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Introduction

Fix a prime p > 5, an integer N > 0 prime to p, and let f ∈ S2(00(N p)) be a newform.

Throughout this paper, we shall assume that f is split multiplicative at p, meaning that

f (q) = q +
∞∑

n=2

an( f )qn with ap( f ) = 1.

Fix embeddings C
ı∞
←↩ Q

ı p
↪→ Cp, let L be a finite extension of Qp containing ı pı−1

∞ (an( f ))
for all n, and let OL be the ring of integers of L. Since the Up-eigenvalue of f is ap( f ) = 1
by hypothesis, the form f is ordinary at p, and hence there is a Hida family

f =
∞∑

n=1

anqn
∈ IJqK

passing through f . Here I is a finite flat extension of the power series ring OLJT K, which

for simplicity in this introduction will be assumed to be OLJT K itself. Embed Z in the

space XOL (I) of continuous OL -algebra homomorphisms ν : I −→ Qp by identifying k ∈ Z
with the homomorphism νk : I −→ Qp defined by 1+ T 7→ (1+ p)k−2. The Hida family

f is then uniquely characterized by the property that for every k ∈ Z>2 its weight k
specialization

fk :=

∞∑
n=1

νk(an)qn

gives the q-expansion of a p-ordinary p-stabilized newform fk ∈ Sk(00(N p)) with f2 = f .

Let K be an imaginary quadratic field equipped with an integral ideal N ⊂ OK with

OK /N ' Z/NZ, assume that p splits in K , and write pOK = pp with p the prime above

p induced by ı p. If A is an elliptic curve with complex multiplication (CM) by OK , then

the pair (A, A[Np]) defines a Heegner point PA on X0(N p) defined over the Hilbert class

field H of K . Taking the image of the degree zero divisor (PA)− (∞) under the composite

map

J0(N p)
Kum
−−→ H1(H,Tap(J0(N p))) −→ H1(H, V f )

CorH/K
−−−−→ H1(K , V f ) (0.1)

yields a class κ f ∈ Sel(K , V f ) in the Selmer group for the p-adic Galois representation

ρ f : GQ := Gal(Q/Q) −→ AutL(V f ) ' GL2(L)
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associated with f . On the other hand, by working over a p-tower of modular curves,

Howard [15] constructed a so-called big Heegner point Z0 ∈ SelGr(K ,T†) in the Selmer

group for a self-dual twist of the big Galois representation

ρf : GQ −→ AutI(T) ' GL2(I)

associated with f. The image of Z0 under the specialization map ν2 : SelGr(K ,T†) −→

Sel(K , V f ) induced by ν2 : I −→ Qp yields a second class of ‘Heegner type’ in Sel(K , V f );

thus the question of comparing κ f with ν2(Z0) naturally arises.

For k > 2, the question of relating the specializations νk(Z0) to higher dimensional

Heegner cycles was considered in [2]. In that case, one could show (see [2, (5.31)]) that

locp(νk(Z0)) = u−1
(

1−
pk/2−1

νk(ap)

)2

· locp(κfk ), (0.2)

where u := |O×K |/2, locp : H1(K , Vfk ) −→ H1(Kp, Vfk ) is the localization map, and κfk

is a class given by the p-adic étale Abel–Jacobi images of certain Heegner cycles on a

Kuga–Sato variety of dimension k− 1. However, for the above newform f , the main result

of [2] does not immediately yield a similar relation between ν2(Z0) and κf2 = κ f , since

in [2] a crucial use is made of the fact that the p-adic Galois representations associated

with the eigenforms under consideration are (potentially) crystalline at p, whereas V f is

well known to be semistable but non-crystalline at p. Moreover, it is easy to see that the

expected relation between these two classes may not be given by the naive extension of

(0.2) with k = 2: indeed, granted the injectivity of locp, by the Gross–Zagier formula the

class locp(κ f ) is non-zero as long as L ′( f/K , 1) 6= 0, whilst (0.2) for k = 2 would imply

the vanishing of locp(ν2(Z0)) in all cases, since(
1−

pk/2−1

νk(ap)

) ∣∣∣∣
k=2
=

(
1−

1
ap( f )

)
= 0. (0.3)

As shown in [15], the class Z0 fits in the compatible system of similar classes Z∞ =

{Zn}n>0 over the anticyclotomic Zp-extension of K ; thus Z0 might be seen as the value of

Z∞ at the trivial character. As suggested by the above discussion, in this paper we will

show that the class locp(ν2(Z0)) vanishes, and prove an ‘exceptional zero formula’ relating

its derivative at the trivial character (in a precise sense to be defined) to the geometric

class κ f . To state the main result, let h be the class number of K , write ph
= πpOK , and

define

Lp( f, K ) := Lp( f )−
logp($p)

ordp($p)
, (0.4)

where Lp( f ) is the L -invariant of f (see [21, § II.14] for example), $p := πp/πp ∈ Kp '

Qp, and logp : Q×p −→ Zp is Iwasawa’s branch of the p-adic logarithm.

Theorem. Let f ∈ S2(00(N p)) be a newform split multiplicative at p, and define Zp, f,∞ =

{Zp, f,n}n>0 by Zp, f,n := locp(ν2(Zn)). Then Zp, f,0 = 0 and

Z ′p, f,0 = Lp( f, K ) · locp(κ f ).
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In Lemma 3.10, we define the ‘derivative’ Z ′∞ for any compatible system of classes

Z∞ = {Zn}n>0 with Z0 = 0. The above result, which corresponds to Theorem 3.11 in the

body of the paper, may thus be seen as an exceptional zero formula relating the derivative

of locp(ν2(Z∞)) at the trivial character to classical Heegner points.

Remark 1. As suggested in [20, § 8], one might view p-adic L-functions (as described in

[28] and [29, Chapter 8]) as ‘rank 0’ Euler–Iwasawa systems. In this view, it is natural to

expect higher rank Euler–Iwasawa systems to exhibit exceptional zero phenomena similar

to their rank 0 counterparts. We would like to see the main result of this paper as an

instance of this phenomenon in ‘rank 1’.

Remark 2. It would be interesting to study the formulation of our main result in the

framework afforded by Nekovář’s theory of Selmer complexes [23], similarly in the manner

that the exceptional zero conjecture of Mazur et al. [21] has recently been proved by

Venerucci [31] in the rank 1 case.

Remark 3. The second term in the definition (0.4) is precisely the L -invariant Lp(χK )

appearing in the exceptional zero formula of Ferrero–Greenberg [9] and Gross–Koblitz [12]

for the Kubota–Leopoldt p-adic L-function associated with the quadratic Dirichlet

character χK corresponding to K . It would be interesting to find a conceptual explanation

for the rather surprising appearance of Lp(χK ) in our derivative formula; we expect this

to be related to a comparison of p-adic periods (cf. [4]).

The proof of the above theorem is obtained by computing in two different ways the

value of a certain anticyclotomic p-adic L-function Lp( f ) at the norm character NK . The

p-adic L-function Lp( f ) is defined by the interpolation of the central critical values for

the Rankin–Selberg convolution of f with the theta series attached to Hecke characters

of K of infinity type (2+ j,− j) with j > 0. The character NK thus lies outside the

range of interpolation of Lp( f ), and via a suitable extension of the methods of Bertolini

et al. [1] to our setting, in Theorem 2.11 we show that

Lp( f )(NK ) = (1− ap( f )p−1) · 〈logV f
(locp(κ f )), ω f 〉. (0.5)

On the other hand, in [3] we constructed a two-variable p-adic L-function Lp,ξ (f) of

the variables (ν, φ) interpolating (a shift of) the p-adic L-functions Lp(fk) for all k > 2,

and established the equality

Lp,ξ (f) = LωF+T(locp(Z
ξ−1

∞ )), (0.6)

where LωF+T is a two-variable Coleman power series map whose restriction to a certain

‘line’ interpolates (
1−

pk/2−1

νk(ap)

)−1(
1−

νk(ap)

pk/2

)
· logVfk

for all k > 2. A second evaluation of Lp( f )(NK ) should thus follow by specializing

(0.6) at (ν2,1). However, because of the vanishing equation (0.3), we may not directly
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specialize LωF+T at (ν2,1), and we are led to utilize a different argument reminiscent of

Greenberg–Stevens’ [11]. In fact, from the form of the p-adic multipliers appearing in the

interpolation property defining LωF+T, we deduce a factorization

Ep(f) · Lp,ξ (f) = L̃ωF+T(locp(Z
ξ−1

0 ))

upon restricting (0.6) to an appropriate ‘line’ (different from the above) passing through

(ν2,1), where L̃ωF+T is a modification of LωF+T and Ep(f) is a p-adic analytic function

vanishing at that point. The vanishing of Zp, f,0 thus follows, and exploiting the

‘functional equation’ satisfied by Z∞, we arrive at the equality

Lp( f, K ) · Lp( f )(NK ) = (1− ap( f )p−1) · 〈logV f
(Z ′p, f,0), ω f 〉 (0.7)

using a well-known formula for the L -invariant as a logarithmic derivative of νk(ap) at

k = 2. The proof of our exceptional zero formula then follows by combining (0.5) and

(0.7).

1. Preliminaries

For a more complete and detailed discussion of the topics that we touch upon in this

section, we refer the reader to [1, 6].

1.1. Modular curves

Keep N and p - N as in the Introduction, and let

0 := 01(N )∩00(p) ⊂ SL2(Z).

An elliptic curve with 0-level structure over a Z[1/N ]-scheme S is a triple (E, t, α)
consisting of

• an elliptic curve E over S;

• a section t : S −→ E of the structure morphism of E/S of exact order N ;

• a p-isogeny α : E −→ E ′.

The functor on Z[1/N ]-schemes assigning to S the set of isomorphism classes of

elliptic curves with 0-level structure over S is representable, and we let Y/Z[1/N ]
be the corresponding fine moduli scheme. The same moduli problem for generalized

elliptic curves with 0-level structure defines a smooth geometrically connected curve

X/Z[1/N ] containing Y as an open subscheme, and we refer to Z X := X r Y as the

cuspidal subscheme of X . Removing the data of α from the above moduli problem, we

obtain the modular curve X1(N ) of level 01(N ).
For our later use (see, in particular, Theorem 2.4), recall that if a is any integer coprime

to N , the rule

〈a〉(E, t, α) = (E, a · t, α)

defines an action of (Z/NZ)× on X defined over Z[1/N ], and we let X0(N p) = X/(Z/NZ)×
be the quotient of X by this action.
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The special fiber XFp := X ×Z[1/N ] Fp is non-smooth. In fact, it consists of two

irreducible components, denoted by C0 and C∞, meeting transversally at the singular

points SS. Let Frob be the absolute Frobenius of an elliptic curve over Fp, and Ver = Frob∨

be the Verschiebung. The maps

γV : X1(N )Fp := X1(N )×Z[1/N ] Fp −→ XFp γF : X1(N )Fp −→ XFp

defined by sending a pair (E, t)/Fp to (E, t, ker(Ver)) and (E, t, ker(Frob)), respectively,

are closed immersions sending X1(N )Fp isomorphically onto C0 and C∞, and mapping the

supersingular points in X1(N )Fp bijectively onto SS. The non-singular geometric points

of C0 (resp. C∞) thus correspond to the moduli of triples (E, t, α) in characteristic p
with ker(α) étale (resp. connected).

