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We introduce a coupled multiscale, multiphysics method (CM3) for solving for the
behaviour of rarefied gas flows. The approach is to solve the kinetic equation for
rarefied gases (the Boltzmann equation) over a very short interval of time in order
to obtain accurate estimates of the components of the stress tensor and heat-flux
vector. These estimates are used to close the conservation laws for mass, momentum
and energy, which are subsequently used to advance continuum-level flow variables
forward in time. After a finite time interval, the Boltzmann equation is solved again
for the new continuum field, and the cycle is repeated. The target applications for this
type of method are transition-regime gas flows for which standard continuum models
(e.g. Navier–Stokes equations) cannot be used, but solution of Boltzmann’s equation is
prohibitively expensive. The use of molecular-level data to close the conservation laws
significantly extends the range of applicability of the continuum conservation laws.
In this study, the CM3 is used to perform two proof-of-principle calculations: a low-
speed Rayleigh flow and a thermal Fourier flow. Velocity, temperature, shear-stress
and heat-flux profiles compare well with direct-simulation Monte Carlo solutions for
various Knudsen numbers ranging from the near-continuum regime to the transition
regime. We discuss algorithmic problems and the solutions necessary to implement
the CM3, building upon the conceptual framework of the heterogeneous multiscale
methods.
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1. Introduction
A variety of physical models, ranging from those that describe basic molecular

interactions governed by Newton’s laws to those that use continuum approximations,
are commonly used to treat gas flows. This hierarchy of models provides successively
more detailed information about the underlying physics. The regions of validity of
these models are described by sets of physical parameters, such as the Knudsen
number or the Mach number. When the regions of validity of these parameters
overlap, more than one model can be used (Oran, Oh & Cybyk 1998).

† Email address for correspondence: dakessle@lcp.nrl.navy.mil

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

29
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010002934


Multiscale method for rarefied flows 263

For gas flows, the Knudsen number is an important parameter for determining
how molecular-level interactions affect the continuum-level transport of momentum
and energy. It is defined as Kn = λ/L, where λ is the mean free path of the gas
molecules and L =φ/|∂φ/∂x| is a length scale associated with the spatial variation
in the macroscopic flow properties, φ. When Kn is small, there are enough molecular
collisions for the gas to be described by a continuum model, and the Navier–Stokes
equations can be used. For large values of Kn , the constitutive models used in the
Navier–Stokes equations break down, and the kinetic theory of gases must be used.
For sufficiently dilute gases, i.e. for which molecular collisions can be assumed to
be binary, Boltzmann’s equation is commonly used to describe the flow (Cercignani
1975). Many gas flows of engineering interest fall into the overlapping region of
validity of Boltzmann’s and Navier–Stokes equations, which we call the transition
regime, and here we restrict our discussion to such flows.

Boltzmann’s equation is an integro-differential equation in phase space for the
quantity F = nf , where n is the number density of molecules and f is the single-
particle velocity-distribution function. Analytical solutions exist only for the simplest
of cases, and numerical simulations are expensive. Various direct-solution methods
exist, such as the Hicks–Yen–Nordsieck hybrid approach (Nordsieck & Hicks 1967;
Yen 1971), which uses a finite-difference method to discretize phase space and a
Monte Carlo method to calculate the collision integral. A review of the literature of
the early development of such direct-solution methods can be found in the article
by Yen (1984). Linearization and other approximation techniques for the collision
integral, such as the Bhatnagar–Gross–Krook (BGK) model (Cercignani 1975), can
simplify the Boltzmann equation and allow tractable analytical representations for
low-Kn flows. These equations have been successful in a number of configurations
and are widely used, but they can be difficult to solve for large values of Kn . Other
solution approaches based on a discrete-velocity model (Broadwell 1964; Gatignol
1970; Goldstein, Sturtevant & Broadwell 1989) restrict the allowable velocities to a
few selected ranges and have been shown to provide qualitatively correct solutions
for a number of test flows. More recent developments in discrete-velocity modelling
have been discussed by Andullah & Babovsky (2003), Mieussens (2000) and Babovsky
(1998).

Perhaps the most common solution approach is to simulate the flow using methods
that treat the gas molecules as discrete particles and explicitly track their trajectories.
The direct-simulation Monte Carlo (DSMC) method (Bird 1994) calculates the
trajectories of statistically representative particles, each representing the collective
behaviour of a large number of individual molecules. DSMC has been shown to be
equivalent to solving the Boltzmann equation as the simulation time step is reduced
to zero (Wagner 1992). This method has been successful at simulating a wide variety
of low-density (large-λ) gas flows. For dense and moderately dense flows, DSMC is
inefficient because of cell size and time-step limitations. Each cell must be a fraction of
λ, which is quite small for dense gases. Since each cell must contain enough particles to
obtain a good statistical representation of the gas, the computational costs of DSMC
increase drastically as the density increases. Similarly, the mean time between collisions
decreases with decreasing λ, which restricts the size of each time step. Other discrete
methods approximate continuous trajectories of particles in phase space by discrete
movements along a fixed lattice. These lattice-gas methods have been used in the
context of the Boltzmann equation (McNamara & Zanetti 1988; Higuera & Jimenez
1989; Benzi, Succi & Vergassola 1992) and the BGK equation (Qian, d’Humières &
Lallemand 1992). A more general discussion of lattice-gas methods was given by
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Doolen (1990). Recent advances in energy conservation (Ansumali & Karlin 2005),
boundary conditions (Ansumali & Karlin 2002; Watari 2009) and Galilean invariance
(Chikatamarla & Karlin 2006) for lattice-Boltzmann methods have generated interest
in using these methods for finite-Kn flows (Shen et al. 2004; Ansumali et al. 2007;
Kim, Pitsch & Boyd 2008; Verhaeghe, Luo & Blanpain 2009).

The continuum-level equations that govern the bulk flow, the conservation of
mass, momenta and energy are easier to analyse and solve numerically than
the Boltzmann equation. The downside is that closure models are necessary to
describe how the molecular-level motions affect the continuum-level transport of
momentum and energy. Closure has been derived in a variety of ways. Chapman
and Enskog constructed an asymptotic expansion of the distribution function about
the equilibrium distribution as a power series in Kn . Solution of the O(Kn) problem
yields the usual Navier–Stokes–Fourier model, which gives the viscous stress tensor
and heat-flux vector as linear functions of the flow variables and their gradients. The
resulting Navier–Stokes equations are accurate for a wide variety of flows and are
used almost exclusively in the field of fluid dynamics. Higher-order closures based
on the Chapman–Enskog approach, such as the Burnett (O(Kn2)) and super-Burnett
(O(Kn3)) equations, exist, but they also require closure. The use of simple constitutive
laws for the unspecified higher-order tensors in these equations can sometimes lead
to solutions that provide a more accurate description of gas flows than the Navier–
Stokes equations (Pham-Van-Diep, Erwin & Muntz 1991) and can be used for larger
Kn flows (Fiscko & Chapman 1989). An alternative approach is to derive governing
equations for the additional eight moments that determine the viscous stress tensor
and heat-flux vector. Grad’s original 13-moment closure (Grad 1949), and, later,
dynamic corrections to these moment equations (Karlin et al. 1998; Struchtrup &
Torrilhon 2003; Torrilhon & Struchtrup 2004), are between second and fourth order
in accuracy (in terms of Kn). There are difficulties associated with the use of these
higher-order continuum models. The degree to which they extend the validity of the
continuum approach is not well understood. Also, there is no standard way of treating
boundary conditions for the higher moments that arise in these formulations. The
end result is that there is an upper bound on Kn above which continuum models
cannot be used.

Thus, for a range of Kn , it is prohibitively expensive to solve the Boltzmann
equation for the molecular-level behaviour, but continuum modelling of these
processes is inaccurate. This paper suggests taking a different approach, one in which
the physical processes occurring on multiple, potentially disparate scales of the system
are independently computed and combined. By solving the molecular-level equations
only on the space and time scales for which they are relevant, it may be possible
to gain computational efficiency over using them to describe the entire flow. The
general framework of this approach has been laid out by E & Engquist (2003), who
described these types of methods as the heterogeneous multiscale methods (HMM).
They identified two classes of HMM: (i) situations in which a macroscopic model is
known but ceases to be valid in localized regions of space or time and (ii) situations
for which a macroscopic model is not explicitly known, but is known to exist. The
first class of HMM is most relevant to this discussion since both the microscopic
(Boltzmann) and continuum-level (Navier–Stokes) equations are known. Two general
types of multiscale methods have been used to calculate flows in the transition
regime.

