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Abstract. The paper reports new findings about Galileo’s experiments with pendulums and
discusses their significance in the context of Galileo’s writings. The methodology is based on a
phenomenological approach to Galileo’s experiments, supported by computer modelling and
close analysis of extant textual evidence. This methodology has allowed the author to shed
light on some puzzles that Galileo’s experiments have created for scholars.

The pendulum was crucial throughout Galileo’s career. Its properties, with which he
was fascinated from very early in his career, especially concern time. A 1602 letter is the

earliest surviving document in which Galileo discusses the hypothesis of pendulum

isochronism.1 In this letter Galileo claims that all pendulums are isochronous, and that
he has long been trying to demonstrate isochronism mechanically, but that so far he has

been unable to succeed. From 1602 onwards Galileo referred to pendulum isochronism

as an admirable property but failed to demonstrate it.
The pendulum is the most open-ended of Galileo’s artefacts. After working on my

reconstructed pendulums for some time, I became convinced that the pendulum had

the potential to allow Galileo to break new ground. But I also realized that its elusive
nature sometimes threatened to undermine the progress Galileo was making on other

fronts. It is this ambivalent nature that, I thought, might prove invaluable in trying to

understand crucial aspects of Galileo’s innovative methodology.
To explore Galileo’s innovative methodology, I have repeated most of his path-

breaking experiments with pendulums. Furthermore, I have investigated the robustness
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Previously available English translations of Galileo’s texts concerning the pendulum are often unsatisfactory.

I have furnished new translations in Reenacting Galileo’s Experiments: Rediscovering the Techniques of
Seventeenth-Century Science, Lewiston, NY, 2008, to which the reader is invited to refer.

1 Galileo to Guido Ubaldo dal Monte, Padua, 29 November 1602, in Galileo, Le opere di Galileo Galilei :
Edizione Nazionale (ed. A. Favaro), 20 vols., Florence, 1890–1909, x, 97–100, translated in P. Palmieri,

Reenacting Galileo’s Experiments: Rediscovering the Techniques of Seventeenth-Century Science, Lewiston,
NY, 2008, 257–60. ‘Isochronism’ is the property of certain physical systems to oscillate at constant frequency

regardless of the oscillations’ amplitude. We now know that simple pendulums are not isochronous.

‘Isochronism’ is not a Galilean word. As the reader will see, Galileo uses other expressions to refer to this

property. I will retain ‘isochronism’ since it has become common in the literature.
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of pendulum effects, otherwise difficult to capture, with computer simulations. This

paper relates my discoveries and emphasizes their significance for our understanding of
Galileo’s innovative methodology at its initial stages, especially in the context of his

early writings.

I am not the first to have been beguiled by Galileo’s pendulums.2 Ronald Naylor, who
contributed most to our understanding of Galileo’s work with pendulums, long ago

reconstructed Galileo’s experiments. He summarizes his findings as follows:

One of Galileo’s most renowned discoveries was the isochronism of the simple pendulum. In
the Discorsi, Galileo used this discovery to good effect – though his claim that the pendulum
was isochronous for all arcs less than 180x has created something of a puzzle for the history of
science. The question arises as to how far the evidence available to Galileo supported his
claims for isochronism.3

He concludes that

Galileo was almost certainly familiar with a much wider range of evidence than he indicated in
the Discorsi. The examination of the evidence available to Galileo indicates that, though it
provided ample support for his thesis, it was certainly not as conclusive as he implies in the
Discorsi. It also seems clear that Galileo was bound to be aware of this.4

In what did this ‘much wider range of evidence’ really consist? What did Galileo know
that he was not willing to make public? One scholar has gone so far as to accuse Galileo

of knowingly publishing false assertions.5

Isochronism is only one of the properties of the pendulum that fascinated Galileo. He

put the pendulum to many different and ingenious uses. He experimented with lead and

cork bobs, for example, in order to investigate the naturally accelerated motion of

2 A. Koyré, ‘An experiment in measurement’, Proceedings of the American Philosophical Society (1953),

97, 222–37; P. Ariotti, ‘Galileo on the isochrony of the pendulum’, Isis (1968), 59, 414–26; idem, ‘Aspects of

the conception and development of the pendulum in the 17th century’, Archive for History of Exact Sciences
(1972), 8, 329–410; S. Drake, ‘New light on a Galilean claim about pendulums’, Isis (1975), 66, 92–5,
reprinted in idem, Essays on Galileo and the History and Philosophy of Science, 3 vols., Toronto, 1999, ii,

316–20; idem, Galileo: Pioneer Scientist, Toronto, 1990, 9 ff.; idem, Galileo at Work: His Scientific
Biography, New York, 1995 (1st edn Chicago, 1978), 69–70; R. Naylor, ‘Galileo’s simple pendulum’, Physis
(1974), 16, 23–46; idem, ‘Galileo’s need for precision: the point of the Fourth Day pendulum experiment’, Isis
(1977), 68, 97–103; idem, ‘Galileo, Copernicanism and the origins of the new science of motion’, BJHS
(2003), 36, 151–81; J. MacLachlan, ‘Galileo’s experiments with pendulums: real and imaginary’, Annals of
Science (1976), 33, 173–85; P. Costabel, ‘ Isochronisme et accélération 1638–1687’, Archives internationales
d’histoire des sciences (1978), 28, 3–20; D. Hill, ‘Pendulums and planes: what Galileo didn’t publish’,

Nuncius (1994), 9, 499–515; T. Settle, ‘La rete degli esperimenti Galileiani’, in Galileo e la scienza sper-
imentale (ed. M. Baldo Ceolin), Padua, 1995, 11–62; P. Machamer and B. Hepburn, ‘Galileo and the pen-

dulum: latching on to time’, Science & Education (2004), 13, 333–47; M. Matthews, ‘ Idealisation and
Galileo’s pendulum discoveries: Historical, philosophical and pedagogical considerations’, Science &
Education (2004), 13, 689–715.

3 Naylor, ‘Galileo’s simple pendulum’, op. cit. (2), 23.

4 Naylor, ‘Galileo’s simple pendulum’, op. cit. (2), 23. The Discorsi referred to by Naylor are the Two
New Sciences.
5 Hill, op. cit. (2), 513. Hill’s conclusion is untenable: I have suggested a counterargument based on a

repetition of Galileo’s calculations concerning the so-called brachistochrone, on which Hill’s indictment

hinges, in Palmieri, op. cit. (1), 248–55.
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different materials. The historian and physicist James MacLachlan, who also re-

constructed Galileo’s experiments, argued that Galileo’s ‘observations with balls of
cork and lead’ are ‘an imaginary experiment’, and that Galileo’s ‘claim that the period

of a pendulum is independent of amplitude’ was ‘based more on mathematical

deduction than on experimental observation’.6 So did Galileo not really perform his
experiments, as Alexandre Koyré also thought?7 More or less the same conclusion was

reached by Pierre Costabel, but the embarrassment that Galileo seemed to cause might

have been avoided had Costabel repeated these experiments, for he would have seen
that there is nothing impossible in what Galileo says of cork and lead pendulums (as will

be shown below in ‘Galileo’s investigative pathways around the pendulum’).8

These scholars have all been intrigued by what can be called the problem of match-
ing: the question of whether Galileo’s reports about his experiments really match the

outcome of his experiments, whether Galileo’s reported outcome or that of our rep-

lications. The matching problem rests on the assumption that we can understand
Galileo’s reports from a perspective internal to the texts without considering their

meaning in the light of the outcome of the experiments, even in cases such as Naylor’s

where the experiments have been repeated.9 I reject this assumption and instead ask
about the meaning of Galileo’s reports in the light of the outcome of my repetition of his

experiments. I take a phenomenological stance, in which a priori prejudices concerning
the understanding of the meaning of texts reporting experiments are suspended until I
live through the experiments.

The matching-problem approach has been too narrowly focused and has restricted

the scope of inquiry. Furthermore, the problem of matching rests on another arbitrary,
often anachronistic, assumption about what constitutes good or bad empirical evidence

for a theoretical claim. The question of the constitution of good or bad evidence has

rarely been raised in the Galileo literature and perhaps not even thought to be urgent.
Rather, it has been taken for granted that the answer is already known. As we shall see

in the next section, this assumption led Naylor to conclude that his repetition of

Galileo’s pendulum experiments proved that the outcome of the experiments does not
support Galileo’s claims concerning isochronism.

My phenomenological stance is inspired by the historiographical approach to
past medical texts developed by the Italian historian of medicine Luigi Belloni in his

pioneering studies of Marcello Malpighi (1628–94).10 Belloni realized that the history of

6 MacLachlan, op. cit. (2), 173.
7 A. Koyré, Études Galiléennes, Paris, 1966 (1st edn 3 vols., Paris, 1939).

8 Costabel, op. cit. (2), 6. Costabel doubts that Galileo could have done the experiments with cork and lead

pendulums since in his view Galileo’s reasoning about the experiment is erroneous. Costabel’s argument only

shows his misunderstanding of what Galileo’s experiments with cork and lead pendulums are really about and
their function as evidence (see below, ‘A crucial experiment in the historiography of isochronism’).

9 Naylor, ‘Galileo’s simple pendulum’, op. cit. (2). Settle’s groundbreaking reconstruction of the inclined

plane experiment takes a different approach and carefully avoids the trap of the matching problem. T. Settle,

‘An experiment in the history of science’, Science (1961), 133, 19–23.
10 L. Belloni, ‘The repetition of experiments and observations: its value in studying the history of medicine

(and science)’, Journal for the History of Medicine and Allied Sciences (1970), 25, 158–67; and Belloni’s

commentaries in M. Malpighi, Opere scelte (ed. L. Belloni), Turin, 1967. In recent years, more scholars have

embraced an experimental approach to the history and philosophy of this science: for instance, Settle,
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the novel anatomical structures described in the seventeenth century by Malpighi under

the microscope could not be written simply by reading Malpighi’s texts, but had to be
supported by a historically accurate reconstruction of Malpighi’s observations. This

was accomplished by replicating the complex procedures for preparing the specimens

that Malpighi recounts in his writings. Thus Malpighi’s language could be illuminated
by Belloni’s observations and the ‘obscure ’ meanings of Malpighi’s texts better

resolved under the historian’s microscope. I have tried to apply the lesson learnt from

Belloni.
Furthermore, I have tried to remedy the lack of robustness that has beset the pen-

dulum replications of others in the past. By ‘robustness’ I mean repeatability and con-

sistency of outcome over a wide range of parameters controlling the experiment. The
pioneer replications done by Naylor and MacLachlan focused on too narrow a set of

parameters fixed by the operator. Since Galileo does not tell us much about the set-up of

his experiments, we face formidable indeterminacies. These may affect our interpret-
ation of the texts such that we risk both failing to see what Galileo might have seen and

seeing what he did not. To resolve these indeterminacies, we must make our exper-

iments robust over a wide range of parameters. This can be achieved with computer
simulations of mathematical models calibrated on real experiments, a procedure de-

scribed in the ‘Supporting document’. I hope in this way to diminish if not resolve the

numerous puzzles and the embarrassment that Galileo’s pendulums have created for
scholars (myself included).