Corresponding to the preceding description of XFp there is a covering of X as rigid

analytic space over Qp. Consider the reduction map

redp : X (Cp) −→ XFp (Fp), (1.1)

let W0 and W∞ be the inverse images of C0 and C∞, respectively, and let Z0 ⊂W0 and

Z∞ ⊂W∞ be the inverse images of their non-singular points. In the terminology of [5],

W0 (resp. W∞) is a basic wide open with underlying affinoid Z0 (resp. Z∞). If x ∈ SS,

then Ax := red−1
p (x) is conformal to an open annulus in Cp, and by definition we have

X (Cp) =W0 ∪W∞ = Z0 ∪Z∞ ∪W,

where W =W0 ∩W∞ =
⋃

x∈SS Ax is the union of the supersingular annuli.

1.2. Modular forms and cohomology

In this section, we regard the modular curve X as a scheme over a fixed base field

F . Let E π
−→ X be the universal generalized elliptic curve with 0-level structure, set

Z̃ X = π
−1(Z X ), and consider the invertible sheaf on X given by

ω := π∗�
1
E/X (log Z̃ X ).

The space of algebraic modular forms (resp. cusp forms) of weight k and level 0 defined

over F is

Mk(X; F) := H0(X, ω⊗k
F ) (resp. Sk(X; F) := H0(X, ω⊗k

F ⊗ I)),
where ωF is the pullback of ω to X ×Q F , and I is the ideal sheaf of Z X ⊂ X . If there is no

risk of confusion, F will be often neglected from the notation. Alternatively, on the open

modular curve Y a form f ∈ Sk(X; F) ⊂ Mk(X; F) is a rule on quadruples (E, t, α, ω)/A,

consisting of an A-valued point (E, t, α) ∈ Y (A) and a differential ω ∈ �1
E/A over arbitrary

F-algebras A, assigning to any such quadruple a value f (E, t, α, ω) ∈ A subject to the

weight k condition

f (E, t, α, λω) = λ−k
· f (E, t, α, ω) for all λ ∈ A×,

depending only on the isomorphism class of the quadruple, and compatible with base

change of F-algebras. The two descriptions are related by

f (E, t, α) = f (E, t, α, ω)ωk,

for any chosen generator ω ∈ �1
E/A.
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There is a third way of thinking about modular forms that will be useful in the following.

Consider the relative de Rham cohomology of E/X :

L := R1π∗(0 −→ OE −→ �1
E/X (log Z̃ X ) −→ 0),

which fits in a short exact sequence

0 −→ ω −→ L −→ ω−1
−→ 0 (1.2)

of sheaves on X and is equipped with a non-degenerate pairing

〈 , 〉 : L×L −→ OX (1.3)

coming from the Hodge filtration and the Poincaré pairing on the de Rham cohomology

of the fibers. By the Kodaira–Spencer isomorphism

σ : ω⊗2 ∼= �
1
X (log Z X )

given by σ(ω⊗ η) = 〈ω,∇η〉, where

∇ : L −→ L⊗�1
X (log Z X )

is the Gauss–Manin connection, a modular form f of weight r + 2 and level 0 defines a

section ω f of the sheaf ω⊗r
⊗�1

X (log Z X ) by the rule

ω f (E, t, α) := f (E, t, α, ω)ωr
⊗ σ(ω2).

If f is a cusp form, then the above rule defines a section ω f of ω⊗r
⊗�1

X , thus yielding

an identification

Sr+2(X) ' H0(X, ω⊗r
⊗�1

X ).

For each r > 0, let Lr := SymrL (with L0 := OX ), and define the de Rham cohomology

of X (attached to Lr ) as the hypercohomology group

H1
dR(X,Lr ,∇) := H1(L•r : Lr

∇
−→ Lr ⊗�

1
X (log Z X )). (1.4)

Twisting by the ideal sheaf I gives rise to the subcomplex L•r ⊗ I −→ L•r , and the weight

r + 2 parabolic cohomology of X is defined by

H1
par(X,Lr ,∇) := image(H1(L•r ⊗ I) −→ H1

dR(X,Lr ,∇)). (1.5)

The exact sequence (1.2) induces the short exact sequence

0 −→ H0(X, ω⊗r
⊗�1

X ) −→ H1
par(X,Lr ,∇) −→ H1(X, ω⊗−r ) −→ 0, (1.6)

and hence the above assignment f 7→ ω f identifies Sr+2(X) with a subspace of

H1
par(X,Lr ,∇). In addition, the pairing (1.3) induces a non-degenerate pairing

〈 , 〉 : H1
par(X,Lr ,∇)× H1

par(X,Lr ,∇) −→ F (1.7)

with respect to which (1.6) is self-dual.
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1.3. p-newforms

Consider the two degeneracy maps

π1, π2 : X −→ X1(N )

defined by sending, under the moduli interpretation, a triple (E, t, α) to the pairs (E, t)
and (α(E), α(t)), respectively. These morphisms induce maps

π∗1 , π
∗

2 : H1
par(X1(N ),Lr ,∇) −→ H1

par(X,Lr ,∇),

where H1
par(X1(N ),Lr ,∇) is defined as in (1.5) using the analogous objects over X1(N ).

Lemma 1.1. The map π∗1 ⊕π
∗

2 is injective.

Proof. This is [6, Proposition 4.1].

Define the p-old subspace H1
par(X,Lr ,∇)

p-old of H1
par(X,Lr ,∇) to be the image of

π∗1 ⊕π
∗

2 , and the p-new subspace H1
par(X,Lr ,∇)

p-new to be the orthogonal complement

of the p-old subspace under the Poincaré pairing (1.7). The space of p-new cusp forms

of weight k and level 0 is defined by

Sr+2(X)p-new
:= Sr+2(X)∩ H1

par(X,Lr ,∇)
p-new,

viewing Sr+2(X) as the subspace of H1
par(X,Lr ,∇) in the form described above.

1.4. p-adic modular forms

Recall that the Hasse invariant is a modular form H over Fp of level 1 and weight p− 1
with the property that an elliptic curve E over an Fp-algebra B is ordinary if and only

if H(E, ω) is a unit in B for some (or equivalently, any) generator ω ∈ �1
E/B .

Let R be a p-adic ring, i.e., a ring that is isomorphic to its pro-p completion. A p-adic

modular form of tame level N and weight k defined over R is a rule assigning to every

triple (E, t, ω)/A, over an arbitrary p-adic R-algebra A, consisting of

• an elliptic curve E/A such that the reduction E ×A A/p A is ordinary;

• a section t : Spec(A) −→ E of the structure morphism of E/A of exact order N ; and

• a differential ω ∈ �1
E/A,

an element f (E, t, ω) ∈ A depending only on the isomorphism class of (E, t, ω)/A,

homogeneous of degree −k in the third entry, and compatible with base change of p-adic

R-algebras. Let Mk(N ; R) be the R-module of p-adic modular forms of weight k and

level N defined over R; as before, if there is no risk of confusion R will be often neglected

from the notation.

Similarly to that for classical modular forms, it will be convenient to think of p-adic

modular forms of weight k as sections of the sheaf ω⊗k over a certain subset of the rigid

analytic space X (Cp). Let E p−1 be the normalized Eisenstein series of weight p− 1 (recall

that p > 5), and define the ordinary locus of X1(N ) by

X1(N )ord
:= {x ∈ X1(N )(Cp) : |E p−1(Ex , ωx )|p > 1},
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where Ex/Cp is a generalized elliptic curve corresponding to x under the moduli

interpretation, ωx ∈ �
1
Ex/Cp

is a regular differential on Ex , chosen so that it extends to a

regular differential over OCp if Ex has good reduction at p, or corresponds to the canonical

differential on the Tate curve if x lies in the residue disc of a cusp, and | · |p is the absolute

value on Cp normalized so that |p|p = p−1. Since E p−1 reduces to the Hasse invariant

H modulo p, it follows that the points x ∈ X1(N )ord correspond to pairs (Ex , tx ) with Ex
having ordinary reduction modulo p. Thus the assignment f 7→ (x 7→ f (Ex , tx , ωx )ω

k
x ),

for any chosen generator ωx ∈ �
1
Ex/Cp

, defines an identification

Mk(N ) ' H0(X1(N )ord, ω⊗k).

Let I := {v ∈ Q : 0 < v 6 p
p+1 }, and for any v ∈ I define

X1(N )(v) := {x ∈ X1(N )(Cp) : |E p−1(Ex , ωx )|p > p−v}.

The space of overconvergent p-adic modular forms of weight k and tame level N is given

by

M†
k(N ) = lim

−→
v

H0(X1(N )(v), ω⊗k),

where the transition maps H0(X1(N )(v), ω⊗k) −→ H0(X1(N )(v′), ω⊗k), for v′ < v in I ,

are given by restriction; since these maps are injective, M†
k(N ) is naturally a subspace

of Mk(N ).
By the theory of the canonical subgroup (see [18, Theorem 3.1]), if (Ex , tx ) corresponds

to a point x in X1(N )(
p

p+1 ), the elliptic curve Ex admits a distinguished subgroup

can(Ex ) ⊂ Ex [p] of order p reducing to the kernel of Frobenius in characteristic p. The

rule

(Ex , tx ) 7→ (Ex , tx , αcan),

where αcan : Ex 7→ Ex/can(Ex ) is the projection, defines rigid morphism X1(N )(
p

p+1 ) −→

W∞, and hence if f is a modular form of weight k and level 0, then the restriction f |W∞
gives an overconvergent p-adic modular form of weight k and tame level N .

1.5. Ordinary CM points

Let K be an imaginary quadratic field with ring of integers OK equipped with a cyclic

ideal N ⊂ OK such that

OK /N ' Z/NZ.

Fix an elliptic curve A defined over the Hilbert class field H of K with EndH (A) '
OK having good reduction at the primes above p, and choose a 01(N )-level structure

tA ∈ A[N] and a regular differential ωA ∈ �
1
A/H . The identification EndH (A) = OK is

normalized so that λ ∈ OK acts as

λ∗ω = λω for all ω ∈ �1
A/H .

For every integer c > 1 prime to N p, let Oc = Z+ cOK be the order of K of conductor

c, and denote by IsogNc (A) the set of elliptic curves A′ with CM by Oc equipped with an

isogeny ϕ : A −→ A′ satisfying ker(ϕ)∩ A[N] = {0}.
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The semigroup of projective rank one Oc-modules a ⊂ Oc prime to N∩Oc acts on

IsogNc (A) by the rule

a ∗ (ϕ : A −→ A′) = ϕaϕ : A −→ A′ −→ A′a,

where A′a := A′/A′[a] and ϕa : A′ −→ A′a is the natural projection. It is easily seen that

this induces an action of Pic(Oc) on IsogNc (A).
Throughout this paper, we shall assume that p = pp splits in K , and let p be the prime

of K above p induced by our fixed embedding Qp
ı p
↪→ Cp. Thus if A′ is an elliptic curve

with CM by Oc defined over the ring class field Hc of K of conductor c, then A′ has

ordinary reduction at p, and A′[p] ⊂ A′[p] is the canonical subgroup. In the following,

we will let α′p = αcan : A′ −→ A′/A′[p] denote the projection.

