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We report direct numerical simulations (DNS) of the Nusselt number Nu, the vertical
profiles of mean temperature Θ(z) and temperature variance Ω(z) across the thermal
boundary layer (BL) in closed turbulent Rayleigh–Bénard convection (RBC) with slippery
conducting surfaces (z is the vertical distance from the bottom surface). The DNS study
was conducted in three RBC samples: a three-dimensional cuboid with length L = H and
width W = H/4 (H is the sample height), and two-dimensional rectangles with aspect
ratios Γ ≡ L/H = 1 and 10. The slip length b for top and bottom plates varied from 0 to
∞. The Rayleigh numbers Ra were in the range 106 � Ra � 1010 and the Prandtl number
Pr was fixed at 4.3. As b increases, the normalised Nu/Nu0 (Nu0 is the global heat transport
for b = 0) from the three samples for different Ra and Γ can be well described by the
same function Nu/Nu0 = N0 tanh(b/λ0) + 1, with N0 = 0.8 ± 0.03. Here λ0 ≡ L/(2Nu0)
is the thermal boundary layer thickness for b = 0. Considering the BL fluctuations for
Pr > 1, one can derive solutions of temperature profiles Θ(z) and Ω(z) near the thermal
BL for b � 0. When b = 0, the solutions are equivalent to those reported by Shishkina
et al. (Phys. Rev. Lett., vol. 114, 2015, 114302) and Wang et al. (Phys. Rev. Fluids, vol. 1,
2016, 082301(R)), respectively, for no-slip plates. For b > 0, the derived solutions are in
excellent agreement with our DNS data for slippery plates.
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1. Introduction

Turbulent thermal convection with slippery surfaces is typically considered as the
predominant process of heat transport in many natural systems, for instance the oceans
(Davis 1991), the Earth’s mantle (Moore & Webb 2013) and the atmosphere of Venus
(Tritton 1975), where heat exchanges are applied on fluid–fluid interfaces. Such convection
also plays an important role in heat transport in numerous technical applications using
either superhydrophobic surfaces (Choi & Kim 2006), internal heating (Wang, Lohse &
Shishkina 2021) or injecting elastic additives – such as polymers (White & Mungal 2008)
or bubbles (Ceccio 2010) – to reduce the resistance on solid–fluid interfaces. In these
cases, the slippage can be characterised by the slip length b, which connects the velocity
us and stress (∂u/∂n)s on the surface via us = b(∂u/∂n)s. On a no-slip (NS) surface, the
velocity u = 0 leads to the slip length b = 0; while on a free-slip (FS) surface, the stress
∂u/∂n = 0, resulting in b → ∞. In the practical flows of interest, the slip length b is often
assumed to be a finite constant.

Convection flow is often considered in a layer of viscous fluid heated from below and
cooled from above, which is known as Rayleigh–Bénard convection (RBC) (Ahlers 2009;
Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010). Its properties are characterised by
the Rayleigh number Ra ≡ αgΔH3/(κν), the Prandtl number Pr ≡ ν/κ and the geometry
of the convection sample. Here g is the gravitational acceleration; Δ = Tb − Tt is the
temperature difference between the lower (Tb) and upper (Tt) horizontal plates separated
by distance H; and α, κ and ν are, respectively, the thermal expansion coefficient, the
thermal diffusivity and the kinematic viscosity of the fluid. The RBC global heat transport
is expressed in the dimensionless form, known as the Nusselt number, Nu ≡ jH/(kΔ),
with j the heat flux and k the fluid thermal conductivity.

Recent direct numerical simulation (DNS) studies have shown that a slippery surface has
complex effects on turbulent heat transport in RBC. With horizontally periodic boundary
conditions, the convection flow was found to form into different patterns, zonal flow or
large-scale circulation (LSC), depending on initial conditions and Ra (Goluskin et al. 2014;
Wang et al. 2020a; Huang & He 2022). For zonal flow, Nu for free-slip plates is ∼80 %
lower than that for no-slip plates (Goluskin et al. 2014; van der Poel et al. 2014; Von
Hardenberg et al. 2015); while for LSC, the free-slip Nu is ∼80 % higher (Huang & He
2022). In a closed RBC sample, Nu increases by ∼7 % when the sidewalls are free-slip
but the horizontal plates are no-slip (Kaczorowski, Chong & Xia 2014). For all free-slip
boundaries, the increment is above 80 % compared with all no-slip boundaries (Pandey
& Verma 2016). In free thermal convection over a horizontal heated plate, heat transport
across a free-slip surface is 60 % higher than across a no-slip surface (Mellado 2012). With
different Pr and sample geometries, the efficiencies of heat transport in RBC with slippery
surfaces are found to vary in a wide range (Goluskin 2015; Wang et al. 2020a,b; Wen et al.
2020).

Since convective heat transport is mainly determined by the structure and fluctuations
of the boundary layer (BL) in RBC (Shishkina, Weiss & Bodenschatz 2016; Weiss et al.
2018), the study of temperature BL profiles is vital for a better understanding of the
underlying mechanism. When Ra is relatively low, the BL is laminar and the mean
temperature BL profiles can be well described by the laminar Prandtl BL equations with
appropriate boundary conditions (Schlichting & Gersten 2000). In this case, Nu follows
the classical scaling Nu ∼ Raγc , with the effective exponent γc varying from 0.28 for Ra
near 108 to 0.32 for Ra near 1011 (see e.g. Ahlers et al. 2012b). When Ra is sufficiently

943 A2-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

39
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.391


Heat transport and temperature in turbulent slippery RBC

high, on the other hand, the BL is expected to be fully turbulent due to strong shear
by the turbulent interior flow. In this case, the temperature BL structure is predicted to
follow a logarithmic spatial variation near the boundaries (Kraichnan 1962; Spiegel 1971;
Shraiman & Siggia 1990; Grossmann & Lohse 2011), which has been observed in both
experiments (Ahlers et al. 2012a; Ahlers, Bodenschatz & He 2014; He, Bodenschatz &
Ahlers 2021b) and DNS (van der Poel et al. 2015). Accordingly, Nu is predicted to follow
the ultimate scaling Nu ∼ Raγu with effective exponent γu = 0.5 plus an Ra-dependent
log correction (Grossmann & Lohse 2000, 2001, 2011; Stevens et al. 2013) that comes
from the effects of the no-slip solid walls. When the aspect ratio Γ – the ratio of the
sample lateral extension to its height – is close to one, it is found that Nu ∼ Raγeff , with
the ‘local’ scaling exponent γeff � 0.38 for the transition Rayleigh number Ra∗ � 1014