A crucial experiment in the historiography of Galileo’s pendulum

In a pioneering paper of 1974, Ronald Naylor claimed to have uncovered unequivocal

and conclusive evidence that, in the light of his replication of experiments, Galileo’s

accounts of the experiments on which his claims concerning pendulum isochronism
rested could not be supported.11 Interestingly, Naylor based his indictment on a

‘historiographically correct ’ reconstruction of Galileo’s pendulum experiments. Naylor

ingeniously used a replica of Galileo’s water clock to measure periods of oscillation, not
a modern stopwatch. Hence Naylor’s time measurements would have been available to

Galileo. The water clock had been devised by Galileo to measure the time of fall of balls

rolling down an inclined plane, as he famously recounts in Two New Sciences. By
collecting in a beaker the water flowing through a narrow pipe placed at the bottom of a

large tank, and subsequently weighing the water, Naylor measured the periods of

three back-and-forth oscillations of brass and cork pendulums eighty-one inches long.
He repeated the procedure for small and large oscillations in both cases and came up

with the data summarized in Table 1.

op. cit. (9) ; C. Wilson, ‘Re-doing Newton’s experiment for establishing the proportionality of mass and
weight’, St John’s Review (1999), 45, 64–73; J. Renn and P. Damerow, ‘The hanging chain: a forgotten

‘‘discovery’’ buried in Galileo’s notes on motion’, in Reworking the Bench: Research Notebooks in the
History of Science (ed. F. Holmes, J. Renn and H.-J. Rheinberger), New York, 2003, 1–24.

11 Naylor, ‘Galileo’s simple pendulum’, op. cit. (2).
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Naylor comments on the data in Table 1 as follows:

the observations indicated quite unequivocally that neither pendulum was perfectly
isochronous … Once the technique of [the water clock’s] use was mastered it seemed a simple
method capable of providing conclusive evidence … Using the water clock it is quite evident
why Galileo could not have found conclusive support for his [isochronism] thesis in water
weighing. On the contrary, water weighing shows quite unmistakably [that] Galileo’s theory
of the simple pendulum lacks the precision he claims for it … There is little doubt that Galileo
misrepresents the evidence here … In neither case does Galileo give as accurate a description
of the situation as he could have done.12

Thus Naylor became convinced that Galileo’s thesis about the isochronism of the sim-

ple pendulum was unsupported by experiment and that at the very least Galileo is guilty
of misrepresenting the empirical evidence. Furthermore, Naylor was baffled by the

puzzling result that while the brass pendulum is faster for smaller arcs, as expected in

the light of our present knowledge, the opposite seems to be true for the cork pendulum.
I believe that Naylor’s conclusions are untenable. They are the result of faulty

premises in his argument and of artefacts in his pendulum set-up. To understand why,

one needs to clear away the puzzling result of the brass versus cork pendulums, delve
into the question of measurement of weights with a balance, and finally extend analysis

of the measurement of weights to pendulum isochronism. The first two tasks are ad-

dressed in the ‘Supporting document’ to this paper. With respect to the final task, one
can ask how to categorize the forms of the periodicities displayed by a pendulum swing-

ing through small and large arcs. Are they equal and, if so, in what sense of equality?
Unlike the discrete weights on a balance, whose phenomenal relation to each other can

Table 1. The data of Naylor’s experiments with brass and cork pendulums. Naylor does
not say how he weighed the water collected in the beaker, but since the experiments
were carried out in the early 1970s I speculate that he used a mechanical device, such as
a scale with a movable index. The brass pendulum is faster for smaller arcs, whereas,
puzzlingly, the opposite is true for the cork pendulum

Brass pendulum (81-inch) Cork pendulum (81-inch)

Large arcs

(grams)

Small arcs

(grams)

Large arcs

(grams)

Small arcs

(grams)

1 32.24 30.38 30.64 32.30

2 32.49 30.45 30.88 31.37

3 32.74 30.93 30.38 32.63
4 32.70 30.51 30.51 31.36

5 32.92 30.86 29.98 31.75

6 32.04 30.16 31.34 31.57

7 32.97 30.18 31.14 32.17
Average Average Average Average

32.58 30.49 30.69 31.87

12 Naylor, ‘Galileo’s simple pendulum’, op. cit. (2), 38–9.

A phenomenology of Galileo’s experiments with pendulums 483

https://doi.org/10.1017/S0007087409990033 Published online by Cambridge University Press

https://doi.org/10.1017/S0007087409990033


80

60

40

20

–20

–40

–60

–60 –40 –20 0 20 40 60 80

–80

–80

PHASE DIAGRAM 1

PHASE DIAGRAM 2
25

20

15

10

5

–5

–10

–15

–20

–25

0 5 10 15 20 25–25 –20 –15 –10 –5

Figure 1. Two phase diagrams of the discrepancy obtained by simulating the motions of a real
pendulum and its ideal counterpart from the same two sets of initial conditions. The first set,
Diagram 1, is from rest and an initial angle of 80x. The second set, Diagram 2, is from rest and an
initial angle of 25x. The time of the simulation is 90 seconds. At time zero both pendulums are at
rest at the same position, 80x in the first case, 25x in the second case. Time is not represented as a
coordinate in the phase diagrams. To read the diagram, start from the first point (close to the grey
arrows) and follow the line along which the phase between the two pendulums changes. Any
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be categorized under the equilibrium/disequilibrium dichotomy, pendulum periodicities

are continuous phenomena not easily subsumed under any bipolar categorization. They
tend to change continuously over time. Below in ‘Galileo’s investigative pathways

around the pendulum’, I will show the emergence in real experiments of a discrepancy,

a gradual tendency towards the inequality of pendulum periodicities. For the time
being, I will discuss pendulum periodicities with the help of a computer model.

The discrepancy is a nonlinear phenomenon emerging in pendulum motions on

a sufficiently large temporal scale. The discrepancy transcends ordinary dichotomies
such as that of equality/inequality, which are evaluated at a smaller scale, that of the

fundamental period. The discrepancy can be illustrated by showing the motions of

the pendulum with respect to an ideal ‘simple pendulum’ through phase diagrams.
A phase diagram shows the relation of the angular position of the motion of a real

pendulum with respect to the angular position of the motion of the ideal simple

pendulum evolving under the same physical constraints and from the same initial con-
ditions. Consider the following two equations:

€hh+
g

r
� sin (h)+. . .=0

€hh+
g

r
� h+. . .=0

where q is the angular position of the pendulum bob, g is the gravity constant at the

surface of the earth, and r is the length of the string (the ellipses stand for further terms,
due to such physical constraints as air resistance, that are irrelevant here.)13 The first,

nonlinear, equation represents the motion of the real pendulum where the gravity

component is compounded with the sine function of the angular position. The second,
linear, equation represents the motion of the simple ideal pendulum where the sine

function has been idealized away and replaced by a linear function. The ratio of g to r
indirectly expresses the fundamental period of the pendulum.

Now imagine a real pendulum and its ideal counterpart. If an ideal pendulum could

be built, the discrepancy would be evident. This is possible but difficult. However, a

computer model can be constructed that calculates both the real and ideal pendulums
together under the same parameters. This allows the discrepancy to be observed.

Figure 1 shows two phase diagrams of the discrepancy obtained by calculating the

point on the phase line shows the angular position of the real pendulum in relation to the angular
position of the ideal pendulum. If the real pendulum behaved exactly like its ideal counterpart
the phase diagram would be a line inclined at 45x (the dotted line in the first diagram but not
represented in second diagram for clarity). Hence the more flattened the phase diagram seems
around the direction of 45x the more ideal can be considered the real pendulum. Phase Diagram 2
represents such a case. The oval looks more flattened around the 45x direction, thus the real
pendulum oscillates more closely to its ideal counterpart. The phase line resembles a spiral. Each
gyration is a complete oscillation of the pendulum. There are as many oscillations in the ninety
seconds of the simulation as gyrations in the phase diagram. For this simulation the material data
of the pendulums were as follows: bob mass 58 g, bob material lead, string diameter 1 mm.

13 See Palmieri, op. cit. (1), 217, for the mathematical details.
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motions of a real pendulum and its ideal counterpart from the same two sets of initial

conditions. The vertical axis is the coordinate of the angular position of the ideal
pendulum. The horizontal axis is the coordinate of the angular position of the real

pendulum.

Phase Diagram 1 (Figure 1) is easier to read since the discrepancy is more pro-
nounced. The ‘oval ’, the shape of the gyration representing one oscillation, grows fatter

and fatter, initially lying closer to the 45x direction, and later, as the motion progresses,

gradually and continuously losing its oval character to become a quasi-circle showing
no preferential directionality, and finally, towards the end of the simulation, assuming

once again a pronounced directionality, perpendicular to the 45x direction. Now con-

sider Phase Diagram 2. Since the motions begin at a smaller angle (only 25x) the dis-
crepancy does not show the gradual progression of directionality from y45x to y135x

(that is, more or less perpendicular to y45x). In this second case the discrepancy re-

mains stable, flattened along the 45x direction.
The ideal pendulum cannot be seen in reality, at least not under the circumstances of

Galileo’s experiments. However, if one lets the two real pendulums swing together

from the two different angles, 80x and 25x, one can see the discrepancy in action, not
between the real and ideal pendulums, but between two real pendulums. See Phase

Diagram 3 in Figure 2.

