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In this paper, we study a mathematical model for an infectious disease caused by a virus such as
Cholera without lifetime immunity. Due to the different mobility for susceptible, infected human
and recovered human hosts, the diffusion coefficients are assumed to be different. The resulting
system is governed by a strongly coupled reaction–diffusion system with different diffusion coeffi-
cients. Global existence and uniqueness are established under certain assumptions on known data.
Moreover, global asymptotic behaviour of the solution is obtained when some parameters satisfy
certain conditions. These results extend the existing results in the literature. The main tool used in
this paper comes from the delicate theory of elliptic and parabolic equations. Moreover, the energy
method and Sobolev embedding are used in deriving a priori estimates. The analysis developed
in this paper can be employed to study other epidemic models in biological, ecological and health
sciences.
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1 Introduction

In an ecological environment, various infectious diseases in human or animals occur frequently
(see [26]). The current global COVID-19 pandemic is one such an example. Other recent
examples include epidemics caused by HIV, Cholera and Zika viruses. Scientists often use
the well-known Susceptibility–Infection–Recovery (SIR) model ([13]) to describe how a virus
spreads and evolves in future. The SIR model and its various extensions have been studied by
many scientists (see [1, 15, 17, 21, 24, 27, 31], e.g.). A good review for the model written by
Hethcote in 2000 can be seen in [11]. The most of these studies focus on understanding the com-
plicated dynamics of interaction between different hosts and viruses. However, this SIR model
and its extensions cannot include the mobility of human hosts around different geographical
regions. In order to take the movement of human hosts into consideration, one must develop a
new mathematical model which can reflect these factors (see [9, 20, 37]). Towards this goal, con-
siderable progress has been made for different types of infectious diseases. In particular, many
researchers have studied the mathematical model for the epidemic caused by the Cholera virus
(see [2, 17, 18, 27, 28, 31, 32, 33, 34], etc.).
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In this paper, we consider the mathematical model for the cholera epidemic with diffusion
processes. A novel feature for the model is that there is no lifetime immunity. This leads to a
coupled reaction–diffusion system with different diffusion coefficients. We begin by describing
the model system recently studied in [28, 32, 34, 35].

Let � be a bounded domain in Rn with C2-boundary ∂�. Let QT = � × (0, T] for any T > 0.
When T = ∞, we denote Q∞ by Q. Let S(x,t), I(x,t) and R(x,t) represent, respectively, suscep-
tible, infected and recovered human hosts. Let B(x,t) be the concentration of bacteria. Then, by
the population growth and the conservation laws, we see that S,I ,R and B satisfy the following
reaction–diffusion system in QT (see [9, 11, 27]):

St − ∇[d1(x, t)∇S] = b(x, t) − β1SI − β2S · h(B) − dS + σR, (1.1)

It − ∇[d2(x, t)∇I] = β1SI + β2S · h(B) − (d + γ )I , (1.2)

Rt − ∇[d3(x, t)∇R] = γ I − (d + σ )R, (1.3)

Bt − ∇[d4(x, t)∇B] = ξ I + gB(1 − B

K
) − δB (1.4)

subject to the following initial and boundary conditions:

(∇νS, ∇νI , ∇νR, ∇νB) = 0, (x, t) ∈ ∂� × (0, T], (1.5)

(S(x, 0), I(x, 0), R(x, 0), B(x, 0)) = (S0(x), I0(x), R0(x), B0(x)), x ∈ �, (1.6)

where ν represents the outward unit normal on ∂�, h(B) is a differential function with

h(0) = 0, 0 ≤ h(B) ≤ 1.

A typical example used in [34] for h(B) is

h(B) = B

B + K
.

For reference, we list various parameters in the model as in [9, 27, 32, 33]:

d = the natural death rate

γ = the recovery of infectious individuals

b = the influx of susceptible host

σ = the rate at which recovered individuals lose immunity

δ = the natural death rate of bacteria

ξ = the shedding rate of bacteria by infectious human hosts,

di = the diffusion coefficients, i = 1, 2, 3, 4,

K = the maximum capacity of the bacteria

All these parameters are positive. The interested readers may find the value range of those
parameters from the website of the World Health Organization.
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We would like to point out that the analysis for the reaction–diffusion system (1.1)–(1.4)
is often difficult since there is no comparison principle ([19, 23]). Some basic questions such
as global existence and uniqueness for the system are extremely challenging since equations
(2.1) and (2.2) contain some quadratic terms in the system ([5, 7, 12]). Many of the quantitative
properties are still open. For example, from the physical point of view, the concentration, S(x, t),
I(x, t), R(x, t) and B(x, t) must be nonnegative and bounded in QT . However, it appears that there
has been no rigorous proof in the previous research when the space dimension is greater than 1.
Answering these open questions is one of the motivations for this paper. Moreover, with different
diffusion coefficients in a reaction–diffusion system, the dynamics of a solution may be very
different from that of an ODE system. The most striking example is the Turing phenomenon in
which the solution of an ODE system is stable, while the solution of the corresponding reaction–
diffusion system is unstable when one diffusion coefficient is much larger than the other ([10]).

When the space dimension is equal to 1, the authors of [18, 24, 32, 34, 35] studied the sys-
tem (1.1)–(1.6). The global well-posedness is established for the model. Moreover, some global
dynamical analysis for the solution is carried out in these papers. However, when the spatial
dimension n is greater than 1, the analysis becomes much more complicated. More recently, by
using a dual argument, Klements–Morgan–Tang ([14]) and Morgan–Tang ([22]) obtained some
interesting results for a class of reaction–diffusion system. Particularly, a global bound of the
solution can be obtained if the coefficients are constants. The purpose of this paper is to study
the reaction–diffusion system (1.1)–(1.6) when the space dimension is greater than 1 and the
diffusion coefficients in the model for susceptible, infected and recovered human hosts are dif-
ferent. Furthermore, the diffusion coefficients in our model allow to depend on space and time,
which are certainly more realistic than in the previous model. This fact is observed from the
recent COVID-19 pandemic in which the mobility for infected patients is close to zero due to
required global quarantine and travel restriction. It is also clear that for flu-like viruses, the rate
of infection is much higher in the winter than in the summer.

In this paper, we establish a global existence and uniqueness result for any space dimension
n. Particularly, we prove that the weak solution is actually classical as long as the initial data
and coefficients are smooth. Hence, global well-posedness for the model problem (1.1)–(1.6) is
established without any restriction on space dimension. Moreover, under a condition on some
parameters, we are able to prove that the solution is uniformly bounded and converges to the
steady-state solution (global attractor, see [25]) for any space dimension as time evolves. These
results improve the previous research obtained by others where the well-posedness is proved
when the space dimension is equal to 1 (see [24, 33, 34, 35]). The main idea for establishing
global existence is to derive various a priori estimates (see [37]). Our analysis in this paper uses
a lot of very delicate results for elliptic and parabolic equations ([16, 19, 36]). Particularly, we
use a subtle form of Campanato–John–Nirenberg–Morrey space to obtain the regularity of weak
solution ([36]). A uniform bound in Q for the solution is even more subtle, where a special form
of Gagliardo–Nirenberg’s inequality is used. The global asymptotic analysis is based on accurate
energy estimates for the solution of the system ([8]). The method developed in this paper can also
be used to deal with different epidemic models caused by some viruses such as avian influenza
for birds ([30]).