In the first type, commonly referred to as spatial hybrid methods (Wadsworth &
Erwin 1992; Garcia et al. 1999; Roveda, Goldstein & Varghese 2000; Wijesinghe et al.
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2004; Lian et al. 2005; Schwartzentruber & Boyd 2006), a continuum breakdown
parameter is used to determine in which regions the Navier–Stokes equations are
valid. In these regions, traditional methods of solving the continuum-level equations
are used. In regions where the Navier–Stokes equations are not valid, DSMC is
used to calculate the flow. Special procedures are used to couple the flow fields
in the areas of overlap between the separate regions (Bourgat, Le Tallec & Tidriri
1996; Le Tallec & Mallinger 1997). A variation of this technique uses adaptive mesh
refinement to dynamically control the grid size and automatically uses DSMC in
regions where the finest grid sizes are used (Garcia et al. 1999; Wijesinghe et al.
2004). Other domain-decomposition techniques have been introduced in which the
coupling between the continuum and kinetic regions is done through the equations
rather than by matching boundary conditions between the domains (Degond & Jin
2005; Degond, Jin & Mieussens 2005).

In the second type of multiscale methods, information about the microscopic
system is used to form a new set of macroscopic evolution equations. One example
is the coarse-grained acceleration method for the Boltzmann equation (Al-Mohssen,
Hadjiconstantinou & Kevrekidis 2007). This method, based on the ‘equation-free’
simulation framework (Theodoropoulos, Qian & Kevrekidis 2000; Kevrekidis et al.
2003; Kevrekidis, Gear & Hummer 2004), uses a variance-reduction Monte Carlo
method (Baker & Hadjiconstantinou 2005) to solve the nonlinear Boltzmann equation
for a short period of time to obtain an accurate description of the rate of change of
the continuum-level velocity field. The continuum solution is then updated based on
the rate of change of the average flow calculated using the microscale data, and the
process is repeated until the flow field reaches a steady state. A second example, the
micro–macro upscaling model (Degond, Liu & Mieussens 2006), uses a new set of
macroscopic equations that include effects due to localized ‘upscaling’ of the kinetic
equations. Here the term upscaling refers to the incorporation of terms that depend
on the perturbation of the velocity distribution from equilibrium. In regions where
the molecular velocity distribution function is equal to the equilibrium distribution,
the equations reduce to the typical hydrodynamic equations. A third example, the
gas-kinetic hydrodynamic method (Prendergast & Xu 1993; Xu & Prendergast 1994),
uses basic ideas from the kinetic theory and the BGK equation to calculate the
continuum-level fluxes as moments of an approximation of the velocity-distribution
function. These fluxes are used to advance the continuum-level equations forward in
time using the Navier–Stokes or Euler equations. Other methods of this type, termed
‘Boltzmann-type schemes’ (Harten, Lax & van Leer 1983), such as the beam method
(Sanders & Prendergast 1974), the Steger–Warming method (Steger & Warming 1981),
the equilibrium flux method (Pullin 1980) and others (Reitz 1981; van Albada, van
Leer & Roberts 1982; Deshpande 1986; Macrossan 1989; Perthame 1992) combine
elements of kinetic theory based on knowledge of the equilibrium distribution function
with the continuum-level fluxes to solve the Euler equations, and are thus limited to
inviscid or nearly inviscid flows.

In this paper, we describe a new multiscale approach, which we call the coupled,
multiscale, multiphysics method (CM3). We then discuss problems and the proposed
solutions associated with its implementation, and show several proof-of-principle
calculations. In this approach, continuum-level conservation laws are used to project
the mass, momentum and energy forward in time. The projection uses approximations
of the unclosed terms that have been calculated directly from the Boltzmann equation.
Since this approach uses a better approximation to the velocity-distribution function
f to compute the unclosed terms in the conservation laws than perturbation methods
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that require Kn to be small, it should be accurate over a much broader range of
gas flows. Although similar methods have been used to calculate the viscoelastic
flow of polymeric solutions (Laso & Ottinger 1993; Yasuda & Yamamoto 2010) and
dendritic solidification (Plapp & Karma 2000), we discuss for the first time how this
methodology can be applied to rarefied gas flows.

Potentially, there are two advantages that might be gained by using this type of
approach. First, since the continuum variables are always accessible when using CM3,
it could be seamlessly integrated into a spatial hybrid method to solve the rarefied
portions of the domain in the place of DSMC. Doing so would eliminate the need for
using complicated coupling procedures between DSMC regions and Navier–Stokes
regions. Second, if the conservation laws modified by the approximated closures
satisfy certain mathematical constraints, it should be possible to take relatively large
advancements in time using computationally efficient methods for solving the coupled
partial differential equations. These constraints are that solutions to these equations
should lie on the same manifold as solutions to the exact conservation laws. The
overall efficiency of this approach is tied to how easily f can be approximated. Here
we use a Monte Carlo method that is a slight variation of the DSMC method to
generate successively more accurate estimates of f .

In this paper, we take the first steps towards realizing these advantages by showing
how the CM3 can be used to solve apparently simple one-dimensional test flows. This
allows us to develop the basic methodology of the multiscale procedure, and in doing
so, has revealed a variety of physical and algorithmic challenges. The identification
and resolution of these issues forms the basis of this study. In the future, we would
like to couple the CM3 to a standard computational fluid dynamics code to produce a
more efficient spatial hybrid method. This, however, requires a number of extensions
to the method. Some smaller issues, such as the extension to multiple dimensions, and
larger issues, such as the development of well-posed inflow and outflow boundary
conditions, still need to be addressed. We mention these issues here in the hope of
stimulating future research in this area.

This paper is organized as follows. In § 2, we introduce the test flows and describe
the physical models that govern the systems and the methodology for computing
solutions using the multiscale approach. The steady-state solutions to the test problems
calculated using the multiscale method are compared to solutions obtained using
standard DSMC in § 3. We then discuss the issues associated with obtaining these
solutions and give a basic analysis of the efficiency of the multiscale algorithm in
§ 4. Finally, we discuss ways to improve the method and identify areas where more
analysis will be needed to produce a mature computational algorithm in § 5.

2. Multiscale model and solution algorithm
2.1. Models

Consider an unsteady Rayleigh flow in which two parallel plates, one at z = 0 and
the other at z = 10−4 m, infinite in extent in the x- and y-directions, are separated
by a homogeneous, isothermal gas. At time t = 0, the bottom plate is impulsively set
in motion with a velocity V in the x-direction, and the temperature is adjusted to
T1, while the top plate is held stationary at temperature T2, as depicted in figure 1.
The Knudsen number of the flow is varied by changing the static pressure and
thus the density of the gas molecules. Three different static pressures corresponding
to three different values of Kn are considered: P =7.711 × 10−2, 7.711 × 10−3 and
1.542 × 10−3 atm. We take the gas to be helium, a simple and monatomic gas, which
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Figure 1. Geometry of the nominally one-dimensional test problem considered.

has no rotational or vibrational degrees of freedom. At T = 273.15 K, the mean
free paths of the helium molecules at these pressures are λ= 2 × 10−6, 2 × 10−5 and
1 × 10−4 m, respectively. Using h as the reference length, Kn = 0.02, 0.2 and 1.0 for
these systems.

2.1.1. Continuum-level model

The continuum-level equations that govern the gas flow are conservation of mass,
momenta and energy,

∂ρ

∂t
+ ∇ · (ρu0) = 0, (2.1)

∂

∂t
(ρu0) + ∇ · (ρu0u0) = −∇P + ∇ · τ , (2.2)

∂

∂t
(ρe) + ∇ · (u0ρe) = −∇ · (P u0) + ∇ · (τ · u0) − ∇ · q, (2.3)

where u, v and w are the x-, y- and z-components of the continuum-level velocity
field u0, ρ is the mass density, e is the total energy and P is the local pressure. For
a perfect gas, the mass density and temperature are related to the pressure and total
energy by the state equations, P = ρRT and ρe = 1/2ρu2

0 + P/(γ − 1), where R is
the specific gas constant and γ is the specific heat ratio for the particular gas. The
viscous stress tensor τ and the heat-flux vector q do not, in general, depend on the
primitive variables, and, hence, the governing equations do not form a closed set.