A fundamental feature common to all three phase diagrams is the stabilization of the
discrepancy through time. This is displayed in the diagrams as the limit towards which

the gyrations tend. The density of gyrations becomes greater around a limit gyration.

80
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–40

–60

–20 –15 –10 –5 0 5 10 15 20 25

–80

–25

PHASE DIAGRAM 3

Figure 2. The discrepancy emerging between two real pendulums rather than between real and
ideal pendulums.
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In all cases there clearly emerges a limit gyration which marks off an area into which the

pendulums do not enter. This means that the discrepancy between real pendulums,
subject to physical constraints such aerodynamic resistance, does not explode by be-

coming ever larger. It also emphasizes the emergent character of the discrepancy. The

emergent features of this discrepancy are not discernible from measurements of a single
period of oscillation, nor from a few periods of oscillation, as was done by Naylor.

They require a new observational act of ‘balancing’ periodicities from a large-scale

temporal perspective.
Galileo of course had at his disposal neither the calculus needed to write down the

equations of motion, nor the computers needed to calculate the phase diagrams. But, as

shown below in ‘Galileo’s investigative pathways around the pendulum’, with the help
of videos of real experiments, the discrepancy is an obvious visual attribute of real

pendulum motion that can easily be perceived. Galileo did not categorize the world

according to the contrast between isochronism and non-isochronism presupposed in the
relevant secondary literature. That duality is the product of later developments in the

mathematical–physical sciences, notably the rational mechanics of the late seventeenth

century and the eighteenth. Isochronism is not a Galilean word. Galileo’s expressions
for time-forms of pendulum periodicities are revealing.14 As we shall see below in

‘Galileo’s investigative pathways around the pendulum’, he speaks generally in terms

of pendulums ‘going under the same time’. The expression betrays the large time-scale
approach to the pendulum. He clearly perceives the regular and smooth evolution of the

time-form of pendulum periodicities, the slowly varying nature of the gyrations. To

learn this new mode of perception is to learn a new act of ‘balancing’ that challenges
the procedure of the bilancetta, Galileo’s exquisite precision balance, described in the

‘Supporting document’. Weights on Galileo’s bilancetta have been fixed in quantity.

This fixing happened at the time when the beaker collecting water was removed from
under the tap of the water tank. Thus weights on the bilancetta are unlike the smoothly

evolving discrepancy. It is impossible to weigh the discrepancy because it cannot be

frozen in time. Galileo can only learn how to perceive it in time. But whence the
emergence of the discrepancy? The next section illustrates how the discrepancy emerges

as part of the perception of the pendulum’s temporal periodicities.

Pendulum discrepancy as an attribute of periodicity perception

The previous section discussed the discrepancy as an objective phenomenon emerging

in pendulum motions. This section discusses the discrepancy as a subjective attribute of

the perception of the time-form of pendulum periodicity. Perception of pendulum
periodicity depends on positioning one’s body accurately in the scene of the experiment.

So before discussing perception, I illustrate the sequence of body movements and po-

sitioning that I learnt while replicating Galileo’s pendulum experiments. Here I present

14 Galileo to Guido Ubaldo dal Monte, 29 November 1602, Edizione Nazionale, op. cit. (1), x, 97–100,
and Palmieri, op. cit. (1), 257–60; Galileo, Dialogue on the Two Chief World Systems (1632), Edizione
Nazionale, vii, 256–7, 474–6, and Palmieri, op. cit. (1), 260–2, 262–3; Two New Sciences (1638), Galileo,

Edizione Nazionale, viii, 128–9, 139–40, 277–8, and Palmieri, op. cit. (1), 263–4, 264–5, 265–8.
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pictures (Figure 3a–g) showing body positioning in a realistic setting generated with

computer imaging software. The sequence is presented cinematically, in a frame-

by-frame sequence. Each picture is accompanied by a brief description. The whole
sequence covers the execution of movements from the grabbing of the pendulum bob to

its release and eventually to the final positioning that optimizes the perception of pen-

dulum periodicity. The release of two bobs can be easily achieved, but the possible
difference between the angles is limited by the span of the achievable widening of the

operator’s arms. If more is desired then a second operator must enter the scene and

release a second bob simultaneously with the first operator.
Galileo does not report whether the pendulum experiments were carried out alone or

with assistants. I tried both options and both can work well, though the first obviously

only works within the constraints just mentioned. An easy way for the two operators to
synchronize their actions is by counting aloud integers and by releasing the bobs at a

count agreed upon in advance. One can speculate that if Galileo did not seek the help of

assistants for pendulum experiments with strings of the order of between three and five
braccia in length, the lengths he indicates on many occasions, then he would have been

unable to release two bobs from angles separated by more than approximately forty-five

degrees. We now turn to the discussion of perception.
Since the time-form of pendulum periodicities is always an oscillation whose ampli-

tude tends to decrease over time, we can represent the time-form by means of

Figure 3a. The operator reaches the side of the gallows-like structure and grabs the ball.
Subsequently the operator takes up the position shown in the picture, extending the string of the
pendulum as far as the angle desired while gradually putting the string under tension.
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Figure 3c. After releasing the bob, while still looking at the bob, the operator abandons the initial
position and reaches the centre of the experiment stage.

Figure 3b. The operator ‘takes aim’, as it were, trying to position the hand which grabs the bob
in such a way that the motion of the pendulum remains as much as possible in a non-rotating
plane. Since the pendulum is attached to a string, its oscillation plane has a tendency to deviate
uncontrollably. Yet to a certain extent the operator learns how to sense and prevent this effect
before releasing the bob.
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Fourier spectrum analysis. This means of representation of the time-form allows us to

investigate how the physical constraints shape the spectrum of the component fre-
quencies, or periods. Consider Figure 4. Starting from rest, a two-ounce lead bob

swings from two different initial angles, a small angle and a larger one. The motion is

smoothly slowed down by aerodynamic resistance. However, aerodynamic resistance
has another formidable effect that only spectrum analysis reveals. The next figure

offers a Fourier analysis of motions of the same pendulum after removing the effect of

Figure 3d. The operator checks his/her alignment with the plane ideally traced in space by the
gallows-like structure of the pendulum support. The operator must quickly identify the right spot.

Figure 3e. The operator subsequently assumes a squatting position, since otherwise a perspective
angle from above makes the perception of the oscillation of the pendulum bob more difficult.
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Figure 3f. Here the frame taken from behind suggests as accurately as possible the exact angle of
observation that the operator must take up.

Figure 3g. In order to observe the emergence of the discrepancy phenomenon the operator needs
to release two bobs at the same time from different positions; only one is shown in the picture.
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aerodynamic resistance. This is not physically easy to realize but easy to derive from
computer modelling. Consider Figure 5. While the fundamental period of the pendulum

swinging from the smaller angle has remained virtually the same, that of the pendulum

swinging from the larger angle has increased from less than to more than 3.5 seconds.

2 2.5 3 3.5 4 4.5 5

Figure 4. The Fourier spectrum of the time-form of pendulum periodicities. The white square
symbols represent the spectrum of a pendulum swinging from an initial angle of 80x, while the
black dot symbols represent the spectrum of the same pendulum swinging from an initial angle of
20x. The horizontal axis is the coordinate of the period of the component of the spectrum. The
vertical axis is the coordinate of the amplitude of the period component of the spectrum (the scale
of the vertical axis is irrelevant for present purposes). The pendulum has a fundamental period,
the period given by the peak among the frequency amplitudes, of between 3 and 3.5 seconds. The
horizontal axis represents the time of the component period of the spectrum, not the real time of
the phenomenon. For better legibility, the diagram shows time instead of frequency because the
durations of the component periods are longer than one second.

2 2.5 3 3.5 4 4.5 5

Figure 5. The Fourier spectrum of the time-form of pendulum periodicities. The same situation as
in Figure 4, except that aerodynamic resistance has been removed. For clarity, grid lines have been
omitted. The minor peak is the pendulum swinging from the smaller angle, whose fundamental
period remains virtually the same.
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Fourier analysis shows that a dramatic effect of aerodynamic resistance is to make the

two fundamental periods coincide. The air resistance to the bobs and strings slows the
pendulums such that the two will move with the same fundamental period. What does

this mean for the discrepancy as a subjective attribute of perception of the time-form of

pendulum periodicity? Aerodynamic force is responsible for shaping the spectrum of
the time-form of pendulum periodicity in such a way that we lose our perceptual grip on

the fundamental period of the pendulum. If we could observe the two pendulums in a

vacuum swinging from the two different initial angles, we would perceive two funda-
mental periods, just as when we perceive two musical tones different in pitch as forming

one interval, a two-note chord. Now, because of aerodynamic force the ‘visual tones ’

of the two pendulums are fused into one single ‘visual tone’, one single ‘visual pitch’.
Aerodynamic resistance makes the two pendulums appear visually in unison.

The perception of the time-form of pendulum periodicity experienced when we ob-

serve two real pendulums swinging from two different angles is a visual unison formed
by the two pendulums each swinging with a different timbre but the same pitch. The

next section brings abstract analysis to life by discussing real experiments and by in-

viting the reader to examine videos of the discrepancy of real pendulums as Galileo
would have been seen it.

Galileo’s investigative pathways around the pendulum: (1) in the scene of experience

This section deals with my reconstruction of Galileo’s experiments. I will focus on the
outcomes of the experiments, on the activities that constitute the outcome of an ex-

periment, and on their pointing to investigative pathways in the context of Galileo’s

early researches. An experiment is hardly an isolated event, but more like the per-
formance of a set of interrelated activities in a scene of experience. However, it is not

always easy to define or design the activities in advance. At times they are dictated by

the very nature of the artefact around which they begin to develop.
I assembled a slender and light wooden frame in the form of a gallows (consult the

‘Supporting document’ for further details). The main vertical post I made moveable so

I could quickly raise the horizontal arm to have more vertical room for longer pendu-
lums. I prepared the horizontal arm with holes and hooks, so that I could hang pen-

dulums at different distances from each other. I wanted to observe two pendulums

swinging behind each other. In this way I made sure that I had a good perspective, that
I could see two equal pendulums marching synchronously and in parallel, and more-

over that my point of view was freely movable all round. Figure 6a shows the scene of

the pendulum experience. Figure 6b shows a detail of the apparatus. I begin by re-
counting how I measured the lengths of two equal pendulums, or rather how I decided

that my two pendulums had the same length.