The paper is organised as follows. In Section Section 2, we first recall some basic function
spaces and then state the main results. In Section Section 3, we prove the first part of the main
results on global solvability of the system (1.1)–(1.6) (Theorems 2.1 and 2.2). The long-time
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behaviour of the solution in the second part is proved in Section Section 4 (Theorems 2.3 and
2.4). In Section Section 5, we give some concluding remarks.

2 Notations and the statement of main results

For reader’s convenience, we recall some basic Sobolev spaces which are standard in dealing
with elliptic and parabolic partial differential equations.

Let α ∈ (0, 1). We denote by Cα, α
2 (Q̄T ) the Hölder space in which every function is Hölder

continuous with respect to (x,t) with exponent (α, α
2 ) in Q̄T .

Let p > 1 and V be a Banach space with norm || · ||v , we denote

Lp(0, T ; V ) = {F(t) : t ∈ [0, T] → V : ||F||Lp(0,T ;V ) < ∞},

equipped with norm

||F||Lp(0,T ;V ) =
(∫ T

0
||F||pvdt

) 1
p

.

When V = Lp(�), we simply use

Lp(QT ) = Lp(0, T ; Lp(�)).

Moreover, the Lp(QT )-norm is denoted by || · ||p and || · ||∞ when p = ∞ for simplicity.
Sobolev spaces W k

p (�) and W k, l
p (QT ) are defined the same as in the classical books such as

[10] and [16].
Let V2(QT ) = {u(x, t) ∈ C([0, T]; W 1

2 (�)) : ||u||V2 < ∞} equipped with the norm

||u||V2 = sup
0≤t≤T

||u||L2(�) +
n∑

i=1

||uxi ||2.

For any μ ∈ [0, n + 2), the Morrey–John–Nirenberg–Campanato space L2,μ(QT ) is defined as
in [6]. Particularly, when μ = 0,

L2,0(QT ) = L2(QT ),

and when μ ∈ (n, n + 2), L2,μ(QT ) is equivalent to the classical Hölder space Cα, α
2 (Q̄T ) with

α = (n + 2) − μ

2
.

We first state the basic assumptions for the diffusion coefficients and known data. All other
parameters in equations (1.1)–(1.4) are assumed to be positive automatically throughout this
paper. We also choose h(s) = s

s+K for simplicity.

H(2.1). Assume that di(x, t) ∈ L∞(� × (0, ∞)) for all i. There exist two positive constants d0 and
D0 such that

0 < d0 ≤ di(x, t) ≤ D0, (x, t) ∈ QT .
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H(2.2). Assume that all initial data S0(x), I0(x), R0(x), B0(x) are nonnegative on �. Moreover,
U0(x) = (S0(x), I0(x), R0(x), B0(x)) ∈ L2(�)4.

H(2.3). Let 0 ≤ b(x, t) ∈ L∞(Q). Moreover,

||b||L∞(Q) ≤ b0 < ∞.

For brevity, we set

u1(x, t) = S(x, t), u2(x, t) = I(x, t), u3 = R(x, t), u4(x, t) = B(x, t), (x, t) ∈ Q.

We use U(x, t) = (u1, u2, u3, u4) to be a vector function defined in Q. The right-hand sides of
the equations (1.1), (1.2), (1.3) and (1.4) are denoted by f1(U), f2(U), f3(U), f4(U), respectively.
For convenience, we use f1(U) instead of f1(x, t, U) since f1 depends on x,t and U . With the new
notation, the system (1.1)–(1.6) can be written as the following reaction–diffusion system:

u1t − ∇[d1(x, t)∇u1] = f1(U), (x, t) ∈ QT , (2.1)

u2t − ∇[d2(x, t)∇u2] = f2(U), (x, t) ∈ QT , (2.2)

u3t − ∇[d3(x, t)∇u3] = f3(U), (x, t) ∈ QT , (2.3)

u4t − ∇[d4(x, t)∇u4] = f4(U), (x, t) ∈ QT , (2.4)

subject to the initial and boundary conditions:

U(x, 0) = U0(x) = (S0(x), I0(x), R0(x), B0(x)), x ∈ �, (2.5)

∇νU(x, t) = 0, (x, t) ∈ ∂� × (0, T]. (2.6)

We define a product space X equipped with the standard product norm:

X = L2(0, T ; W 1
2 (�))4.

The conjugate dual space of X is denoted by X ∗.

Definition 2.1. We say U(x,t) is a weak solution to the problem (2.1)–(2.6) in QT if U(x, t) ∈ X
such that ∫ T

0

∫
�

[−uk · φkt + dk∇uk · ∇φk]dxdt

=
∫

�

uk(x, 0)φk(x, 0)dx +
∫ T

0

∫
�

fk(U)φk(x, t)dxdt,

for any test function φk ∈ X ∗ ⋂
L∞(QT ) and φkt ∈ L2(QT ) with φk(x, T) = 0 on � for all k =

1, 2, 3, 4.
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Theorem 2.1. Under the assumptions H(2.1)–H(2.3), the problem (2.1)–(2.6) possesses at least
one weak solution and the weak solution is nonnegative in QT .

To obtain more regularity, we need additional regularity for known data.

H(2.4). Assume that b(x, t) ∈ L2,μ(Q)) for any μ ∈ [n, n + 2). Let ∇U0(x) ∈ L2,μ(�)4 for any μ ∈
[n − 2, n).

Theorem 2.2. Under the assumptions H(2.1)–H(2.4), the problem (2.1)–(2.6) has a unique
weak solution U(x, t) ∈ Cα, α

2 (Q̄T ) for any T > 0 with α = μ+2−n
2 . Moreover, the weak solution

is classical if the coefficients di are smooth.

With some additional effort, we can prove that the solution is uniformly bounded in Q for any
dimension n.

Theorem 2.3. Under the assumption H(2.1)–(2.4), the problem (2.1)–(2.6) has a unique global
solution in L∞(Q)

⋂
Cα, α

2 (Q̄). Moreover,

||U ||L∞(Q) ≤ C,

where C depends only on known data.

Remark 2.1. The results in Theorems 2.1–2.3 still hold with some modification of the proofs if
the system (2.1)–(2.5) contains linear convection terms.