(Ahlers et al. 2012b; He et al. 2012a,b, 2021b), which agrees well with the prediction for
the ultimate state by Grossmann & Lohse (2011). More experimental evidence has revealed
that the local slope γeff increases as Ra increases (He, Bodenschatz & Ahlers 2020a) and
Ra∗ increases as Γ decreases (He, Bodenschatz & Ahlers 2020b). For a slender sample
with an aspect ratio of 1/10, it is found in DNS that the classical scaling Nu ∼ Ra1/3

can hold up to Ra = 1015 (Iyer et al. 2020). For details about the aspect-ratio effects on
the ultimate-state transition, please see the review by Ahlers et al. (2022) and references
therein.

In recent years, significant advances have been made for the equations of the temperature
BL profiles for a moderate Ra between the above two extreme cases, which is related to
a class of practical convection flows. By considering turbulent viscosity and diffusivity,
equations of the mean temperature BL profiles were derived for different Pr (Shishkina
et al. 2015, 2017; Ching, Dung & Shishkina 2017; Ching et al. 2019). Equations of the
temperature variance profiles for different Pr were derived near the thermal BL (Wang, He
& Tong 2016; Xu et al. 2021), in the mixing zone (Wang et al. 2018) and in the log layer
(He, Bodenschatz & Ahlers 2021a; He et al. 2021b). In horizontal convection, where the
flow is asymmetric, equations of the mean temperature profiles were derived near the hot
and cold BLs, respectively, based on the LSC structure of the fluid (Yan, Shishkina & He
2021). The predicted temperature equations have been extensively tested in experiments
and DNS over a wide range of parameters for no-slip surfaces. With different boundary
conditions, the slippery plates also affect the temperature profiles near the thermal BL in
RBC. It still remains unclear, however, what the equations of temperature BL profiles for
slippery RBC are and how the corresponding heat transport efficiency changes with the
slip length.

In this paper, we explore in DNS the global heat transport and the temperature BL
profiles in closed turbulent RBC samples with no-slip sidewalls and slippery horizontal
plates that have a varying slip length b > 0. Many, if not most, of the studies in RBC
have focused on two ideal boundary conditions: no-slip and free-slip. That leaves a broad
parameter range in between for the studies on solid boundaries of varying slip length. That
is a primary motivation in this work. We conducted DNS in two- and three-dimensional
(2-D and 3-D) RBC samples of three different aspect ratios in the range 106 � Ra � 1010

with Pr = 4.3 (water). From the DNS, we found the normalised heat transport Nu(b)/Nu0
for different b and Ra can be overlapped onto a single master curve, once the slip
length b is normalised by the no-slip thermal BL thickness λ0. The overlapped curve can
be well described by the function Nu/Nu0 = N0 tanh(b/λ0) + 1, with N0 = 0.8 ± 0.03.
To the best of our knowledge, this scaling function is obtained in RBC for the first
time. Similar to the ideas of Shishkina et al. (2015) and Wang et al. (2016), we derived
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general equations for the profiles of both the mean temperature and temperature variance
near a slippery plate. These equations were thoroughly tested in 2-D and 3-D samples
in the studied range of Ra and b. Our data revealed that, for a fixed Pr, the equation
parameters depend only on b. For b = 0, these temperature equations are the same as
those derived by Shishkina et al. (2015) and Wang et al. (2016) for no-slip plates. For
b > 0, the general equations are expected to apply to a class of convection flows with
slippery horizontal plates, ranging from many natural processes to numerous engineering
systems.

The rest of this paper is organised as follows. We first explain the method and parameters
that were used in the DNS of RBC with slippery conducting plates in § 2. Then, § 3
presents the results of the global heat transport Nu for a varying slip length b � 0. In
§ 4 we first derive general equations for the mean temperature and temperature variance
profiles near the BL in slippery RBC. Then we show good agreement between the DNS
data and the predicted temperature profiles for varying b � 0. Finally, a brief summary is
given in § 5.

2. Direct numerical simulation

With the Oberbeck–Boussinesq approximation, the dimensionless governing equations for
incompressible turbulent RBC flow are

∇̂ · û = 0, (2.1)

∂t̂û + (û · ∇̂)û = −∇̂p̂ + 1√
Ra/Pr

∇̂2û + θ̂eẑ, (2.2)

∂t̂θ̂ + (û · ∇̂)θ̂ = 1√
Ra Pr

∇̂2θ̂ . (2.3)

The dimensionless fields of velocity û, temperature θ̂ and pressure p̂, as well as length
and time, are in the units of the free-fall velocity Uf = √

αgHΔ, the applied temperature
difference Δ, the free-fall pressure pf = ραgHΔ, the sample height H and the free-fall
time Tf = √

H/(αgΔ), respectively.
We used a finite-difference code to solve the above governing equations. The DNS

code has been used and described in detail in previous studies (Bao et al. 2015; Chen
et al. 2017; Zhang et al. 2018). Here we only mention some of the key information. The
Rayleigh numbers were in the range 106 � Ra � 1010 and the Prandtl number Pr = 4.3.
The DNS were performed in three RBC samples of different geometries. One of them was
a 3-D cuboid, as shown in figure 1(a), with length L = H, width W = H/4 and resulting
aspect ratios Γx ≡ L/H = 1 and Γy ≡ W/H = 1/4. The other two were 2-D rectangles
with aspect ratios Γ = L/H = 1 and 10, respectively. Figure 1(b) shows the schematic
diagram of the slip length b for the horizontal conducting plate. In all simulations, the
horizontal plates were set to be slippery with b � 0, and the sidewalls were no-slip and
adiabatic. All boundaries are rigid and impermeable. Thus, the dimensionless boundary
conditions are given by

û
∣∣
sidewalls = 0, (2.4)

n · ∇̂θ̂
∣∣
sidewalls = 0, (2.5)

û
∣∣
horizontal plates = b̂∂ẑû, (2.6)
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L W
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(a) (b)

Figure 1. (a) Schematic diagram of the 3-D turbulent RBC sample used for numerical simulation. The
dimensions of the sample are L : H : W = 4 : 4 : 1. (b) Schematic diagram of the slip length b and the velocity
us = b(∂u/∂n)s on the surface.

v̂
∣∣
horizontal plates = b̂∂ẑv̂, (2.7)

ŵ
∣∣
horizontal plates = 0, (2.8)

θ̂
∣∣
bottom = 0.5, θ̂

∣∣
top = −0.5, (2.9a,b)

where b̂ = b/H is the dimensionless slip length, and û, v̂ and ŵ are, respectively, the
velocity components along the x, y and z directions.