To begin I cut two hemp strings of the same length (about ninety-two inches).15 First
I cut one and then the second after making their ends coincide. I suspended two

15 Hemp is a material that would have been easily available in Galileo’s time. Linen would also have been

available. Galileo says spago or spaghetto, i.e. thin string, which implies that the string’s material would

probably have been hemp or linen. See the ‘Supporting document’ for further details.
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pendulums made of hemp strings knotted to two one-ounce lead balls, adjusting the
knots until I was satisfied by visual inspection that the two pendulums were of the same

lengths.16 The pendulums were removed from the perpendicular and let go at the same

Figure 6a. The scene of the pendulum experience. The wooden gallows-like frame is at the centre.
Behind it is a white backdrop for improving direct observations and also shooting film. The use of
modern electronics is explained in Appendix 2 of Paolo Palmieri, Reenacting Galileo’s
Experiments (Lewiston, NY, 2008).

Figure 6b. A detail of the upper part of the pendulum apparatus. The horizontal bar is made of
Plexiglas. The load cells used for measurements of the tension in the strings can be seen on the
Plexiglas bar (see Palmieri, Reenacting Galileo’s Experiments, Appendix 2).

16 The choice of the lead balls is somewhat problematic. Galileo does not specify the size of the lead balls

he uses, but the words he chooses seem to indicate that he used very small balls, roughly the size of musket
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instant. They started losing synchronism after a short while, contrary to my expec-

tations. So I thought that there might be something wrong with the apparatus or with
the way I let the bobs go. I repeated the test with the same results. I tried from the other

side of the apparatus with the same results. Finally it dawned on me that the lengths of

the pendulums might in fact not be the same. By ‘length of the pendulum’ I mean the
resulting length of the string plus the radius of the ball to which the bob is attached,

once the pendulum has been hung from the frame. The operation of mounting the

pendulum affects its length. In fact visual inspection failed as a criterion of equality for
the lengths of pendulums.

There is no way of ensuring the two lengths are the same, other than letting the

pendulums swing together for as long a time as possible, and observing that they
will oscillate synchronously by keeping pace with each other. Again, the determination

of a ‘sameness ’ in the measurement process, in this case the sameness of length, requires

an indefinite process, in fact an indefinite time. The two pendulums function together as
a combined accumulator of the delays due to the inevitable difference in the lengths of

the pendulums. So in order to guarantee that pendulum experiments are significant, one

has to work patiently until one is satisfied that for an arbitrarily defined interval of time
the pendulums will swing synchronously. I finally settled on a ‘reasonable’ time window

of five minutes. Beyond that time limit I knew I would have to expect the results to

become less and less reliable since the pendulumswould slowly start losing synchronism.
I spent my first morning in the scene of experience working out this problem.

Since the pendulums are supposedly identical, by ‘oscillating synchronously’ I simply

mean that they appear to the observer to move together. ‘Togetherness ’ here is un-
problematic, because the two pendulums will always have to be in the same position at

the same time.

Videos 1 to 4 (‘The length of the pendulum’) document the phenomenon of the
lengths of the pendulums. They show longer and longer synchronism between two

pendulums of ‘equal’ lengths. I achieved this result during my first morning in the scene

of experience. The astonishing fact is that pendulums will always tend to go out of
synch and do so relatively quickly. How quickly? When I started, I had in mind

the hundreds of oscillations that Galileo seems to claim to have counted.17 Galileo
approximately indicates pendulum lengths in the range of four to five braccia – that is,

two to three metres, depending on the choice of equivalent of Galileo’s braccio. With

these lengths, it was difficult for me to observe more than about one hundred ‘good’
oscillations, since the time window allowed by my two ‘equal ’ pendulums was about

five minutes (about one hundred oscillations for pendulums of ninety-two inches).

balls, or little more. Musket balls at that time would have been in the range of one to two ounces (between

about twenty-eight and fifty-six grams). See ‘Supporting document’ for further details.

17 Galileo to Guido Ubaldo dal Monte, 29 November 1602, Edizione Nazionale, op. cit. (1), x, 97–100,
and Palmieri, op. cit. (1), 257–60; Galileo, Two New Sciences (1638), Edizione Nazionale, viii, 128–9, 277–8,
and Palmieri, op. cit. (1), 263–4, 265–8. I will consistently use ‘oscillation’ to indicate a complete swing of the

pendulum, back and forth from starting point to maximum height on the other side with respect to the

perpendicular and return. Galileo’s language is not always clear when referring to pendulum swings, at times

suggesting oscillations, other times perhaps half oscillations.
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This does not imply that it is impossible in principle to fine-tune the lengths of the

pendulums until they swing more than one hundred oscillations synchronously. But it
does mean that the fine-tuning becomes more difficult and tedious, since there are ob-

vious limitations in the way the hands of a human observer operate while, for example,

trying to adjust a knot around the hook of the lead ball.18 When doing the adjusting the
operator cannot be helped by visual inspection, since the lengths of the pendulums will

always tend to look the same.

Furthermore, there is another practical limitation to the manual procedure of ad-
justing the lengths. Hemp strings tend to coil and are also very flexible. In order to

straighten them one has to apply some tension, which will, however, tend to extend

them a little. Adjustment must be done by trial and error. Tension in the string is an
ineliminable problem that the pendulum experimenter learns how to live with pretty

quickly. In fact, as I have realized, when grabbing the lead balls in preparation for a

launch the operator is constantly adjusting, more or less consciously, the tension ap-
plied to the strings. This tension does not sensibly affect the outcome of the experiment,

as I have concluded, yet creates a kind of anxiety that the outcome will in fact be

affected.
We can experiment virtually with the effects of slight differences in the lengths of

supposedly equally long pendulums with the help of a computer model of the pendu-

lums used in real experiments.19 I ran a few simulations and noticed that in order to end
up with a visually discernible lack of synchronism between the two pendulums, after a

number of oscillations comparable to that of Videos 1 to 4 (‘The length of the pendu-

lum’), a difference of about five millimetres is required (see S-Video 1, ‘Two lengths’).
This suggests that once the pendulums are mounted on the wooden frame the observer’s

perspective determines a margin of error in the estimated equality of the lengths of the

pendulums of at least about that size.
Why do pendulums stop swinging? The question is far from naive, since resistance

due to impediments, such as air and/or mechanical friction, might not be the sole or even

the principal factor responsible for the slowing of pendulums. In early seventeenth-
century Padua, Aristotelian natural philosophers such as, for example, Galileo’s friend

Cesare Cremonini (1550–1631) would have assumed that the medium was responsible
for keeping the pendulum going, not for slowing it down. Galileo came up with an

ingenious hypothesis, as we will now see.

Galileo’s investigative pathways around the pendulum: (2) the artefact’s modes

In a fascinating passage in Dialogue on the Two Chief World Systems (1632), Galileo

expounds an elaborate theory of the intrinsic tendency of pendulums to slow down and

18 This is how I performed the adjustment of the lengths of the pendulums. It is, of course, possible to think
up better fine-tuning methods, but they are trial-and-error procedures, since the lengths of the pendulums will

always look the same all the time (obviously within the limits of technologies that would have been available

to Galileo).

19 See the ‘Supporting document’ ; and also Palmieri, op. cit. (1), Appendix 1.
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eventually stop regardless of all external impediments.20 Galileo also draws a figure of

the shape of an oscillating pendulum made with a bob and a rope (Figure 7). He argues

that if the pendulum’s suspension is a corda (rope), a thicker and heavier suspension
than the thin spago (string), or spaghetto, as generally reported in other texts, then the

rope’s parts behave like many pendulums distributed along the rope.21 These will have

their own well-determined higher and higher frequency as their distance from the centre
of oscillation becomes smaller and smaller. Therefore, Galileo argues, they will slow

down the oscillating bob, since the latter will be ‘restrained’ by the many pendulums of

which the rope really consists and which will want to oscillate faster than the bob. This
effect, Galileo continues, will be even more manifest to the senses if the rope is replaced

with a chain. Thus, Galileo concludes, all pendulums will inevitably stop, even if all

external impediments are removed.
Why a chain? I replicated Galileo’s experiments with chain pendulums in order

to observe the shape taken by the pendulum while oscillating. The results were as-

tounding – possibly, in my view, the most important finding in the scene of experience.
These experiments with chain pendulums revealed the existence of latent modes of

oscillation, as they are sometime referred to in the technical literature. A pendulum’s

latent modes of oscillation are infinite, though only some can be observed. Latent
modes of oscillation are well known to structural engineers of the twentieth century.

There are infinite possible shapes that a continuous mechanical system, such as, for

example, a heavy rope, or a chain, can assume while oscillating. What Galileo shows
us (Figure 7) is what structural engineers call the fundamental mode of oscillation,

the shape of the oscillation that occurs at the lowest possible frequency. In reality, the

motion of the pendulum is always a composite of all possible shapes, though we can

E

A

F G

D

B

C

Figure 7. The non-rectilinear shape that a pendulum made with a rope would show during an
oscillation.

20 Galileo, Dialogue on the Two Chief World Systems (1632), Edizione Nazionale, op. cit. (1), vii, 256–7,
and Palmieri, op. cit. (1), 260–2.

21 For a description of the thin string see Galileo, Two New Sciences (1638), Edizione Nazionale, op. cit.
(1), viii, 128–9, and Palmieri, op. cit. (1), 263–4.
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normally observe only a few, since those at higher frequencies are more difficult to

perceive clearly and distinctly.
The observation of the latent modes of the chain pendulum at last explains why

Galileo insists on using pendulums made with thin strings.22 Thin strings eliminate the

problem of latent modes of oscillation. There is no doubt that Galileo was, from an
early stage, well aware of the fantastic display of the latent modes of oscillation. Before

further discussion of the implications of this finding, we need to present the latent

modes of oscillation more graphically. First of all, I hung brass chain pendulums of
different lengths and did what I had been doing with string pendulums, simply removed

them from the perpendicular and let them go. If the starting angle is relatively small, the

shape the chain pendulum takes is the simple shape of the fundamental mode, exactly
like that shown by Galileo. But if the angle increases, more modes start to develop.