The Navier–Newton viscosity model, τ = −2/3(µ(∇ · u0) I + 2µ[1/2(∇u0 + ∇uT
0 )],

and Fourier’s model of heat conduction, q = −k∇T , are often used to close the
conservation laws. The coefficients of viscosity and heat conduction, µ and k, are
properties of the particular fluid. The resulting equations are the compressible Navier–
Stokes equations that are commonly used in continuum fluid dynamics (Panton 1996).
These models are known to break down for large Kn , which means that the Navier–
Stokes equations are invalid in this flow regime.

2.1.2. Molecular-level model

From the microscopic viewpoint, the distribution of molecular velocities, f , in a
dilute gas is governed by Boltzmann’s equation (Bird 1994),

∂

∂t
(nf ) + c · ∂

∂ r
(nf ) =

∫ ∞

−∞

∫ 4π

0

n2(f ∗f ∗
1 − ff1)crσ dΩ dc1, (2.4)

where n is the number density of molecules and c is the molecular velocity. In this
formulation, f = f (c, r, t) is a function of velocity, space and time, while n= n(r, t) is
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a function of space–time only. The right-hand side of (2.4) represents the collision of
gas molecules of class c with those of class c1 expressed as an integral over velocity
space, where cr is the magnitude of the relative velocity between the molecules, σ is the
collision cross-section and Ω is the solid angle of integration. The starred variables
indicate post-collision values and those without stars are pre-collision quantities.
Macroscopic, or continuum-level, properties of the flow can be calculated by taking
moments of f . For instance, the mass density, linear momenta and total energy,

ρ = nmw =

∫ ∞

−∞
nmwf dc, (2.5)

ρuo = ρc =

∫ ∞

−∞
nmwcf dc, (2.6)

ρe = ρc2/2 =

∫ ∞

−∞

1
2
nmwc2f dc, (2.7)

are moments of the molecular mass mw , momenta mwc and energy mwc2/2,
respectively.

2.1.3. Multiscale model

Equations (2.5)–(2.7) can be used to derive a set of conservation laws identical
in form to (2.1)–(2.3). Multiply (2.4) by mw , mwc and mwc2/2, and integrate over
all velocity space. If we assume that the molecular collisions are elastic (i.e. mass,
momenta and energy are conserved for each collision) and we decompose c into the
sum of the mean velocity u0 and a fluctuating or thermal velocity c′, the right-hand
side of each equation vanishes and we are left with

∂ρ

∂t
+ ∇ · (ρu0) = 0, (2.8)

∂

∂t
(ρu0) + ∇ · (ρu0u0) + ∇ · (ρc′c′) = 0, (2.9)

∂

∂t
(ρe) + ∇ · (u0ρe) + ∇ · (ρc′c′ · u0) + ∇ ·

(
1
2
ρc′c′2

)
= 0. (2.10)

The additional terms on the left-hand side of the equations represent the effect of
the small-scale fluctuating motions of the molecules on the large-scale macroscopic
behaviour of the fluid. In the Navier–Stokes equations, these effects are buried in
the constitutive models for τ and q. Comparing (2.1)–(2.3) with (2.8)–(2.10) gives the
expressions

τ = −(ρc′c′ − P I), (2.11)

q = 1
2
ρc′2c′, (2.12)

where the pressure P = ρc
′2/3. The Chapman–Enskog perturbation theory shows

that (2.11)–(2.12) are equivalent to the Navier–Newton viscosity model and Fourier’s
conduction model, respectively, to first order in Kn for particular values of µ and
k. Thus, (2.8)–(2.10) are equal to the Navier–Stokes equations in the limit of small
Kn . The principal idea presented here is to obtain an approximation for f by solving
Boltzmann’s equation over a very short time interval for given continuum-level fields
of density, momentum and energy. Once f is known at some time t , (2.11)–(2.12) can
be solved explicitly for τ and q as functions of space. The results can then be used
to close (2.2) and (2.3) and advance the continuum fields forward in time.
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2.2. Solution algorithms

We calculate the flow fields in the gap between the plates using three different
methods: indirect solution of the Boltzmann equation using DSMC (Bird 1994),
solution of the Navier–Stokes equations using the LCPFCT-finite-volume method
(Oran & Boris 2001) and solution of the general conservation laws (see (2.8)–(2.10))
using the multiscale method described in § 2.1.3. In all of the calculations that follow,
the flow field is divided into 200 cells in the z-direction and 3 cells in the x- and
y-directions, so that �x =�y = �z = 5 × 10−7 m.

2.3. Direct-simulation Monte Carlo method

The DSMC method (Bird 1994) is used to simulate the behaviour of the gas molecules.
The domain is divided into cubic cells with dimension less than or equal to λ/4
(�x = λ/4, λ/40 and λ/200 for Kn = 0.02, 0.2 and 1, respectively). Collision partners
are chosen at random in each cell. We employ the variable-hard-sphere (VHS) collision
model using an acceptance–rejection method (Bird 1994). The VHS model determines
the likelihood of a collision based on the relative velocity and position of the two
molecules under consideration. If a collision is determined to occur, the post-collision
velocities are chosen at random from a Maxwellian velocity distribution function
based on the relative velocity of the collision partners. The number of collision pairs
chosen during each time step is based on the local collision frequency. To ensure a
statistically representative sample, approximately 100 particles are placed initially in
each cell. (The average number of particles per cell is 100. The actual number in each
cell is based on the local number density.) The ratio of real to simulated molecules,
fnum , for each simulation depends on Kn , with fnum decreasing with increase in Kn .
The time step, �tDSMC , is taken to be less than the mean collision time and the length
of time it would take a molecule travelling at the most probable thermal velocity,
vmp = 1065 m s−1 at 273.15 K, to cross a cell. In all cases, the latter constraint dictated
the size of the time step, and for all the calculations presented in this study, we used
�tDSMC = 2.5 × 10−10 s.

Collisions with the walls are assumed to be diffuse reflections with momentum and
thermal accommodation coefficients, φ, equal to unity. The computational boundaries
in the x- and y-directions are treated as periodic. A total of 1 × 104 independent
ensembles are performed. In these test problems, the flows are nominally one-
dimensional, so we also average over the particle velocities in all nine cells at each
z position. Thus, since there are on average 100 particles in each cell at any given
time, approximately 9 × 106 total velocity samples are used to obtain continuum-
level quantities with low variances. Properties of the helium molecules and the VHS
collision model are listed in table 1.

2.3.1. Navier–Stokes solution algorithm

We solve the Navier–Stokes equations using the LCPFCT algorithm, which solves
the coupled continuity equations for density, momentum and energy (Oran & Boris
2001). The computational domain is discretized into a set of finite volumes, and the
conserved quantities (ρ, ρu, ρv, ρw and ρe) are advanced forward in time at the
cell centres using an explicit multistep time-advancement procedure. In the first step,
the divergence of τ , the divergence of q and the dissipation function ∇ · (τ · u0) are
used to partially advance the solutions forward �tFV . Here, τ and q are calculated
according to the Navier–Newton viscosity model and Fourier’s heat conduction model,
respectively, using a second-order central finite-difference stencil. The viscosity and
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mw (kg) 6.65 × 10−27 Molecular weight
Tr (K) 273.15 Reference temperature
ω 0.66 Viscosity–temperature power law exponent
σ (m) 2.33 × 10−10 Collision cross-section diameter
φ 1.0 DSMC wall accommodation coefficient
γ 1.66 Specific heat ratio
µ0 (Pa s) 1.865 × 10−5 Reference viscosity coefficient
Pr 0.72 Prandtl number
k0 (W m−1 K−1) 0.1353 Reference thermal conductivity
R (J kg−1 K−1) 2.07689 × 103 Specific gas constant
φm 1.0 Navier–Stokes wall momentum accommodation coefficient
φT 1.0 Navier–Stokes wall thermal accommodation coefficient

Table 1. Physical properties and VHS collision model parameters for helium gas.

thermal conductivity coefficients vary with temperature according to

µ = µ0

(
T

Tr

)ω

, (2.13)

k = k0

(
T

Tr

)ω

, (2.14)

where µ0 and k0 are the viscosity and thermal conductivity at the reference temperature
Tr , and ω is the viscosity–temperature index. The values of these quantities for helium
gas are listed in table 1. In the second step, the convective terms of (2.1)–(2.3) are
calculated using the flux-corrected transport algorithm (Boris et al. 1993) and the
conserved variables are updated.

