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A ship lock zone represents a specific area on waterway, and control of the ship lockage
process requires a comprehensive approach. This research is a practical application of a
Mamdani-type fuzzy inference system and particle swarm optimisation to control this
process. It presents an optimisation process that adapts control logic to the desired criteria.
The initially proposed Fuzzy Expert System (FES) was developed using suggestions from
lockmasters (ship lock operators) with extensive experience. Further optimisation of the mem-
bership function parameters of the input variables was performed to achieve better results in
the local distribution of ship arrivals. The presented fuzzy logic-based expert system was
designed as part of a Programmable Logic Controller (PLC) and Supervisory Control And
Data Acquisition (SCADA) system to support decision making and control. The developed
fuzzy algorithm is a rare application of artificial intelligence in navigable canals and signifi-
cantly improves performance of the ship lockage process. This adaptable FES is designed
to be used as a support in decision-making processes or for the direct control of ship lock
operations.
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1. INTRODUCTION. Ship locks are among the oldest and the most common
waterway navigation structures; they enable vessels to move from a waterway section
at one level to another section of waterway at a different level. Differences in water
level are created because of dam construction, and ship locks improve navigation on
inland waterways (McCartney et al., 1998). Although inland waterway transport is
perceived to have considerable societal importance in achieving sustainable mobility,
it is growing at only a modest rate (Wiegmans and Konings, 2007). Because this poten-
tial requires new concepts to be realised, attention should be paid to innovations that
can improve vessel traffic management. Intelligent transportation systems have been
developed in the field of road transportation and hence the term “intelligent infrastruc-
ture” typically refers to that transportation mode. Recent research has been increasing-
ly directed towards intelligent infrastructure development and control structure design
(Negenborn et al., 2010). Unlike other transport modes, the use of computational in-
telligence in inland water transportation is still in its infancy (Willems and Schmorak,
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2010), particularly in regard to replacing humans in the decision-making process in
real time. Transportation systems control is gaining importance, and in the marine
systems field the focus of research is on the swarming behaviour of vessels (Kiencke
et al., 2006). The aim of this research is to emphasise the potential application of arti-
ficial intelligence as a control tool in vessel traffic management on inland waterways.
Although expert systems have been successfully used in the design of large structures

(Adeli and Balasubramanyam, 1988) such as ship locks, this analysis focuses on the
implementation of a Fuzzy Expert System (FES) designed to assist lockmasters
(ship lock operators) in the decision-making process. Adeli (1988) published an
article extolling the advantages of expert systems based on artificial intelligence imple-
mented in construction engineering and management. Developing an expert system for
ship lock control raises two specific challenges: gathering expert knowledge and adapt-
ing to changes in control criteria priorities.
The proposed model is based on previous research. The initial research on designing

a control algorithm based on artificial intelligence for ship lock control was published
by Bugarski et al. (2013). It was performed on a model of the ship lock Novi Sad; the
control algorithm relied on fuzzy logic andwas designed solely on the basis of operator
experience. Kanovic ́ et al. (2014) published a paper where three different optimisation
techniques (genetic algorithms, particle swarm optimisation and artificial bee colony)
were tested for possible implementation in a fuzzy expert system for a ship lock
control. The reference model was the ship lock Kucura. A unique set of parameters
was selected during this comparison so that the results were comparable: 30 individuals
(particles, bees) and 15 generations (iterations). The present research is performed on
the ship lock Sombor, where it is possible to implement a Supervisory Control And
Data Acquisition (SCADA) system with a FES.
The developed FES is optimised (fine-tuned) using a Particle Swarm Optimisation