Videos 22 to 24 (‘The chain pendulum’) show the fantastic behaviour of the latent

modes of oscillation. The chain pendulums oscillating at a sufficiently wide angle
clearly display the superimposition of a few latent modes, which give the chain pen-

dulum’s motion its characteristic, apparently chaotic, serpentine shape.

Table 2 shows approximations of the latent modes of oscillation of a chain pendu-
lum, starting from the lowest frequency. I have calculated the modes with a hundred-

mass linear model of the chain pendulum.23 There are exactly one hundred modes for a

hundred-mass model. The table shows eight modes, corresponding to the eight lowest
frequencies, in order of ascending frequency.

The discovery of the latent modality present in the chain pendulum explains why

Galileo otherwise always emphasizes the use of thin strings (which do not show latent
modality). It also has further important implications. First, as already noted, the be-

haviour of the chain pendulum for increasingly wide angles shows correspondingly

diminished regularity. It is obvious that the chain pendulum does not have a proper
period of oscillation. It is hard to decide what the period of oscillation of the chain

pendulum should be. This is because it is difficult to fix the meaning of ‘oscillation’

since the chain constantly assumes different shapes. It appears to have a continuously
changing shape. Yet any theoretical use of the pendulum presupposes that a pendulum

has by definition a period of oscillation. As all the primary texts suggest, Galileo con-
stantly reiterated that simple pendulums are either isochronous or at least quasi-

isochronous.24

Second, Galileo chooses to focus on the regularity that the chain pendulum displays
for lower angles of oscillation and lower frequencies. There is a tendency in the be-

haviour of the chain pendulum. The operator controls the unruliness of the pendulum

by decreasing the angle of the initial release of the pendulum. Thus the operator learns

22 Galileo to Guido Ubaldo dal Monte, 29 November 1602, Edizione Nazionale, op. cit. (1), x, 97–100,
and Palmieri, op. cit. (1), 257–60; Galileo, Two New Sciences (1638), Edizione Nazionale, op. cit. (1), viii,
128–9, and Palmieri, 263–4.

23 Cf. M. Braun, ‘On some properties of the multiple pendulum’, Archive of Applied Mechanics (2003),
72, 899–910, for a discussion of a multiple-mass pendulum model. I have adopted Braun’s linear approxi-

mation for my hundred-mass model of the chain pendulum.

24 Galileo, Dialogue on the Two Chief World Systems (1632), Edizione Nazionale, op. cit. (1), vii, 474–6,
and Palmieri, op. cit. (1), 262–3.
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Table 2. The eight latent modes corresponding to the eight lowest frequencies, in
order of ascending frequency, for a hundred-mass linear model of the chain pendulum
(the black dots represent some of the masses). Mode number 1 practically matches
Galileo’s picture. During a real oscillation all the modes contribute, with different
weight factors, to the formation of a complex shape

The shape of the latent mode The shape of the latent mode

1

3

5

7

2

4

6

8

A phenomenology of Galileo’s experiments with pendulums 499

https://doi.org/10.1017/S0007087409990033 Published online by Cambridge University Press

https://doi.org/10.1017/S0007087409990033


that regularity tends to manifest itself within the range of small angles of oscillation.

Oscillations are observable, somehow, though the operator increasingly wonders about
the meaning of oscillation for a chain pendulum. Regularity and oscillation manifest

themselves together. I speculate that if Galileo started his pendulum experiment with

chain and/or rope pendulums and heavy masses, he would have encountered the unruly
latent modality. He would subsequently have decided to go on to experiment with

lighter apparatus, such as strings and light masses, in order to control the phenomena of

latent modality.
Finally, and most importantly, what would Galileo’s reaction have been to the latent

modality of the chain pendulum? It is impossible to say exactly when the chain pen-

dulum experiments were really carried out by Galileo, since the only reference to the
chain pendulum is given in one passage from the 1632 Dialogue.25 But on the assump-

tion commonly accepted by scholars that most experiments would have been done at

Padua, we can speculate on the basis of the letter to Guido Ubaldo dal Monte of 29
November 1602. This is a very early Paduan text in which Galileo states something

important about the predictive power of mathematical demonstration when put to the

test of experience. He argues that, when it comes to matter, the conclusions abstractly
demonstrated by the geometer are altered, and that there cannot be science (scienza)
of such altered conclusions. The geometer, Galileo concludes, is exempt from the re-

sponsibility of dealing with the many alterations introduced by matter in the outcome
of the effects predicted by geometrical demonstrations.26 Thus I would argue that the

1602 Galileo would have shown little or no concern for the intriguing imperfection of

experience. Matter is solely responsible for the unruly modality displayed by the chain
pendulum.

Galileo’s investigative pathways around the pendulum: (3) experience in the limit

This section deals with two crucial issues : the isochronism of simple pendulums (simple
pendulums oscillate at a constant frequency regardless of the oscillations’ amplitudes) ;

and the synchronism of pendulums of different materials (simple pendulums, whose

bobs are of different materials but whose lengths are the same, oscillate at the same
frequency).

Before starting the discussion about the isochronous behaviour of simple pendulums,

a question has to be answered concerning Galileo’s equipment. This is a question rarely
addressed by Galileo scholars. What kind of materials would Galileo have used in his

pendulum experiments? We now know that there is a reason why Galileo always pro-

poses pendulums made with thin strings (spaghetti). Thin strings are light, so their
latent modality in fact remains latent. Thin string pendulums in fact behave like small

masses moving along the circumference of a perfect circle whose radius is the length

of the string. The string remains perfectly rectilinear during the oscillations of the

25 Galileo, Dialogue on the Two Chief World Systems (1632), Edizione Nazionale, op. cit. (1), vii, 256–7
and Palmieri, op. cit. (1), 260–2.

26 Galileo to Guido Ubaldo dal Monte, 29 November 1602, Edizione Nazionale, op. cit. (1), x, 97–100,
and Palmieri, op. cit. (1), 257–60.
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pendulum. Thus it is obvious that the masses that Galileo would have preferred are

relatively small. Even to a casual experimenter it becomes immediately clear that heavy
weights are too dangerous when operating with thin strings, since the speed acquired by

the bob of a pendulum four to five braccia long, swinging from a wide angle, is indeed

very high. But Galileo almost never tells us anything precise about the weight of the lead
balls he uses. There is only one exception. In Two New Sciences he tells us that the lead
ball in the experiment of the pendulum twisting around the peg is of one to two ounces

(una palla di piombo d’ un’ oncia o due).27 This makes perfect sense. Furthermore, in his
time commonly available musket balls would indeed have weighed one or two ounces.28

If Galileo used musket balls, or, at any rate, small balls of one or two ounces and thin

strings, then his pendulum’s patterns of behaviour would have been heavily dependent
on the aerodynamic resistance acting on the string and the ball. The literature on

Galileo’s pendulum experiments consistently misses this important point : light pendu-

lums behave in a way governed by aerodynamic resistance. This is not to say that
Galileo never extended his range of operations to pendulums heavier than one or two

ounces. Although we lack any textual evidence in this regard, it is likely that a curious

experimenter, such as Galileo, would have tried different materials, different sizes and
different lengths. In the letter to Guido Ubaldo, for example, Galileo argues that the

experience he made was done with two equal bobs, but that it makes no difference if the

bobs are different.29 The point is that by experimenting with different weights and
lengths Galileo would have been exposed to the significant effects of aerodynamic re-

sistance on pendulums. In other words, he would have been exposed to the range of

patterns of behaviour that real pendulums display.
A simple pendulum, as we know, is not isochronous (Figure 8). Videos 5 to 7 (‘The

isochronism of the pendulum’) show two light pendulums of about ninety-two inches

loaded with one-ounce lead balls. The synchronous behaviour of the pendulums is
evident. As Galileo would have said, the two pendulums go together. In the third video,

the angle of release was slightly wider, so the pendulums start showing some discrep-

ancy. When experimenting with pendulums oscillating along not too wide angles, up to
about thirty to thirty-five degrees and in the range of four to five braccia, the whole

oscillation can be observed quite easily. The speed of the bob when crossing the vertical
is not too high.

Videos 9 to 12 (‘The discrepancy of the pendulum’) show the change in the visual

appearance of the pendulums as the angles of release of the bobs are progressively
increased. I call this phenomenon ‘discrepancy’. During my experiments, the best way

to get to grips with this gradual change in visual appearance (or at least the way that

worked best for me) is to focus observation on the stopping points of the two bobs, the

27 Galileo, Edizione Nazionale, op. cit. (1), viii, 205–8.
28 It is rather easy to cast lead balls since lead’s liquefying temperature is not too high. It is therefore

possible that Galileo would have cast his own lead balls, in which case he would have been free to cast balls
of different weights than musket balls (see the ‘Supporting document’ for more on lead balls and other

materials).

29 Galileo to Guido Ubaldo dal Monte, 29 November 1602, Edizione Nazionale, op. cit. (1), x, 97–100,
and Palmieri, op. cit. (1), 257–60.
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points where the bobs invert their motions. At those instants the bobs have zero speed.
At that moment it is easy to ascertain if their motions start again at the same instant, or

if they do not arrive at the inverting point at the same instant.30

Before discussing the implications of these findings, I need to stress that the results
obtained with my apparatus, the phenomena of isochronism and discrepancy, are very

robust : they occur over a wide range of the pendulum’s parameters. Robustness is

difficult to test in practice, since these tests are very time-consuming (and resource-
consuming, since one has to find numerous pieces of equipment, such as lead balls of

different weights and so on). To test robustness, I repeated a whole set of experiments

concerning the discrepancy phenomenon with two-ounce balls. The results, consistent
with the one-ounce pendulums, are documented in Videos 13 to 16 (‘The discrepancy of

the pendulum 2oz’). Robustness is where the power of computer modelling can be

applied. With the pendulum model discussed in the ‘Supporting document’ calibrated
on the real data acquired from the real apparatus, I have tested the phenomena of

isochronism and discrepancy over a range of plausible parameters. I report one example

of the phenomenon of discrepancy, in the form of so-called time histories of the angles
of two pendulums. This was obtained with the pendulum model for a pendulum of
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Figure 8. The non-isochronism of the simple pendulum. The curve shows the period of oscillation
of a simple pendulum (the time required to complete a whole oscillation) as a function of its
length. On the vertical axis, the period is represented in seconds. On the horizontal axis the angle
of the swing is represented in degrees, for angles between 0x and 90x. The curve has been calcu-
lated for a pendulum length of 2.25 metres. The variability in the period is about one half of one
second.