With the result of Theorem 2.3, we can establish the global asymptotic behaviour of the
solution.

H(2.5). Assume

lim
t→∞ b(x, t) = b0(x), lim

t→∞ di(x, t) = di∞(x), x ∈ �, i = 1, 2, 3, 4,

uniformly in �̄. Moreover, di∞(x) ∈ Cα(�̄) for all i.
Let S∞(x) be the steady-state solution for the following elliptic equation

−∇[d1(x)∇S∞] = b0(x) − dS∞, x ∈ � (2.7)

∇νS∞(x) = 0, x ∈ ∂�. (2.8)
where m0 = max�̄ S∞(x).

Theorem 2.4. Let the assumption H(2.1)–H(2.5) hold. If the parameters in the system (1.1)–(1.5)
satisfy either

(a) d1(x, t) = d1∞(x) and

d > 2β1m0 + 2β2m0ξ

K(δ − g)
, δ − g > 0

or
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(b)

d >
3β1m0

2
+ β2m0ξ

2K(δ − g − ξ

2 )
+ 1

4
max{σ , γ }, δ − g − ξ

2
> 0,

then the corresponding steady-state system of (2.1)–(2.6) has only one steady-state solution
U∞(x) := (S∞(x), 0, 0, 0). Moreover,

lim
t→∞(S(x, t), I(x, t), R(x, t), B(x, t)) = (S∞(x), 0, 0, 0),

in Lp(Q)-sense for any p > 1. That is (S∞(x), 0, 0, 0) is a global attractor.

Remark 2.2. Roughly speaking, the solution of (1.1)–(1.5) converges to the unique steady-state
solution as long as β1 and β2 are suitably small.

3 Global solvability and regularity

From the physical model, the concentration must be nonnegative. Here, we state this fact as a
lemma and sketch a proof since we could not find precise reference in the literature. Recall that a
vector function is said to be nonnegative if each component of the vector function is nonnegative.

Lemma 3.1: Assume the conditions H(2.1)–H(2.2) hold. Then, a weak solution U(x,t) of (2.1)–
(2.6) must be nonnegative in Q:

U(x, t) ≥ 0, (x, t) ∈ QT .

Proof Recall that a vector function F(x, t, U) := (f1(x, t, U), f2(x, t, U), · · · , fm(x, t, U)) is said
to be quasi-positive if for all k = 1, 2, · · · , m,

fk(x, t, u1, u2, · · · , uk−1, 0, uk+1, · · · , um) ≥ 0, ui ∈ [0, ∞), i = 1, 2, · · · , m, i 
= k.

Since b(x, t) ≥ 0, clearly, F(x, t, U) = (f1(U), · · · , f4(U)) is quasi-positive. Moreover, fk(U) is
locally Lipschitz continuous with respect to uk . For a function v(x, t) ∈ L2(QT ), we define

v+(x, t) = |v(x, t)| + v(x, t)

2
, v−(x, t) = |v(x, t)| − v(x, t)

2
.

Now, we consider a modified system (2.1)–(2.6) in which fi(U) is replaced by fi(U+). Then, we
choose φk(x, t) = (T − t)u−

k (one may need to use a truncation technique as in Lemma 1, p. 749,
in [3], if necessary) to obtain, after some routine calculation,

d

dt

∫
�

(T − t)|U−|2dx ≤ C

∫
�

(T − t)|U−|2dx.

It follows that u−
k (x, t) = 0 in QT , which implies that a weak solution to the modified system is

the same as the original system (2.1)–(2.6).

As in the standard analysis in deriving an a priori estimate for solution of a partial differ-
ential equation, we may assume that the solution is smooth in QT . A special attention is paid
to be what a constant C depends precisely on known data in the derivation. We will denote by
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C, C1, C2, · · · , etc., generic constants in the derivation. Those constants may be different from
one line to the next as long as their dependence is the same.

Lemma 3.2: Under the assumptions of H(2.1)–H(2.2), there exists a constants C1 such that

4∑
i=1

||ui||V2(QT ) ≤ C1,

where C1 depends only on known data and the upper bound of T .

Proof From equations (2.1) and (2.3), we use the energy method to obtain

1

2

d

dt

∫
�

u2
1dx + d0

∫
�

|∇u1|2dx + d

∫
�

u2
1dx

≤
∫

�

u1bdx + σ

∫
�

u1u3dx

≤ ε

∫
�

u2
1dx + C(ε)

∫
�

b2dx + σ

2

∫
�

[
u2

1 + u2
3

]
dx.

1

2

d

dt

∫
�

u2
3dx + d0

∫
�

|∇u3|2dx + (d + σ )
∫

�

u2
3dx

≤ γ

∫
�

u2u3dx

≤ γ

2

∫
�

[
u2

2 + u2
3

]
dx.

It follows that

1

2

d

dt

∫
�

[
u2

1 + u2
3

]
dx + d0

∫
�

[|∇u1|2 + |∇u3|2
]

dx

+
(

d − ε − σ

2

) ∫
�

u2
1dx +

(
d + σ

2
− γ

2

) ∫
�

u2
3dx

≤ C(ε)
∫

�

b2dx + γ

2

∫
�

u2
2dx.

To estimate u2, we must use the special structure of the system (1.1)–(1.4).
Let

v(x, t) = u1(x, t) + u2(x, t), (x, t) ∈ Q.

Then, we see that v(x,t) satisfies

vt − ∇[d2∇v] + dv = ∇[(d1 − d2)∇u1] + b(x, t) − γ u2 + σu3, (x, t) ∈ QT , (3.1)

v(x, 0) = S0(x) + I0(x), x ∈ �; ∇νv = 0, (x, t) ∈ ∂� × (0, ∞). (3.2)
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The energy estimate for v from equations (3.1)–(3.2) yields

1

2

d

dt

∫
�

v2dx + d0

∫
�

|∇v|2dx + d

∫
�

v2dx

≤ 2D0

∫
�

[|∇u1| · |∇v|]dx +
∫

�

vbdx + σ

∫
�

u3vdx

≤ d0

2

∫
�

|∇v|2dx + C

∫
�

|∇u1|2dx + ε

∫
�

v2dx + C(ε)
∫

�

b2dx + γ

2

∫
�

[u2
3 + v2]dx,

We combine the estimates for u1, u3 and v to obtain

1

2

d

dt

∫
�

[u2
1 + u2

3 + v2]dx + d0

2

∫
�

[|∇u1|2 + |∇u3|2 + |∇v|2]dx

≤ C

∫
�

[u2
1 + u2

3 + v2]dx + C

∫
�

b2dx,

where C depends only on known data.
Gronwall’s inequality yields

∫
�

[u2
1 + u3

3 + v2]dx +
∫ t

0

∫
�

[|∇u1|2 + |∇u3|2 + |∇v|2dx]dxdt ≤ C + C

∫ T

0

∫
�

b2dxdt,

where C depends only on known data and T .
It follows that

||u1||V2(QT ) ≤ C; ||u3||V2(QT ) ≤ C.