Two different boundary conditions are used at the walls. The no-slip, isothermal
conditions,

u = V, v = w = 0, T = T1, (2.15)

at z = 0, and

u = v = w = 0, T = T2, (2.16)

at z = 10−4 m, are independent of Kn , whereas the first-order velocity and temperature
slip conditions,

Ts

Tw

=

[
1 +

5

2ω

(
2π

RT

)1/2

λ

(
∂u

∂x
− 2

∂v

∂z

)]
s

[
1 +

15

4ω

(
2π

RT

)1/2

λ

(
∂u

∂x
− 2

∂v

∂z

)

− 15π

4ω

γ

(γ − 1)Pr

2 − φT

φT

(
λ

T

∂T

∂z

)]−1

s

, (2.17)

us = uw +
15π

2ω

[
2 − φm

φm

λ

(
∂u

∂z
+

∂v

∂x

)]
s

+
3

2ω

γ

(γ − 1)Pr

((
2πRT

)1/2 λ

T

∂T

∂x

)
s

, (2.18)

λ =
2

15ω

µ

ρ(2πRT )1/2
, (2.19)

ω = (7 − 2ω)(5 − 2ω), (2.20)

depend on the local mean free path of the gas molecules as well as ω. The subscript
‘s’ indicates a quantity evaluated at the slip plane a distance of λ from the walls. Both

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

29
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010002934


Multiscale method for rarefied flows 271

Specify DSMC collision model and input parameters

Initialize continuum-level flow field

Reconstruction

Monte
Carlo

Compression

Continuum

Figure 2. Schematic diagram of the CM3.

the momentum and thermal accommodation coefficients, φm and φT , are taken to be
unity. The system is assumed to be periodic in the x- and y-directions.

2.4. Multiscale solution algorithm (coupled multiscale, multiphysics method)

We are concerned with finite-Kn gas flows for which the Navier–Stokes equations
fail to describe the molecular-level transport processes adequately. The Boltzmann
equation is accurate over a much larger range of Kn , but it is inordinately more
expensive to solve than the continuum-level conservation laws. Here we describe a
method of simulating finite-Kn flows that incorporates additional physics from the
small-scale molecular motions into the continuum framework of (2.1)–(2.3). The CM3

uses a Monte Carlo method to solve the Boltzmann equation at various instants in
time and calculates τ and q using (2.11)–(2.12) and the molecular velocities. The
computed τ and q are then substituted into (2.1)–(2.3), and these equations are
advanced forward in time using a finite-volume method.

A depiction of the solution algorithm is shown in figure 2. After an initial
continuum-level flow field is specified, the Monte Carlo continuum cycle, which
is made up of four stages, begins. This Monte Carlo continuum cycle is repeated as
necessary to provide updated instantaneous values for τ and q, so that the unsteady
evolution of the flow is calculated correctly.

2.4.1. Stage 1: reconstruction

In the first stage, we initialize the velocities of a set of particles so that the
macroscopic flow variables are consistent with the current continuum-level flow
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field. Velocity, density and temperature fields are interpolated to the centres of the
DSMC cells (if different from those of the finite-volume grid). The number density
of molecules (and hence the number of particles) is calculated from the mass density
ρ using the molecular weight of the constituent gas molecules. The velocity of
each particle is randomly assigned from a prescribed velocity-distribution function
(VDF) using an acceptance–rejection method (Bird 1994). The choice of the initial
distribution is arbitrary, and in the results that follow, two different initial distributions
will be considered: the equilibrium or Maxwellian distribution,

f0(c′) =

(
mw

2πkbT

)3/2

exp

(
−mwc′2

2kbT

)
, (2.21)

where kb is the Boltzmann constant, and the Chapman–Enskog distribution,

fCE (c′) = f0(c′)

[
1 +

(
mw

PkbT

)((
mw

2PkbT

)
2c′2

5
− 1

)
(q1u

′ + q2v
′ + q3w

′)

− mw

PkbT
(τ12u

′v′ + τ13u
′w′ + τ23v

′w′) − mw

2PKbT
(τ11(u

′2 − w′2) + τ22(v
′2 − w′2))

]
. (2.22)

2.4.2. Stage 2: Monte Carlo

The purpose of the Monte Carlo stage of the cycle is to obtain accurate estimates
of the instantaneous τ and q for the local flow conditions. To do so, we obtain an
approximation of the true velocity distribution by an iterative process in which a
sequence of fi is generated by solving Boltzmann’s equation over a finite time interval
M�tDSMC using fi−1 and the local continuum flow variables as the initial conditions
for each iteration. As the number of iterations grows, the sequence converges to f .
This ‘maturation’ process is similar to that used by Al-Mohssen et al. (2007). If the
particle velocities are initialized using (2.21), τ and q are initially zero. If the particle
velocities are taken from fCE , τ and q are initially equal to the Navier–Stokes stresses
and heat fluxes. In non-equilibrium (high-Kn) flows, the true τ and q are different
from these initial values, and a finite number of iterations, NMC , are needed to achieve
convergence.

The Monte Carlo algorithm used here to solve the Boltzmann equation is a slight
variation of the standard DSMC algorithm (Bird 1994). The process begins by
initializing the DSMC particle velocities from either a Maxwellian or a Chapman–
Enskog velocity-distribution function whose shape is based on u0 and T , and, if using
fCE , the continuum-level τ and q are approximated using the Navier–Newton and
Fourier models with µ0 and κ0 from table 1. The typical DSMC move and collide
processes are performed for a short period of time, M�tDSMC . Molecular collisions are
calculated using the VHS collision model. Particle interactions with the walls are taken
to be diffuse reflections with full thermal and momentum accommodation. The x-
and y-boundaries are assumed to be periodic. At the end of this interval, the particle
velocities, which are now described by a new distribution function fi , are shifted and
scaled so that the continuum-level velocity, temperature and density in each cell are
equal to their initial values. The procedure is to sample the instantaneous particle
velocities every m time steps (with m < M). Since M is taken to be small, we assume
that the system is ergodic over this short time interval and calculate time averages
over the M/m samples to obtain an average velocity and temperature in each cell at
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time t0 + M�tDSMC , according to

Ns =

M/m∑
j=1

(Na)j , (2.23)

u∗ =
1

Ns

M/m∑
j=1

Naj∑
i=1

ci , (2.24)

T
∗
=

mw

3kb

[
1

Ns

M/m∑
j=1

Naj∑
i=1

c2
i − u∗2

]
, (2.25)

where Naj is the number of particles in a given cell at the j th sample. The necessary
velocity shift δu and temperature scale α are then calculated from

δu = u∗ − uo, (2.26)

α =

√
To

T
∗ . (2.27)

Finally, the new particle velocities are calculated by subtracting δu from each particle
in the cell and scaling the result by α, i.e.

c∗
i = α(ci − δu). (2.28)

The number density in each cell is conserved by either adding or removing particles
from the system. When particles must be added to a cell, i.e. nt+M�tDSMC <nt , their new
velocities are set equal to those of randomly chosen particles within that cell. The
positions of the particles are randomly chosen within the cell. The total number of
particles in the simulation is conserved. That is, the sum of the number of particles
removed from the entire domain during each rescaling event, Nrem, is equal to the
number of particles added to the entire domain, Nadd .

The resulting distribution of particle velocities, f1, with u = u0 and T = T0, is used
as the initial condition for a new Monte Carlo simulation. The process continues until
the sequence of fi is sufficiently converged that τ i+1 ≈ τ i and q i+1 ≈ q i .

2.4.3. Stage 3: compression

In the compression phase, we calculate τ and q from the molecular-level velocities
and condition the data so that they are suitable to use with the finite-volume solver
in the final stage. This is done in two separate steps. In the first step, noise caused by
statistical fluctuations in the sampled molecular velocities is reduced to levels below
a threshold value. In the second step, smooth fields for the approximated τ and q are
constructed from the stochastic representation.