1.6. Generalized Heegner cycles

For any r > 0, let Wr be the Kuga–Sato variety over

X0 := X1(N p)

obtained as the canonical desingularization of the r -fold self-product of the universal

generalized elliptic curve over X0, and define

Xr := Wr × Ar , (1.8)

where A/H is the elliptic curve with CM by OK fixed in the preceding section.

The variety Xr is fibered over X0, and the fiber over a non-cuspidal point x associated

with a pair (Ex , tx ) is identified with Er
x × Ar . Thus for every isogeny ϕ : A −→ A′ in

IsogNc (A), we may consider the cycle

ϒϕ := (0
t
ϕ)

r
⊂ (A′× A)r ⊂ Xr ,

where 0t
ϕ is the transpose of the graph of ϕ, and following [1, § 2.3] define the generalized

Heegner cycle associated with ϕ by

1ϕ := εXϒϕ, (1.9)

where εX is the idempotent defined in [1, (2.1.1)] (with X0 in place of their curve C =
X1(N )). By [1, Proposition 2.7], the cycles 1ϕ are homologically trivial; by abuse of

notation, we shall still denote by1ϕ the classes they define in the Chow group CHr+1(Xr )0
with rational coefficients. For r = 0, set

1ϕ := (A′, tA′)− (∞),

where tA′ ∈ A′[N p] is a 01(N p)-level structure contained in A′[Np], and ∞ is the cusp

(Tate(q), ζN p).

2. A semistable non-crystalline setting

This section is aimed at proving Theorem 2.11, which extends the p-adic Gross–Zagier

formula due to Bertolini et al. [1] in the good reduction case to the semistable

non-crystalline setting.
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2.1. p-adic Abel–Jacobi maps

Let F be a finite unramified extension of Qp, denote by OF the ring of integers of F ,

and let κ be the residue field. The generalized Kuga–Sato variety Xr , which was defined

in (1.8) as a scheme over Z[1/N p], has semistable reduction at p. In other words, there

exists a proper scheme Xr over OF with generic fiber Xr ×Z[1/N p] F and with special fiber

Xr ×OF κ whose only singularities are divisors with normal crossings.

By the work of Hyodo–Kato [16], attached to Xr there are log-crystalline cohomology

groups H j
log-cris(Xr ×OF κ), which are OF -modules of finite rank equipped with a

semilinear Frobenius automorphism 8 and a linear nilpotent monodromy operator N
satisfying

N8 = p8N .

Moreover, for each choice of a uniformizer of OF there is a comparison isomorphism

H j
log-cris(Xr ×OF κ)⊗OF F ' H j

dR(Xr/F)

endowing the algebraic de Rham cohomology groups H j
dR(Xr/F) with the structure of

filtered (8, N )-modules. In the following, we shall restrict our attention to the middle

degree cohomology, i.e., we set j = 2r + 1.

Let G F := Gal(F/F) be the absolute Galois group of F , and consider the p-adic

G F -representation given by

Vr := H2r+1
ét (Xr ×F F,Qp).

Applying Fontaine’s functor Dst to Vr yields another filtered (8, N )-module associated

with Xr .

Theorem 2.1 (Tsuji). The p-adic G F -representation Vr is semistable, and there is a

natural isomorphism

Dst(Vr ) ' H2r+1
dR (Xr/F)

compatible with all structures. In particular, the assignment V 7→ Dst(V ) induces an

isomorphism Extst(Qp, Vr ) ' ExtModF (8,N )(F, H2r+1
dR (Xr/F)).

Here, Extst(Qp, Vr ) ' H1
st(F, Vr ) := ker(H1(F, Vr ) −→ H1(F, Vr ⊗Qp Bst)) is the group

of extensions of the trivial representation Qp by Vr in the category of semistable p-adic

G F -representations.

The idempotent εX used in the definition (1.9) of the generalized Heegner cycles 1ϕ
acts as a projector on the various cohomology groups associated with the variety Xr . Let

Vr (r + 1) be the (r + 1)st Tate twist of Vr , and consider the étale Abel–Jacobi map

AJét
F : CHr+1(Xr )0(F) −→ ExtRepG F

(Qp, εX Vr (r + 1)) = H1(F, εX Vr (r + 1))

constructed in [22]. By [22, Theorem 3.1(ii)], the image of AJét
F lands in H1

st(F, εX Vr (r +
1)), and hence via the comparison isomorphism (2.1) it can be seen as taking values in

the group

ExtModF (8,N )(F, εX H2r+1
dR (Xr/F)(r + 1))
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of extensions of F by the twist εX H2r+1
dR (Xr/F)(r + 1) in the category of filtered

(8, N )-modules over F . This group admits the following explicit description.

Lemma 2.2. Set Hr := H2r+1
dR (Xr/F) and let n = [F : Qp]. The assignment

{0 −→ εX Hr (r + 1) −→ E
ρ
−→ F −→ 0}  ηE = η

hol
E (1)− ηfrob

E (1),

where ηhol
E : F −→ Fil0 E (resp. ηfrob

E : F −→ E8
n
=1,N=0) is a section of ρ compatible with

filtrations (resp. with Frobenius and monodromy), yields an isomorphism

ExtModF (8,N )(F, εX Hr (r + 1)) ' εX Hr (r + 1)/Fil0εX Hr (r + 1).

Proof. See [17, Lemma 2.1], for example.

Define the p-adic Abel–Jacobi map

AJF : CHr+1(Xr )0(F) −→ εX H2r+1
dR (Xr/F)(r + 1)/Fil0εX H2r+1

dR (Xr/F)(r + 1) (2.1)

to be the composite of AJét
F with the isomorphisms of Theorem 2.1 and Lemma 2.1.

Since the filtered pieces Fil1εX H2r+1
dR (Xr/F)(r) and Fil0εX H2r+1

dR (Xr/F)(r + 1) are exact

annihilators under the Poincaré duality

εX H2r+1
dR (Xr/F)(r)× εX H2r+1

dR (Xr/F)(r + 1) −→ F,

the target of AJF may be identified with the linear dual (Filr+1εX H2r+1
dR (Xr/F))∨.

Recall the coherent sheaf of OX -modules Lr = SymrL on X introduced in § 1.2, and set

Lr,r := Lr ⊗Symr H1
dR(A).

With the trivial extension of the Gauss–Manin connection ∇ on Lr to Lr,r , consider the

complex

L•r,r : Lr,r
∇
−→ Lr,r ⊗�

1
X (log Z X ),

and define H1
par(X,Lr,r ,∇) as in (1.5). By [1, Proposition 2.4], we then have

εX H2r+1
dR (Xr/F) ' H1

par(X,Lr,r ,∇) = H1
par(X,Lr ,∇)⊗Symr H1

dR(A/F)

and

Filr+1εX H2r+1
dR (Xr/F) ' H0(X, ω⊗r

⊗�1
X )⊗Symr H1

dR(A/F).

As a result of these identifications, we shall view the p-adic Abel–Jacobi map (2.1) as

a map

AJF : CHr+1(Xr )0(F) −→ (H0(X, ω⊗r
⊗�1

X )⊗Symr H1
dR(A/F))∨. (2.2)

Moreover, if 1 = εX1 ∈ CHr+1(Xr )0(F) is the class of a cycle in the image of the
idempotent εX supported on the fiber of Xr −→ X over a point P ∈ X (F), we see that
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AJF (1) may be computed using the following recipe. Consider the commutative diagram
with Cartesian squares:

0 // H 1
par(X,Lr,r ,∇)(r + 1) // D1

//

��

F

cl1

��

// 0

0 // H 1
par(X,Lr,r ,∇)(r + 1) // H 1

par(X r P,Lr,r ,∇)(r + 1) // Lr,r (P)(r) // 0,

where the rightmost vertical map is defined by sending 1 ∈ F to the cycle class clP (1).

Then AJF (1) is given by the linear functional

AJF (1) = 〈−, η1〉,

where η1 = η
hol
1 − η

frob
1 := ηhol

D1(1)− η
frob
D1 (1) is the ‘tangent vector’ associated, as in

Lemma 2.2, with the extension D1 as filtered (8, N )-modules, and

〈 , 〉 : H1
par(X,Lr,r ,∇)(r)× H1

par(X,Lr,r ,∇)(r + 1) −→ F (2.3)

is the Poincaré duality.

2.2. Rigid cohomology

Recall the rigid spaces Z∞ ⊂W∞, Z0 ⊂W0 introduced in § 1.1. Fix a collection of points

{P1, . . . , Pt } of X (F) contained in Z∞, containing all the cusps of Z∞, and such that

redp(Pi ) 6= redp(Pj ) for i 6= j . Let wp be the automorphism of X defined in terms of

moduli by

wp(E, t, α) = (α(E), α(t), α∨), (2.4)

where α∨ is the isogeny dual to α, and set P∗j := wp Pj . Then the points P∗j factor through

Z0, and the set

S := {P1, . . . , Pt , P∗1 , . . . , P∗t }

contains all the cusps of X . Since the points Q ∈ S reduce to smooth points Q̄ in the

special fiber, the spaces D(Q) := red−1
p (Q̄) are conformal to the open disc in D(0; 1)

in Cp. Fix isomorphisms hQ : D(Q) −→ D(0; 1) mapping the point Q to 0, and for a

collection of real numbers rQ < 1 consider the annuli

VQ := {x ∈ D(Q) : rQ < |hQ(x)|p < 1}. (2.5)

Denote by Lrig
r,r the sheaf for the rigid analytic topology on X (Cp) defined by the

algebraic vector bundle Lr,r . If V ⊂ X (Cp) is a connected wide open contained in Y (Cp),

the Gauss–Manin connection yields a connection

∇ : Lrig
r,r |V −→ Lrig

r,r |V ⊗�
1
V ,

and similarly to that in (1.4) we define the ith de Rham cohomology of V attached to

Lrig
r,r by

H i (L•r,r |V ) = H i
dR(V,L

rig
r,r ,∇) := Hi (Lrig

r,r |V
∇
−→ Lrig

r,r |V ⊗�
1
V ).
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In particular, if V is a basic wide open, then

H1(L•r,r |V ) '
Lrig

r,r (V)⊗�1
V

∇Lrig
r,r (V)

,

and H0(L•r,r |V ) ' Lrig
r,r (V)∇=0 is the space of horizontal sections of Lrig

r,r over V. For r = 0,

we set

H1(L•r,r |V ) = H1(V) := �1
V/dOV , H0(L•r,r |V ) = H0(V) := Od=0

V ,

where d : OV −→ �1
V is the differentiation map.