By the definition of v, we see

||u2||V2(QT ) ≤ C,

where C depends only on known data and the upper bound of T .
Once u2 is bounded in V2(QT ), by equation (2.4), we easily obtain an estimate for u4:

||u4||V2(QT ) ≤ C,

where C depends only on known data.

With the estimates from the previous lemmas, we are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. There are several ways to prove the existence of a weak solution for the
system (2.1)–(2.6). We use a truncation method. For any ε > 0, we denote by χ (u) the Heaviside
function. Denote the smooth approximation of χε(u) by

χε(u) = smooth approximation of χ
(
u − 1

ε

)
.
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f1ε(U) = b(x, t) − β1u1u2 − β2u1h(u4) − du1 + σu3(1 − χε(u1)),

f2ε(U) = β1u1u2 + β2S · h(u4) − (d + γ )I ,

f3ε(U) = γ u2 − (d + σ )u3,

f4ε(U) = ξu2 + gu4

(
1 − u4

K

)
− δu4.

Now, we consider the following approximated reaction–diffusion system:

u1ε − ∇[d1(x, t)∇u1] = f1ε(U), (x, t) ∈ QT , (3.3)

u2t − ∇[d2(x, t)∇u2] = f2ε(U), (x, t) ∈ QT , (3.4)

u3t − ∇[d3(x, t)∇u3] = f3ε(U), (x, t) ∈ QT , (3.5)

u4t − ∇[d4(x, t)∇u4] = f4ε(U), (x, t) ∈ QT , (3.6)

subject to the same initial and boundary conditions (2.5)–(2.6).
For the approximate problem (3.3)–(3.6) subject to initial-boundary conditions (2.5)–(2.6), by

using the standard theory for parabolic equations (see [10] or [16]), we claim that there exists a
unique weak solution in V2(QT )

⋂
L∞(QT ) for every small ε > 0 and

4∑
i=1

||uiε||L∞(QT ) ≤ C(ε),

where C(ε) depends on known data and ε.
For the completeness, we sketch a proof for the claim here. For the existence of a bounded

weak solution Uε(x, t), we use Leray–Schauder’s fixed-point theorem. Choose a Banach space
X = L∞(QT )4. For every V (x, t) ∈ X and each λ ∈ [0, 1], the standard theory of parabolic equa-
tions (see [16]) implies that there exists a unique weak solution Uε(x, t) ∈ V2(QT )4

⋂
X for the

following linear parabolic system:

u1ε − ∇[d1(x, t)∇u1] = λf1ε(V ), (x, t) ∈ QT ,

u2t − ∇[d2(x, t)∇u2] = λf2ε(V ), (x, t) ∈ QT ,

u3t − ∇[d3(x, t)∇u3] = λf3ε(V ), (x, t) ∈ QT ,

u4t − ∇[d4(x, t)∇u4] = λf4ε(V ), (x, t) ∈ QT ,

∂νU(x, t) = 0, (x, t) ∈ ∂� × (0, T], U(x, 0) = λU0(x), x ∈ �.

We define a mapping Mλ from X into X as follows:

Mλ : V ∈ X → Uε = Mλ[V ] ∈ X .

Clearly, the mapping Mλ is well-defined and M0[V ] = 0. Moreover, DeGiorgi–Nash’s theory
implies that all fixed-points of Mλ satisfies

||Uε||Cα, α2 (Q̄T )
≤ C(ε),

where α ∈ (0, 1) and C(ε) is a constant which depends on ε.
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Since the embedding mapping from Cα, α
2 (Q̄T ) into L∞(QT ) is compact, we can easily show

that the mapping Mλ is continuous and compact from X to Cα, α
2 (Q̄T ). By Leray–Schauder’s

fixed-point theorem, the problem (3.3)–(3.6) along with the initial-boundary conditions (2.5)–
(2.6) has a weak solution Uε(x, t) ∈ V2(QT

⋂
L∞(QT ). Uniqueness follows from the fact that all

weak solutions are bounded and fk is locally Lipschtz continuous with respect to ui.
Next, we see that all a priori energy estimates from Lemma 3.2 hold and these bounds are

independent of ε. Note that Uεt ∈ L2(0, T ; H−1(�)). By using the weak compactness of L2(QT ),
we can extract a subsequence of ε if necessary, as ε → 0, that for k = 1, 2, 3, 4,

ukε(x, t) → uk(x, t), strongly in L2(QT ) and a.e. in QT ,

∇ukε(x, t) → ∇uk(x, t), weakly in L2(QT ).

Moreover, by using Egorov’s theorem, we see, as ε → 0,∫ ∫
QT

|u1εu2ε − u1u2|dxdt ≤
∫ ∫

QT

[|(u1ε − u1)u2ε| + u1|u2ε − u2|]dxdt → 0.

On the other hand, since u1 ∈ L∞(0, T ; W 1,2(�)), we see∣∣∣∣
{

(x, t) ∈ QT : u1 >
1

ε

} ∣∣∣∣
is sufficiently small, provided that ε is chosen to be sufficiently small. It follows that for any test
function φ(x, t) ∈ L2(0, T ; W 1

2 (�))
⋂

L∞(QT )

lim
ε→0

∫ ∫
QT

u3ε(1 − χε(u1ε)φdxdt =
∫ ∫

�

u3φdxdt.

Consequently, for all k we have, as ε → 0,

fkε(Uε) → fk(U) a.e. in QT and strongly in L1(QT ).

For any test function φk ∈ X ∗ with φk ∈ L∞(QT ) and φkt ∈ X ∗, φk(x, T) = 0, we have for all k =
1, 2, 3, 4,∫ T

0

∫
�

[−ukε · φkt + dk∇uε · ∇φk]dxdt =
∫

�

uk0(x)φk(x, 0)dx +
∫

�

fεk(Uε)φk(x, t)dxdt.

After taking limit as ε → 0, we obtain a weak solution U(x, t) ∈ X .

To obtain more regularity, we need a result in Campanato–John–Nirenberg–Morrey space for
a linear parabolic equation. Consider the following linear parabolic equation

ut − ∇(a(x, t)∇u) = f (x, t) +
n∑

i=1

∂fi
∂xi

, (x, t) ∈ QT , (3.7)

∇νu(x, t) = 0, (x, t) ∈ ∂� × (0, T], (3.8)

u(x, 0) = u0(x), x ∈ �. (3.9)
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H(3.1): Assume that a(x, t) ∈ L∞(QT ) and

0 < a0 ≤ a(x, t) ≤ A0 < ∞.