(PSO) algorithm to achieve the best economic criterion composed of two opposing cri-
teria that are linearly combined. PSO is selected as the most appropriate optimisation
technique based on previous research (Kanovic ́ et al., 2014). The PSO algorithm used
in this research is a variant of a basic algorithm developed and published by Kanovic ́
et al. (2011; 2013). Optimisation was performed with 100 particles (200 particles was
also tested but did not provide better results) to achieve a better distribution of particles
across the search space. With this relatively large number of particles, the algorithm
quickly converged to a certain optimal solution (even after nine or ten iterations).
An example of tuning a fuzzy controller using PSO was proposed by Bouallegue
et al. (2012), and Garcia-Nieto et al. (2012) successfully applied swarm intelligence
in traffic control. The presented FES is intended to be a decision support system imple-
mented in an existing Programmable Logic Controller (PLC) and SCADA system in a
ship lock control room. There are existing examples of improving PLC and SCADA
control logic in irrigation canals (Figueiredo et al., 2013), but the presented model is
a rare application of artificial intelligence in navigable canals.
Section 2 presents abrief description of the ship lockage process, and Section 3 discusses

the proposed methodology. Section 4 presents the optimisation criteria. Section 5 sum-
marises and discusses the empirical results, and Section 6 presents the concluding remarks.

2. SHIP LOCKAGE PROCESS. A ship lock is an enclosed chamber in awaterway
with watertight gates at each end designed for overcoming differences in water level by
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admitting or releasing water. As hydraulic engineering facilities, locks are designed to
enable ships to overcome obstacles (rapids, weirs, or dams) on the waterway
(Partenscky, 1986). The organisation of vessel traffic on a waterway in the ship lock
zone represents a compromise between rational lock utilisation and the minimisation
of vessel delays in the lock zone (Bac ̌kalic,́ 2001; Smith et al., 2009).
Among the various types of ship locks, this study focused on a specific choice: a

single-channel two-way lock (Figure 1). The analysed system as a single queuing
node utilises a First In First Out (FIFO) queuing discipline, and vessel arrivals are
random from both levels (Mundy and Campbell, 2005; Smith et al., 2009). A multi-
trajectory approach of vessels from the same direction is possible, but only up to a ref-
erence point. The reference point is the first pre-signal. Overtaking is forbidden after
the reference point, and vessels form a queue according to the FIFO principle. The
primary objective in controlling a ship lock and managing vessel transitions is evalu-
ating and reducing traffic delays (Khisty, 1996) while minimising the consumption of
water and energy (Ting and Schonfeld, 2001; Campbell et al., 2007; Bugarski et al.,
2013). The lockmasters, as part of the inland waterways tradition, are responsible for
the proper functioning of the lock and vessel traffic control in the lock zone. Their
vessel traffic control decisions are based on estimates under conditions of uncertainty.
Therefore, the experience of the lockmaster plays a significant role in the decision-
making process. The lockmaster often faces a decision-making dilemma as to whether
to prioritise saving water and energy or reducing the waiting time of a vessel (Figure 1).
The lockmaster must simultaneously control lock operations and vessel traffic in the

ship lock zone. Similar to a Vessel Traffic Service (VTS) operator in the maritime
environment, experience is necessary in both ship lock control and quality decision
support (Praetorius and Lützhöft, 2012). An adaptive expert system for ship lock
control based on human experience can provide the necessary decision support. A
fuzzy expert system was thus developed and applied to describe and solve the lockmas-
ter’s problem.

3. FUZZY INFERENCE SYSTEM. Zadeh (1975) introduced the concept of lin-
guistic variables and fuzzy (approximate) reasoning. By using fuzzy logic and fuzzy in-
ference systems (Kosko, 1993; Kecman, 2001; Siddique and Adeli, 2013), one can
gather knowledge from experts in a specific field and implement it in a control algo-
rithm to achieve the desired control of a specific system. The fuzzy logic approach
attempts to mimic the process of human decision making, only at a much faster
rate. Teodorovic ́ and Vukadinovic ́ (1998) applied fuzzy logic and artificial intelligence
to traffic control and demonstrated good results.