30 At one point in the course of the experiments, the impression emerged that the two pendulums might

somehow interfere with each other. The possible effects of interference are discussed later in this section. The
two pendulums did not interfere in any appreciable way. I tested this conclusion by leaving one of the two

pendulums at rest and operating the other to see if the motion of one might excite some movement in the

other. Video 8 (‘The stability of the pendulum’) shows that the pendulum left at rest remains at rest while the

other oscillates for a long period of time, well beyond the four to five minutes of the time window allowed.
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1.5 metres, the range of two to three braccia that Galileo talks about in the 1602 letter

(Figure 9). The diagram only gives an approximate sense of the phenomenon since it

is difficult to visualize the data mentally. In order to form a visual sense of the pendular
motion, the reader should observe the animation of the phenomenon in S-Video 2

(‘The pendulum model : discrepancy’). The pendulum model is so accurate that the

whole phenomenon could hardly be distinguished from a real case.
Both in real tests and in simulations with the pendulum model, the phenomena of

isochronism and discrepancy appear to be robust over a wide range of parameters.

Thanks to the robustness assessed with a computer model, I feel confident in concluding
that as he experimented with different pendulums and different angles Galileo could not

have missed the gradual change in behaviour from isochronism to discrepancy.

The gradual shift from isochronism to discrepancy challenges any observer of the
pendulum. What, in Galileo’s view, is the cause of the gradual shift from isochronism to

discrepancy? A few preliminary comments are necessary before answering the question.
The two most revealing texts in this regard are the 1602 letter and a passage from

TwoNew Sciences (1638).31 In these texts, Galileo stresses the fact that he numbered the

oscillations of pendulums. It remains unclear whether he actually means complete os-
cillations back and forth, or rather only half oscillations, from one point of maximum

elongation to the other. Direct observation of the isochronism of the pendulums, so

Galileo seems to hint, is arduous, but numbering the oscillations or ‘vibrations’
(Galileo uses both words interchangeably) is more secure. It is true that in the 1602
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Figure 9. The time histories of the angles of two pendulums obtained with the pendulum model,
for a pendulum of 1.5 metres. This is the range of two to three braccia that Galileo discussed in
the letter of 1602. On the vertical axis, the amplitudes of the two pendulums are represented in
degrees. On the horizontal axis, time is represented in seconds. The two pendulums started from
30x and 10x. The simulation was calculated for two minutes. This diagram only gives an ap-
proximate sense of the phenomenon. For a better sense, consult the animation of the phenomenon
in S-Video 2 (‘The pendulum model: discrepancy’).

31 Galileo to Guido Ubaldo dal Monte, 29 November 1602, Edizione Nazionale, op. cit. (1), x, 97–100,
and Palmieri, op. cit. (1), 257–60; Galileo, Two New Sciences (1638), Edizione Nazionale, viii, 277–8, and
Palmieri, op. cit. (1), 265–8.
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letter to Guido Ubaldo Galileo shows a cavalier attitude, concluding that even without

bothering to number the vibrations, Guido Ubaldo could easily ascertain the property
of isochronism by simply observing the two pendulums. But his stress on counting

oscillations in the passage published in Two New Sciences betrays the fact that he

realized that counting was the securest way of ascertaining the fact of the matter about
isochronism. Counting, however, has its own serious problems, as will be shown pres-

ently.

Most Galileo scholars have strangely neglected Galileo’s emphasis on counting, the
very claim that Galileo consistently makes. It is a most interesting claim. The numbers

of oscillations that Galileo claims he could count seem exorbitant. He speaks of hun-

dreds of oscillations. On the other hand, if he meant half oscillations, as some of his
descriptive language sometimes seems to imply, the order of one hundred oscillations is

not impossible. In fact, the human eye, as I discovered, has the power to discern accu-

rately even tiny oscillations. At any rate it is easy to count one hundred full oscillations
or two hundred half oscillations with pendulums in the range of four to five braccia and

masses in the range of one to two ounces. The reader can easily verify this by counting

the vibrations while looking at the videos. For example, with the light pendulums used
in my tests, it is easy to count more than one hundred full oscillations, without a

discrepancy of even one count, for angles up to about seventy degrees, which is more or

less the maximum angle I could reliably test with my apparatus. This accords with
Galileo’s claims that it is indeed possible to do so.32

In addition, I used the pendulum model to test this claim for four- to five-braccia

pendulums, swinging from initial amplitudes of eighty and five degrees. Galileo says
‘hundreds’, but allowing for the fact that he may have meant half oscillations, the count

of one hundred full oscillations becomes two hundred.33 The results are impressive. It is

possible to count up to one hundred full oscillations while observing a stable discrep-
ancy between the two pendulums. I conducted two virtual tests with pendulums of one

and two ounces. S-Video 80, ‘5 degrees 1 oz pendulums’, and S-Video 80, ‘5 degrees 2 oz

pendulums’, show that one hundred full oscillations are possible without a difference of
one count. In the second case, however, the discrepancy increases to almost half of one

full oscillation, in which case, if Galileo meant half oscillation, the count would amount
to a difference of one.

The discrepancy has one very peculiar characteristic. Since the motions of light pen-

dulums slow down rather quickly because of aerodynamic resistance, after a short time
from the start the pendulums enter a region of oscillations where the difference in their

periods diminishes. Thus, after accumulating for a while, the discrepancy plateaus and

appears to be rather constant over the remaining interval of observation. This, once
again, is consistently true over a wide range of parameters. The discrepancy, in other

32 Galileo, Two New Sciences (1638), Edizione Nazionale, op. cit. (1), viii, 277–8, and Palmieri, op. cit.

(1), 265–8.
33 In Two New Sciences (1638), Edizione Nazionale, op. cit. (1), viii, 277–8, Galileo seems to argue that

the count would disagree not only by not even one oscillation, but also by not even a fraction of one oscil-

lation, and for angles up to more than eighty degrees. I believe that this is an exaggeration, since the dis-

crepancy produces that kind of difference of a fraction of an oscillation.
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words, does not explode into chaotic patterns of behaviour. It remains clearly visible at

a level that seems to be perfectly stable over a long period of observation.
Furthermore, it seems mistaken to count the same number of oscillations for the two

pendulums, and assume, as Galileo does, that this is a basis for concluding that all the

oscillations are isochronous. Galileo seems well aware of this problem. In the 1602
letter he says that the counts’ identity for both pendulums is a sign of isochronism. And

in the passage from Two New Sciences, where he draws the same conclusion, he says

that the experience of counting makes us certain of isochronism. So experience fur-
nishes at most a sign, or makes us certain of the fact.

We are now in a better position to appreciate the question of the cause of the gradual

shift from isochronism to discrepancy. Galileo cannot have failed to confront the
isochronism-versus-discrepancy phenomenon. It is all too evident across the whole

spectrum of parameters. Yet we are told nothing in the published record and no sur-

viving manuscripts illuminate this issue. Yet why would Galileo otherwise have so
consistently emphasized counting rather than direct visual inspection of the phenom-

enon as the means of ascertaining the facts of the matter? I think that this is because

of the gradual shift from isochronism to discrepancy. In the published Dialogo text
where Galileo dispenses with counting, he hastens to emphasize that experience

shows that the pendulums are isochronous, or if not perfectly isochronous, then at least

quasi-isochronous (again, without using precisely these words). He does not say that
experience shows perfectly isochronous pendulums.34

Eventually Galileo must have asked himself about the cause of the gradual shift from

isochronism to discrepancy. For the early Galileo, the implications of this gradual shift
were far more serious than the imperfection of the pendulum experience. We need to go

back to the De motu writings to understand why. In the De motu writings, Galileo

vehemently opposes the Aristotelian theory of rest at the point of inversion. The
problem was addressed by Galileo under the heading of ‘point of reflection’ (punctum
reflexionis). Galileo opposes the Aristotelian view that, in order for motion to be in-

verted, such as, for example, in the case of a stone thrown upwards, which will invert its
upward motion before starting its downward motion, a rest occurs at the point of

inversion.35 Galileo reconstructs Aristotle’s main line of argument as follows:

Whatever moves when nearing a point and leaving the point, while using the point both as an
end and as a beginning, does not recede unless it stays at that point. But that which moves
towards the end point of a line and is reflected by that [end point], makes use of that [point]
both as an end and as a beginning; therefore, between access and recess, it is necessary that
[what moves] rests.36

34 Galileo,Dialogue on the Two Chief World Systems (1632), Edizione Nazionale, op. cit. (1), vii, 474–6,
and Palmieri, op. cit. (1), 262–3.

35 Galileo, Edizione Nazionale, op. cit. (1), i, 323–8, is the most elaborate version of the battery of counter-

arguments levelled by Galileo at the theory of the punctum reflexionis in the whole of De motu.
36 The argument reconstructed by Galileo is rather obscure. Galileo’s original Latin is as follows. ‘Quod

movetur ad aliquod punctum accedendo et ab eodem recedendo, ac ut fine et principio utendo, non recedet
nisi in eo constiterit : at quod ad extremum lineae punctummovetur et ab eodem reflectitur, utitur eo ut fine et
principio: inter accessum, ergo, et recessum ut stet, est necessarium ’. Galileo, Edizione Nazionale, op. cit. (1),
i, 323–4.
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Galileo’s counterargument to the theory of rest at the point of inversion is based on

five distinct independent strategies. We need not dwell on the first four, since the fifth,
the most elaborate, is that whose relevance for the young Galileo’s theory of motion

was now at stake in the face of new empirical evidence from the pendulum discrepancy.

I will only provide the gist of the fifth strategy. Two assumptions are first introduced
by Galileo.37 First, mobiles will only rest outside their own place when the virtue pre-

venting their descent is equal to the gravity of the mobiles pushing them downwards.