In the simulation, the governing equations were discretised by employing a conservative
second-order central difference on a staggered grid in space. The time-derivative terms
were discretised by the (implicit) backward Euler method. The diffusive terms were solved
by an implicit scheme and the convective terms were solved by an explicit scheme. Inside
the thermal BL, we used a small mesh size of 4 × 10−4 H to ensure that there are at least
20 grid points to resolve the thermal BL. Outside the BL, we used a larger mesh size of
2 × 10−3 H uniformly distributed along both the x and z directions. In all simulations, the
initial conditions (t = 0) were set to û = 0 and θ̂ = 0.

We calculated the dimensionless heat transport, the Nusselt number Nu, using
Nu ≡ √

Ra Pr 〈ŵθ̂〉V,t + 1. Here 〈·〉V,t denotes volume and time averaging. In each
simulation, we waited for a long enough time in the unit of Tf (�100Tf ) so that the system
reached a statistically steady state, and conducted time averaging after that (see table 2 in
the Appendix). The overall running time ensured that all the averages are convergent.
The minimum grid spacing was smaller than the dimensionless Kolmogorov length
scale ηK = √

Pr/[Ra(Nu − 1)]1/4 and the Batchelor length scale ηB = 1/[Ra(Nu − 1)]1/4

(Shishkina et al. 2010), which ensured adequate spatial resolution. Details of the DNS
parameters can be found in table 2.

3. Global heat transport Nu for varying slip length b

Figure 2 shows typical snapshots of temperature fields (a,c,e) and velocity fields (b,d, f )
for different values of b. The results are obtained from the 2-D sample with Γ = 1 and
Ra = 109. For a plate of finite b, as shown in panels (a–d), the LSC of the fluid has a tilted
single-roll mode with its axis along the sample diagonal. For free-slip plates, however, one
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(b)

(a)

(d)

(c)

( f )

(e)

0.2
θ

0.1

–0.1

–0.2

0

0.2

0.3
|u|

0.1

0

Figure 2. Snapshots of instantaneous (a,c,e) temperature and (b,d, f ) velocity fields for no-slip plates (a,b),
slippery plates with b/λ0 = 1.02 (c,d) and free-slip plates (e, f ). The DNS data are obtained for the 2-D RBC
sample with Γ = 1 at Ra = 109.

can find a stable double-roll mode of the LSC – one roll on top of the other – in panels (e)
and ( f ).

For comparison, as shown in figure 3, the LSC state for the 3-D sample remains the
single-roll mode for both the no-slip and free-slip plates. Recent investigations for no-slip
RBC revealed that the single-roll mode for water (Pr � 5) can slightly enhance the heat
transport compared to the double-roll mode (Xi & Xia 2008; Weiss & Ahlers 2011, 2013),
and the enhancement becomes more prominent in low-Pr fluids and for multiple-roll LSC
due to elliptical instability (Zwirner & Shishkina 2018; Zwirner, Tilgner & Shishkina
2020). With a similar mechanism, one would expect in free-slip RBC that the double-roll
mode also transports less heat than the single-roll mode.

Figures 4(a) and 4(b) show, respectively, typical snapshots of the temperature and
velocity fields from the 2-D sample with Γ = 10 and Ra = 109 for different b. For no-slip
cases, as shown in figures 4(a1) and 4(b1), the number of LSC rolls Rn increases when Γ

is stretched, and they form a stable multiple-roll mode – one roll next to the other – that
filled up the closed sample. When Rn increases by 1, van der Poel et al. (2012) revealed
that Nu increases by the amount of �NuRn+1

Rn
, the value of which decreases as Γ increases

until it saturates at a large Γ . For Ra = 108 and Γ = 10, our data show that �NuRn+1
Rn

is
2.5 % of Nu, which agrees well with the previous results by van der Poel et al. (2012).
For Ra = 109, we find that �NuRn+1

Rn
is 1.4 % of Nu. Thus, the influence of the LSC roll

number, if any, accounts for only a few per cent of Nu and decreases as Ra increases.
With the fixed initial conditions of û = 0 and θ̂ = 0, we found that the LSC roll number
is rather stable and it rarely changes over the whole averaging time (see table 2).
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(b)

(a)

0.2
θ

0.1

–0.1

–0.2

z

y
x

0

(c)

Figure 3. Snapshots of temperature and velocity fields in the 3-D sample with Γy = 1/4 and Ra = 109 for
(a) no-slip plates, (b) slippery plates with b/λ0 = 1.02 and (c) free-slip plates. The obtained fields are in the
vertical plane of y/W = 0.6.

Figure 4(a2) and 4(b2) are the results for slippery plates with b/λ0 = 1.02. It is found
that Rn decrease as b increases. When the plates are free-slip, figures 4(a3) and 4(b3)
show that the multiple-roll mode vanishes and the convection flow forms a single-roll
circulation that spans the whole interior bulk region. Compared to the zonal flow that
was observed in the DNS of free-slip RBC using a horizontally periodic boundary
condition (Goluskin et al. 2014; Wang et al. 2020a), the single-roll LSC can move
up and down along the vertical sidewalls. This flow motion helps enhance the vertical
heat transport compared to the zonal flow, and thus yields higher efficiency of heat
transport.