Figure 1. A dilemma situation in control of a single-channel two-way lock.
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3.1. Building the Fuzzy Expert System. When building the basic FES, the
primary goal was incorporating descriptive estimations from the lockmaster that
were based on experience. Necessary data for the basic FES design were collected
through interviews with lockmasters and during observations in field research. The
interviews consisted of searching for answers to a given question for different distances
of a vessel from the level at which the gate is currently open and from the level at which
the gate is currently closed. The lockmaster makes decisions based on subjective esti-
mations of vessel distances from the lock. The distance between a vessel in motion and
the lock cannot be precisely defined. Therefore, a narrow zone around the vessel can be
considered as a ship domain (Pietrzykowski and Uriasz, 2009; Wang et al., 2009).
Thus, the hypothesis that the distance of a vessel from the lock constitutes an input
fuzzy variable is in accordance with research that defined a vessel’s domain as a
fuzzy value (Pietrzykowski, 2008). Bugarski et al. (2013) designed basic membership
functions of a fuzzy expert system for ship lock control. Two main variables are
implemented as inputs to the FES (distances of vessels from the ship lock on both
sides – open gate (LGO) and closed gate (LGC)) (Figure 1). Both input variables are
implemented with three linguistic values (Small, Medium and Large) represented by
corresponding membership functions (Figures 2 and 3). These measures can be calcu-
lated from information obtained from river information services or predicted (Zhang
and Ge, 2013). The output variable is the “Change of the lock condition” (LC) imple-
mented with Change, No Change or Indefinite (Figure 4). The distances from the lock
(input variables) are expressed in minutes required to reach the ship lock, and the
output value after defuzzification is given in universal units. This universal value is
compared with the limit value (zero in this study) and produces a binary decision (to
change or not).

Figure 2. Input variable LGO (Level where the Gate is Open).

Figure 3. Input variable LGC (Level where the Gate is Closed).
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Fuzzy rules are presented in Table 1 and are not part of the optimisation process.
They are based on the work of Bugarski et al. (2013).
Approximate reasoning in the fuzzy inference system is performed in several phases:

fuzzification, “AND” phase, implication, aggregation and defuzzification. The
methods chosen for each of these phases influence the output of the fuzzy inference
system. This research covered 19 experiments with test sub-datasets with different
methods for the above-mentioned phases. The experiments covered the Minimum
and Product method for the implication phase, the Maximum, Sum and
Probabilistic OR for the aggregation phase and five different methods for the defuzzi-
fication phase, including the Centre of gravity, Bisection of area, Mean of maximum,
Largest of maximum and Smallest of maximum. The best results were obtained with
the combination of methods presented in Table 2. This combination is very common in
applications of fuzzy inference systems.

4. PSO OPTIMISATIONOF THEMEMBERSHIP FUNCTIONS. As previous-
ly mentioned, the lock operation involves opposing interests from the lock owners and
the shippers. Two opposing criteria describe these interests: the minimal Average
Waiting Time per vessel (AWT) and the minimal Number of Empty Lockages

Table 1. Fuzzy rules (Bugarski et al., 2013).

LGO

LGC Small Medium Large

Small No Change Indefinite Change
Medium No Change No Change Indefinite
Large No Change No Change No Change

Figure 4. Output variable LC (Lock Condition).

Table 2. Selected methods of approximate reasoning.

Phase Method

“AND” phase Minimum
Implication Minimum
Aggregation Maximum
Defuzzification Centre of gravity
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(NEL), as introduced by Bugarski et al. (2013). This is a trade-off situation designed to
provide efficiency between these two criteria. The primary goal is to maximise the
profit made by the lock company, but not at the expense of the ship owners.
The most common optimisation technique for similar problems is the Genetic

Algorithm (GA) outlined in Tsou et al. (2010), but we have selected the Particle
Swarm Optimisation (PSO) method because it converges faster and much more
smoothly to optimal values of the membership function parameters. Additionally,
certain complexities can arise during execution of the GA with multiple optima
(Aytug and Koehler, 2007). Unlike the GA, the PSO is a population-based stochastic
optimisation technique that operates on the principle inspired by the social behaviour
of flocks of birds or schools of fish (Kennedy and Eberhart, 2001; Panigrahi et al.,
2011; Ankur et al., 2011). Although it is a relatively new optimisation algorithm,
the PSO has been confirmed as advantageous for multiple objective fuzzy optimisation
scenarios (Panigrahi et al., 2011; Tapkan et al., 2013).