In terms of the admissible cover of X (Cp) by basic wide opens described in § 1.1, the

classes in H1
dR(X (Cp),Lrig

r,r ,∇) may be represented by hypercocycles (ω0, ω∞; fW ), where

ω0 and ω∞ are Lrig
r,r -valued differentials on W0 and W∞, respectively, and fW ∈ Lrig

r,r (W)

is such that (ω∞−ω0)|W = ∇ fW ; and two hypercocycles represent the same class if

their difference is of the form (∇ f0,∇ f∞; ( f∞− f0)|W ) for some f0 ∈ Lrig
r,r (W0) and f∞ ∈

Lrig
r,r (W∞).
If V is a wide open annulus, associated with an orientation of V there is a p-adic

annular residue

resV : �1
V −→ Cp (2.6)

defined by expanding ω =
∑

n anT n dT
T ∈ �

1
V with respect to a fixed uniformizing

parameter T compatible with the orientation, and setting resV (ω) := a0 (see [5,

Lemma 2.1]). Combined with the natural pairing

〈 , 〉 : Lrig
r,r (V)×Lrig

r,r (V)⊗�1
V −→ �1

V

induced by the Poincaré duality (1.3) on Lr (extended to Lr,r in the obvious manner),

we obtain a higher p-adic annular residue map

ResV : L
rig
r,r (V)⊗�1

V −→ Lrig
r,r (V)∨ (2.7)

by setting

ResV (ω)(α) = resV 〈α, ω〉

for every Lrig
r,r -valued differential ω on V and every section α ∈ Lrig

r,r (V). Since resV
clearly descends to a map H1(V) = �1

V/dOV −→ Cp, by composing ResV with the

projection Lrig
r,r (V)∨ −→ H0(L•r,r |V )∨ it is easily seen from the Leibniz rule that we obtain

a well-defined map

ResV : H1(L•r,r |V ) −→ H0(L•r,r |V )∨. (2.8)

If VQ ⊂ D(Q) is the annulus attached to a non-cuspidal point Q ∈ S, it will be

convenient, following the discussion after [1, Corollary 3.7], to view ResVQ as taking

values on the fiber Lr,r (Q), using the sequence of identifications

H0(L•r,r |VQ )
∨
= (H0(D(Q),Lr,r )

∇=0)∨ = Lr,r (Q)∨ = Lr,r (Q) (2.9)
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arising from ‘analytic continuation’, the choice of an ‘initial condition’, and the

self-duality of Lr,r (Q), respectively. (See [1, Corollary 3.7] for the case of a cusp Q ∈ S.)

For a supersingular annulus Ax , the vector space H0(L•r,r |Ax ) is equipped with a pairing

〈 , 〉Ax , arising from an identification (similar to (2.9)) with the de Rham cohomology of a

supersingular elliptic curve in characteristic p corresponding to x ∈ SS. Moreover, since

H0(Ax ) ' Cp, the residue map (2.6) yields an isomorphism resAx : H1(Ax ) −→ H0(Ax ),

and using a trivialization of Lrig
r,r |Ax it may be extended to an isomorphism

ResAx : H1(L•r,r |Ax ) ' H0(L•r,r |Ax ) (2.10)

(see [6, Proposition 7.1]). It is then easily checked that (2.8) and (2.10) correspond to

each other under the identification H0(L•r,r |Ax )
∨
= H0(L•r,r |Ax ) defined by 〈 , 〉Ax .

Let S be a set of points as introduced above, and define

W]
∞ := Z∞r

⋃
Q∈S∩Z∞

D(Q)rVQ, U :=W]
∞ ∪W]

0,

where W]
0 := wpW]

∞, and U := X r S. The restriction of an Lr,r -valued differential on

X , which is regular on U defines a section of Lrig
r,r ⊗�

1
X over U . As argued in the proof of

[6, Proposition 7.2], this yields an isomorphism

H1
dR(U,Lr,r ,∇) ' H1(L•r,r |U )

between algebraic and rigid de Rham cohomology.

Proposition 2.3. Let the notation be as before.

(1) A class κ ∈ H1(L•r,r |U ) belongs to the image of H1
par(X,Lr,r ,∇) under restriction

H1
par(X,Lr,r ,∇) −→ H1

dR(U,Lr,r ,∇) ' H1(L•r,r |U )

if and only if ResVQ (κ) = 0 for all Q ∈ S.

(2) Let V be such that {U, V } is an admissible covering of X . If κω, κη ∈ H1
par(X,Lr,r ,∇)

are represented by the hypercocycles (ωU , ωV ;ωU∩V ), (ηU , ηV ; ηU∩V ) respectively,

with respect to this covering, then the value 〈κω, κη〉 under the Poincaré duality

(2.3) is given by

〈κω, κη〉 =
∑
Q∈S

resVQ 〈Fω,Q, ηU 〉,

where Fω,Q is any local primitive of ωU on VQ, i.e., such that ∇Fω,Q = ωU |VQ .

Proof. The first assertion follows from the same argument as in [1, Proposition 3.8], and

the second is [6, Lemma 7.1].

2.3. Coleman’s p-adic integration

In this section, we give an explicit description of the filtered (8, N )-module structure on

H1
par(X,Lr,r ,∇), following the work of Coleman–Iovita [8]. We state the results for Lr ,

leaving their trivial extension to Lr,r = Lr ⊗Symr H1
dR(A) to the reader.

https://doi.org/10.1017/S1474748015000444 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000444


222 F. Castella

As recalled in § 1.4, for every pair (Ex , tx ) corresponding to a point x ∈ X1(N )(
p

p+1 )

there is a canonical p-isogeny αcan : Ex 7→ Ex/can(Ex ), where can(Ex ) ⊂ Ex [p] is the

canonical subgroup. The map V : X1(N )( 1
p+1 ) −→ X1(N )(

p
p+1 ) defined in terms of

moduli by

V (Ex , tx ) = (αcan(Ex ), αcan(tx )) (2.11)

is then a lift of the absolute Frobenius on X1(N )Fp . Letting s1 : X1(N )(
p

p+1 ) −→W∞
be defined by (Ex , tx ) 7→ (Ex , tx , can(Ex )), and letting W ′∞ ⊂W∞ be the image of

X1(N )( 1
p+1 ) under s1, the map φ∞, defined by the commutativity of the diagram

W ′∞
φ∞ //

π1

��

W∞

X1(N )( 1
p+1 )

V // X1(N )(
p

p+1 ),

s1

OO

is therefore a lift of the absolute Frobenius on XFp .

As explained in [6, p. 41] (see also the more detailed discussion in [7, p. 218]), the

canonical subgroup yields a horizontal morphism Fr∞ : φ∗∞Lr −→ Lr |W ′∞ . Define the

Frobenius endomorphism 8∞ on H1(L•r |W∞) by the composite map

H1(L•r |W∞) '
Lrig

r ⊗�
1
W∞(W∞)

∇Lrig
r (W∞)

(Fr∞⊗id)φ∗∞
−−−−−−−→

Lrig
r ⊗�

1
W∞(W

′
∞)

∇Lrig
r (W ′∞)

' H1(L•r |W∞),

where the last isomorphism is given by restriction (see [6, Proposition 10.3]). Setting

W ′0 := wpW ′∞ ⊂W0 = wpW∞ and φ0 := w
−1
p φ∞wp, where wp is the automorphism of

X given by (2.4), we similarly define a Frobenius endomorphism 80 of H1(L•r |W0).

Theorem 2.4 (Coleman). Let f = q +
∑
∞

n=2 an( f )qn
∈ Sr+2(00(N p)) be a p-new

eigenform of weight r + 2 > 2, and let ω f ∈ H0(X, ωr
⊗�1

X ) ⊂ H1
par(X,Lr ,∇) be the

associated differential. Then for each ? ∈ {∞, 0} there exists a locally analytic section

F f,? of Lr on W? such that

(i) ∇F f,? = ω f |W?
;

(ii) F f,?−
ap( f )
pr+1 φ

∗
? F f,? is rigid analytic on W ′?.

Moreover, F f,? is unique modulo H0(L•r |W?
).

Proof. This follows from the discussion in [6, § 11]. By [6, Lemma 11.1] we have 8∞ =

pUp on the image of Sr+2(X)p-new in H1(L•r |W∞). Since U 2
p = pr

〈p〉 on the former space

and we have the relations Upω f = ap( f )ω f and 〈p〉ω f = ω f by hypothesis, it follows

that the polynomial

P(T ) = 1−
ap( f )
pr+1 T

is such that P(8∞)([ω f |W∞ ]) = 0, and hence also P(80)([ω f |W0 ]) = 0. The result thus

follows from [6, Theorem 10.1].
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A locally analytic section F f,? as in Theorem 2.4 is called a Coleman primitive of f
on W?.

Remark 2.5. For r > 0, the spaces H0(L•r |W?
) are trivial, and so the Coleman primitives

F f,? are unique. On the other hand, for r = 0 we have H0(L•r |W?
) ' Cp, and so F f,? are

unique modulo a global constant on W?.

2.4. Frobenius and monodromy

Denote by ι the inclusion of any rigid subspace of X into X . Associated with the exact

sequence of complexes of sheaves on X

0 −→ L•r −→ ι∗(L•r |W0)⊕ ι
∗(L•r |W∞)

ρ∞−ρ0
−−−−→ ι∗(L•r |W ) −→ 0,

there is a Mayer–Vietoris long exact sequence

· · · −→ H0
par(L•r |W0tW∞)

β0

−−−→ H0
par(L•r |W )

δ
−−→ H1

par(X,L
rig
r ,∇) −→

−→ H1
par(L•r |W0tW∞)

β1

−−−→ H1
par(L•r |W ) −→ · · ·

in hypercohomology. By [6, § 10] and the discussion in the preceding section, each of the

non-central spaces in the resulting short exact sequence

0 −→
H0

par(L•r |W )
β0(H0

par(L•r |W0tW∞))
δ
−−→ H1

par(X,Lr ,∇) −→ H1
par(L•r |W0tW∞)

β1
=0
−→ 0 (2.12)

is equipped with a Frobenius endomorphism. Therefore, to define a Frobenius action on

H1
par(X,Lr ,∇) it suffices to construct a splitting of (2.12).

As shown in [6, § A.5], this may be obtained as follows. Assume that κ ∈ H1
par(X,Lr ,∇)

is represented by the hypercocycle (ω0, ω∞; fW ) with respect to the covering {W0,W∞}
of X . Since W =

⋃
x∈SS Ax is the union of the supersingular annuli, we may write fW =

{ fx }x∈SS with fx ∈ Lrig
r (Ax ). The assignment

Ax 7−→ Fω∞ |Ax − Fω0 |Ax − fx , (2.13)

where Fω? is a Coleman primitive of ω? on W?, defines a horizontal section of Lrig
r on

W, and its image modulo β0(H0
par(L•r |W0tW∞)) is independent of the chosen Fω? (see

Remark 2.5). It is easily checked that sδ = id, and hence we may define a Frobenius

operator 8 on H1
par(X,Lr ,∇) by requiring that its action be compatible with the resulting

splitting of (2.12).

