excursions ofV,(t)} above leveK,. These excursions consist of two pafas
and(b), corresponding t¢a) and(b) in Figure 2

i (t)

Va(t)

Ky

ViR

Ky

I
|
|
|
I
|
t
|
|
Ve () :
|
|
|
|
|
L
1
1
1

(a) ¢

FIGURE 2. Construction of the proced&™ 2 from V.
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(a) is the time it takes until the first buffer becomes emftg., the remaining
busy period of the first buffer
(b) is the remaining part of the excursion

Now, construct a sample path of a procéjsErom a sample path of as follows

» Time epochs wher¥,(t) = K, remain unchanged

« Part(a) of the excursions as described earlier is modified as folloat) =
K, andVi(t) = Vy(t);

 Delete the remaining parts of the excursion¥/g(f).

The constructed proce$7§1as the same law a&>¥2: Every timeV,(t) leaves state
K,, the environment process is Qfh fact, the first buffer is empty and the re-
maining Off time is exponentially distributed with rate—as it should beHence-
forth, take VXX = V. Denote a regeneration cycle of this processdsy¥>. An
immediate consequence of the constructiolv6f X2 is that sample-path-wiséor

y < KZ’
co=Ke c
f 1[v1°°~KZ(t)sx,vz‘”'KZ(t)sy] dt= f 1[V1(t)sx,V2(t)Sy] dt. (5.5)
0 0
Combining this with regenerative process the@y in(2.5)), we get for all x and
y < K29
PV = x; Ve <y = ﬂp{v =x;V, =y} (5.6)
1 = X; Vo =Yy E{C™ e} 1 =XV =Y. .
In particular for x — oo, we get
PV =) = )Py, =) (5.7)
2 _y E{COO’KZ} 2_y' .
From Theorem 2 of [27], we obtain
E{C} 1

E{C=Ke}  P{W, = K,}’

which proved5.3).

Step 2 This step is similar to Step 1 and gives a sample-path construction of the
process¥+K2 from V= K2, For each sample path of the latter progesmsider the
excursions offV;”"?(t)} above levelK;. Note that Assumption % ensures that
the second buffer is full during these excursigosr method would break down if
this would not be the cageAs earlier divide the excursions into two parthe first
part ends when an Off period is finishélduncate the first part of the excursion of
V> "2(t) to K, (while V> %(t) remains unchang@@nd delete the second part of
the excursion
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Due to exactly the same argument as in Stefhé constructed process can be
identified with VX2, This construction oi’*+ ¥z implies that sample-path-wise

cKuKe co ke
JO 1[V1K1, KZ(t)SX,VZKl’ KZ(t)sy] dt = J; 1[\/100- Kz(t)Sx,VZOO' Kz(t)sy] dt (58)

Using regenerative process thedhjs implies
E{C> X2}
E{CKvKe}

What remains is to identify the prefactor on the right-hand sid&.8j. From Theo-
rem 52 of [27], it follows that forx < K,

P{V/ e = x;\y0Ke <y} = PV = XV e = y}. (5.9)

PV, =x}  P{V2=x}
P{W; = K.} - P{W, =Ky}

P{VuKe < x} = (5.10)

Also, note that
P{V, <Ko = 0,V f 0 Ke = K} = P{V,> 2 = 0,2 = K, } = 0. (5.11)
Combining(5.10) and(5.11), we obtain
PV 12 = OV, 02 < Ky} = PV "2 = 0}
PV =0}
- P{W =Ky}
P{V™ "2 = 0V, < K, )
P{W, = K}

Invoking (5.9) for x = 0 andy = K, yields that the unknown prefactor (6.9) equals
P{W,; = K;} L. This completes Step 2 and the proof of the thearem u

It can be shown that analogs of Theorerh &lso hold for the networks consid-
ered in[15,16,18], after obvious modifications of Assumptionl5 These results
may be derived in a similar way as Theorert.5

Acknowledgments

This research was partly carried out when the first author had a postdoctoral position at Eindhoven
University of Technologysupported by the Netherlands Organization for Scientific ReseN®#/O).