4.1. Particle Swarm Optimisation. The PSO represents a sociological system of
simple individuals who interact with other individuals and the environment. Several
variants of optimisation algorithms based on a swarm (cluster) of particles exist, in-
cluding insects (bees and ants with pheromones), arthropods, and water drops. The
generally accepted name of these systems is “swarm intelligence.” Simulations of
these systems are able to model relatively unpredictable group dynamics and social
behaviours (Bergh, 2001), and this behaviour may lead to better solutions. The parti-
cles (potential solutions) move throughout the space of the problem by following the
current best particles (Kordon, 2010). PSO has been successfully used to solve
various types of problems, including optimisation functions (Shafahi and Bagherian,
2013), the training of artificial neural networks, and fuzzy classification systems
(Chen, 2006). One of the advantages of PSO is that it does not use derivatives in de-
termining an optimum (Ren et al., 2006), though combining PSO with gradient algo-
rithms (Plevris and Papadrakakis, 2011) or differential evolutions is not rare (Sedki
and Ouazar, 2012). PSO is preferable to optimisation algorithms when addressing
multi-objective optimisation problems (Xu et al., 2012) and is frequently used in com-
bination with fuzzy logic (Li and Pan, 2013).
A few variations exist in the PSO algorithms proposed by different authors. For

example, Krohling and dos Santos Coelho (2006) proposed a “co-evolutionary”
PSO with a Gaussian probability distribution of accelerating coefficients. The
version of the algorithm selected for application in our research was introduced by
Rapaic ́ and Kanovic ́ (2009) and generalised in Kanovic ́ et al (2011). The PSO is initi-
alised with a set of randomly generated solutions (particles). In each step of the algo-
rithm, the value of each particle is updated with the two best values. The first value
represents the best solution that the individual particle has achieved thus far (pbest
in Equation (1)). The second value represents the global best solution (fitness) achieved
by any particle in the population (gbest in Equation (1)). After calculating these two
best values, the velocities and positions of every particle are updated based on the fol-
lowing equations:

v ¼ vþ c1 �rand� pbest� presentð Þ þ
c2 �rand gbest� presentð Þ ð1Þ

present ¼ presentþ v ð2Þ
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where v is the velocity (weighting factor for the particle), present is the current solution,
pbest is the personal best solution, gbest is the global best solution (in the entire popu-
lation), rand is the randomly generated number [0, 1], and c1, and c2 are the learning
factors.
The learning factors (c1 and c2 in Equation (1)) represent the cognitive and social

components, respectively, and determine how fast the particles move toward the
optimal solution.

4.2. Optimisation of membership function parameters. The working principle of
fuzzy inference mimics that of human reasoning. However, the question remains
whether the obtained fuzzy sets are the best choice for the quality control of ship
locks. Can the computer determine better control tactics than the human mind? Is it
possible, with certain changes in the membership functions, to improve the obtained
results?
The proposed optimisation and testing of the FES were carried out based on the

generated dataset of vessel traffic densities. The dataset was chosen to correspond to
actual traffic conditions and was formed on the basis of simulation experiments that
could describe possible states of the system. Simulation models that closely described
the complex process of vessel traffic were developed, verified and validated from re-
search on navigable canal capacity (Bac ̌kalic,́ 2001). The lockmaster’s dilemma
rarely appears in situations where the traffic density is significantly lower than the
ship lock capacity or close to the ship lock capacity limit.
To compare the work of the various fuzzy expert systems, it is necessary to form an

assessment, i.e., a universal criterion. In this case, the criterion can be conceived as an
“economic” criterion and defined as a weighted sum of the NEL and AWT (see
Equation (3)):