Moreover, ∇u0(x) ∈ L2,μ(�), f ∈ L2,μ(QT ) and fi(x, t) ∈ L2,μ(QT ) with μ ∈ [0, n + 2).

Lemma 3.3. ([36]) Under the assumption of H(3.1) for any weak solution u(x, t) ∈ V2(QT ) to the
problem (3.7)–(3.9) and any μ ∈ [0, n), there exists a constant C1 such that

||∇u||L2,μ(QT ) ≤ C1

[
||∇u0||L2,μ(�) + ||f ||L2,(μ−2)+ (QT ) +

n∑
i=1

||fi||L2,μ(QT )

]
. (3.10)

Moreover, there exists a constant C2 such that

||u||L2,μ+2(QT ) ≤ C2, (3.11)

where C1 and C2 depend only on a0, A0, T and �.

Proof of Theorem 2.2. For any μ ∈ (0, 2], we use equation (2.1) to obtain

||∇u1||L2,μ(QT ) ≤ C[||∇S0||L2,μ(�) + ||u3||L2,(μ−2)+ (QT )].

Similarly, by equation (2.3), we obtain

||∇u3||L2,μ(QT ) ≤ C[||∇R0||L2,μ(�) + ||u2||L2,(μ−2)+ (QT )].

From the linear system (3.1)–(3.2) for v = u1 + u2, we see

||∇v||L2,μ(QT ) ≤ C[||∇v0||L2,μ(�) + ||∇u1||L2,μ(QT ) + ||u2||L2,(μ−2)+ (QT )] + ||u3||L2,(μ−2)+ (QT )],

where C depends only on known data.
Since v(x, t) = u1(x, t) + u2(x, t), we see

3∑
i=1

||∇ui||L2,μ(QT )

≤ C

[
||∇S0||L2,μ(�) + ||∇I0||L2,μ(�) + ||∇R0||L2,μ(�) +

3∑
i=1

||ui||L2,(μ−2)+ (QT )

]
. (3.12)

The L2(QT )-estimate for ui, i = 1, 2, 3 implies that the above estimate holds for any μ ∈ [0, 2].
The interpolation yields that, for any μ ∈ [0, 2],

3∑
i=1

||ui||L2,μ+2(QT ) ≤ C, (3.13)

where C depends only on known data.
Now, we go back the estimate (3.12) to see that the estimate (3.13) holds for any μ ∈ [2, 4].

We can continue this iteration process as long as the right-hand side of (3.9) is bounded. After a
finite number of iterations, we see that the above estimate (3.12) holds for any μ ∈ [0, n).
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Since equation (2.3) is linear, we can use the interpolation to obtain

||u3||L2,μ+2(QT ) ≤ C,

where μ ∈ [0, n) and C depends only on known data.
It follows that

||u3||Cα, α2 (Q̄T )
≤ C,

where C depends only on known data and α = μ+2−n
2 .

Once we have the estimate for u3 in Cα, α
2 (Q̄)T , we obtain

||u1||L∞(QT ) ≤ C.

Now, we can use the standard DiGorgi–Nash’s estimate to obtain

||u1||Cα, α2 (Q̄)T )
+ |u2||Cα, α2 (Q̄)T )

≤ C,

where C depends only on known data.
From equation (2.4), we obtain

||u4||Cα, α2 (Q̄T )
≤ C,

where C depends only on known data.
With these estimates, the uniqueness follows immediately.
Finally, using the general theory of parabolic equations, we see that ui is smooth in QT as long

as di(x, t) is smooth for all i = 1, 2, 3, 4.

4 Global bounds and asymptotic behaviour of solution

In this section, we first derive a global bound for U and then prove Theorems 2.3 and 2.4. Unlike
the proof of Theorem 2.2, we must pay a special attention to various estimates which must be
independent of T .

In order to see a clear physical meaning for all species, we may use the original variables
(S,I ,R, B) or (u1, u2, u3, u4) in this section.

Lemma 4.1. Under the assumptions H(2.1)–H(2.2), there exists a constant C1 such that

sup
0<t<∞

4∑
k=1

||uk||L1(�) ≤ C1,

where C1 depends only on know data.

Proof: We take integration over � for equations (2.1)–(2.3) and then add up to see

d

dt

∫
�

(u1 + u2 + u3)dx + d

∫
�

(u1 + u2 + u3)dx

=
∫

�

b(x, t)dx ≤ b0|�|.
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Since d > 0, it follows that

sup
0<t<∞

∫
�

(u1 + u2 + u3)dx ≤ C1,

where C1 depends only on known data.
Now, we integrate of � for equation (2.1) again to find

d

dt

∫
�

u1dx + β1

∫
�

u1u2dx + β2

∫
�

u1h(u4)dx =
∫

�

b(x, t)dx + σ

∫
�

u3dx.

It follows that

β1

∫ T

0

∫
�

u1u2dxdt + β2

∫ T

0

∫
�

u1(u4)dxdt ≤ C2.

Next, we take integration over � for equation (2.4) to obtain

d

dt

∫
�

u4dx + δ

∫
�

u4dx + g

∫
�

u2
4dx

= ξ

∫
�

u2dx + g

∫
�

u4dx

≤ ξ

∫
�

u2dx + g

2

∫
�

u2
4dx + C.

Since L1(�)-norm of u2 is uniformly bounded, it follows that

d

dt

∫
�

u4dx + δ

∫
�

u4dx ≤ C.

Thus, we obtain the desired L1(�)-estimate for u4.

A direct consequence of Lemma 4.1 is that when the space dimension is equal to n = 1,
from the general theory of parabolic equations (for example, See Lemma 2.6 in [5] or [4]), we
immediately see that S, R, I and B are uniformly bounded in Q.

When the space dimension is greater than 1, the derivation is much more complicated. In the
derivation of various energy estimates, the following Young’s inequality with a small parameter
ε > 0 will be used frequently: for any a, b ≥ 0,

ab ≤ εap

p
+ bq

qεq−1
,

where

1

p
+ 1

q
= 1, p, q ∈ (1, ∞).

Lemma 4.2. Under the condition H(2.1)–H(2.3), there exists a constant C such that

sup
t>0

∫
�

[S1+r + I1+2 + R1+r + B1+r]dx ≤ C,

where r ∈ (0, 1
n−1 ) is arbitrary and C depends only on known data.
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Proof Keep in mind that we shall always derive an estimate for S,I and R as a first step. The
second step for estimating B will be followed easily once we have an estimate for I by equation
(1.4).

We use the standard energy method to derive the estimate. We multiply equation (2.1) by ur
1

and equation (2.3) by Rr, respectively, and then integrate ove � to obtain

1

1 + r

d

dt

∫
�

S1+rdx + d0r

∫
�

Sr−1|∇S|2dx

+β1

∫
�

S1+rIdx + β2

∫
�

S1+rh(B)dx + d

∫
�

S1+rdx

≤
∫

�

Srbdx + σ

∫
�

RSrdx

≤ ε

∫
�

S1+rdx + C(ε)
∫

�

b1+rdx + σ

∫
�

[
r

r + 1
S1+r + 1

r + 1
R1+r

]
dx.