By design, DSMC gives a statistical representation of the flow properties, the
variance of which depends on the number of independent samples used to calculate
average quantities. For unsteady flows, a large number of independent ensembles are
calculated to increase the number of samples. For the one-dimensional test problems
presented in this study, we used 9 × 105 total velocity samples, where the total number
of samples is equal to the product of the average number of particles in any cell, the
nine cells at each z-location, and the number of independent ensembles performed
during the Monte Carlo stage, to calculate the averages in (2.11)–(2.12). This number
of samples was sufficient to reduce the statistical fluctuations in τ and q to a
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manageable level for the test cases. Some flows, particularly dense, low-velocity flows,
require more sophisticated variance-reduction methods, such as nonlinear filtering
(Kaplan & Oran 2002), low-variance DSMC (LVDSMC) (Baker & Hadjiconstantinou
2005; Homolle & Hadjiconstantinou 2007), a ‘ghost-particle’ method (Chun & Koch
2005), a molecular block method using artificially massive particles (Pan, Ng & Lam
2001) or the information-preservation (IP) method (Fan & Shen 2001; Sun & Boyd
2002). While such methods were not necessary for the flows considered here, they
may be used for different flow configurations.

The next step is to condition the averaged values of τ and q for use with
a continuum-level finite-volume solver. By conditioning, we mean constructing a
continuous field from stochastic data. This is necessary to compute the divergence of
these quantities in (2.1)–(2.3). We use one-dimensional cubic B-splines (Dierckx 1975,
1982, 1993) to fit a smooth curve to the data. The smoothness of the curve can be
controlled by a smoothness factor fs . Large values of fs produce curves devoid of
localized fluctuations, but tend to smooth out real variations in τ and q. Conversely,
small values of fs will capture the physical variations but will be too noisy to use for
calculating the divergence of these variables. Here, separate values of fs for τ and q
are chosen empirically for each test problem to limit the amount of noise yet retain
continuum-level variations.

2.4.4. Stage 4: solving continuum-level equations

Finally, the continuum-level variables are advanced forward in time δtFV using the
general conservation equations (2.1)–(2.3) and the spatial representations of τ and q
computed in the previous stage. The computational domain is discretized into a set
of finite volumes, and the conserved quantities (ρ, ρu, ρv, ρw and ρe) are advanced
forward in time at the cell centres using an explicit multistep time-advancement
procedure. The local time step for the finite-volume solver, �tFV , is chosen in the
standard way to ensure numerical stability. In the first step, the divergence of τ , the
divergence of q and the dissipation function ∇ · (τ · u0) are used to partially advance
the solutions forward �tFV . Standard second-order central finite-difference stencils
are used to perform the numerical differentiation. In the second step, the convective
terms of (2.1)–(2.3) are calculated using the flux-corrected transport algorithm (Boris
et al. 1993; Oran & Boris 2001), and the conserved variables are updated. The
simple isothermal, no-slip boundary conditions (see (2.15)–(2.16)) are used at the wall
boundaries, and periodic boundary conditions are applied in the x- and y-directions.
The time advancement continues for δtFV using the same closure data for τ and q.
At the end of the integration cycle, the updated continuum-level variables are sent to
stage 1 and the cycle is repeated.

Two primary issues arise when developing a multiscale algorithm for finite-Kn gas
flows: how to calculate accurate continuum-level representations of molecular-level
stresses and energy fluxes, and how to couple this molecular-level information to an
unsteady solution algorithm for the general conservation equations. As with any other
computational algorithm, there are several parameters that must be specified based on
the physics of the flow being computed: the number of time steps between rescaling
events, M , and the number of time steps between samples for the rescaling, m; the
choice of the initial velocity-distribution function used in the reconstruction stage, the
‘maturation’ time for τ and q, δtDSMC = NMC (M�tDSMC ); the number of independent
ensembles needed to collect a sufficiently large velocity sample, the smoothing factor
fs for the spatial field construction of τ and q; and the size of each continuum-level
time advancement period, δtFV . In the following sections, we address these issues and
discuss how proper values for the control parameters can be determined by using the
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Figure 3. Steady-state (a) velocity and (b) shear-stress profiles for Rayleigh flow with
Kn = 0.02 calculated using DSMC, no-slip (see (2.15)–(2.16)) and slip (see (2.17)–(2.18))
Navier–Stokes equations, and CM3.

multiscale method to solve two canonical flows: an isothermal, low-Mach-number
Rayleigh flow (unsteady Couette flow) and a quiescent Fourier flow.

3. Results
3.1. One-dimensional low-Ma Rayleigh flow

In the first test problem, the temperatures of the two plates are held constant at
273.15 K, and the bottom plate is set in motion with velocity V = 30 m s−1. The Mach
number based on this ambient temperature and the velocity of the moving plate is
Ma = 0.03. Accordingly, viscous dissipation will be negligible, and the temperature
throughout the flow will remain nearly constant. For this one-dimensional flow, the
only non-zero component of the stress tensor is the deviatoric stress τ13.

Figures 3–5 show the steady-state u and τ13 profiles calculated using the Navier–
Stokes equations with no-slip and slip boundary conditions, DSMC and the CM3

for Kn = 0.02, 0.2 and 1, respectively. The control parameters for the multiscale
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Parameter Kn = 0.02 (figure 3) Kn = 0.2 (figure 4) Kn = 1 (figure 5)

NMC 20 60 60
M 5 5 5
m 1 1 1
fs 5 100 1.0 × 104

δtFV /�tDSMC 20 20 20

Table 2. Multiscale control parameters used to calculate the Rayleigh flow (figures 3–5).

u 
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Figure 4. Steady-state (a) velocity and (b) shear-stress profiles for Rayleigh flow with Kn = 0.2
calculated using DSMC, no-slip (see (2.15)–(2.16)) and slip (see (2.17)–(2.18)) Navier–Stokes
equations, and CM3.

algorithm used in each example are given in table 2. The procedure for determining
these values will be discussed in detail in the following section. While the Navier–
Stokes equations are an acceptable model for small Kn , we do not expect them,
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Figure 5. Steady-state (a) velocity and (b) shear-stress profiles for Rayleigh flow with Kn = 1
calculated using DSMC, no-slip (see (2.15)–(2.16)) and slip (see (2.17)–(2.18)) Navier–Stokes
equations, and CM3.

even with slip boundary conditions, to be accurate when Kn is large. Higher-order
continuum models (e.g. the Burnett equations) would give more accurate solutions.
We include these solutions to show that DSMC solutions converge to the continuum
solutions for small Kn . We do not claim that the multiscale solutions are more
accurate than the Navier–Stokes equations since they are being applied outside of
their range of applicability. The accuracy of the multiscale solutions is judged by
comparing them with the corresponding DSMC solutions, which we take to be exact
solutions of the Boltzmann equation.

For Kn = 0.02 (figure 3), the DSMC solution is comparable to the Navier–Stokes
solution with no-slip boundary conditions and matches well the solution calculated
using the first-order slip boundary conditions. The velocity slip is just less than 1 m s−1

at the walls, and the CM3 solution also reproduces this. For Kn =0.2 (figure 4), the
velocity slip increases to about 4.5m s−1. The Navier–Stokes equations with slip
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Parameter Kn = 0.02 (figure 6) Kn = 0.2 (figure 7) Kn = 1 (figure 8)

NMC 60 200 400
M 5 5 5
m 1 1 1
fs 1.0 × 1010 1.5 × 108 1.1 × 106

δtFV /�tDSMC 10 10 10

Table 3. Multiscale control parameters used to calculate the Fourier flow (figures 6–8).

boundary conditions still do a reasonable job of predicting the velocity profile for this
value of Kn . The multiscale solution for this case also matches the DSMC solution
quite well. For Kn =1, the flow is considerably more rarefied, and the Navier–Stokes
solutions, even with velocity slip boundary conditions, no longer correctly describe
the flow. The DSMC solution shows a large velocity slip of 8 m s−1 (≈ 27 % of the
wall velocity). The multiscale solution accurately reproduces the DSMC solution
everywhere except in very narrow regions (approximately two cells wide) near the
walls. Here, complications arise due to the simple boundary conditions used in the
multiscale algorithm. A more detailed analysis of the wall boundary conditions is
left for future work. In all three examples, we performed enough ensemble averaging
during the calculation of the multiscale solutions to ensure that spatial variations in
the approximate τ13 profiles were similar to those in the standard DSMC solutions.
As with any DSMC calculation, increasing the number of sampling events during
the Monte Carlo stage of the CM3 will decrease the magnitude of these spatial
fluctuations.