E ¼ A �NELþ B �AWT ð3Þ

where E is the optimality criterion, A and B are the weight coefficients, NEL is the
number of empty lockages, and AWT is the average waiting time per vessel.
Parameters A and B are the weighting factors for the multi-criteria objective func-

tion defined by Equation (3); they are used to give more or less importance to each sep-
arate criterion (NEL and AWT). Coefficients A and B tell us which is more expensive -
the waiting of the vessels or the waste of water and energy. The initial values of these
coefficients were set to A = B= 1. If parameters A and B are equal, then NEL and
AWT are of “approximately equal” importance, meaning that one empty lockage
per year is “approximately equal” to one minute of average waiting time per vessel.
In practice, every time the lockmaster wants to change strategy he would change the
relation between these two parameters and give more weight to one of the two oppos-
ing criteria. After this, the optimisation process must be re-done, offering the new
membership function parameters as the result of the new objective function. The lock-
master can then accept the new parameters of the expert system to achieve the desired
operating strategy.
One hundred individuals (particles) were generated, and the process of “seeking” the

best solution lasted for ten iterations. After nine to ten iterations, the algorithm con-
verged to a certain optimum. The number of individuals affects the variety of the
initial variables, which affects the speed of convergence and identification of better
solutions. However, an increase in the number of individuals significantly prolongs
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the time of program execution; for example, the duration of one iteration with 100 indi-
viduals is approximately 25 minutes on an average PC, whereas the simulation runs for
nearly an hour with 200 individuals. When fuzzy inference systems are optimised, both
input and output variables are typically considered. In this case, only input member-
ship function parameters are optimised because changes in output variables do not
affect the final decision.
The FES is designed with three variables (two inputs and one output) implemented

with three linguistic values each. The sigmoid membership functions used in the FES
are of a Gaussian asymmetric type. The symmetric Gaussian function depends on two
parameters σ and a as given by

f x; σ; að Þ ¼ e

� x� að Þ2
2σ2 ð4Þ

The asymmetric Gaussian function is a combination of both of these parameters. The
first function, specified by σ1 and a1, determines the shape of the left-most curve. The
second function, specified by σ2 and a2, determines the shape of the right-most curve.
In the presented case, a is a variable parameter of the membership function and par-
ameter σ is constant (σ1= σ2 = σ).
To achieve a workable and quality optimisation process, the number of variables has

been reduced in accordance with the following assumptions: (a) the output variable
does not significantly affect the final decision; (b) the slopes are fixed to a priori
given values; and (c) the positions of the neighbouring membership functions of lin-
guistic values are linked to each other because of the mutual overlapping. The final
number of unknown parameters is four.
Each particle consists of four values (coordinates). These values are parameters that

define the position of the asymmetric Gaussian membership functions. The first two
values, XLGO and YLGO, determine the parameters a1 and a2 for the fuzzy variable
LGO. The other two values, XLGC and YLGC, determine the parameters a1 and a2
for the fuzzy variable LGC. As shown in Figures 2 and 3, the input FES variables
consist of three sigmoid functions. The “Medium” sigmoid function is defined with
two values X andY, and the other two sigmoid functions can be treated as inverse func-
tions. Figure 5 shows the steps of the optimisation procedure of the FES for control of
the ship lockage process.
The PSO algorithm was implemented with the following parameters: vmax = 0·4,

vmin = 0·05 (maximal and minimal speed v), c1= 1·1 and c2= 1·2 (learning factors;
see Equation (1)). The maximal and minimal speed of a particle is determined experi-
mentally. Chosen values are fixed during the optimisation process to values that
provide movement of a particle in the search space that is neither too fast nor too
slow. Cognitive and social components (learning factors c1 and c2) are selected
based on experience to give a slight advantage to movement towards a global best so-
lution in comparison to a local best solution of a particle (Kanovic ́ et al., 2013). They
are chosen so that the social component is more influential than the cognitive compo-
nent, i.e., the movement of individuals through the solution space is influenced to a
greater extent by the global best solution than the local best solution. These values pro-
duced the best performance of the PSO algorithm in our test cases.
The particle coordinates (XLGO, YLGO, XLGC, YLGC) were limited to intervals of real

numbers [0, 100] corresponding to the interval of input fuzzy variables (in minutes).