Second, the same mobile can be sustained in the same place by equal virtues for equal
intervals of time. Now, if a stone rests for some time at the point of inversion, then, for

the same duration, there will be equality of impelling virtue and resisting gravity. But

this is impossible since, Galileo argues, it has already been shown in another chapter of
De motu that the impelling virtue must diminish continuously. He then moves on to

reframe the argument in the form of a stronger reductio ad absurdum. We need not

follow Galileo through the details of the proof. What is at stake is clear. It is the theory
of the impelling virtue, the theory of impetus. Let us now return to the discrepancy.

It might be appealing to explain the cause of the gradual shift from isochronism to

discrepancy by saying that at the point of inversion the bobs will indeed rest for a short
while. But one could take a step further. On the assumption that the wider the oscil-

lation the rather longer the time of rest at the point of inversion, one could explain why

the discrepancy seems to accumulate faster at the beginning of the phenomenon before
levelling out and eventually becoming virtually constant. No better experience could

confirm the cause of the gradual shift from isochronism to discrepancy than observation

of the discrepancy becoming increasingly evident as the operator moves one pendulum
ever further from the vertical. Aristotle’s theory of the rest at the point of reflection

would be correct after all.

I speculate that Galileo did not reject isochronism and remained steadfast in rejecting
Aristotle’s theory of the rest at the point of reflection because inDe motu he stated that

‘experience does not teach us the causes ’.38 The norm that ‘experience does not teach us

the causes ’, which Galileo followed at this early stage, became a stabilizing factor in
Galileo’s search for a mathematical–mechanical theory of isochronism. Galileo’s com-

mitment to that norm thwarted the threat posed by the discrepancy and by the lure of
explaining the discrepancy via Aristotle’s theory of rest at the point of reflection. The

isochronism-versus-discrepancy phenomenon was destabilizing not only for a math-

ematical–mechanical theory of isochronism, but for the whole De motu, which was
entirely based on the theory of impetus as the explanatory principle of the impossibility

of rest at the point of inversion.

Experience with pendulums offered the early Galileo two opportunities. One was the
possibility of explaining the regularity of isochronism, which must have appealed to

Galileo the mathematician. The second was the possibility of explaining the gradual

shift from isochronism to discrepancy with the abhorred theory of rest at the point of
inversion, possibly rejecting isochronism altogether. The second possibility must have

37 Galileo, Edizione Nazionale, op. cit. (1), i, 326–8.
38 Experience does not teach causes, says Galileo: ‘quaerimus enim effectuum causas, quae ab experientia

non traduntur ’. Galileo, Edizione Nazionale, op. cit. (1), i, 263.
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appealed to Galileo the natural philosopher. Paradoxically, a norm regulating the

philosopher’s quest for causes aided and abetted the mathematician in the pursuit of
proof.

In a text published in TwoNew Sciences, Galileo reports pendulum experiments with

cork and lead balls. Galileo claims that two pendulums, one made with a cork ball, and
another with a lead ball one hundred times heavier than the cork ball,

reiterating a full hundred times their forward and backward motions [le andate e le tornate],
have sensibly shown that the heavy goes under the time of the light, in such a way that, neither
in a hundred nor a thousand vibrations, the heavy is ahead of time for a moment, and both go
at the same pace.39

Galileo’s wording is so carefully judged that it almost defies translation. Galileo

seems to claim that what happens is the reiteration of one hundred comings and goings

(reiterando ben cento volte per lor medesime le andate e le tornate), so that experience
shows the two bobs going at the same pace for a hundred or even a thousand vibrations.

Clearly the claim of a thousand vibrations is no more than a conclusion based on

reasoning, since Galileo has just claimed that what happens is a hundred comings and
goings. He also claims that the heavy ball is never ahead of time for a moment. Further,

the disclaimer at the end of the passage stresses that this experiment is not supposed to
show isochronism. Galileo specifies that ‘on the other hand, when the arcs traversed by

the cork were no more than five or six degrees and those of the lead no more than fifty

or sixty degrees, they are traversed under the same times’ (anzi quando gli archi passati
dal sughero non fusser più che di cinque o sei gradi, e quei del piombo di cinquanta o
sessanta, son eglin passati sotto i medesimi tempi).

Galileo’s claim about lead and cork pendulums concerns the synchronism of pen-
dulums with bobs of different materials but the same lengths. In another paper, I have

explored the context of Galileo’s claim – the theory that all bodies fall at the same speed

regardless of weight and material.40 In what follows, I will discuss the findings of my
experiments with lead and cork pendulums.

The most serious problem is Galileo’s assertion that the lead ball is one hundred times

heavier than the cork ball. In fact, cork’s specific weight is so much smaller than lead’s
that for a lead ball to be one hundred times heavier than a cork ball, either the cork

ball must be very light or the lead ball must be very heavy. Both cases present problems.

A cork ball that is too light will not oscillate long enough, while a lead ball that is too
heavy is hard to reconcile with Galileo’s indication that he is still using thin strings

(due sottili spaghetti). I have been able to count about fifty full oscillations with balls

that weigh approximately in the ratio given by Galileo.
Videos 17 and 18 (‘Cork and lead’) show tests made with balls in a ratio close but not

exactly equal to that of one to a hundred: cork ball=8 grams, lead ball=670 grams.

In Videos 19 and 20 (‘Cork and lead’) I changed the ratio so that: cork ball=18 grams,
lead ball=670 grams; and cork ball=7 grams, lead ball=670 grams. Video 21 (‘Cork

39 Galileo, Two New Sciences (1638), Edizione Nazionale, op. cit. (1), viii, 128–9, and Palmieri, op. cit.

(1), 263–4.

40 P. Palmieri, ‘Galileo’s construction of idealized fall in the void’, History of Science (2005), 43, 343–89.
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and lead’) shows that there is no interference between the pendulums. The lengths of

the two pendulums were about ninety-four inches. It is possible that the ratio indicated
by Galileo is not realistic. But it is impossible to rule out the possibility that Galileo

could operate with balls in exactly that ratio. We are left with an uncertainty.41 The

pendulums show a gradual shift from synchronism to discrepancy, with the cork ball
moving ahead. This is due to the fact that, because it decelerates rapidly, the cork ball

enters the region of small oscillations, thus starting to move ahead of the lead ball.

So, once again, experience issues a challenge to the experimenter, the transition from
passo egualissimo to discrepancy. Galileo is on safe ground while claiming that neither

in a hundred nor a thousand vibrations is the heavy ball ahead of time. In fact the

opposite happens with the gradual emergence of the discrepancy. Do the balls go at the
same pace (camminano con passo egualissimo)? For some time they do. Since Galileo is

careful not to say from what angle the balls are supposed to be released, it is quite

possible, for small oscillations, to see the balls go con passo egualissimo for some time.
If such experiments were carried out early on, as the 1604 letter seems to suggest

when Galileo claims that it would not matter if the bobs were of different weights, then

we can ask what Galileo would have made of these results in the framework of his early
De motu writings. According to the De motu Archimedean framework, specifically

heavier bodies will move faster in fluid media than specifically lighter bodies.42 In con-

cludingDe motuGalileo candidly admits that experience contradicts the proportions of
motions calculated on the basis of the Archimedean framework.43 This claim by Galileo

has thus far remained a mystery. To what experiments does he allude?44

I hypothesize that these are the experiments with lead and cork pendulums. They
seem to suggest that specifically lighter bodies will move faster than specifically heavier

bodies. How could a mighty lead ball lag behind the cork ball? Unfortunately the

Archimedean framework is silent about the resistive role of the medium. For Aristotle
and for the Aristotelians attacked by Galileo in De motu, the medium is the cause of,

not a hindrance to, the motion of projectiles. If we suspend the belief that media resist

41 In order to get closer to the 1:100 ratio, I repeated the tests with a heavier lead ball, as shown in Video

26 (‘Cork lead 4lb interference’), and Videos 27 to 29 (‘cork lead 4lb discrepancy’). The lead ball was 1812

grams and the cork ball 18.5 grams, very close to the exact ratio claimed by Galileo. As Video 26 shows, the

heavy lead ball causes some interference that somehow affects the results. The origin of this interference is
mechanical, as will be explained below in this section. Unfortunately, the experiments with the heavy lead ball

are affected by an interference that precludes further conclusions.

42 Palmieri, op. cit. (40); idem, ‘ ‘‘… spuntar lo scoglio più duro’’ : did Galileo ever think the most
beautiful thought experiment in the history of science?’, Studies in History and Philosophy of Science (2005),
36, 223–40; and idem, ‘The cognitive development of Galileo’s theory of buoyancy’, Archive for History of
Exact Sciences (2005), 50, 189–222.
43 Galileo, Edizione Nazionale, op. cit. (1), i, 273. Galileo is clear and honest. The proportions of motions

calculated according to the Archimedean rules of the specific gravities do not pass the test of experience.

Galileo does not say more about the tests.

44 An intriguing answer might be given by the tests made by Thomas Settle and Donald Miklich, even

though the experiments only aimed at determining the plausibility of the empirical basis underlying another
theory espoused by Galileo in De motu, namely the theory according to which light bodies fall faster than

heavy bodies at the beginning of a free fall. See T. Settle, ‘Galileo and early experimentation’, in Springs of
Scientific Creativity: Essays on Founders of Modern Science (ed. R. Aris, H. Ted Davis and Roger H.

Stuewer), Minneapolis, 1983, 3–20.
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motion, we can see that the latter question must have been deeply troubling for the

young Galileo. Could the medium be more effective in pushing the cork ball than the
lead ball?

A cork ball starts moving ahead of a lead ball. What is the cause of such a bizarre

phenomenon? Might a new theory of the resistance exerted by the medium be brought
to bear on the Archimedean framework, so as to prevent the latter from collapsing

in the face of negative evidence from the cork and lead pendulums? The cork and

lead pendulums somehow seem to teach us something about fluid media that is
missing in both the Aristotelian and Archimedean frameworks. Fluid media can resist

motion. They can be the cause of resistance. Does experience tell us more about causes

than we might have suspected, contrary to the De motu’s statement that ‘experience
does not teach causes’? Here we see the challenges of pendulum behaviour behind

Galileo’s crucial transition from the De motu writings to a more mature theory of

motion.
Pendulums show isochronism, synchronism and discrepancy along a continuum of

patterns of behaviour. There is no such thing, then, as the pendulum experience. The

pendulum experience is an experience in the limit, in the sense that isochronism and
synchronism tend to manifest themselves increasingly well as the parameters that con-

trol the outcome of the experiment tend to certain values. This is also true of latent

modality. Latent modality tends to disappear as the parameters that control it tend to
certain values.