On the other hand, define the monodromy operator N on H1
par(X,Lr ,∇) by the

composite map

H1
par(X,Lr ,∇) −→ H1(L•r |W )

⊕
x∈SS ResAx
−−−−−−−−→ H0(L•r |W )

δ
−−→ H1

par(X,Lr ,∇),

where ResAx are the p-adic residue maps (2.10).
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Lemma 2.6. Let κ ∈ H1
par(X,Lr ,∇). Then we have

(i) for r > 0, N (κ) = 0⇐⇒ ResAx (κ) = 0 for all x ∈ SS;

(ii) for r = 0, N (κ) = 0⇐⇒ there is C ∈ Cp such that resAx (κ) = C for all x ∈ SS.

Proof. This follows immediately from the exact sequence (2.12) and the determination

of the spaces H0(L•r |W?
) recalled in Remark 2.5.

By the main result of [8], the operators 8 and N on H1
par(X,Lr ,∇) defined above

agree with the corresponding structures deduced from the comparison isomorphism of

Theorem 2.1.

2.5. p-adic Gross–Zagier formula

Fix a finite extension F/Qp containing the image of the Hilbert class field H of K under

our fixed embedding Q
ı p
↪→ Cp, and let c > 1 be an integer prime to N p.

Proposition 2.7. Let f = q +
∑
∞

n=2 an( f )qn
∈ Sr+2(00(N p)) be a p-new eigenform of

weight r + 2 > 2. Let ϕ : A −→ A′ be an isogeny in IsogNc (A), let PA′ ∈ X (F) be the point

defined by (A′, tA′), and let 1ϕ be the generalized Heegner cycle associated with ϕ. Then

for all α ∈ Symr H1
dR(A/F), we have

AJF (1ϕ)(ω f ∧α) = 〈F f,∞(PA′)∧α, clPA′
(1ϕ)〉,

where F f,∞ is the Coleman primitive of ω f ∈ H0(X, ω⊗r
⊗�1

X ) on W∞ (vanishing at ∞

if r = 0), and the pairing on the right-hand side is the natural one on Lr,r (PA′).

Proof. Following the recipe described at the end of § 2.1, we have

AJF (1ϕ)(ω f ∧α) = 〈ω f ∧α, η
hol
1 − η

frob
1 〉, (2.14)

where

• ηhol
1 is a cohomology class represented by a section (still denoted by ηhol

1 ) of Lr,r ⊗

�1
X (log Z X ) over U having residue 0 at the cusps, and with a simple pole at PA′ with

residue clPA′
(1ϕ);

• ηfrob
1 is a section of Lrig

r,r ⊗�
1
X over U having the same residues as ηhol

1 , and satisfying

N (ηfrob
1 ) = 0 and

8ηfrob
1 = ηfrob

1 +∇G, (2.15)

for some rigid section G of Lrig
r,r on a strict neighborhood of (Z0 ∩W]

0)∪ (Z∞ ∩W
]
∞)

in U .

By the formula for the Poincaré pairing in Proposition 2.3, equation (2.14) may be

rewritten as

AJF (1ϕ)(ω f ∧α) =
∑
Q∈S

resVQ 〈F f ,Q ∧α, η
hol
1 − η

frob
1 〉, (2.16)
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where F f ,Q ∈ Lr (VQ) is an arbitrary local primitive of ω f on the annulus VQ . (Note that

here we are using the fact that the connection ∇ on Lr,r = Lr ⊗Symr H1
dR(A/F) is defined

from the Gauss–Manin connection on Lr by extending it trivially on the second factor.)

If F f,∞ is a Coleman primitive of ω f on W∞, then F [p]f,∞ := F f,∞−
ap( f )
pr+1 φ

∗
∞F f,∞ is

rigid analytic on W ′∞ ⊂W∞ by Theorem 2.4, and hence∑
Q∈S∩W∞

resVQ 〈F
[p]
f,∞ ∧α, η

frob
1 〉+

∑
x∈SS

resAx 〈F
[p]
f,∞ ∧α, η

frob
1 〉 = 0 (2.17)

by the residue theorem (see [1, Theorem 3.8]). Since N (ηfrob
1 ) = 0, Lemma 2.6 implies

that we can write ηfrob
1 = ∇Gx for some rigid section Gx ∈ Lrig

r,r (Ax ) on each supersingular

annulus Ax , and hence

d〈F [p]f,∞ ∧α,Gx 〉 = 〈∇F [p]f,∞ ∧α,Gx 〉+ 〈F
[p]
f,∞ ∧α, η

frob
1 〉.

In particular, the right-hand side in the last equality has residue 0, and hence

resAx 〈F
[p]
f,∞ ∧α, η

frob
1 〉 = −resAx 〈∇F [p]f,∞ ∧α,Gx 〉. (2.18)

Plugging (2.18) into (2.17), we arrive at∑
Q∈S∩W∞

resVQ 〈F
[p]
f,∞ ∧α, η

frob
1 〉−

∑
x∈SS

resAx 〈∇F [p]f,∞ ∧α, η
frob
1 〉 = 0. (2.19)

An entirely parallel reasoning with W0 in place of W∞ yields a proof of the equality∑
Q∈S∩W0

resVQ 〈F
[p]
f,0 ∧α, η

frob
1 〉+

∑
x∈SS

resAx 〈∇F [p]f,∞ ∧α, η
frob
1 〉 = 0, (2.20)

where F f,0 is a Coleman primitive of ω f on W0, and where we used the fact that

the supersingular annuli acquire opposite orientations with respect to W∞ and W0.

Combining (2.19) and (2.20), we get

0 =
∑
Q∈S

resVQ 〈F
[p]
f,Q ∧α, η

frob
1 〉 =

(
1−

ap( f )
pr+1

)∑
Q∈S

resVQ 〈F f,Q ∧α, η
frob
1 〉, (2.21)

where F [p]f,Q denotes F [p]f,∞ or F [p]f,0 depending on whether Q ∈W∞ or W0, respectively,

using (2.15) for the second equality (see the argument [1, p. 1079]).

Since ap( f )2 = pr , this shows that there is no contribution from ηfrob
1 in (2.16). On the

other hand, since by the choice of ηhol
1 we easily have∑

Q∈S

resVQ 〈F f,Q ∧α, η
hol
1 〉 = 〈F f,∞(PA′)∧α, clPA′

(1ϕ)〉

(see [1, Lemma 3.19]), the result follows.

Let (A, tA, ωA) be the CM triple introduced in § 1.5, and let ηA ∈ H1
dR(A/F) be the

class determined by the conditions

λ∗ηA = λ
ρηA for all λ ∈ OK , and 〈ωA, ηA〉A = 1,
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where λ 7→ λρ denotes the action of the non-trivial automorphism of K , and 〈 , 〉A is

the cup product pairing on H1
dR(A/F). If (A′, tA′ , ωA′) is the CM triple induced from

(A, tA, ωA) by an isogeny ϕ ∈ IsogNc (A), we define ηA′ ∈ H1
dR(A

′/F) by the analogous

recipe. For the integers j with 0 6 j 6 r , the classes ω
j
A′η

r− j
A′ defined in [1, (1.4.6)] then

form a basis of Symr H1
dR(A

′/F).

Lemma 2.8. Let the notation be as in Proposition 2.7. Then, for each 0 6 j 6 r , we have

AJF (1ϕ)(ω f ∧ω
j
Aη

r− j
A ) = deg(ϕ) j

· 〈F f,∞(PA′), ω
j
A′η

r− j
A′ 〉A′ ,

where F f,∞ is the Coleman primitive of ω f ∈ H0(X, ω⊗r
⊗�1

X ) on W∞ (vanishing at∞ if

r = 0), and the pairing 〈 , 〉A′ on the right-hand side is the natural one on Symr H1
dR(A

′/F).

Proof. This follows from Proposition 2.7 as in [1, Lemma 3.22].

Recall that if f ∈ Sk(X) is a cusp form of weight k and level 0, then f |W∞ defines

a p-adic modular form f p ∈Mk(N ) of weight k and tame level N . Evaluated on a CM

triple (A′, tA′ , ωA′) of conductor c prime to p, we then have

f p(A′, tA′ , ωA′) = f (A′, tA′ , α
′
p, ωA′),

where α′p : A′ −→ A′/A′[p] is the p-isogeny defined by the canonical subgroup of A′ (see

§ 1.5). By abuse of notation, in the following we will denote f p also by f . The map V
defined in (2.11) yields an operator V :Mk(N ) −→Mk(N ) on p-adic modular forms

whose effect on q-expansions is given by q 7→ q p. Let ap( f ) be the Up-eigenvalue of f ,

and define the p-depletion of f by

f [p] := f − ap( f )V f.

Letting d = q d
dq :Mk(N ) −→Mk+2(N ) be the Atkin–Serre operator, for any integer j

the limit

d−1− j f [p] := lim
t→−1− j

d t f [p]

is a p-adic modular form of weight k− 2− j and tame level N (see [30, Theorem 5]).

Lemma 2.9. Let the notation be as in Proposition 2.7. Then for each 0 6 j 6 r there

exists a locally analytic p-adic modular form G j of weight r − j and tame level N such

that

〈F f,∞(PA′), ω
j
A′η

r− j
A′ 〉A′ = G j (A′, tA′ , ωA′), (2.22)

where F f,∞ is the Coleman primitive of ω f on W∞ (vanishing at ∞ if r = 0), and

G j (A′, tA′ , ωA′)−
ap( f )
pr− j+1 G j (p ∗ (A′, tA′ , ωA′)) = j !d−1− j f [p](A′, tA′ , ωA′). (2.23)

Proof. The construction of G j as the ‘ jth component’ of F f,∞ is given in [1, p. 1083],

and (2.22) then follows from the definition. On the other hand, (2.23) follows from the

same calculations as in [1, Lemma 3.23 and Proposition 3.24].

https://doi.org/10.1017/S1474748015000444 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000444


On the exceptional specializations of big Heegner points 227

We now relate the expression appearing in the right-hand side of Proposition 2.7 to

the value of a certain p-adic L-function associated with f .

Recall that (A, tA, ωA) denotes the CM triple introduced in § 1.5, and fix an elliptic

curve A0/Hc with EndHc (Ac) ' Oc. The curve A0 is related to A by an isogeny ϕ0 :

A −→ A0 in IsogNc (A), and we let (A0, t0, ω0) be the induced triple. Since we assume that

p = pp splits in K , we may fix an isomorphism µp∞ ' A0[p
∞
] of p-divisible groups, where

A0/OCp is a good integral model of A0. This amounts to the choice of an isomorphism

ı : Â0 −→ Ĝm of formal groups, and we let �p ∈ C×p be the p-adic period defined by the

rule

ω0 = �p ·ωcan,

where ωcan := ı∗ dt
t for the standard coordinate t on Ĝm .