1348 TODOR BAČKALIĆ AND OTHERS VOL. 69

https://doi.org/10.1017/S0373463316000242 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463316000242


They were initially randomly generated within an interval [10, 90] to ensure more
central distribution within the search space. The four listed coordinates were the pos-
ition parameters of sigmoid membership functions “Small” and “Large” as to distance
of a vessel from the ship lock in minutes. Avalue of 10 denoted that any distance closer
than 10 minutes should belong more to fuzzy set “Small” than to “Medium”. Likewise,
avalue of 90 denoted that any distance beyond 90 minutes should belong more to fuzzy
set “Large” than to “Medium”.

5. RESULTS AND DISCUSSION. In Serbia, there is a complex system of
Danube-Tisa-Danube navigable canals with a total length of approximately 600 km.
In this system, 12 ship locks are in use and can be classified into three characteristic
groups. All of them are designed for the same vessel category but differ in some tech-
nical details. Three relevant representatives of each group were selected (locks with the
largest traffic density). Although they differ in some technical details, the rules of

Figure 5. Schematic of the optimisation procedure of the FES for control of ship lockage process.
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navigation and order of control operations are identical for all analysed locks. The ship
lock Sombor (Figures 6 and 7) was observed as an actual representative system. The
time intervals needed for the transition were defined by time measurements and inter-
views with lockmasters. A total of 25 minutes is required for the transition with avessel
in the chamber (one vessel at a time), and 15 minutes are required when no vessel is
present.
The simulation was conducted with a database of vessel arrivals from the generated

dataset that included possible states of the system. However, the proposed expert

Figure 6. Location of the ship lock Sombor.

Figure 7. The ship lock Sombor.
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system can be expanded to fit other lock varieties with minor revisions to the FES
design.
After ten iterations of the PSO algorithm, the particles were observed to gather

around certain values. The global best solution was a particle with parameters
XLGO= 38·89, YLGO= 61·94, XLGC = 22·31 and YLGC= 44·2. Table 3 shows the simu-
lation results with the original fuzzy expert system, the results obtained with the new
optimised FES, and the results obtained using the criteria of AWT and NEL.
The above results for the economic criterion were obtained for A = 1 and B = 1 (see

Equation (3)). The weighting parameters A and B can take on other numeric values,
depending on the importance of the AWT or the NEL. To understand the variations
of the results and the positions of the membership functions, two additional cases
were taken under consideration. The first case used A = 2 and B = 0·5, and the
second used A = 0·5 and B= 2. The first case represented the economic criterion in
which the NEL is more important than the AWT. The second case addressed the op-
posite situation. In the initial economic criterion, a 1:1 relationship existed between A
and B. In the two new cases, the ratio was 4:1 or 1:4.
New parameters were obtained after applying the PSO algorithm with the newly

listed coefficients. Table 4 shows the values of these parameters for the original FES,
the optimised FES with the first variant of the economic criteria, and the optimised
FES in new cases with the coefficients A and B different from 1.
The fuzzy input membership functions, as constructed and based on the values from

the last two columns in Table 4, are shown in Figure 8. The upper two graphs (Figures
8(a) and 8(b)) represent the membership functions for the variables LGO and LGC in
the FES, which were obtained with the coefficients A = 2 and B = 0·5, and the lower
two graphs (Figures 8(c) and 8(d)) with the coefficients A = 0·5 and B = 2. Figure 8
shows the significant differences observing the membership function boundaries in
the originally proposed FES (Figures 2 and 3). The rules (Table 1) were not considered
for optimisation.