3.2. Fourier flow

We next consider a stationary Fourier flow (i.e. V = 0) in which the temperature of
the bottom plate is T1 = 293.15 K and that of the top plate is T2 = 253.15 K. As in
the previous section, three different average values of Kn are examined: Kn =0.02,
0.2 and 1. In each case, Kn varies with temperature from a maximum at the bottom
plate, approximately 5 % larger than the average value, to a minimum at the top
plate, approximately 5 % smaller than the average value.

In the continuum limit, the solution to the Navier–Stokes equations for this
particular flow using no-slip, isothermal boundary conditions is

TNS = T1 ×
[((

T2

T1

)ω+1

− 1

)
z + 1

]1/(ω+1)

, (3.1)

q3NS
=

κ0

T ω
0 h

T2/T1 − 1

ω + 1
T ω+1

1 . (3.2)

A closed-form, analytical solution does not exist for finite Kn using the slip boundary
condition (2.17), and the governing equations must be solved numerically. We compare
the no-slip and slip Navier–Stokes solutions to results obtained using DSMC and
CM3 for Kn = 0.02, 0.2 and 1. Steady-state profiles of temperature and wall-normal
heat flux q3 for each of these values of Kn are shown in figures 6–8, respectively.
The control parameters for the multiscale algorithm used in each case are listed in
table 3.

Again, for small Kn =0.02, the Navier–Stokes solution with slip boundary
conditions agrees well with the DSMC solution. The temperature slip at the walls
of only 1.5 K is found using all three models. The DSMC results obtained for
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Figure 6. Steady-state (a) temperature and (b) wall-normal heat-flux profiles for Fourier
flow with Kn = 0.02, T2 = 253.15 K and T1 = 293.15 K calculated using DSMC, no-slip (see
(2.15)–(2.16)) and slip (see (2.17)–(2.18)) Navier–Stokes equations, and CM3.

Kn = 0.2 (figure 7) show that the temperature profile becomes nonlinear at this
level of rarefaction. The Navier–Stokes solutions do not exhibit the same degree
of nonlinearity, but the temperature-slip profile does reasonably well at predicting
the correct solution away from the walls, suggesting that Kn = 0.2 is close to the
breakdown limit for the Navier–Stokes equations. The CM3 does correctly predict
the nonlinearity in the temperature profile and agrees with the DSMC temperature
over the entire flow field. The flow is sufficiently rarefied for Kn = 1 (figure 8) that
the Navier–Stokes equations no longer hold, and significant differences between the
Navier–Stokes slip solution and the DSMC solution are found in both the temperature
and heat-flux profiles. The multiscale algorithm, however, once again gives a good
approximation to the DSMC solution.
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Figure 7. Steady-state (a) temperature and (b) wall-normal heat-flux profiles for Fourier
flow with Kn = 0.2, T2 = 253.15 K and T1 = 293.15 K calculated using DSMC, no-slip (see
(2.15)–(2.16)) and slip (see (2.17)–(2.18)) Navier–Stokes equations, and CM3.

4. Discussion
4.1. Calculation of τ and q

The most critical step in the multiscale algorithm is calculating τ and q accurately
using the molecular-level model. The approach we take here is to allow an arbitrary
distribution of molecular velocities to mature to a distribution representative of a
real collection of molecules with specified u, T and ρ through simulated molecular
collisions. This procedure gives a series of successively more accurate approximations,
f0, f1, f2, . . . , fN , to the distribution function f . There are three issues that must be
addressed: the choice of initial distribution function f0, the details of the particle
velocity shifting and scaling process, and the total length of time required for
maturation or, equivalently, the number of successive approximations that need
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Figure 8. Steady-state (a) temperature and (b) wall-normal heat-flux profiles for Fourier
flow with Kn = 1, T2 = 253.15 K and T1 = 293.15 K calculated using DSMC, no-slip (see
(2.15)–(2.16)) and slip (see (2.17)–(2.18)) Navier–Stokes equations, and CM3.

to be generated by solving the constrained Boltzmann equation before a mature
distribution is reached.

In the reconstruction phase of each cycle in the multiscale method, initial velocities
are assigned to a set of DSMC particles. The only restrictions are that u and T in
each cell are equal to specified values. The choice of distribution function that satisfies
this constraint is not unique. For instance, the two most commonly used distribution
functions, the Maxwellian (i.e. (2.21)) and the Chapman–Enskog (i.e. (2.22)), produce
two different velocity distributions for the same first moments, u and T . Higher-
order moments of these distributions (e.g. τ and q) differ substantially; however, both
represent equally valid initial conditions for the Boltzmann equation. Figure 9 shows a
representative higher-order moment of several different intermediate approximations
of f calculated using the Monte Carlo phase of the multiscale algorithm started by
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Figure 9. Sequence of τ13 profiles obtained for successively more accurate representations of
f generated via the Monte Carlo process starting from an intermediate continuum solution
for (a) Kn = 0.02 and (b) Kn = 1. From top to bottom in (a), the curves represent the solutions
after two, four, six and eight iterations of the Monte Carlo process. From top to bottom in
(b), the curves represent solutions at 40, 80, 120 and 160 iterations. The solid lines are the
solutions initialized from a Chapman–Enskog distribution and the dashed lines are those
initialized from a Maxwellian distribution.

using a Maxwellian (dashed lines) and a Chapman–Enskog (solid lines) distribution
function. The plot on the left (figure 9a) is for a small Kn ( = 0.02), and the one on
the right is for a large Kn ( = 1). In both examples, the τ13 profiles converge to the
same values regardless of the initial condition. The only difference is the number of
iterations required to reach this final τ13. In the continuum limit (small Kn), τ and
q approach the Navier–Stokes solution, which is equivalent, by construction, to that
obtained for the Chapman–Enskog distribution. For larger Kn , there is no general
criterion as to which initial distribution the true higher-order moments will be closer.
For the Rayleigh problems presented in the previous section, converged solutions were
obtained more quickly when starting from a Chapman–Enskog distribution function
for Kn = 1, whereas using a Maxwellian as the initial distribution offered a slight
advantage for the Fourier flow at the same level of rarefaction. Ideally, we would
like to construct a better approximation of the true velocity distribution to use as an
initial condition, particularly for large Kn .
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If left unchecked during the maturation period, the average velocity, temperature
and density in each cell would drift from their initial values if the flow is not in
a steady state. This would prevent the higher-order moments from reaching their
matured values. To keep this from happening, we shift and scale the molecular
velocities every M time steps (cf. § 2.4.2). This procedure regulates the bulk velocity
and acts as a thermostat for average temperature. The choice of the parameter
M is set to keep ρut+M�t ≈ ρut , while ensuring that enough samples of molecular
velocities can be collected in that interval to calculate ρut+M�t . The rate of change
of the macroscopic variables can be estimated from the Navier–Stokes equations by
considering the magnitude of the largest component of the stress tensor or heat-flux
vector. For the Rayleigh flow, a steep gradient in τ13 of ≈1 × 107 Pa m−1 develops
during the initial acceleration of the flow after the top plate is set in motion.
Using �tDSMC = 2.5 × 10−10 s, the magnitude of the corresponding change in linear
momentum (�ρu) during one time step is 2.5 × 10−3 Pa s m−1. In the Fourier flow, the
magnitude of the change in internal energy during one time step (�ρe) was larger
(≈0.1 Jm−3). We want �ρu and �ρe � 1; so M is chosen to be as small as possible to
provide enough samples to compute the average values with sufficiently low statistical
variances. (Recall that velocity samples are taken every m steps, so that the total
number of velocity samples is of the order of Na(M/m).) In the example above, the
molecular velocities were rescaled every five time steps based on velocities sampled
every time step in that interval, i.e. M = 5 and m =1. As will be discussed below, the
average number of particles per cell, Na , used in the calculations was a function of
Kn , and some of the calculations had significantly larger numbers of particles and,
hence, samples during the M time steps.