1

1 + r

d

dt

∫
�

R1+rdx + d0r

∫
�

Rr−1|∇R|2dx + (d + σ )
∫

�

R1+rdx

≤ γ

∫
�

IRrdx

≤ γ

∫
�

[
r

1 + r
R1+r + 1

1 + r
I1+r

]
dx.

Similarly for I , we have

1

1 + r

d

dt

∫
�

I1+rdx + d0r

∫
�

Ir−1|∇I|2dx + (d + γ )
∫

�

I1+rdx

≤ β1

∫
�

SI1+rdx + β2

∫
�

SIrh(B)dx

:= J1 + J2.

J1 ≤ β1

∫
�

[
ε1

1 + r
S1+rI + r

(1 + r)ε
1
r

1

I1+2r]dx

J2 ≤ β2

∫
�

[S1+rh(B) + I1+r]dx,

where we have used the fact 0 ≤ h(B) ≤ 1 for the second estimate.
We choose ε1 = 1 + r and then add up the estimates for S,I and R to obtain

1

1 + r

d

dt

∫
�

[S1+r + I1+r + R1+r]dx + d0r

∫
�

[Sr−1|∇S|2 + Ir−1|∇I|2 + Rr−1|∇R|2dx

+d

2

∫
�

[S1+r + I1+r + R1+r]dx

≤ C1

∫
�

I1+2rdx + C2

∫
�

b1+rdx.
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Now, we recall a Gagliardo–Nirenberg’s inequality

||u||Lp(�) ≤ C||∇u||θLq(�)||u||1−θ
Ls(�) + C||u||L1 ,

where C depends only on n and �, p, q, s, θ satisfy 0 ≤ θ < 1, 1 ≤ p < ∞, and

1

p
= θ

(
1

q
− 1

n

)
+ (1 − θ )

1

s
.

We choose q = 2 and s = 1, then we see that, for p = 2(1+2r)
1+r and θ = n(1+3r)

(n+2)(1+2r) ,

Note that by Lemma 4.1, for u = I
1+r

2 with r ≤ 1, then

||u||L1(�) ≤ C.

Moreover,

|∇u|2 = r2Ir−1|∇I|2.

If we apply Gagliardo–Nirenberg’s inequality to obtain∫
�

|u|pdx ≤ C||∇u||pθ

L2(�)
+ C

Note that if r satisfies

0 < r <
1

n − 1
,

then

pθ

2
< 1.

We see ∫
�

|u|pdx ≤ C||∇u||pθ

L2(�)
+ C

≤ ε

∫
�

|∇u|2dx + C(ε),

where ε > 0 is arbitrary and C(ε) depends only on ε, ||u||L1(�) and known data.
By choosing ε sufficiently small, we obtain

d

dt

∫
�

[S1+r + I1+r + R1+r]dx +
∫

�

[Sr−1|∇S|2 + Ir−1|∇I|2 + Rr−1|∇R|2dx

+
∫

�

[S1+r + I1+r + R1+r]dx

≤ C3

∫
�

b1+rdx ≤ C3b1+r
0 |�|.

Consequently, for any r ∈ (0, 1
n−1 ), we have
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sup
0<t<∞

∫
�

[S1+r + I1+r + R1+r]dx ≤ C,

where C depends only on known data.
The estimate for B follows easily from equation (1.4).

Proof of Theorem 2.3: Let k ≥ 1. We follow the same calculations as in Lemma 4.2 to obtain

1

1 + k

d

dt

∫
�

[S1+k + I1+k + R1+k]dx + d0k

∫
�

[Sk−1|∇S|2 + Ik−1|∇I|2 + Rk−1|∇R|2]dx

+d

2

∫
�

[S1+k + I1+k + R1+k]dx

≤ C1

∫
�

I1+2kdx + C2

∫
�

b1+kdx.

Let u = I
1+k

2 . As in Lemma 4.2, if we have an estimate in L1(�) for a function u, then we can
obtain an estimate for u in Lp(�) with p = 2n

2n−(n+2)θ and θ = n(1+3k)
(n+2)(1+2k) as long as k < 1

n−1 . For
any k ≥ 1, after a finite number of steps, we obtain

sup
t≥0

∫
�

[S1+k + I1+k + R1+k]dx ≤ C(k),

By the standard estimate for parabolic equation (see Lemma 2.6 in [5]), we obtain

sup
t≥0

[||S||L∞(� + ||I||L∞(�) + ||R||L∞(�)] ≤ C,

where C depends only on known data.
Once I is uniformly bounded, we can easily derive a uniform bound for B by using the standard

theory of parabolic equation ([16]). This concludes the proof of Theorem 2.3.

With the global bound for U(x,t), we are ready to prove the asymptotic behaviour of the
solution for the system (1.1)–(1.6).

Proof of Theorem 2.4: From Theorem 2.3, we have

sup
Q

|S(x, t)| + sup
Q

|I(x, t)| + sup
Q

|R(x, t)| + sup
Q

|B(x, t)| ≤ C,

where C depends only on known data.
We consider the following steady-state system corresponding to (2.1)–(2.6):

−∇[d1∞(x)∇S] = b0(x) − β1SI − β2S · h(B) − dS + σR, (4.1)

−∇[d2∞(x)∇I] = β1SI + β2S · h(B) − (d + γ )I , (4.2)

−∇[d3∞(x)∇R] = γ I − (d + σ )R, (4.3)

−∇[d4∞(x)∇B] = ξ I + gB(1 − B

K
) − δB (4.4)
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subject to the following boundary conditions:

(∇νS, ∇νI , ∇νR, ∇νB) = 0, x ∈ ∂�, (4.5)

By using the same argument as for the system (2.1)–(2.6), we can show that the problem (4.1)–
(4.5) has a weak solution U∗(x) = (S∗(x), I∗(x), R∗(x), B∗(x)) ∈ W 1

2 (�)
⋂

L∞(�). Moreover,
since b0(x) ≥ 0, the maximum principle implied that every weak solution is nonnegative on �.
Furthermore, since the coefficients di∞ ∈ Cα(�̄), regularity theory for elliptic equation ([29])
yields

||S∗||C1+α (�̄ + ||I∗||C1+α (�̄ + ||R∗||C1+α (�̄ + ||B∗||C1+α (�̄ ≤ C,

where C depends only on known data.
We divide the rest of the proof into three steps. In the first step, we show that there is an upper

bound M0 which is independent of β1 and β2. In the second step, we show that the steady-state
system has a unique solution (S∞(x), 0, 0, 0) if the parameters satisfy the conditions in Theorem
2.4, where S∞(x) is a solution of (2.7)–(2.8). In the third step, we show that the U(x,t) converges
to the steady-state solution U∗(x) in Lp(�) for any p > 1.