Table 3. Comparative presentation of simulation results.

Evaluation Model NEL AWT (minutes) Economic criterion

Original FES 768 138·01 906·01
Optimised FES 744 135·60 879·60
Minimum AWT 1410 4·18 1414·18
Minimum NEL 50 3090·85 3140·85

NEL - number of empty lockages
AWT - average waiting time

Table 4. Comparative overview of the FES parameter values obtained from different forms of the economic
criteria.

FES parameter Original FES Optimised FES 1:1 Optimised FES 4:1 Optimised FES 1:4

XLGO 40 38·89 70·11 30·87
YLGO 60 61·94 91·03 55·53
XLGC 20 22·31 8·10 71·39
YLGC 40 44·20 24·00 87·46

1351ADAPTABLE FUZZY EXPERT SYSTEM FOR SHIP LOCKSNO. 6

https://doi.org/10.1017/S0373463316000242 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463316000242


An empty lockage occurs as the result of only one rule in the rule base— when LGO
is “Large” and LGC is “Small” (Table 1). In the first case (A = 2, B = 0·5; Figures 8(a)
and 8(b), this rule is activated in a situation when a ship approaches from the open gate
side at a distance greater than 90 minutes from the lock, whereas a ship that
approaches from the closed gate side is located at a distance of less than 10 minutes.
The difference (80 min) is two times greater than the difference in the basic FES,
which tells us that an empty lockage occurs only in extreme cases. The results of the
new FES simulation compared with those from the original are presented in Table 5.
In the case of A = 2 and B= 0·5 (“Optimised 4:1” row in Table 5), the number of

empty lockages, a total of 670, decreases by 98 compared with the number obtained
using the original FES and by 74 compared with the number obtained using the
first optimised FES. However, the average waiting time is 144·19 minutes, which
increases by 6·18 minutes compared with the time obtained with the original FES
and by 8·59 minutes compared with the results obtained with the first optimised
FES. It can be concluded that the reduced NEL leads to an increase in the AWT,
which is expected when considering the new coefficients for the economic criterion
and the logic of the lock operation. If the chosen coefficients are A = 0·5 and B = 2
(lower waiting time favoured), then the NEL is 842, which is 74 or 98 more, compared
with the respective results from the previous optimisations, whereas the AWT is 112·49

Table 5. Test results with different Fuzzy Expert Systems (FES).

FES NEL AWT (minutes)

Original 768 138·01
Optimised 1:1 744 135·60
Optimised 4:1 670 144·19
Optimised 1:4 842 112·49

NEL - number of empty lockages
AWT - average waiting time

Figure 8. Input fuzzy variables based on the parameters obtained with different economic criteria:
(a) LGO 4:1, (b) LGC 4:1, (c) LGO 1:4, (d) LGC 1:4
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minutes, which is 25·52 and 23·11 minutes less. Table 6 presents these differences
expressed as percentages.
The positive values in Table 6 represent improvements compared with the results

obtained with the original FES. The differences in values are not significant for two
reasons: (1) testing was performed on the generated dataset of possible states of the
system and (2) the results are generalised and averaged. Both FESs give similar
outputs in the control process when the vessel traffic densities are low (less than
30% of lock capacity) or high (more than 70% of lock capacity). At low traffic dens-
ities, empty lockages are frequent and vessel delays are minimal, regardless of the
defined criteria of the optimality. Similarly, empty lockages at higher vessel traffic
densities are very rare because a vessel is almost always waiting for the lockage on
the other side. The greatest improvements are achieved in the traffic density interval
between 30–70% of capacity because the operator’s dilemma mostly appears in
these cases.
The results shown in Table 6 cover three cases of relations between coefficientsA and