Now, we discuss the dependence of heat transport Nu on the slip length b. Figure 5(a)
shows the reduced Nu/Ra0.312 as a function of Ra obtained from the three closed samples
for different values of the normalised b/H. We chose the scaling Ra0.312 since it was
well established in the classical RBC regime for 109 � Ra � 1012 (Ahlers et al. 2012b;
He et al. 2012b). One can see in figure 5(a) that the classical scaling also roughly holds
for different aspect ratios and for different values of b/H: only the prefactor increases as
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(b1)

(b2)

(b3)

(a1)

(a2)

(a3)

0.2

0.1

–0.1

–0.2

0

0.2

0.3

|u|
0.1

0

θ

Figure 4. Snapshots of (a1–a3) temperature and (b1–b3) velocity fields obtained from the 2-D sample with
Γ = 10 and Ra = 109. Results are for (a1,b1) no-slip plates, (a2,b2) slippery plates with b/λ0 = 1.02 and
(a3,b3) free-slip plates.

b/H increases, and reaches the maximal value when the plates are free-slip. The data (see
table 2) show that the scalings of NuF(Ra) for free-slip RBC in 2-D and 3-D are nearly the
same, differing only by a constant factor. This is a consistent extension of previous results
for no-slip RBC (van der Poel, Stevens & Lohse 2013).

We plot in figure 5(b) the ratio NuF/Nu0 as a function of Ra for different Γ . Here Nu0
and NuF represent the normalised heat flux for no-slip and free-slip plates, respectively.
In the 2-D sample with Γ = 1, we find NuF/Nu0 � 1.8 nearly independent of Ra, and
the ratio is ∼6 % lower than those in the other two samples, where the LSC for free-slip
plates remains the single-roll mode. As discussed above, such small deviations are largely
attributed to different roll modes of the LSC, while the effects of the slippery plates on Nu
are essentially the same in both 2-D and 3-D closed RBC.

Figure 5(c) shows the results for Nu/Nu0 with Γ = 1. It is found that the Nu data for
different Ra and b collapse onto a single master curve once b is rescaled by λ0. Here
λ0 ≡ H/(2Nu0) is the thermal BL thickness for no-slip plates. Over the studied parameter
range, all the Nu/Nu0 data closely follow the function Nu/Nu0 = N0 tanh(b/λ0) + 1, with
N0 = 0.8 ± 0.03.

4. Temperature boundary-layer profiles in slippery RBC

4.1. Equations of the mean temperature and temperature variance profiles
In this section, we derive equations for the dimensionless profiles of the mean temperature
Θ and temperature variance Ω near the BL in slippery RBC. The method is based on the
ideas in previous studies for no-slip RBC (Shishkina et al. 2015; Wang et al. 2018).

We consider a quasi-2-D convective flow over an infinite horizontal plate. With the
Reynolds decomposition and the BL approximation, one obtains the mean temperature
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Ra = 1010

Γ = 1 (2-D)
Γ = 10 (2-D)
Γy = 1/4 (3-D)

Γ = 1 (b/H = 10–1)
Γ = 1 (b/H = 10–2)
Γ = 1 (b/H = 10–3)
Γ = 1 (NS)

Γ = 10 (FS)
Γ = 10 (NS)
Γ = 1 (FS)

Γy = 1/4 (FS)
Γy = 1/4 (NS)

b/λ0

Ra
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1.2

1.4

1.6

1.8
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N
u 0

N
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/
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N

u/
R

a0.
31

2

(b)

(a)

(c)

Figure 5. (a) Plot of Nu/Ra0.312 as a function of Ra from 2-D and 3-D DNS for different Γ and b/H. Symbols
correspond to Γ = 1 with no-slip plates (red open circles), b/H = 10−3 (grey crosses), b/H = 10−2 (black
open diamonds), b/H = 10−1 (green stars) and free-slip plates (red solid circles). Blue open (solid) triangles
are for Γ = 10 with no-slip (free-slip) plates. Red open (solid) squares are for Γy = 1/4 with no-slip (free-slip)
plates. (b) Plot of NuF/Nu0 as a function of Ra in 2-D and 3-Dsamples for Γ = 1 (black circles), Γ = 10 (blue
triangles) and Γy = 1/4 (red squares). (c) Plot of Nu/Nu0 as a function of b/λ0 on a logarithmic scale. The
DNS data are obtained in the 2-D sample with Γ = 1 for varying Ra = 106 (grey crosses), 107 (blue triangles),
108 (green squares), 109 (black circles) and 1010 (red diamonds). The red dashed line represents the function
Nu/Nu0 = N0 tanh(b/λ0) + 1, with N0 = 0.8. Here Nu0 and NuF represent the normalised heat flux for no-slip
and free-slip plates, respectively; and λ0 ≡ H/(2Nu0) is the thermal BL thickness accordingly.

BL equation,

〈u〉∂x〈θ〉 + (〈w〉 − ∂zκt)∂z〈θ〉 = (κ + κt)∂
2
z 〈θ〉, (4.1)

with the eddy thermal diffusivity

κt = −〈w′θ ′〉/∂z〈θ〉. (4.2)

Here and below, 〈·〉 denotes average over time; 〈θ〉, 〈u〉 and 〈w〉 are long-time averages
of temperature, horizontal velocity and vertical velocity, respectively; and θ ′(x, z, t),
u′(x, z, t) and w′(x, z, t) are their fluctuations. For an incompressible fluid, the continuity
equation is

∂xu′ + ∂zw′ = 0. (4.3)

943 A2-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

39
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.391


M. Huang, Y. Wang, Y. Bao and X. He

On the slippery plate with z = 0 and b > 0, both θ ′ and v′ vanish, while u′ and ∂xu′
exist, leading to ∂zw′ /= 0. Thus, one has

〈w′θ ′〉 = ∂z〈w′θ ′〉 = 0 (4.4)

and
∂2

z 〈w′θ ′〉 /= 0. (4.5)

Using the dimensionless length ξ = z/λ, with λ ≡ H/(2Nu) being the thermal BL
thickness near the slippery plate, one finds that κt and its derivatives with respect to ξ

vanish at the plate, i.e.