The research of the second author is supported by an NWO. @atftauthors would like to thank Onno
Boxma for helpful comments

References

1. Aalto, S. & ScheinhardtW.R.W. (2000. Tandem fluid queues fed by homogeneous On-Off sources
Operations Research Lette?3: 73—-82
2. AsmussensS. (1987). Applied probability and queuedlew York: Wiley.

https://doi.org/10.1017/50269964802161031 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964802161031

10.
1L

12

13

14.

15.

16.
17.

18

19

20.

21

22,

23.

24,

25.

26.

27.

TANDEM FLUID QUEUE 45

. Boots N.K. & Tijms, H.C. (1999. A multi-server queueing system with impatient custombtan-

agement Scienctb: 444-448

. Boots N.K. & Tijms, H.C. (1999. An M/M/c queue with impatient customerBop 7: 213-221
. Boxma 0.1 & Dumas V. (1998. Fluid queues with heavy-tailed activity period distributioB®m-

puter Communicationg1l: 1509-1529

. Boxma 0.4, Kella, O., & Perry, D. (2001). An intermittent fluid system with exponential on-times

and semi-Markov input rateBrobability in the Engineering and Informational Scien&&s189-198

. Boxma 0.3, Perry D., & van der Duyn Schouterf. (1999. Fluid queues and mountain processes

Probability in the Engineering and Informational Sciend&s 407-427

. Boxmag 0.1 & Resing J (1995. Tandem queues with deterministic service timisnals of Oper-

ations Research9: 221-239

. ChoudhuryG., Lucantonj D., & Whitt, W. (1994). Multidimensional transform inversion with ap-

plications to the transieml/G/1 queue Annals of Applied Probability: 719-740

Cohen JW. (1976. Regenerative processes in queueing theBeylin: Springer-Verlag
GouweleeuwF. & Tijms, H.C. (1998. Computing loss probabilities in discrete-time queu@ger-
ations Research6: 149-154

HooghiemstraG. (1987). A path construction for the virtual waiting time of a1/G/1 queue
Statistica Neerlandicd41: 175-181

Keilson J & Servi, L.D. (1989. Blocking probability forM/G/1 vacation systems with occupancy
level dependent schedulé3perations ResearcB7: 134-140

Keilson 1 & Servi, L.D. (1993. The M/G/1/K blocking formula and its generalizations to state-
dependent vacation systems and priority systépueueing Systenigk 111-123

Kella, O. (1993. Parallel and tandem fluid networks with dependent Lévy inpisals of Applied
Probability 3: 682—695

Kella, O. (2001). Markov-modulated feedforward fluid networkQueueing Systen®y: 141-161
Kella, O. & Whitt, W. (1992. A storage model with a two-state random environm€ryerations
Research0: S257-S262

Kella, O. & Whitt, W. (1992. Atandem fluid network with Lévy inputn |. Basawa & U Bhat(eds),
Queues and related mode@xford: Oxford University Prespp. 112-128

Kella, O. & Whitt, W. (1992. Useful martingales for stochastic storage processes with Lévy.input
Journal of Applied Probability29: 396—403

Kroese D.P. & ScheinhardtW.R.W. (2001). Joint distributions for interacting fluid queue3ueue-
ing System87: 99-139

Park K. & Willinger, W. (eds) (2000. Self-similar network traffic and performance evaluation.
New York: Wiley.

Rubin 1. (1974. Path delays in communication networRpplied Mathematics and Optimizatidn
193-221

ScheinhardtW.R.W. (1998. Markov-modulated and feedback fluid queugignpublished PhD.
thesis University of TwenteTwente The Netherland®\lso available at http//www.ub.utwentenl/
webdocgtw/1/t0000008pdf.

Shalmon M. & Kaplan, M.A. (1984. A tandem network of queues with deterministic service and
intermediate arrival®Operations ResearcB2: 753-773

Stidham S. (1986. Clearing systems and, S) inventory systems with nonlinear costs and positive
lead timesOperations Research4: 276-280

van Uitert M. & Borst, S.C. (2001). Generalized processor sharing networks fed by heavy-tailed
traffic flows. Proceedings of Infocom 200AnchorageAK, pp. 269-278

Zwart, A.P. (2000. A fluid queue with a finite buffer and subexponential inpidlvances in Applied
Probability 32: 221-243

https://doi.org/10.1017/50269964802161031 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964802161031