Finally, consider the set Σ+k,c of algebraic Hecke characters χ : K×\A×K −→ C× of

conductor c, infinity type (k+ j,− j) with j > 0 (with the convention in [1, p. 1089]),

and such that

χ |A×Q
= Nk,

where N is the norm character on A×Q, and for every χ ∈ Σ+k,c set

Lp( f )(χ) :=
∑

[a]∈Pic(Oc)

χ−1(a)N(a)− j
· d j f [p](a ∗ (A0, t0, ωcan)), (2.24)

and define

Lalg( f, χ−1) := w( f, χ)−1C( f, χ, c) ·
L( f, χ−1, 0)
�2(k+2 j) ,

where w( f, χ) and C( f, χ, c) are the constants defined in [1, (5.1.11)] and [1,

Theorem 4.6], respectively, � is the complex period in [1, (5.1.16)], and L( f, χ−1, 0)
is the central critical value of the Rankin–Selberg L-function L( f × θχ−1 , s) of f and the

theta series of χ−1.

As explained in [1, p. 1134], the setΣ+k,c may be endowed with a natural p-adic topology,

and we let Σ̂k,c denote its completion.

Theorem 2.10. The assignment χ 7→ Lp( f )(χ) extends to a continuous function on Σ̂k,c
and satisfies the following interpolation property. If χ ∈ Σ+k,c has infinity type (k+ j,− j),
with j > 0, then

Lp( f )(χ)2

�
2(k+2 j)
p

= (1− ap( f )χ−1(p̄))2 · Lalg( f, χ−1, 0).

Proof. See Theorem 5.9, Proposition 5.10, and equation (5.2.4) of [1], noting that βp = 0
here, since f has level divisible by p.

Let Σ−k,c be the set of algebraic Hecke characters of K of conductor c and infinity type

(k− 1− j, 1+ j), with j > 0. Even though Σ+k,c ∩Σ
−

k,c = ∅, any character in Σ−k,c can be
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written as a limit of characters in Σ+k,c (see [1, p. 1137]). Thus for any χ ∈ Σ−k,c, the value

Lp( f )(χ) is defined by continuity.

The next result extends the p-adic Gross–Zagier formula of [1, Theorem 5.13] to the

semistable non-crystalline setting.

Theorem 2.11. Let f = q +
∑
∞

n=2 an( f )qn
∈ Sk(00(N p)) be a p-new eigenform of weight

k = r + 2 > 2, and suppose that χ ∈ Σ−k,c has infinity type (r + 1− j, 1+ j), with 0 6 j 6
r . Then

Lp( f )(χ)

�
r−2 j
p

= (1− ap( f )χ−1(p̄)) ·

(
c− j

j !

∑
[a]∈Pic(Oc)

χ−1(a)N(a) ·AJF (1ϕaϕ0)(ω f ∧ω
j
Aη

r− j
A )

)
.

Proof. The proof of [1, Proposition 5.10] shows that the expression (2.24) extends in the

obvious way to a character χ as in the statement, yielding

Lp( f )(χ)

�
r−2 j
p

=

∑
[a]∈Pic(Oc)

χ−1(a)N(a)1+ j
· d−1− j f [p](a ∗ (A0, t0, ω0)). (2.25)

On the other hand, by Lemma 2.9 we have

j !d−1− j f [p](a ∗ (A0, t0, ω0)) = G j (a ∗ (A0, t0, ω0))−
ap( f )
pr− j+1 G j (pa ∗ (A0, t0, ω0)). (2.26)

Substituting (2.26) into (2.25), summing over [a] ∈ Pic(Oc), and noting that

χ(p)p−1− j
= χ−1(p)pr+1− j ,

we see that

Lp( f )(χ)

�
r−2 j
p

=

(
1− ap( f )χ−1(p)

)
×

(
1
j !

∑
[a]∈Pic(Oc)

χ−1(a)N(a)1+ j
·G j (a ∗ (A0, t0, ω0))

)
. (2.27)

Finally, since the isogeny ϕaϕ0 : (A, tA, ωA) −→ a ∗ (A0, t0, ω0) has degree cN(a),
combining Lemmas 2.8 and 2.9 we have

G j (a ∗ (A0, t0, ω0)) = c− j N(a)− j
·AJF (1ϕaϕ0)(ω f ∧ω

j
Aη

r− j
A ), (2.28)

and substituting (2.28) into (2.27), the result follows.

3. Main result

In this section we prove the main result of this paper, giving an ‘exceptional zero formula’

for the specializations of Howard’s big Heegner points at exceptional primes in the Hida

family.
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3.1. Heegner points in Hida families

We begin by briefly reviewing the constructions of [15], which we adapt to our situation,

referring the reader to [15, § 2] for further details.

Recall that p - N . Let f =
∑
∞

n=1 an( f )qn
∈ Sk(00(N p)) be a newform, fix a finite

extension L of Qp with ring of integers OL containing the Fourier coefficients of f ,

and let

ρ f : GQ := Gal(Q/Q) −→ AutL(V f ) ' GL2(L)

be the Galois representation associated with f . Also, let K = Q(
√
−DK ) be an imaginary

quadratic field as in § 1.5. For the rest of this paper, these will be subject to the following

further hypotheses.

Assumptions 3.1. (1) f is ordinary at p, i.e., ı p(ap( f )) is a p-adic unit;

(2) ρ f is absolutely irreducible;

(3) ρ f is ramified at every prime q dividing (DK , N );

(4) p - hK := |Pic(OK )|, the class number of K .

Note that by [15, Lemma 2.15], the first assumption forces the weight of f to be k = 2,

which will thus be assumed for the rest of this paper. As noted in [19, Remark 7.2.7],

this also implies that the residual representation ρ f is automatically p-distinguished.

Definition 3.2. Set 3OL := OLJ1+ pZpK. For any 3OL -algebra A, let X a
OL
(A) be the set

of continuous OL -algebra homomorphisms ν : A −→ Qp such that the composition

1+ pZp −→ 3×OL
−→ A×

ν
−−→ Q×p

is given by γ 7→ γ kν−2, for some integer kν > 2 with kν ≡ 2 (mod 2(p− 1)) called the

weight of ν.

Since f is ordinary at p, by [13, Corollary 1.3] there exists a local reduced finite

integral extension I of 3OL , and a formal q-expansion f =
∑
∞

n=1 anqn
∈ IJqK uniquely

characterized by the following property. For every ν ∈ X a
OL
(I) of weight kν > 2, there

exists a newform fν ∈ Skν (00(N )) such that

ν(f) = fν(q)−
pkν−1

ν(ap)
fν(q p), (3.1)

and there exists a unique ν f ∈ X a
OL
(I) of weight 2 such that ν f (f) = f (q).

By [13, Theorem 1.2], there is a free I-module T of rank 2 equipped with a continuous

action

ρf : GQ −→ AutI(T) ∼= GL2(I)

such that for every ν ∈ X a
OL

, ν(ρf) is isomorphic to the Galois representation ρ fν : GQ −→

GL2(Qp) associated with fν . Moreover, by [32, Theorem 2.2.2], if Dp ⊂ GQ is the
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decomposition group of any place P of Q above p, there exists an exact sequence of

I[Dp]-modules

0 −→ F+T −→ T −→ F−T −→ 0 (3.2)

with F±T free of rank 1 over I, and with the Dp-action on F−T given by the unramified

character sending an arithmetic Frobenius Fr−1
p to ap ∈ I×.

Following [15, Definition 2.1.3], define the critical character 2 : GQ −→ I× by the

composite

2 : GQ
εcyc
−−→ Z×p

〈·〉
−−→ 1+ pZp

γ 7→γ 1/2

−−−−−→ 1+ pZp −→ 3×O −→ I×, (3.3)

where εcyc is the p-adic cyclotomic character and 〈·〉 denotes the projection to the 1-units

in Zp. Let I† be the free I-module of rank 1 where GQ acts via 2−1, and set

T†
:= T⊗I I†

equipped with the diagonal Galois action. Then, if for every ν ∈ X a
OL
(I) we let V fν be a

representation space for ρ fν , then ν(T†) := T†
⊗I,ν ν(I) is isomorphic to a lattice in the

self-dual Tate twist V fν (kν/2) of V fν (see [26, Theorem 1.4.3] and [24, (3.2.4)]).

Let K∞ be the anticyclotomic Zp-extension of K , and for each n > 0, let Kn be the

subfield of K∞ with Gal(Kn/K ) ' Z/pnZ.

Theorem 3.3 (Howard). There is a system of ‘big Heegner points’

Z∞ = {Zn}n>0 ∈ H1
Iw(K∞,T†) := lim

←−
n

H1(Kn,T†)

with the following properties.

(1) For each n, Zn belongs to the Greenberg–Selmer group SelGr(Kn,T†) of [15,

Definition 2.4.2]. In particular, for every prime q of K above p, we have

locq(Z∞) ∈ ker
(

H1
Iw(K∞,q,T†) −→ H1

Iw(K∞,q,F
−T†)

)
for the natural map induced by (3.2).

(2) If Z∗∞ denotes the image of Z∞ under the action of complex conjugation, then

Z∗∞ = w ·Z∞

for some w ∈ {±1}.

Proof. In the following, all the references are to [15]. The construction of Z∞ is given in

§§ 2.2, 3.3 and the proof of (1) is given in Proposition 2.4.5. For the proof of (2), we need

to briefly recall the definition of Zn . Let Hpn+1 be the ring class field of K of conduction

pn+1, and note that it contains Kn . By Proposition 2.3.1, the ‘big Heegner points’ Xpn+1 ∈

H1(Hpn+1 ,T†) satisfy CorHpn+1/Hpn (Xpn+1) = Up ·Xpn , and hence the classes

Zn := U−n
p ·CorHpn+1/Kn (Xpn+1) (3.4)

https://doi.org/10.1017/S1474748015000444 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000444


On the exceptional specializations of big Heegner points 231

are compatible under corestriction. Denoting by τ the image of a class under the action

of complex conjugation and using Proposition 2.3.5, we find that

CorHpn+1/Kn (Xpn+1)
τ
=

∑
σ∈Gal(Hpn+1/Kn)

Xτσpn+1

=

∑
σ∈Gal(Hpn+1/Kn)

Xσ
−1τ

pn+1

= w ·CorHpn+1/Kn (Xpn+1) (3.5)

for some w ∈ {±1}. Combining (3.4) and (3.5), the result follows.

3.2. Two-variable p-adic L-functions

As in the preceding section, let f ∈ S2(00(N p)) be a newform split multiplicative at p,

and let f ∈ IJqK be the Hida family passing through f . Recall the spaces of characters

Σ±k,c and Σ̂k,c introduced in § 2.5. In the following, we only consider the case c = 1, which

will henceforth be neglected from the notation.