For simple hard-sphere molecules (ω = 1/2, α = 1), the total number of molecular
collisions per unit volume per unit time is

Nc =
√

8πd2n2
√

2kbT /mw. (4.1)

This value varies quadratically with the local number density, and hence, is a strong
function of Kn . In the test problems considered in § 3, Nc = 1.24 × 1033, 1.24 × 1031

and 4.98 × 1029 m−3 s−1 for Kn = 0.02, 0.2 and 1, respectively. In the Monte Carlo
simulations, where the ratio of real molecules to simulated particles is represented
by fnum , the total number of simulated collisions per unit volume per unit time is
Nc/fnum . Using �tDSMC = 2.5 × 10−10 s and �x = �y =�z = 5.0 × 10−7 m, the number
of simulated collisions in each cell every time step are 38875/fnum1

, 389/fnum2
and

16/fnum3
for Kn = 0.02, 0.2 and 1, respectively. During the M time steps, there should

be a sufficient number of simulated collisions in each cell to ensure that the average
temperatures are computed correctly. Here, we require at least N∗ = 30 collisions in
the M�t time interval. This provides a lower bound for the number of particles that
are needed in each cell, Nmin =N∗n/(MNc�tDSMC ), which corresponds to Nmin = 40,
400 and 2000 for Kn = 0.02, 0.2 and 1, respectively. In the multiscale simulations, we
used N = Nmin for all cases except Kn =0.02, for which we used N = 100 to improve
the sampling statistics for τ and q.

The number of Monte Carlo iterations (NMC ) needed to ensure that fMC has
matured long enough that the sequence of moments, τ and q, converge to their
proper values depends on Kn , the initial choice of distribution function and the
details of the flow field. This makes it impossible to assign a universal value to NMC

(or δtDSMC ). In general, the convergence of q is slower than τ , and longer maturation
times must be used in flows where there are significant energy fluxes. Likewise, the
degree of non-equilibrium of the flow determines how far the matured fluxes are
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from the initial equilibrium values. For the Rayleigh flows, the τ13 profiles converge
to matured values after 6, 20 and 60 iterations for Kn = 0.02, 0.2 and 1, respectively,
when starting from a Chapman–Enskog distribution. The q3 profiles calculated for
the Fourier flows required 60, 160 and 360 iterations to fully mature for the same
three values of Kn . As mentioned above, the convergence for Kn = 1 was found to
be faster when starting from a Maxwellian distribution for the Fourier flow, and the
value of NMC listed above is based on this starting condition. Slightly larger values
of NMC than those listed above were used in each of the corresponding calculations
presented in § 3. In future work, we will implement an adaptive procedure for choosing
the value of NMC that would eliminate unnecessary computations by stopping the
maturation process once τ and q reached steady values during each cycle.

4.2. Coupling stochastic data to continuum solver

Once an accurate description of the molecular state has been attained, it is necessary
to build continuous functional representations of the stresses and energy fluxes
that approximate the fields in the general conservation laws. This entails extracting
sufficiently smooth fields from the statistically noisy DSMC data and determining for
how long these approximate representations remain valid.

Smooth fields are constructed using a two-part process. In the first part, we reduce
the statistical fluctuations in the calculated moments to levels where the mean signal
is discernible from the noise. Formally, we require the standard deviation of the
quantity Q under consideration to be less than the change in the mean value of Q,
Q, over some spatial interval �L, i.e. σQ <�L(∂Q/∂x) for �L ∼ O(�x) for all x in
the domain. Statistical noise reduction in DSMC calculations is generally attained
by performing time, ensemble and spatial averages. Since we are concerned with the
unsteady evolution of the flow field, we cannot average over time, but rely only on
taking ensemble and spatial averages of the velocity samples. The standard deviation
of the noise in the components of τ and q decreases as the square root of the total
number of samples. More sophisticated methods for noise reduction exist (cf. § 2.4.3)
that could be used in conjunction with this method to more efficiently decrease the
fluctuations, but the problems considered here are sufficiently simple that this ‘brute
force’ averaging procedure is feasible. For the examples discussed in § 3, a total of
9 × 105 samples were sufficient to reduce the noise to the level indicated above.

The second part of the smoothing process is to construct an approximation of the
mean field Q̃(x) based on the values calculated from DSMC. The main requirement
is that the first derivatives of Q̃(x) are continuous so that the divergences in (2.1)–
(2.3) can be calculated. In this paper, we use B-splines of order 3 to construct
Q̃(x), which then has continuous derivatives up to d2/dx2(Q). As discussed in § 2.4.3,
we can influence the shape of Q̃(x) by specifying a factor fs to strike a balance
between fidelity of fit and smoothness of the interpolating spline (additional noise
reduction). The representation of the function at each point in the domain, Q̃i ,
is determined by minimizing the discontinuity in the third derivative of piecewise
polynomials (of degree 3) that connect each point in space xi with the constraint that∑

i[(wi(Qi − Q̃i))
2] � fs/σ

2
Q. The weights wi are chosen to be equal to the inverse of

the standard deviation of the spatial fluctuations in the computed moments, σQ, and
acceptable values of fs lie in the interval σ 2

Q(Nx −
√

2Nx, Nx +
√

2Nx). The value of
σQ can be calculated from the standard deviation of the velocity fluctuations used to
calculate the moment by σQ = σv′n /

√
Ns , where the subscript v′ n

represents the product
of n fluctuating velocity components and Ns is the total number of velocity samples
used to calculate any one of the Qi . Figure 10 shows several B-spline approximations
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Figure 10. B-spline interpolations of the shear stress, τ13, at t = 5�t calculated using
various values of fs . Maturation of VDF using velocity shifting and scaling process for
δtDSMC = 300�tDSMC with M =5, m= 1. Low-speed Rayleigh flow (V = 30 m s−1) at Kn = 0.02.
(a) Complete profile and (b) close-up view of steep gradients near z = 0.

of a representative τ13 using various values of fs along with the original DSMC data.
For this particular case, fs = 1 × 104 gives a curve that is reasonably smooth but
still captures the steep gradient near z = 0. If inaccurate Q̃(x) is used throughout the
unsteady evolution, the steady-state solutions could differ from the exact (DSMC)
solutions. As an example, figure 11 shows two steady-state velocity profiles calculated
using the multiscale method with different fs for the Rayleigh flow and Kn =0.2. Both
CM3 solutions compare well with the DSMC solution in the middle of the domain,
but the solution for the larger fs is incorrect near the walls, where the gradients in
τ13 are the steepest during the unsteady evolution of the flow field.

Once the simulated closure relations for the molecular-level stresses and heat fluxes
have been constructed, it is necessary to decide how large a time step can be taken
during the solution of the conservation equations, δtFV . It is assumed that these
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Figure 11. Steady-state velocity profile for Rayleigh flow with Kn = 0.2 calculated using
DSMC, no-slip (see (2.15)–(2.16)) and slip (see (2.17)–(2.18)) Navier–Stokes equations, and
CM3. CM3 profiles calculated using fs = 1 × 106 and fs = 100.

modified balance equations lie on an invariant manifold in the state space, so that
the projected solutions to these equations are reasonably accurate approximations to
the conservation laws. Proof of this assumption is a complicated issue, particularly
when Kn ∼ O(1), and is beyond the scope of this discussion. Recent work has,
however, shown that closure relations for the linear hydrodynamic equations can be
generated that do not use Kn as a perturbation parameter, and so are equally valid
for large Kn (Gorban, Karlin & Zinovyev 2004). We assume that the closures used
here for the nonlinear conservation laws are also independent of Kn , since they are
generated naturally as quasi-equilibrium solutions of the Boltzmann equation. To the
extent that these assumptions hold, we should be able to make a large advancement
in time, relative to the time scale of the molecular motions, by using the closed
conservation laws. In practice, the size of δtFV is limited by the rate of change of
the macroscopic variables. For the Rayleigh flow, the streamwise momentum evolves
according to

∂ρu

∂t
=

∂τ13

∂z
, (4.2)

and it is a fairly simple procedure to estimate how quickly the momentum changes
once an approximation for τ13 is obtained. For a more general flow, such a simplified
description of the evolution does not exist, and one must turn to other methods to
estimate the magnitude of the most rapidly varying conserved variable, |∂φ/∂t |. One
possibility is to solve the Navier–Stokes equations (using the standard constitutive
models) as an approximation to the time evolution of the real flow.