κt
∣∣
ξ=0 = (κt)ξ

∣∣
ξ=0 = 0, (κt)ξξ

∣∣
ξ=0 /= 0. (4.6a,b)

For small ξ , κt can be approximated by

κt/κ ≈ mξp, (4.7)

with a dimensionless constant m > 0 and an effective exponent p � 2 varying with the
degree of slippage. For Pr > 1, the solution of (4.1) is given by (Shishkina et al. 2015)

Θ(ξ) ≡ θbottom − 〈θ(ξ)〉
Δ/2

=
∫ ξ

0
(1 + mηp)−c dη, (4.8)

where c � 1 is a parameter satisfying Θ(∞) = 1, and thus

m = [Γ (1/p)Γ (c − 1/p)/( pΓ (c))]p, (4.9)

where Γ (·) denotes the gamma function. It is noteworthy that (4.7) to (4.9) determine
a general form of the mean temperature profiles Θ(ξ) in slippery RBC with different
b. When b → ∞ for free-slip plates, the leading term in (4.7) yields p = 2. When b =
0, all terms in (4.6a,b) vanish on the no-slip plates at ξ = 0. It leads to p = 3 and the
corresponding Θ(ξ) profiles that are the same as the previous results found by Shishkina
et al. (2015). In a more general case, the value of p is expected to be between 2 and 3.

The dimensionless form of temperature variance η = 〈θ ′2〉 is defined by

Ω ≡ η/η0. (4.10)

Here η0 is the maximal value of η. In the BL, the equation of Ω is given by (Wang et al.
2016)

η0(〈u〉∂xΩ + 〈w〉∂zΩ) − 2κt(∂z〈θ〉)2 − ∂z(κf ∂zη) = κη0∂
2
z Ω − 2εθ , (4.11)

with the thermal dissipation rate

εθ = κ[〈(∂xθ
′)2〉 + 〈(∂zθ

′)2〉] (4.12)

and the turbulent diffusivity for temperature variance,

κf = −〈w′θ ′2〉/∂zη. (4.13)

Since both θ ′ and θ ′2 are advected by the same local velocity u′, one would expect that the
effects of the BL fluctuations on them are similar. Thus on the slippery plates at ξ = 0, κf
can be approximated by

κf /κ ≈ nξp, (4.14)

with the prefactor n > 0.
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Using (4.14) and the mean temperature equation (4.8) above, one can write the three
terms on the left-hand side of (4.11) as follows:

η0(〈u〉∂xΩ + 〈w〉∂zΩ) = −η0κ

λ2 βξp−1 dΩ(ξ)

dξ
, (4.15)

−2κt(∂z〈θ〉)2 = −κ
Δ2

2λ2
mξp

(1 + mξp)2c (4.16)

and

− ∂z(κf ∂zη) = −npξp−1κη0
∂Ω(ξ)

∂ξ

1
λ2 − nξpκη0

∂2Ω(ξ)

∂ξ2
1
λ2 , (4.17)

where β = pm(c − 1).
The right-hand side of (4.11) can be written as

κη0∂
2
z Ω = κη0

∂2Ω(ξ)

∂ξ2
1
λ2 (4.18)

and

− 2εθ = −2κ
η0

λ2

[
1
4

[dΩ(ξ)/dξ ]2

Ω(ξ)
+ γΩ(ξ)

]
. (4.19)

Here γ = 2λ2(1/l2x + 1/l2z ), with lx and lz being the Taylor microscales of temperature
fluctuations in the x and z directions, respectively.

Taking (4.15) to (4.19) into (4.11), one obtains a general ordinary differential equation
of Ω for slippery RBC:

(1 + nξp)
d2Ω(ξ)

dξ2 + (β + np)ξp−1 dΩ(ξ)

dξ
− [dΩ(ξ)/dξ ]2

2Ω(ξ)

+ Δ2

2η0

mξp

(1 + mξp)2c − 2γΩ(ξ) = 0. (4.20)

Note that for p = 3, (4.20) is equivalent to equation (20) in Wang et al. (2016) for no-slip
plates.

With the initial conditions Ω(ξ0) = 1 and dΩ(ξ0)/dξ = 0 at the peak position ξ0

of Ω(ξ), (4.20) yields the solution Ω(ξ ; p, c, Δ2/η0, n, γ ) for the general form of
temperature variance profiles Ω(ξ) near the plate. The values of the maximal normalised
temperature variance Δ2/η0 and the peak position ξ0 can be obtained directly from the
temperature data. The values of γ � 1 and ξ0 � 0.85 were found for Pr = 4.4 and 7.6 in
3-D experiments and DNS (Wang et al. 2016, 2018), and they depend weakly on Pr and
the sample geometry. The parameters p, c and n are determined by the fits of (4.7), (4.8)
and (4.14) to the temperature data.

4.2. DNS data for the mean temperature and temperature variance
Figure 6(a) shows the normalised turbulent diffusivities κt/κ for the temperature
fluctuation θ ′ as a function of ξ . The DNS data were obtained from the 2-D sample with
Γ = 1 and the 3-D sample with Γy = 1/4. Over the studied Ra range 106 � Ra � 1010,
the κt/κ data from different samples fall into two distinct groups: one for no-slip plates and
the other for free-slip plates. For ξ � 1, we find the two groups of data closely follow the
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103

NS, Ra = 108 (2-D)
NS, Ra = 109 (2-D)
NS, Ra = 1010 (2-D)
NS, Ra = 109 (3-D)

FS, Ra = 106 (2-D)
FS, Ra = 107 (2-D)
FS, Ra = 108 (2-D)
FS, Ra = 109 (2-D)
FS, Ra = 1010 (2-D)
FS, Ra = 109 (3-D)

10–2 10–1 100

ξ
101

10–5

10–3

10–1

101

103
(b)

(a)

Figure 6. Normalised turbulent diffusivities (a) κt/κ and (b) κf /κ as a function of ξ in logarithmic scales for
no-slip (NS) and free-slip (FS) horizontal plates. The DNS data are obtained from the 2-D sample with Γ = 1
and the 3-D sample with Γy = 1/4 for different Ra. The two lines in panel (a) represent the power function
κt/κ = mξp with the parameters m = 0.73, p = 2 (red solid line) and m = 0.85, p = 3 (blue dashed line). In
panel (b) they represent the power function κf /κ = nξp with n = 0.85, p = 2 (red solid line) and n = 1.13,
p = 3 (blue dashed line).

power function κt/κ = mξp from (4.7) with different values of m and p. For no-slip plates,
the value p = 3 is consistent with previous DNS results obtained in a 3-D cylindrical
sample (Shishkina et al. 2015) and a thin disk (Wang et al. 2018). The value m = 0.85
is close to the thin disk (m = 0.8), but about 1.5 times lower than the cylindrical sample,
indicating relatively less BL fluctuations in the 2-D or quasi-2-D convection flows. For
free-slip plate, our result shows p = 2, which agrees with the predicted value in § 4.1.