By [1, Proposition 5.10] (see also Theorem 2.10), for every ν ∈ X a
OL
(I) the assignment

χ 7−→ Lp( fν)(χ) :=
∑

[a]∈Pic(OK )

χ−1(a)N(a)− j
· d j f [p]ν (a ∗ (A0, t0, ωcan))

extends to a continuous function on Σ̂kν . Using the explicit expression for these values, it

is easy to show the existence of a two-variable p-adic L-function interpolating Lp( fν) for

varying ν. For the precise statement, denote by h = hK the class number of K (which we

assume is prime to p), and let φo be the unramified Hecke character defined on fractional

ideals by the rule

φo(a) = α/α, where (α) = ah . (3.6)

Assume that OL contains the values of φo, and denote by 〈φo〉 the composition of φo
with the projection onto the Zp-free quotient of O×L , which then is valued in 1+ pZp,

and define ξ : K×\A×K −→ I× by

ξ : K×\A×K
φo
−−−→ O×L

〈·〉
−−→ 1+ pZp

γ 7→γ 1/2h

−−−−−→ 1+ pZp −→ 3×OL
−→ I×. (3.7)

Similarly, recall the critical character 2 : GQ −→ I× from (3.3), and define χ :

K×\A×K −→ I× by

χ(x) = 2(recQ(NK/Q(x))),

where recQ : A×Q −→ Gal(Qab/Q) is the geometrically normalized global reciprocity map.

Let 0∞ := Gal(K∞/K ) be the Galois group of the anticyclotomic Zp-extension of K , and

denote by X a
OL
(0∞) the set of continuous OL -algebra homomorphisms OLJ0∞K −→ Q×p

induced by a character φ of the form φ = φ
`φ/h
o for some integer `φ > 0 with `φ ≡ 0

(mod p− 1). Finally, let

NK : K×\A×K
NK/Q
−−−→ Q×\A×Q

N
−−→ C×
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be the norm character of K , and for every ν ∈ X a
OL
(I), let ξν and χν be the composition

of ξ and χ with ν, respectively.

Theorem 3.4. The exists a continuous function Lp,ξ (f) on X a
OL
(I)×X a

OL
(0∞) such that

for every ν ∈ X a
OL
(I) we have

Lp,ξ (f)(ν, φ) = Lp( fν)(φξνχνNK )

as functions of φ ∈ X a
OL
(0∞).

Proof. See [3, Theorem 1.4]. (Note that if (ν, φ) ∈ X a
OL
(I)×X a

OL
(0∞), then φξνχνNK is

an unramified Hecke character of infinity type (kν + `φ − 1,−(`φ − 1)), thus lying in the

domain of Lp( fν).)

3.3. Ochiai’s big logarithm maps

By our assumption that p - h = hK , the extension K∞/K is totally ramified at every

prime q above p; let K∞,q be the completion of K∞ at the unique prime above q, and set

0q,∞ = Gal(K∞,q/Kq). Even though 0q,∞ may be identified with 0∞, in the following it

will be convenient to maintain the distinction between them. Write qh
= πqOK , and set

$q = πq/πq ∈ K×q ; in particular, note that $p = $
−1
p .

Recall the I-adic Hecke character introduced in (3.7), and let ξ : G K −→ I× also denote

the Galois character defined by

ξ(σ ) := [〈φ̂o(σ )〉
1/2h
],

where φ̂o : G K −→ O×L is the p-adic avatar of the Hecke character φo in (3.6). Finally,

set

Tp := T†
|G K ⊗ ξ

−1, Tp := T†
|G K ⊗ ξ,

and for every ν ∈ X a
OL
(I) denote by Vν the specialization of Tq at ν (it will be clear from

the context which prime q above p is meant).

Theorem 3.5. Let λ = ap − 1 and set Ĩ := I[λ−1
]⊗Zp Ẑnr

p . For each q ∈ {p, p}, there exists

an IJ0q,∞K-linear map

LωF+Tq
: H1

Iw(K∞,q,F
+Tq) −→ ĨJ0q,∞K

such that for every Y∞ ∈ H1
Iw(K∞,q,F

+Tq) and every (ν, φ) ∈ X a
OL
(Ĩ)×X a

OL
(0q,∞) we

have(
1−

(p$ 1/h
q )kν/2−1

ν(ap)$
`φ/h
q

)
LωF+Tq

(Y∞)(ν, φ)=`φ !
−1
(

1−
ν(ap)$

`φ/h
q

p(p$ 1/h
q )kν/2−1

)
〈log(ν(Y∞)φ ), ω̆ν〉,

where log = logF+Vν⊗φ : H1(Kq,F+Vν ⊗φ) −→ DdR(F+Vν ⊗φ) is the Bloch–Kato

logarithm map, and ν(Y∞)
φ
∈ H1(Kq,F+Vν ⊗φ) is the φ-specialization of ν(Y∞).
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Proof. See [3, Proposition 4.3].

Remark 3.6. Fix a compatible system ζ∞ = {ζr }r>0 of p-power roots of unity, and let

ζ∞t−1 be the associated basis element of DdR(Qp(1)). In Theorem 3.5, ω denotes a

generator of the module

D := (F+Tq(−1)⊗̂Zp Ẑnr
p )

G Kq ,

which by [25, Lemma 3.3] is free of rank one over I. (Note that F+Tq(−1) is unramified.)

As explained in [25, Lemma 3.3], for each ν ∈ X a
OL
(I) there is a specialization map

ν∗ : D −→ Dν ⊗Zp Qp ' DdR(F
+Vν(−1)).

Then, letting ων denote the image of ν∗(ω)⊗ ζ∞t−1 in DdR(F+Vν(−1))⊗ DdR(Qp(1)) '
DdR(F+Vν), the class ω̆ν ∈ DdR(F−V ∗ν (1)) in the above interpolation formulas is defined

by requiring that

〈ων, ω̆ν〉 = 1

under the de Rham pairing 〈 , 〉 : DdR(F+Vν)× DdR(F−V ∗ν (1)) −→ Fν .

The big logarithm map LωF+Tq
of Theorem 3.5 may not be specialized at any pair

(ν,1) with ν ∈ X a
OL
(I) such that ν(λ) = 0, i.e., ν(ap) = 1. Since such arithmetic primes

are in fact the main concern in this paper, the following construction of an ‘improved’

big logarithm will be useful.

Proposition 3.7. There exists an I-linear map

L̃ωF+Tp
: H1(Kp,F

+Tp) −→ I⊗Zp Qp

such that for every Y0 ∈ H1(Kp,F+Tp) and every ν ∈ X a
OL
(I), we have

ν
(
L̃ωF+Tp

(Y0)
)
=

(
1−

ν(ap)p−1

(p$ 1/h
p

)kν/2−1

)
〈logF+Vν (ν(Y0)), ω̆ν〉.

Proof. This can be shown by adapting the methods of Ochiai [25, § 5]. Indeed, let

LF+Tp
: H1(Kp,F

+Tp)⊗Qp −→ D⊗Zp Qp

be the inverse of the map expT constructed in [31, Proposition 3.8] (see Remark 3.6 for

the definition of D), and define

LωF+Tp
: H1(Kp,F

+Tp) −→ I⊗Zp Qp

by the relation LF+Tp
(−) = LωF+Tp

(−) ·ω. Setting

L̃ωF+Tp
=

(
1−

ap p−1

2−1ξ (Frp)

)
LωF+Tp

: H1(Kp,F
+Tp) −→ I⊗Zp Qp,

the result follows.
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Corollary 3.8. For any Y∞ = {Yn}n>0 ∈ H1
Iw(K∞,p,F

+Tp), we have the factorization in

Ĩ: (
1−

2−1ξ (Frp)
ap

)
· ε
(
LωF+Tp

(Y∞)
)
= L̃ωF+Tp

(Y0),

where ε : ĨJ0∞K −→ Ĩ is the augmentation map.

Proof. Comparing the interpolation formulas in Theorem 3.5 and Proposition 3.7, we see

that (
1−

2−1
ν ξν(Frp)
ν(ap)

)
LωF+Tp

(Y∞)(ν, 1) = ν
(
L̃ωF+Tp

(Y0)
)

for every ν ∈ X a
OL
(Ĩ); since these primes are dense in Ĩ, the corollary follows.

The proof of our main result will rely crucially on the relation found in [3, § 4] between

the p-adic L-function Lp,ξ (f) of Theorem 3.4 and Howard’s system of big Heegner points

Z∞. We conclude this section by briefly recalling that relation.

By [15, Lemma 2.4.4], for every prime q of K above p the natural map

H1
Iw(K∞,q,F

+T†) −→ H1
Iw(K∞,q,T†)

induced by (3.2) is injective. In light of Theorem 3.3, in the following we will thus view

locq(Z∞) as residing inside H1
Iw(K∞,q,F

+T†).

Theorem 3.9. There is a generator ω = ωf of the module D such that

LωF+Tp
(locp(Z

ξ−1

∞ )) = Lp,ξ (f)

as functions on X a
OL
(Ĩ)×X a

OL
(0∞).

Proof. The construction of the basis element ω = ωf of D is deduced in [19,

Proposition 10.1.2] from Ohta’s work [27], and it has the property that 〈ων, ωfν 〉 = 1,

for all ν ∈ X a
OL
(I), where ωfν is the class in Fil1 DdR(V ∗ν ) ' DdR(F−V ∗ν (1)) associated

with the p-stabilized newform (3.1); in particular,

ω̆ν f = ω f

in the notation of Remark 3.6. The result is then the content of [3, Theorem 4.4].

3.4. Exceptional zero formula

Let f =
∑
∞

n=1 an( f )qn
∈ S2(00(N p)) be an ordinary newform as in § 3.1, and assume

in addition that f is split multiplicative at p, meaning that ap( f ) = 1. Recall the CM

triple (A, tA, αp) ∈ X (H) introduced in § 1.5, which maps to the point PA = (A, A[Np]) ∈

X0(N p) under the forgetful map X −→ X0(N p). Let ∞ be any cusp of X0(N p) rational

over Q, and let κ f ∈ H1(K , V f ) be the image of (PA)− (∞) under the composite map

J0(N p)(H)
Kum
−−→ H1(H,Tap(J0(N p))⊗Zp Qp) −→ H1(H, V f )

CorH/K
−−−−→ H1(K , V f ). (3.8)
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If f ∈ IJqK is the Hida family passing through f , and ν f ∈ X a
OL
(I) is the arithmetic

prime of I such that ν f (f) = f , it would be natural to expect a relation between the class

κ f and the specialization at ν f of Howard’s big Heegner point Z0. As done in [14, § 3],

one can trace through the construction of Z0 to deduce a relation between the generic

(in the sense of [14, Definition 2]) weight 2 specializations of Z0 and the Kummer images

of certain CM points. However, the arithmetic prime ν f is not generic in that sense,

and in fact one does not expect a similar direct relation between ν f (Z0) and κ f (see the

discussion in [14, p. 813]).

In Theorem 3.11 we will show that in fact the localization at p of ν f (Z0) vanishes, but

that nonetheless it can be related to κ f upon taking a certain ‘derivative’ in the following

sense, where we let logp : Q×p −→ Zp be Iwasawa’s branch of the p-adic logarithm, i.e.,

such that logp(p) = 0.