The solutions calculated using the multiscale method should converge to the exact
solution if we choose δtFV to be sufficiently small such that (φt+δtFV − φt )/φt → 0. In
the calculations, we specify a finite δtFV so that this expression is O(1) when |∂φ/∂t |
is maximum. Using this criterion, we set δtFV /�tDSMC = 20 for the Rayleigh-flow
simulations and δtFV /�tDSMC =10 for the Fourier-flow simulations.
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Figure 12. (a) Unsteady evolution of 〈ρu〉 and (b) velocity profiles taken at several time

instants for the Rayleigh flow with Kn = 0.02 (figure 3) calculated using CM3 and DSMC.

As a measure of the temporal evolution of the Rayleigh flow, we define the mean
value of the streamwise momentum flux 〈ρu〉 as

〈ρu〉 =
1

h

∫ h

0

ρu. (4.3)

This quantity, calculated using the CM3 with δtFV = 20�tDSMC , is compared to that
calculated from an independent DSMC simulation in figure 12(a) from time t =0
until the solutions reach a steady state. The actual u and τ13 profiles at several
instants in time are shown in figure 12(b). We see that the unsteady flow development
calculated using the multiscale method is quite similar to the exact (DSMC)
evolution.
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4.3. Efficiency

We conclude this section by estimating the computational efficiency of CM3 for
the test problems considered above and comparing computational times with those
of standard DSMC calculations. In principle, large gains in efficiency compared to
DSMC can be attained by taking relatively large advances in time (δtFV ) during the
continuum stage of the cycle. This is because the wall clock time spent integrating the
continuum equations for a period of time �tDSMC , TFV , is small compared to the wall
clock time required to advance a DSMC simulation forward by the same physical
time increment, i.e. TFV � TDSMC . In practice, the computations are slowed by extra
DSMC calculations that are performed during each CM3 cycle to allow f to relax
from the initial guess to the correct distribution.

Let N1 be the total number of DSMC time steps used during this maturation
period (N1 = M × NMC ), and let N2 be the number of equivalent DSMC time steps
taken during the continuum stage of each cycle (N2 = δtFV /�tDSMC ). Recall that the
intent of the DSMC stage of the CM3 cycle is to calculate correct values for τ and
q and not to advance the solution forward in time. Hence, the time advancement is
done in the continuum stage, and the number of CM3 cycles that are performed is
Y = N/N2, where N is the total number of equivalent DSMC time steps over which
the simulation is run. Finally, define ECM3 as the number of ensembles performed
for averaging purposes during the Monte Carlo stage of the CM3 and EDSMC as the
number of ensembles over which averages are collected in the independent DSMC
simulations.

We can then write the estimated ratio of CM3 wall clock time to independent
DSMC wall clock time for the same number of time steps, N , as

E∗ =
Y (ECM3N1TDSMC )

EDSMC (NTDSMC )
=

(N/N2)(ECM3N1)

EDSMC N
=

ECM3N1

EDSMC N2

. (4.4)

For the Rayleigh flow (figures 3–5), E∗ varied from O(0.1) to O(1), and for the
Fourier flow, E∗ varied from O(1) to O(10) as Kn was increased from 0.02 to 1.
This trend is not surprising, in that we would expect that fewer iterations would be
necessary to mature the velocity-distribution function when the true distribution is
close to the initial equilibrium distribution used in the calculation. Gains in efficiency
can be realized by either integrating for larger increments of time in the continuum
stage (larger δtFV ) or by decreasing the number of steps required to reach the proper
f in the Monte Carlo stage.

Choosing a value for δtFV depends on how quickly the large-scale flow is evolving,
and may not be easy to change. There is more room for improvement in setting
NMC . There would be immediate improvement in efficiency if an adaptive method
were used to control N1, so that the maturation process automatically stops when
the moments of interest have converged to steady values. Even larger gains can be
realized by using an initial distribution that is only a small perturbation from the
true distribution at the start of each cycle. One possible method of doing so would be
to use the properties of the mature distribution function reached during a previous
cycle as an initial distribution in the next cycle. Methods for doing this are currently
being developed.

We, however, emphasize that the purpose of this study was to show proof of the
multiscale concept and not to produce an optimized algorithm. Hence, the exact
values of E∗ for these test problems are not entirely representative of the algorithm’s
efficiency. For instance, the choices of ECM3 and EDSMC do not necessarily produce
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equal levels of statistical fluctuations, but the values used here allowed the fluctuations
in the computed solutions to be comparable. Adjusting these values would lead to
small changes in the computed E∗. The CM3 also offers a potential advantage if
it is used as part of a larger spatial hybrid method, since the continuum variables
at interfaces between rarefied and continuum regions are available and can be used
for coupling the two regions. A proper analysis of the efficiency needs to take this
application into consideration.

5. Conclusions
We have introduced a multiscale method for transition-regime gas flows and

discussed the operational details of implementation. The CM3 uses a finite-volume
method to solve the generalized conservation equations with components of the stress
tensor and heat-flux vector calculated from molecular velocity fluctuations obtained
from a Monte Carlo simulation of the Boltzmann equation. These ‘instantaneous’
closure relations take the place of constitutive models that are generally used to
develop continuum-level equations.

The CM3 was used to calculate a low-speed Rayleigh flow at three different
values of Kn . Steady-state velocity and shear-stress profiles compared well with
DSMC solutions for all three Kn . Even for the most rarefied flow, Kn =1, for which
the Navier–Stokes equations are no longer valid, the CM3 produced solutions that
quantitatively match DSMC solutions. The ability of the CM3 to calculate unsteady
flows was also tested. The time evolution of a low-Kn flow calculated using CM3 was
found to be comparable to that calculated with DSMC. The small deviations that
were observed could be decreased by using smaller δtFV but at a greater computational
cost. Likewise, the statistical fluctuations in the CM3 profiles could be reduced by
fine-tuning the smoothness factor, fs , in the B-spline interpolations or by using a
more sophisticated noise-reduction method. Both improvements come at increased
computational cost.

Similar comparisons of the steady-state temperature and wall-normal heat-flux
profiles for a stationary Fourier flow calculated using CM3, DSMC and the Navier–
Stokes equations were made. Good agreement among all methods was found for
small Kn . For larger Kn , the CM3 temperature profiles agreed well with the DSMC
solutions.

Details of implementing this multiscale method were discussed. Some knowledge
about the physics of the flow is necessary to properly specify the various length and
time scales of the solution algorithm. In particular, a priori estimates of the statistical
variation in the molecular velocities, the maximum rate of change of the continuum
flow field and the level of rarefaction of the gas can be used to determine proper
values for the smoothing factor of the B-spline interpolants fs , the maximum size
of the continuum step that can be taken each cycle δtFV and the number of Monte
Carlo iterations required to mature the initial velocity distribution to the correct f

during each cycle, NMC , respectively. The latter two time scales directly control the
efficiency of the algorithm. For the Rayleigh flow, the calculation times using the
multiscale method varied from less than one (more efficient) to of the same order
as standard DSMC calculations. For the Fourier flow, the multiscale solutions were
more expensive because of slow convergence of the heat-flux vector.

The calculations presented here represent the first steps towards building an efficient
and flexible multiscale simulation procedure for rarefied gas flows. Improvements in
algorithmic efficiency can be made in a variety of ways. For instance, NMC could
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be dynamically controlled throughout the course of a simulation by monitoring
the convergence time for τ and q during each Monte Carlo continuum cycle, and,
similarly, δtFV could also be changed dynamically based on the rate of change of the
continuum flow field. Significantly improving the computational efficiency, particularly
for large-Kn flows, will require developing better methods for specifying the initial
velocity distributions at the beginning of each cycle and thus reducing the number of
iterations needed for the moments to converge. A more thorough analysis considering
the CM3 as part of a larger spatial hybrid method is needed to properly evaluate the
efficiency of this methodology. Even if the individual CM3 regions in such a method
are slightly more expensive than DSMC, the availability of continuum quantities
at the interfaces between the rarefied and continuum regions will facilitate coupling
between these regions and may lead to improvements in overall efficiency. In order to
do so, the method must still be extended to multiple dimensions, and proper boundary
conditions must be derived. Such issues will be addressed in a future publication.
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