Step 1. There exists a constant M0 which is independent β1 and β2 such that

sup
�

S∗(x) ≤ M0.

Indeed, it is easy to see

d

∫
�

[S∗ + I∗ + R∗]dx =
∫

�

b0(x)dx,

(δ − g)
∫

�

B∗dx + g

∫
�

B∗2dx = ξ

∫
�

I∗dx.

Hence, L1-bound of (S∗, I∗, R∗, B∗) is independent of β1 and β2. Moreover,∫
�

B∗2dx ≤ ξ

g

∫
�

I∗dx.

To derive an L2-bound, we define V (x) = S(x) + I(x). Then

−∇[d1∞(x)∇S] = b0(x) − β1SI − β2S · h(B) − dS + σR, (4.6)

−∇[d2∞(x)∇V ] = ∇[(d1∞ − d2∞∇S] + b0(x) − dV + σR, (4.7)

−∇[d3∞(x)∇R] = γ I − (d + σ )R, (4.8)

−∇[d4∞(x)∇B] = ξ I + gB

(
1 − B

K

)
− δB, (4.9)

https://doi.org/10.1017/S0956792521000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000231


On a reaction-diffusion system modeling infectious diseases 821

By using the energy method, we immediately obtain an L2(�)-bound for S,V ,R,B and the
bound is independent β1 and β2. By using the same L2,μ-argument, we can deduce an L∞(�)
bound for S∗(x) and the bound is independent β1 and β2.

Step 2. We show that a steady-state solution U∗(x) to (4.3)–(4.7) must equal to (S∞(x), 0, 0, 0)
if the conditions in Theorem 2.4 hold.

Let

Û(x) = (Ŝ(x), Î(x), R̂(x), B̂) = (S∗(x) − S∞(x), I∗(x), R∗(x), B∗(x)), x ∈ �.

It is easy to see that (Ŝ, Î , R̂, B̂) satisfies the following elliptic system (for convenience, we use
I∗, R∗, B∗ instead of (Î , R̂, B̂)):

−∇[d1∞(x)∇Ŝ] = −β1[ŜI∗ + S∞I∗] − β2[Ŝh(B∗) + S∞h(B∗)] − dŜ + σR∗, (4.10)

−∇[d2∞(x)∇I∗] = β1[ŜI∗ + S∞I∗] + β2[Ŝ · h(B∗) + S∞h(B∗)] − (d + γ )I∗, (4.11)

−∇[d3∞(x)∇R∗] = γ I∗ − (d + σ )R∗, (4.12)

−∇[d4∞(x)∇B∗] = ξ I + gB∗(1 − B∗

K
) − δB (4.13)

subject to the following boundary conditions:

(∇ν Ŝ, ∇νI∗, ∇νR∗, ∇νB∗) = 0, x ∈ ∂�, (4.14)

We first use L1(�)-estimate to show that the steady-state system (4.6)–(4.9) with homogeneous
Neumann condition has a unique solution U∞(x) = (S∞(x), 0, 0, 0). From the elliptic equation
(4.6), we multiply the sign function sgnŜ (one may use a smooth approximation of sign function
first and then take the limit) to obtain the following estimates:

d

∫
�

|Ŝ|dx +
∫

�

[β1|Ŝ|I∗ + β2|Ŝ|h(B∗)]dx

≤ β1

∫
�

S∞I∗dx + β2

∫
�

S∞h(B∗)dx + σ

∫
�

R∗dx

≤ β1m0

∫
�

I∗dx + β2m0

K

∫
�

B∗dx + σ

∫
�

R∗dx, (4.15)

where

m0 = max
�̄

S∞(x).

Similarly, from equation (4.7), we have

(d + γ )
∫

�

I∗dx

≤ β1

∫
�

[|Ŝ|I∗ + S∞I∗]dx + β2

∫
�

[|Ŝ|h(B∗) + S∞h(B∗)]dx. (4.16)
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From equations (4.8)–(4.9), we find

(d + σ )
∫

�

R∗dx ≤ γ

∫
�

I∗dx. (4.17)

(δ − g)
∫

�

B∗dx ≤ ξ

∫
�

I∗dx. (4.18)

We add up the estimates (4.15)–(4.17) to obtain

d

∫
�

|Ŝ|dx + (d − 2β1m0 − 2β2m0ξ

K(δ − g)
)
∫

�

I∗dx + d

∫
�

R∗dx ≤ 0,

where we have used the estimate (4.18) for the L1-norm of B∗. If

d > 2β1m0 + 2β2m0ξ

K(δ − g)
,

then we conclude

Ŝ(x) = I∗(x) = R∗(x) = 0, x ∈ �.

Consequently, the inequality (4.18) implied B∗(x, t) = 0 on �.
When d1(x, t) depends on t, the above conditions for the parameters are not enough to prove

U(x,t) converges to U∗(x). We need a different set of conditions on parameters to prove the
uniqueness of U∗(x) via L2-estimate. Indeed, we multiply equation (4.6) by Ŝ and integrate over
� to obtain

d0

∫
�

|∇Ŝ|2dx + d

∫
�

Ŝ2dx + β1

∫
�

Ŝ2I∗dx + β2

∫
�

Ŝ2h(B∗)dx

≤ β1m0

2

∫
�

[Ŝ2 + I∗2]dx + β2m0

2K

∫
�

[Ŝ2 + B∗2]dx + σ

∫
�

[εR∗2 + 1

4ε
Ŝ2]dx, (4.19)

where we have used fact h(B∗) ≤ B∗
K and Cauchy–Schwarz’s inequality with a parameter ε > 0.

Similarly, from equation (4.7), we have

d0

∫
�

|∇I∗|2dx + (d + γ )
∫

�

I∗2dx ≤ β1M0

∫
�

I∗2dx + β2M0

2K

∫
�

[I∗2 + B∗2]dx, (4.20)

From equations (4.8)–(4.9), we find

d0

∫
�

|∇R∗|2dx + (d + σ )
∫

�

R∗2dx ≤ γ

∫
�

[εI∗2 + 1

4ε
R∗2]dx; (4.21)

d0

∫
�

|∇B∗|2dx + (δ − g)
∫

�

B∗2dx ≤ ξ

2

∫
�

[B∗2 + I∗2]dx. (4.22)

From the estimate (4.18), we see

(δ − g − ξ

2
)
∫

�

B∗2dx ≤ ξ

2

∫
�

I∗2dx.