B. The first case (1:1) occurs when NEL and AWT are approximately equally import-
ant and two other cases (4:1 and 1:4) cover two situations when one criterion is more
important than the other. Factors 0·5 and 2 are chosen to define the latter relations. In
practice, a ship lock management or a lockmaster must choose these coefficients, and
this raises questions about how to analyse, assess and establish this relation. First, a
lockmaster must analyse which is more important: water and energy consumption
or vessel waiting times in the ship lock zone. The solution to this problem demands
in-depth analysis because it is subject to many unpredictable conditions. Energy con-
sumption for operating the lock strictly depends on the number of lockages. Water con-
sumption depends on several different factors (location: river or canal; water supply:
free flow or pumps; consumers: settlements, industry and irrigation; evaporation:
low or high temperatures; economics: energy and water prices). All of these factors
require a very complex analysis as a basis for the new assessment of the relation
between the two coefficients; then the new optimisation process can be performed
with a new objective function. The results of the optimisation will return two values
to the operator: the estimated number of empty lockages and the average waiting
time in minutes per vessel. If the operator is satisfied with the provided results, he
can accept the new parameters of the membership functions of the FES; if the
results are not satisfactory, the optimisation process should be repeated with new coef-
ficients A and B. If the management of the ship lock is able to define the costs for each
part of the criterion, then the optimal values for A and B can be determined and the
proposed FES can be optimised to that specific goal. Moreover, operators can expect
to achieve better FES performance.

Table 6. Relative changes in the results comparing the original FES.

Fuzzy expert system NEL AWT (%)

FES 1:1 +3·13 +1·75
FES 4:1 +12·76 −4·48
FES 1:4 −9·64 +18·49

NEL - number of empty lockages
AWT - average waiting time
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6. CONCLUSIONS. An appropriate optimisation technique was presented to
improve a proposed FES that was designed for decision-making support in the ship
lockage process and for training lockmasters. This new approach in the field of
vessel traffic control in the ship lock zone represents a rare use of artificial intelligence
in water transport. The basic characteristics of the proposed system were adaptability
and flexibility.
A FES was designed for a single-channel two-way lock (single chamber - single

vessel). Future research should consider the development of a control algorithm for
a multi-channel lock (operating in series or parallel), which is not rare in actual
systems. This may require more input variables and/or more complex fuzzy rules.
The authors hope that including vessel priorities (military, commercial, etc.) in the pro-
posed system could significantly improve the results. Lockmasters could use the pro-
posed system as a valuable aid in making decisions, particularly if many vessels with
different priorities request lockages over a short time span.
Based on the obtained results, it can be concluded that the PSO algorithm provided

certain improvements. More important, the improvements were present under both
economic criteria (NEL and AWT). There were 24 fewer empty lockages with the opti-
mised FES than with the original FES. The average waiting time per vessel was shor-
tened by 2·41 minutes. It was demonstrated that a good selection of economic criteria
parameters can significantly improve the FES performance. Thus the optimisation ap-
proach was proven to be satisfactory. It should be noted that the obtained results
largely depended on traffic density. The developed FES was designed according to
existing navigation rules (allowed navigation speed) and the technical characteristics
of a ship lock (duration of the chamber filling/emptying and duration of additional
operations in the lock zone). The expert systemmust be redesigned if any characteristic
of the current situation is changed. In addition, the proposed expert system can be
applied in two modes. In semi-automatic mode, it is designed to be used as a
support in the decision-making process. In the more automated variant, the FES
can directly control ship lock operations, thus eliminating the need for human opera-
tors and decreasing the probability of errors caused by human factors.
In future research, attention should be given to different disciplines of queues and

more complex cases (i.e., multiple arrivals and multi-trajectory arrivals on both
sides of a ship lock). Decision-making in cases of a multi-trajectory approach differs
from the proposed model. A multi-trajectory approach occurs in ship locks whose
chambers are designed to accommodate more vessels simultaneously. In these cases,
the total ship lockage process takes significantly longer and the problem exhibits com-
pletely different characteristics and sequences of activities.
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