Galileo’s investigative pathways around the pendulum: (4) artefacts restrained

Artefacts may be unpredictable in interesting ways. Latent modality was discovered in

the chain pendulum. In the gallows-like apparatus I built, I discovered ‘coupling’,
a phenomenon present from the very start. Coupling is an interference of some sort

between the two pendulums. Coupled pendulums may mislead the observer by tuning
themselves to each other, for example, or by driving each other. Coupling, therefore,

may determine quite bizarre oscillatory patterns. It is a fascinating phenomenon that

may affect all pendulum experiments. So far as I know, it has never been investigated in
the literature concerning Galileo’s experiments. This section briefly discusses coupling

and its consequences for pendulum experiments, and argues that we can reasonably

exclude any serious impact on Galileo’s experiments of coupling.
There are at least two forms of coupling, mechanical and aerodynamic. I made sure

that coupling did not affect my experiments by checking that the two pendulums did

not interfere with each other. This is why, as noted above, I controlled the outcome of
my experiments by always checking, in a preliminary test, that while one pendulum was

going the other stayed at rest. However, a coupling phenomenon was clearly observable

in the case of the very heavy lead ball used to test the 1:100 ratio in the cork and lead
pendulums. Its origin is mechanical. I will focus firstly on mechanical coupling, then

briefly on aerodynamic coupling.

Galileo tells us almost nothing of the set-up of his pendulums. It is perfectly possible
that he simply hung pendulums next to each other, from the ceiling of his workshop or
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bedroom, or on a wall, as shown in the diagram accompanying the 1602 letter to Guido

Ubaldo.45 I have imagined the gallows-like structure on the basis of two considerations.
First, it is a structure that allows for the two pendulums to be seen in front of each

other, thus also allowing for a better observation of their relative motions. Second, I was

inspired by a similar structure later devised by the Galilean experimenters at the
Accademia del Cimento in Florence. The horizontal arm of the structure has some

flexibility that allows the arm to bend under the forces exerted by the oscillating masses.

If the masses are modest then so are the forces, but if the masses are greater then the
forces might be considerable. However, the flexibility can be controlled by connecting

the horizontal arm with barely extensible or inextensible cables to fixed points on walls.

This is how I practically eliminated the unwanted flexibility – ‘practically ’ because in
the case of the heavy lead ball I was unable to eliminate all the flexibility. This residual

flexibility explains why coupling was observable with the heavy lead ball. The heavy

lead ball was able to drive the light cork ball for dozens of oscillations through mech-
anical coupling induced in the flexible structure, as shown in Video 26 (‘Cork lead 4lb

interference’) and Videos 27 to 29 (‘Cork lead 4lb discrepancy’).

Yet in these circumstances, under the regular alternating pull of the heavy ball, the
horizontal arm quite visibly and regularly bends to right and left through around two or

three inches at the farthest point from the joint. If Galileo ever used a structure like that

I have reinvented, and if this kind of mechanical coupling were observable when he
experimented, he must have realized something in the set-up was seriously flawed and

that a corrective was needed. Thus I do not believe that his accounts, particularly of the

cork and lead experiments, can be explained away in terms of significant mechanical
coupling phenomena of which he might have been unaware. Can we exclude the

possibility that mechanical coupling was not affecting Galileo’s pendulums under all

possible circumstances, even when operating with small masses?
While it is impossible absolutely to exclude mechanical coupling, we can at least use

computer models to investigate the case of isochronism for small masses such as the

one- or two-ounce lead balls that I think Galileo used. Consider the imaginary set-up
represented in Figure 10. Suppose that Galileo hung his pendulums from a structure

that, unknown to him, at least initially, allowed for some flexibility. Might he have been
misled by mechanical coupling into the belief that two pendulums were perfectly

isochronous? In other words, might structural flexibility subtly and viciously couple the

pendulums in such a way as to make them oscillate in tune with each other?
Consider Figure 11. A simulation was carried out for three minutes with pendulums

of one-ounce masses and strings of ninety-two inches, to observe an example of the

highly complex patterns of behaviour that may develop because of coupling. The two
pendulums drive each other. The pendulum that is started from the higher angle, which

has more energy, initially pushes the other. But the latter responds because of the in-

teraction through the structure and slows the first pendulum. The pattern at one point
shows that the phenomenon is reversed. I am convinced that this strange pattern of

behaviour is too evidently an artefact of the mechanical structure to be mistaken as

45 See the ‘Supporting document’ for reasons why this arrangement is unconvincing.
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genuine, even by naive observers. The horizontal arm’s ends alternately move back and
forth with amplitudes up to t2 cm, a fact which should alert any observer. So we can

confidently exclude the possibility that such odd examples might have been mistaken

for anything more than an exceptional result due to the particular set-up.
However, there are more subtle possibilities. Consider now Figure 11. Another

simulation was carried out for three minutes, again with pendulums of one-ounce

masses and strings of ninety-two inches. The result is subtly different. After an initial
phase of energetic interaction the two pendulums tune to each other so well that they go

on oscillating as if they were perfectly superimposed on each other. However, even in

this more delicate case, the visible motion of the ends of the horizontal arm should
alert the observer to the possibility that something in the mechanical structure of the

arrangement is affecting the oscillations of the pendulums.

Figure 10. Above : a simplified sketch of the structure, with a light horizontal arm rigidly attached
to a stronger vertical frame. Mechanical coupling is possible if the horizontal arm of the structure
bends. In this case, the points at which the strings are attached will move accordingly. Below : an
imaginary structure where a flexible horizontal arm is connected to a sturdier, fixed beam above.
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How do these results translate into dynamic visual appearances? We can form an
idea of the real dynamics of the phenomenon of coupling by animating the numerical

results obtained with the coupled pendulums. S-Video ‘Coupling 1’ and S-Video

‘Coupling 2’ animate the two patterns of behaviour diagrammatically presented in
Figure 11. Only the pendulums are shown, even though, in reality, in the scene of

experience, the oscillations would appear in their natural setting with the horizontal

arm flapping back and forth.
Consider now the possibility of aerodynamic coupling. If the pendulums are placed

very close to each other in an arrangement such as, for instance, that shown in Figure

10, or when simply hanging from a ceiling, the question arises whether aerodynamic
forces especially generated by the strings could make the two pendulums interfere

with each other. First, the observations made with one pendulum at rest and the other

oscillating again confirm that such a phenomenon was not affecting the results in my
experiments. Moreover, it is somewhat difficult to place the pendulums very close

to each other, because their planes of oscillation often tend to rotate in one way

or another. The danger of collisions tells against the idea of such an arrangement.
In conclusion, we can exclude the possibility that coupling phenomena might have

consistently vitiated the results that Galileo obtained with pendulums.
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Figure 11. Above : a spectacular yet bizarre case of coupling. On the vertical axis angles are
represented in degrees, while on the horizontal axis time is represented in seconds. The pendu-
lums drive each other while developing a highly complex pattern of behaviour. One mass was
started from 50x and one mass from 5x. The pendulum starting from the higher angle ‘pushes’ the
other pendulum, which in turn responds by amplifying its oscillation while slowing the other. The
pattern is then almost reversed. Below : a much more ambiguous and perplexing pattern. After an
initial phase of energetic interaction, the two pendulums tune to each other so well that they
continue oscillating as if perfectly superimposed on each other.
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Conclusion

Like Galileo, this author does not trust sense data, yet acknowledges that synchrony of pen-
dulums is an observable fact that in itself supports Galileo’s theoretical claim. MacLachlan
and Drake both report Galileo’s singing as a method of counting temporal units, and Settle
reports on division of bodily labour at the experimental setting. All of them claim that, in spite
of Galileo’s mistrust of the body, the sensual and the bodily were nonetheless essential for
producing as well as witnessing irregularities and discrepancies. Galileo himself held that a
companion should help out or witness the experiment. If actual witnessing were so important
to Galileo, in contrast to Aristotelian meditation, would he have been satisfied with computer
modelling? Would he see it as betraying the experiment, or improving it? Would he be scep-
tical of computer modelling, just as others were of his telescope?

I thank an anonymous referee for making these comments on a previous draft of this
paper. Though it is unclear whether Galileo himself held that a companion should

help out or witness the experiment, I like to think that Galileo would have welcomed

computer modelling in the discussion of the pendulum. As with mathematical demon-
strations, and against the Aristotelian meditator Simplicio, Galileo–Salviati famously

claims in the celebrated Dialogo that whenever mathematical proofs are available
we should gladly make use of them. The technology of computer modelling, like the

technology of mathematical proof, is only an extension of our analytical powers, not a

substitute for theory and real experiment. But if it is affordable it should be used. The
sensual and the bodily are essential for producing as well as witnessing, and calibrating,

computer models of irregularities and discrepancies, even though owing to current

division of labour the modeller’s body may not be involved in the actual making of the
computer itself.

Galileo’s pendulum was an open-ended artefact. Its elusive features challenged the

norms that presided over the tentative construction of a new methodology for science.
However, the possibility of destabilization also acted as an invitation to explore new

investigative pathways.46 Galileo’s detour around the pendulum was path-breaking.

It was a risky enterprise. The element of risk is inherent in Galileo’s new science.
Galileo’s new science emerged from a willingness to negotiate and trade theoretical

norms for stubborn facts of experience, and sometimes, no doubt, the other way round,

to the consequent discomfort of later scholars. Praxis and theory were placed on an
equal, unstable footing. In this paper, I have emphasized a phenomenological reading of

texts in the light of lived-through experiment by letting body and perception take centre

stage.

46 ‘Pathway’ in the sense articulated by F. L. Holmes, Investigative Pathways: Patterns and Stages in the
Careers of Experimental Scientists, New Haven and London, 2004.
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