Figure 6(b) shows the results of normalised turbulent diffusivity κf /κ for the
temperature variance θ ′2 obtained from the same simulations as those for κt/κ . It is found
that the κf /κ data in the two RBC samples for different Ra also fall into two groups. Over
the range ξ � 1, the no-slip data closely follow the power function κf /κ = 1.13ξ3, which
is consistent with the previous results in the thin disk (Wang et al. 2018). For free-slip
plates, the κf /κ data are found to be well described by the power function κf /κ = 0.85ξ2.

Figures 7(a) and (b) show similar results of κt/κ and κf /κ , respectively, for different
values of b. All the data were obtained from the 2-D sample with Γ = 1 and Ra = 109. In
both panels, the diffusivities are compensated by ξ2 in order to present an enlarged view of
their evolution as the dimensionless slip length b/H. In the BL for ξ � 0.6, both κt/κ and
κf /κ follow a power-law scaling of ξp, with the exponent p varying monotonically from
3 to 2 as b/H increases from 0 to ∞. For a given b, one sees that the scaling exponents
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10–2

10–1
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b/H = 10–2

b/H = 10–3

b/H = 5 × 10–4

10–2 10–1 100

10–2

10–1

100

(b)

(a)

(κ
f/

κ
)/

ξ2
(κ

t/
κ
)/

ξ2

ξ

ξ2

ξ3

ξ2.3

ξ2.5

ξ2.7

Figure 7. Normalised turbulent diffusivities (a) κt/κ and (b) κf /κ as a function of ξ for slippery horizontal
plates with varying b/H. The DNS data are obtained from the 2-D sample with Γ = 1 and Ra = 109. The
symbols in the two panels indicate data for different values of b/H = 0 (red circles), 5 × 104 (blue squares),
10−3 (grey triangles), 10−2 (green pluses) and for free-slip plates (black diamonds). The lines in the two panels
represent the power functions κt/κ = mξp and κf /κ = nξp, respectively, with the effective exponent (from top
to bottom near the left edge) p = 2.0, 2.3, 2.5, 2.7 and 3.0.

for both diffusivities are the same. This is consistent with the assumption made above, in
which the BL fluctuations have similar effects on both θ ′ and θ ′2.

Thus, both figures 6 and 7 show that the turbulent diffusivities κt/κ and κf /κ in the
BL can be approximated by the power-law scaling in (4.7) and (4.14), respectively. For
different values of b, we obtain the exponent p from the fits of (4.7) and (4.14) to the
Γ = 1 data in the range 107 � Ra � 1010, and show p as a function of b/λ0 in figure 8.
The result shows that for b/λ0 � 0.03 the obtained exponent p = 3, which indicates that
the temperature BL profiles remain roughly the same as those for no-slip plates. In the
range 0.03 � b/λ0 � 10, the exponent decreases monotonically from p = 3 to p = 2 as
b/λ0 increases. This demonstrates a gradual change of the BL fluctuation intensity from
no-slip to free-slip boundaries. The accompanying Nu increment, as shown in figure 5(c),
accounts for ∼97 % of the total heat flux increment due to the boundary condition change.
When b/λ0 is beyond 10, we have p = 2, and in this case the temperature BL profiles, as
well as the heat flux, are nearly the same as those for free-slip plates.
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10–2 10–1 100 101

Ra = 107

Ra = 108

Ra = 109

Ra = 1010

b/λ0

2.0

2.5p

3.0

Figure 8. Dependence of the exponent p on the normalised slip length b/λ0 in semi-log scales. The DNS data
are obtained in the Γ = 1 sample with different Ra = 107 (blue triangles), 108 (green squares), 109 (black
circles) and 1010 (red diamonds).

b/λ0 p c m Δ2/η0 n γ ξ0

0 3.00 ± 0.05 1.20 ± 0.02 1.21 ± 0.02 89.2 ± 0.4 1.13 ± 0.02 0.91 ± 0.01 0.85 ± 0.05
0.10 2.50 ± 0.05 1.40 ± 0.02 1.00 ± 0.02 96.0 ± 0.4 0.96 ± 0.02 1.00 ± 0.01 0.85 ± 0.05
1.02 2.30 ± 0.05 1.47 ± 0.02 0.96 ± 0.02 104.0 ± 0.4 0.90 ± 0.02 1.40 ± 0.01 0.85 ± 0.05
∞ 2.00 ± 0.05 1.80 ± 0.02 0.73 ± 0.02 124.4 ± 0.4 0.85 ± 0.02 1.46 ± 0.01 0.85 ± 0.05

Table 1. Values of the parameters used to calculate Θ(ξ) and Ω(ξ) that are shown in figures 9 and 10.

Table 1 lists the exponent p and other equation parameters for different b/λ0. With these
values, one can calculate the general equations for the mean temperature profiles Θ(ξ) and
the temperature variance profiles Ω(ξ) using (4.8) and (4.20), respectively.

Finally, we turn to the DNS results for the mean temperature Θ and temperature variance
Ω , and examine the predicted equations for their BL profiles. Figure 9(a) shows Θ(ξ) as a
function of ξ obtained from the 2-D sample with Γ = 1 and the 3-D sample with Γy = 1/4
at different Ra. It is found that the Θ(ξ) data fall into two groups – one for no-slip plates
and the other for free-slip plates – both independent of Ra and the sample geometry. With
the values of m and p obtained from figure 6(a), we calculated the Θ(ξ) curves using the
predicted equations (4.8) and (4.9), and plot them in figure 9(a). It is clearly seen that, for
either no-slip or free-slip plates, the calculated Θ(ξ) curve can well describe the DNS data
for ξ up to 3.