Lemma 3.10. Let T be a free OL -module of finite rank equipped with a linear action of

GQp , let k∞/Qp be a Zp-extension, and let γ ∈ Gal(k∞/Qp) be a topological generator.

Assume that T Gk∞ = {0}, and let Z∞ = {Zn}n>0 ∈ H1
Iw(k∞, T ) be such that Z0 = 0. Then

there exists a unique Z ′γ,∞ = {Z ′γ,n}n>0 ∈ H1
Iw(k∞, T ) such that

Z∞ = (γ − 1) ·Z ′γ,∞.

Moreover, if η : Gal(k∞/Qp) ' Zp is any group isomorphism, then

Z ′0 :=
Z ′γ,0

logp(η(γ ))
∈ H1(Qp, T [1/p])

is independent of the choice of γ .

Proof. Consider the module T∞ := T ⊗̂OLOLJGal(k∞/Qp)K equipped with the diagonal

Galois action, where GQp acts on the second factor via the projection GQp −→

Gal(k∞/Qp). By Shapiro’s lemma, we then have

H1(Qp, T∞) ' H1
Iw(k∞, T ),

and the assumption that T Gk∞ = {0} implies that H1(Qp, T∞) is torsion-free. Therefore,

the exact sequence of OLJGal(k∞/Qp)K-modules

0 −→ T∞
γ−1
−−→ T∞ −→ T −→ 0

induces the cohomology exact sequence

0 −→ H1(Qp, T∞)
γ−1
−−→ H1(Qp, T∞) −→ H1(Qp, T ),

giving the proof of the first claim, and the second follows from an immediate calculation.

Recall the uniformizer $p = πp/πp ∈ K×p ' Q×p introduced in § 3.3, and define

Lp( f, K ) := Lp( f )−Lp(χK ), (3.9)
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where Lp( f ) is the L -invariant of f (as defined in [21, § II.14], for example), and

Lp(χK ) :=
logp($p)

ordp($p)
= −

2 logp(πp)

h

is the L -invariant of the quadratic character χK associated with K (see [10, § 1], for

example), with ordp the p-adic valuation on Qp with the normalization ordp(p) = 1.

The following derivative formula is the main result of this paper.

Theorem 3.11. Let f ∈ S2(00(N p)) be a newform split multiplicative at p, let f ∈ IJqK
be the Hida family passing through f , let Z∞ ∈ H1

Iw(K∞,T†) be Howard’s system of big

Heegner points, and define Zp, f,∞ := {Zp, f,n}n>0 ∈ H1
Iw(K∞,p,F

+V f ) by

Zp, f,n := locp(ν f (Zn)),

where ν f ∈ X a
OL
(I) is such that f = ν f (f). Then Zp, f,0 = 0 and

Z ′p, f,0 = Lp( f, K ) · locp(κ f ), (3.10)

where Lp( f, K ) is the L -invariant (0.4), and κ f ∈ H1(K , V f ) is the image of the degree

zero divisor (A, A[Np])− (∞) under the Kummer map (3.8).

Proof. By Proposition 3.7, Corollary 3.8, and Theorems 3.9 and 3.4, respectively, we see

that(
1− ap( f )p−1

)
· 〈log(Zp, f,0), ω f 〉 = lim

ν→ν f
ν
(
L̃ωF+T(locp(Z

ξ−1

0 ))
)

= lim
ν→ν f

(
1−

2−1
ν ξν(Frq)
ν(ap)

)
LωF+T(locp(Z

ξ−1

∞ ))(ν,1)

= lim
ν→ν f

(
1−

2−1
ν ξν(Frq)
ν(ap)

)
Lp,ξ (f)(ν,1)

=

(
1− ap( f )−1

)
· Lp( f,NK ).

Since ap( f ) = 1 by hypothesis, this shows that 〈log(Zp, f,0), ω f 〉 = 0, and the vanishing

of Zp, f,0 follows. Now we turn to the proof of the derivative formula (3.10).

Denote by Lp,ξ (f)ι the image of Lp,ξ (f) under the involution of ĨJ0∞K induced by

complex conjugation, so that Lp,ξ (f)ι(χ) = Lp,ξ (f)(χ−1) for every character χ of 0∞.

One immediately checks the commutativity of the diagram

H1
Iw(K∞,F

+Tp)
locp //

∗

��

H1
Iw(K∞,p,F

+Tp)

Lω
F+Tp //

∗

��

ĨJ0p,∞K

ι

��
H1

Iw(K∞,F
+Tp)

locp // H1
Iw(K∞,p,F

+Tp)

Lω
F+Tp // ĨJ0p,∞K,

where the left and middle vertical arrows denote the action of complex conjugation.
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From the discussion in [11, § 2.6], we may find a disc U ⊂ Z/2(p− 1)Z×Zp contained

in the residue class of 2, and a unique morphism of 3OL -modules

M =M f : I −→ AU

such that M (r)|k=2 = ν f (r) for every r ∈ I, where AU ⊂ LJk− 2K denotes the subring

of power series convergent for k ∈ U endowed with the 3OL -algebra structure induced

by the character 1+ pZp −→ A ×U , which sends γ ∈ 1+ pZp to the power series γ k−2
:=

exp((k− 2) logp(γ )).

For every k ∈ U ∩Z>2 the composition of M with the evaluation map at k defines

an element νk ∈ X a
OL
(I). Set ap(k) :=M (ap), and for (k, φt/h

o ) ∈ (U ∩Z>2)×X a
OL
(0∞),

define the functions

Lp(k, t) :=
(

1−
(p$ 1/h

p
)k/2−1

ap(k)$
t/h
p

)
Lp,ξ (f)(νk, φ

t/h
o ),

Lp(k, t) :=
(

1−
(p$ 1/h

p )k/2−1

ap(k)$
t/h
p

)
Lp,ξ (f)(νk, φ

−t/h
o ).

By the combination of Theorems 3.5 and 3.9, we then have

Lp(k, t) =
1
t !

(
1−

ap(k)$
t/h
p

p(p$ 1/h
p

)k/2−1

)
〈log(locp(νk(Z∞)

φ
(1−k/2+t)/h
o )), ω̆νk 〉,

and by the above diagram we also have

Lp(k, t) =
1
t !

(
1−

ap(k)$
t/h
p

p(p$ 1/h
p )k/2−1

)
〈log(locp(νk(Z

∗
∞)

φ
(k/2−1−t)/h
o )), ω̆νk 〉.

By the ‘functional equation’ satisfied by Z∞ (see Theorem 3.3), it follows that the

function

Lp(k, t) := Lp(k, t)−wLp(k, k− 2− t)

vanishes identically along the ‘line’ t = k/2− 1. By [15, Proposition 2.3.6], the sign w

is the opposite of the sign in the functional equation for the p-adic L-function L p( f, s)
associated with f in [21]. Thus, if w = 1, then ords=1L p( f, s) > 2, and by [31, Lemma 6.1]

the right-hand side of (3.10) vanishes; since the vanishing of the left-hand side follows

easily from the construction of Z ′γ,∞ in Lemma 3.10, we conclude that (3.10) reduces to

the identity ‘0 = 0’ when w = 1. As a consequence, in the following we shall assume that

w = −1.

Using the formula for the L -invariant of f as the logarithmic derivative of ap(k) at

k = 2 (see [11, Theorem 3.18], for example) and noting that (p$ 1/h
p

)k/2−1
= π

(k−2)/h
p

by

definition, we find
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∂

∂k
Lp(k, t)

∣∣
(2,0) =

[
d

dk
ap(k)

∣∣
k=2−

logp(πp)

h
−w

(
d

dk
ap(k)

∣∣
k=2−

logp(πp)

h

)]
Lp( f )(NK)

= −

[
(1−w)

2

(
Lp( f )−Lp(χK)

)]
Lp( f )(NK )

= −Lp( f, K ) · Lp( f )(NK). (3.11)

Using the aforementioned vanishing of Lp(k, k/2− 1) for the first equality, we also find

∂

∂k
Lp(k, t)

∣∣
(2,0) = −

1
2
∂

∂t
Lp(k, t)

∣∣
(2,0) = −

(1−w)
2

(
1− ap( f )p−1

)
〈log(Z ′p, f,0), ω f 〉

= −(1− p−1) · 〈log(Z ′p, f,0), ω f 〉, (3.12)

and comparing (3.11) and (3.12), we arrive at the equality

(1− p−1) · 〈log(Z ′p, f,0), ω f 〉 = Lp( f, K ) · Lp( f )(NK ). (3.13)

On the other hand, letting ϕ0 : A −→ A be the identity isogeny, by Theorem 2.11 we

have

Lp( f )(NK ) = (1− ap( f )p−1)
∑

[a]∈Pic(OK )

〈AJF (1ϕaϕ0), ω f 〉

= (1− p−1) · 〈log(locp(κ f )), ω f 〉,

which combined with (3.13) concludes the proof of Theorem 3.11.
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24. J. Nekovář and A. Plater, On the parity of ranks of Selmer groups, Asian J. Math.

4(2) (2000), 437–497.
25. T. Ochiai, A generalization of the Coleman map for Hida deformations, Amer. J. Math.

125(4) (2003), 849–892.
26. M. Ohta, On the p-adic Eichler–Shimura isomorphism for 3-adic cusp forms, J. Reine

Angew. Math. 463 (1995), 49–98.
27. M. Ohta, Ordinary p-adic étale cohomology groups attached to towers of elliptic modular

curves. II, Math. Ann. 318(3) (2000), 557–583.
28. B. Perrin-Riou, p-adic L-functions and p-adic Representations, SMF/AMS Texts

and Monographs, Volume 3 (American Mathematical Society, Providence, RI, 2000).
Translated from the 1995 French original by Leila Schneps and revised by the author.

29. K. Rubin, Euler Systems, Annals of Mathematics Studies, Volume 147 (Princeton
University Press, Princeton, NJ, 2000). Hermann Weyl Lectures. The Institute for
Advanced Study.

https://doi.org/10.1017/S1474748015000444 Published online by Cambridge University Press

http://www.arxiv.org/abs/1503.02888
http://www.arxiv.org/abs/1503.02888
http://www.arxiv.org/abs/1503.02888
http://www.arxiv.org/abs/1503.02888
http://www.arxiv.org/abs/1503.02888
http://www.arxiv.org/abs/1503.02888
http://www.arxiv.org/abs/1503.02888
http://www.arxiv.org/abs/1503.02888
http://www.arxiv.org/abs/1503.02888
http://www.arxiv.org/abs/1503.02888
http://www.arxiv.org/abs/1503.02888
http://www.arxiv.org/abs/1503.02888
http://www.arxiv.org/abs/1503.02888
http://www.arxiv.org/abs/1503.02888
http://www.arxiv.org/abs/1503.02888
http://www.arxiv.org/abs/1503.02888
https://doi.org/10.1017/S1474748015000444


240 F. Castella

30. J.-P. Serre, Formes modulaires et fonctions zêta p-adiques, in Modular Functions of
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