If we combine the estimates (4.15)–(4.18) and choose ε sufficiently close to 1 to conclude that

Ŝ(x) = I∗(x) = R∗(x) = 0, x ∈ �
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provided that

d >
3β1m0

2
+ β2m0ξ

2K(δ − g − ξ

2 )
+ 1

4
max{σ , γ }, δ − g >

ξ

2
.

The inequality (4.18) yields

B∗(x) = 0, x ∈ �.

That is

U∗(x) = (S∞(x), 0, 0, 0), x ∈ �.

Consequently, M0 = m0.

Step 3: In this step, we show that U(x,t) converges to the steady-state solution U∗(x) =
(S∞(x), 0, 0, 0) as t → ∞.

For convenience, we set

W (x, t) := (w1, w2, w3, w4) = U(x, t) − U∗(x) = (S − S∞, I , R, B), (x, t) ∈ Q.

A direct calculation shows that W (x,t) satisfies the following system:

w1t − ∇[d1(x, t)∇w1] = m1(x, t) + f1(x, t, U) − f1(x, U∗), (x, t) ∈ Q, (4.23)

w2t − ∇[d2(x, t)∇w2] = m2(x, t) + f2(U) − f2(U∗), (x, t) ∈ Q, (4.24)

w3t − ∇[d3(x, t)∇w3] = m3(x, t) + f3(U) − f3(U∗), (x, t) ∈ Q, (4.25)

w4t − ∇[d4(x, t)∇w4] = m4(x, t) + f4(U) − f4(U∗), (x, t) ∈ Q, (4.26)

subject to the boundary conditions:

∇ν(w1, w2, w3, w4) = 0, (x, t) ∈ ∂� × (0, ∞), (4.27)

where

mi(x, t) = ∇[(di(x, t) − di∞(x))∇u∗
i ], i = 1, · · · , 4.

When di(x, t) is independent of t, we see mi(x, t) = 0 in Q. For this case, we can use the same
method as in Step 2 to show that W (x,t) converges to U∗(x) in L1(�) if the conditions in Step 2
hold.

Now, we consider the general case when di depends on t. Note that di∞(x) are uniformly
bounded in Cα(�̄), we know that ∇u∗

i is uniformly bounded in �. Hence, for each i,

|
∫

�

mi(x)widx| ≤ ε1

∫
�

|∇wi|2dx + C(ε1)
∫

�

(di − di∞)2dx,

where ε1 is a small parameter.
For any t0 > 0. Let Q(t0) = � × [t0, ∞) and

m∗
0 = sup

Q(t0)
s∗(x, t).
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By using the same argument as in Step 1, we see m∗
0 is independent of β1 and β2.

Observe h(0) = 0, hence

f1(x, t, U) − f1(x, U∗)

= b(x, t) − b0(x) − β1[w1w2 + S∞w2] − β2[w1h(B) + S∞(h(B))] − dw1 + σw3.

Moreover, from the definition of h(B),

|h(B)| ≤ |w4|
K

.

It follows that

|w1S∞w2| ≤ m0

2
[w2

1 + w2
2];

|w1S∞h(w4)| ≤ m0

2K
(w2

1 + w2
4).

Now, we use the standard energy estimate to obtain

d

dt

1

2

∫
�

w2
1dx + (d0 − ε1)

∫
�

|∇w1|2dx + (d − 2ε1)
∫

�

w2
1dx

≤ β1m0

2

∫
�

[w2
1 + w2

2]dx + m0β2

2K

∫
�

(w2
1 + w2

4)]dx

+C1(ε1)
∫

�

[(b − b0)2 + (d1 − d1∞)2]dx + σ

∫
�

[ε2w2
3 + 1

4ε2
w2

1]dx,

where ε1 and ε2 are arbitrarily constants.
Similarly, since f2(U∗) = f3(U∗) = f4(U∗) = 0, we have

d

dt

1

2

∫
�

w2
2dx + (d0 − ε1)

∫
�

|∇w2|2dx + (d + γ − ε1)
∫

�

w2
2dx

≤ β1m∗
0

∫
�

w2
2dx + β2m∗

0

2K

∫
�

[(w2
2 + w2

4)]dx + C2(ε1)
∫

�

[(d2 − d2∞)2]dx;

d

dt

1

2

∫
�

w2
3dx + (d0 − ε1)

∫
�

|∇w3|2dx + (d + σ − ε1)
∫

�

w2
1dx

≤ γ

∫
�

[ε2w2
2 + 1

4ε2
w2

3]dx + C3(ε1)
∫

�

(d3 − d3∞)2dx;

d

dt

1

2

∫
�

w2
4dx + (d0 − ε1)

∫
�

|∇w4|2dx + (δ − g)
∫

�

w2
4dx

≤ ξ

2

∫
�

[w2
2 + w2

4]dx + C4(ε1)
∫

�

(d4 − d4∞)2dx.

Suppose the parameters in the system (1.1)–(1.4) satisfy the following conditions:

d >
1

4
max{σ , γ } + 3β1M0

2
+ β2M0ξ

2K(δ − g − ξ

2 )
, (4.28)
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δ − g >
ξ

2
, (4.29)

where M0 = max{m0, m∗
0}.

We choose ε1 sufficiently small and ε2 sufficiently close to 1, then we combine the above
estimates to see that there exists a constant α1 > 0 such that

Y ′(t) + α1Y (t) ≤ CG(t),

where

Y (t) =
4∑

i=1

∫
�

w2
i dx, G(t) =

∫
�

[(b − b0)2 +
4∑

i=1

(di − di∞)2]dx.

Since G(t) converges to 0 as → ∞, we conclude that

lim
t→∞ Y (t) = 0,

which implies, for any p > 1,

lim
t→∞ ||U − U∗||Lp(�) = 0

since U(x,t) and U∗(x) are uniformly bounded.
Finally, we can choose m∗

0 sufficiently close to m0 as long as t0 is sufficiently large. Therefore,
the convergence of U(x,t) to U∗(x) holds if the conditions for parameters in Theorem 2.4 hold.

The proof of Theorem 2.4 is completed.

5 Conclusion

In this paper, we studied a mathematical model for the Cholera epidemic without lifetime immu-
nity. The model equations are governed by a coupled reaction–diffusion system with different
diffusion coefficients for each species. We established the global well-posedness for the coupled
reaction–diffusion system under a certain condition on known data. Moreover, the long-time
behaviour of the solution is obtained for any space dimension n. Particularly, we prove that there
is a global attractor for the system under appropriate conditions on known data. These results
justify the mathematical model and provide scientists a deeper understanding of the dynam-
ics of interaction between bacteria and susceptible, infected and recovered human hosts. The
mathematical model with the help of real data analysis provides a scientific foundation for pol-
icymakers to make better decisions for the general public in health and medical sciences. The
main tools used in this paper come from some delicate theories for elliptic and parabolic equa-
tions. The method developed in this paper can be used to study other models such as the avian
influenza for birds.
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