Figure 9(b) shows the corresponding Ω(ξ) as a function of ξ from the same DNS as
in figure 9(a). Similar to the results of Θ(ξ), the Ω(ξ) profiles for no-slip and free-slip
plates are overlapped respectively onto two separate groups, which are independent of Ra
and the sample shape. The two groups of datasets have nearly the same peak position
ξ0 = 0.85. In figure 9(b), we also plot the numerical solutions Ω(ξ ; p, c, Δ2/η0, n, γ ) of
(4.20) with ξ0 = 0.85 and the other parameters listed in table 1. It is seen that the predicted
Ω(ξ) curves for no-slip and free-slip plates can well fit the corresponding DNS data for
ξ � 1.5. Beyond ξ � 2, the predicted curves start to deviate from the data because the
power-law scaling of κf /κ no longer holds.
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FS, Ra = 109 (2-D)

FS, Ra = 1010 (2-D)

FS, Ra = 109 (3-D)
p = 2.0, c = 1.80

NS, Ra = 108 (2-D)

NS, Ra =109 (2-D)

NS, Ra =1010 (2-D)

NS, Ra =109 (3-D)
p = 3.0, c = 1.20

3210

0.25

0.50

0.75

1.00

Ω(ξ; 3.0, 1.20, 89.2, 1.13, 0.91)
Ω(ξ; 2.0, 1.80, 124.4, 0.85, 1.46)

ξ

Ω(ξ)

Θ(ξ)

(a)

(b)

Figure 9. Plots of (a) Θ and (b) Ω as functions of ξ obtained in the DNS for different Ra from the 2-D sample
with Γ = 1 and the 3-D sample with Γy = 1/4. The red solid and blue dashed lines in panel (a) represent the
calculated Θ(ξ) using (4.8). In panel (b), they are the numerical solutions Ω(ξ ; p, c, Δ2/η0, n, γ ) of (4.20)
with ξ0 = 0.85. The values of the parameters used to calculate Θ(ξ) and Ω(ξ) are listed in table 1.

To further examine the predicted general temperature equations (4.8) and (4.20) for
slippery plates, we show in figures 10(a) and 10(b), respectively, the Θ(ξ) and Ω(ξ)

BL profiles for varying slip lengths b/λ0. All the DNS temperature data were obtained
from the 2-D samples with Γ = 1 and 10 at Ra = 109. We also calculated the Θ(ξ) and
Ω(ξ) data from (4.8) and (4.20) with the parameters listed in table 1, and plot them in
figures 10(a) and 10(b), respectively. Excellent agreements are found between the predicted
temperature BL profiles and the temperature data for varying Γ and b/λ0. It is noted that
all the parameters used in the temperature equations depend only on the slip length b, and
there are no additional adjustable parameters in the calculations of Θ(ξ) and Ω(ξ). As
summarised in table 1, the peak position ξ0 for Ω(ξ) remains the same, while all other
parameters in the predicted temperature forms change monotonically with b/λ0.

In figure 10(a), one sees that the Θ(ξ) BL profiles obtained from the Γ = 10 sample for
both no-slip and free-slip plates agree well with the corresponding Θ(ξ) curves calculated
using (4.8). The calculated Θ(ξ) curves are the same as those in figure 9(a) for the
other two samples. Similar agreements are also found in figure 10(b) for the Ω(ξ) data.
The results indicate that the influences of the slippery plates on both mean temperature
and temperature variance profiles remain the same in the three samples over the studied
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0.6 1.0 1.4

0.7

0.8

0.9

1.8

32
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Ω(ξ; 3.0, 1.20, 89.2, 1.13, 0.91)
Ω(ξ; 2.5, 1.40, 96.0, 0.96, 1.00)
Ω(ξ; 2.3, 1.47, 104.0, 0.90, 1.40)
Ω(ξ; 2.0, 1.80, 124.4, 0.85, 1.46)

Figure 10. Similar results as in figure 9 for (a) Θ and (b) Ω , obtained from the 2-D samples with Γ = 1
and 10. The various symbols in the two panels correspond to different Γ and b/λ0: red diamonds, Γ = 10,
free-slip plates; green squares, Γ = 1, b/λ0 = 1.02; black triangles, Γ = 1, b/λ0 = 0.10; and blue circles,
Γ = 10, no-slip plates. The lines in panel (a) represent (4.8), and those in panel (b) are the solutions
Ω(ξ ; p, c, Δ2/η0, n, γ ) of (4.20) with ξ0 = 0.85. The inset in panel (a) shows an enlarged view. The values of
the parameters used to calculate Θ(ξ) and Ω(ξ) are listed in table 1. All the data are obtained at Ra = 109 and
Pr = 4.3.

Ra range. One would expect that such influences have a weak dependence on the sample
geometry and Ra, but rather would be dominated by the slip length of the plates. Thus
the predicted equations (4.8) and (4.20) for the temperature BL profiles are expected to be
valid in a class of thermal convection flows with slippery conducting plates.

5. Summary

We have carried out a systematic DNS study of the Nusselt number and the temperature
BL profiles in turbulent Rayleigh–Bénard convection with slippery horizontal conducting
plates. The slip length b of the plates varied from 0 for no-slip to ∞ for free-slip plates.
The DNS were conducted in the Ra range 106 � Ra � 1010 and for a fixed Pr = 4.3. Three
closed samples were used in the DNS. One is a 3-D cuboid sample with the dimension of
L : H : W = 4 : 4 : 1 and the other two are 2-D rectangular samples with Γ = 1 and 10,
respectively.

For a given b > 0, the obtained Nu data for slippery RBC approximately follow the
classical Nu scaling that is observed in no-slip RBC, differing only by an increasing
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prefactor as b increases. The reduced heat transport Nu/Nu0 from the three samples
for different Ra and b can be overlapped onto a single master curve, once the slip
length b is normalised by the thermal BL thickness λ0 ≡ H/(2Nu0). Our DNS results
show that the overlapped Nu/Nu0 data follow the scaling Nu/Nu0 = N0 tanh(b/λ0) +
1, with N0 = 0.8 ± 0.03. This indicates that the slip length can be used as an
appropriate characteristic length scale to calculate the heat transport enhancement in
slippery RBC.

Near the BL, we calculated the turbulent diffusivities κt for the temperature fluctuations
θ ′ and κf for the temperature variance θ ′2. The data were obtained from the three closed
samples for different Ra and b. It is found that both κt and κf can be approximated by a
power-law scaling ∼ξp, with an effective scaling exponent p varying from 3 for no-slip to
2 for free-slip plates. These results suggest that the influences of BL fluctuations on both
θ ′ and θ ′2 are similar, and show the evolution of such influences as a varying slip length.
For b/λ0 � 0.03, we find p = 3 and the corresponding temperature profiles Θ(ξ) and
Ω(ξ) remain roughly the same as those for no-slip plates. In the range 0.03 � b/λ0 � 10,
our results indicate that the BL fluctuation intensity gradually increases from no-slip to
free-slip cases, which accounts for ∼97 % of the total Nu enhancement as b/λ0 increases.
When b/λ0 � 10, the obtained Θ(ξ), Ω(ξ) and Nu are nearly the same as those for
free-slip plates. The analytical relationship between the exponent p and the slip length
b is worthy of further investigations in the future.

From these findings, we derived general equations (4.8) and (4.20) for the temperature
BL profiles of Θ and Ω , respectively, in slippery RBC with b � 0. When b = 0, the
predicted temperature BL profiles are consistent with previous results for no-slip RBC
(Shishkina et al. 2015; Wang et al. 2016). When b > 0, they are in excellent agreement
with our DNS data obtained from different samples with varying Ra and b. Our work
thus provides general functional forms of Nu/Nu0, Θ and Ω across the BL in slippery
RBC. The predicted forms represent the essential effects from the slippery plates on the
heat transport and temperature BL profiles, which have weak dependence on the sample
geometry and Ra in the studied range. We expect that these scaling forms can be applied
to a class of thermal convection flows with slippery conducting plates, ranging from
industrial applications to geophysical turbulence.
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Appendix

Details of the DNS parameters and datasets calculated in the numerical studies are given
in table 2.
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Γ Ra b/H b/λ τf Nx × Nz Nx × Ny × Nz Nu

1 (2-D) 106 0 0 1000 512 × 576 — 6.50
1 (2-D) 106 10−2 0.13 1000 512 × 576 — 7.30
1 (2-D) 106 10−1 1.30 1000 512 × 576 — 10.50
1 (2-D) 106 ∞ ∞ 1000 512 × 576 — 11.68
1 (2-D) 107 0 0 1000 512 × 576 — 12.92
1 (2-D) 107 10−3 0.03 1000 512 × 576 — 13.45
1 (2-D) 107 10−2 0.26 1000 512 × 576 — 15.66
1 (2-D) 107 10−1 2.58 1000 512 × 576 — 22.30
1 (2-D) 107 ∞ ∞ 1000 512 × 576 — 23.05
1 (2-D) 108 0 0 1000 512 × 576 — 25.65
1 (2-D) 108 10−3 0.05 1000 512 × 576 — 27.06
1 (2-D) 108 10−2 0.51 1000 512 × 576 — 34.96
1 (2-D) 108 10−1 5.13 1000 512 × 576 — 44.72
1 (2-D) 108 ∞ ∞ 1000 512 × 576 — 46.50
1 (2-D) 109 0 0 500 1024 × 1152 — 51.22
1 (2-D) 109 10−4 0.01 500 1024 × 1152 — 51.57
1 (2-D) 109 2 × 10−4 0.02 500 1024 × 1152 — 51.85
1 (2-D) 109 5 × 10−4 0.05 500 1024 × 1152 — 53.29
1 (2-D) 109 10−3 0.10 500 1024 × 1152 — 55.59
1 (2-D) 109 2 × 10−3 0.20 500 1024 × 1152 — 59.97
1 (2-D) 109 5 × 10−3 0.51 500 1024 × 1152 — 71.00
1 (2-D) 109 10−2 1.02 500 1024 × 1152 — 81.62
1 (2-D) 109 2 × 10−2 2.05 500 1024 × 1152 — 88.75
1 (2-D) 109 5 × 10−2 5.12 500 1024 × 1152 — 91.00
1 (2-D) 109 10−1 10.24 500 1024 × 1152 — 91.29
1 (2-D) 109 ∞ ∞ 500 1024 × 1152 — 93.61
1 (2-D) 1010 0 0 500 1024 × 1152 — 104.02
1 (2-D) 1010 10−3 0.21 500 1024 × 1152 — 118.76
1 (2-D) 1010 10−2 2.08 500 2048 × 2304 — 183.09
1 (2-D) 1010 ∞ ∞ 500 2048 × 2304 — 186.45
10 (2-D) 107 0 0 500 5120 × 576 — 13.12
10 (2-D) 107 ∞ ∞ 500 5120 × 576 — 25.15
10 (2-D) 108 0 0 500 5120 × 576 — 25.83
10 (2-D) 108 ∞ ∞ 500 5120 × 576 — 49.44
10 (2-D) 109 0 0 500 5120 × 576 — 51.62
10 (2-D) 109 ∞ ∞ 500 10 240 × 1152 — 98.08
1/4 (3-D) 107 0 0 250 — 512 × 64 × 576 16.30
1/4 (3-D) 107 ∞ ∞ 250 — 512 × 64 × 576 31.02
1/4 (3-D) 108 0 0 250 — 512 × 64 × 576 31.86
1/4 (3-D) 108 ∞ ∞ 250 — 512 × 64 × 576 60.42
1/4 (3-D) 109 0 0 250 — 512 × 64 × 576 63.64
1/4 (3-D) 109 ∞ ∞ 250 — 1024 × 128 × 1152 120.02

Table 2. The DNS parameters and calculated datasets in the numerical studies. The columns from left to right
indicate parameters in the conducted DNS of three RBC samples: Γ , Ra, the dimensionless slip length b/H
and b/λ (with λ being the thermal BL thickness), the averaging time τf in free-fall time units, the number of
nodes in each direction of the computational mesh in 2-D (Nx × Nz) and 3-D (Nx × Ny × Nz) cases, together
with the obtained Nu.
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