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The purpose of this work is to construct a bridge between two classical topics in applied
probability: the finite-time ruin probability in insurance and the final outcome distribu-
tion in epidemics. The two risk problems are reformulated in terms of the joint right-tail
and left-tail distributions of order statistics for a sample of uniforms. This allows us to
show that the hidden algebraic structures are of polynomial type, namely Appell in insur-
ance and Abel–Gontcharoff in epidemics. These polynomials are defined with random
parameters, which makes their mathematical study interesting in itself.

1. INTRODUCTION

Risk is present in most daily living activities. This is true in fields as diverse as economics
and health or medicine. The present paper is concerned with two specific risks in these
areas: the risk of ruin in insurance and the risk of infection in epidemiology.

Both types of risk have been widely investigated in applied probability. For the ruin
probability, the reader is referred, for example, to the books by Rolski et al. [42], Kaas et al.
[24], Asmussen and Albrecher [2]. For the final outcome of epidemics, we refer, for example,
to the books by Bailey [3], Daley and Gani [14], Andersson and Britton [1]. To the best of
our knowledge, these two risks have been studied independently so far.

The purpose of this work is to construct a bridge between these insurance and epidemic
risks. For that, the two risk problems are reformulated in terms of the order statistics
for a finite sample of independent (0, 1)-uniform random variables. A key observation is
that the joint right-tail and left-tail distributions of such order statistics correspond, up to
some constants, to two families of polynomials, similar but distinct, the Appell and Abel–
Gontcharoff (A–G) polynomials. In our framework, however, the parameters involved in the
polynomials are not fixed but random, so that the computations become more heavy in
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practice. Nevertheless, we will establish two nice properties satisfied by such polynomials
and that allow us to greatly simplify the general results derived.

Remarkable families of polynomials are known to be a useful mathematical tool for the
study of problems in probability and statistics. For the Appell polynomials, we mention,
for example, Giraitis and Surgailis [20], Picard and Lefèvre [38,39], Schoutens and Teugels
[44], Ignatov and Kaishev [22], Salminen [43], Das and Kratz [15], Lefèvre and Picard [31].
For the A–G polynomials, see for example, Daniels [12,13], Lefèvre and Picard [28], Picard
and Lefèvre [38], Ball and O’Neill [5], Clancy [9,10], Ball, Sirl, and Trapman [6]. It is also
worth indicating that these two families of polynomials are related to the theory of umbral
calculus (see e.g., Di Bucchianico [17]).

We organize the paper as follows. Section 2 gives a short review of the families of
Appell and A–G polynomials. In Section 3, these polynomials are interpreted as the right-
tail and left-tail distributions of order statistics. We then derive two important results
for the cases where the parameters of the polynomials correspond to the partial sums
of exchangeable random variables or to the partial products of i.i.d. random variables.
Section 4 deals with the finite-time ruin probability in insurance. We point out that, for
several different risk models, the underlying algebraic structure is of Appell polynomial
type. Section 5 is concerned with the final outcome of S–I–R epidemic models. This time,
we show that the underlying algebraic structure is of A–G polynomial type. The nice opera-
tional properties satisfied by the polynomials allow a simple and systematic study of the two
risk problems.

2. APPELL AND A–G POLYNOMIALS

The family of Appell polynomials is well-known in mathematics (see e.g., Kaz’min [25]). It
covers several classical classes of polynomials, in particular the Hermite, Bernoulli, and Euler
polynomials. A similar but different family of polynomials is given by the A–G polynomials,
introduced by Gontcharoff [21] for the interpolation of entire functions. They are much
less standard in the literature. We begin with some reminders on these two families of
polynomials (in the univariate case).

2.1. Appell Polynomials

Following Picard and Lefèvre [38,39], let us consider any given real sequence U = {ui, i ≥ 1},
nondecreasing for instance. To U is attached a unique family of Appell polynomials
{An(x|U), n ≥ 0}, of degree n in x, defined as follows.

Definition 2.1: The An(x|U)’s satisfy the conditions

A′
n(x|U) = An−1(x|U), n ≥ 1, (2.1)

with

A0(x|U) = 1 and An(un|U) = 0, n ≥ 1. (2.2)

Observe that An(x|U) depends on U through the n terms {u1, . . . , un} only. The prop-
erty that the family U is not affected by differentiation is the key Appell characteristic.
Clearly, the symbol U in the notation of An(x|U) might be omitted. This is precisely what
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is usually done; for us, however, it will be convenient to keep U in the notation. By (2.1),
An(x|U) admits an integral expression given by

An(x|U) =

x∫
yn=un

dyn

yn∫
yn−1=un−1

dyn−1 . . .

y2∫
y1=u1

dy1, n ≥ 1. (2.3)

An equivalent definition of the An(x|U)’s is through their generating function, viewed
as a formal series.

Proposition 2.2: The An(x|U)’s are such that

∞∑
n=0

An(x|U)sn = esx
∞∑

n=0

An(0|U)sn, (2.4)

with the condition (2.2).

The representation (2.3) is little appropriate for a numerical evaluation. It is simpler to
use the Taylor expansion (2.5) with the recursion (2.6) below.

Property 2.3: The An(x|U)’s can be expanded as

An(x|U) =
n∑

j=0

An−j(0|U)
xj

j!
, n ≥ 1, (2.5)

where the coefficients An−j(0|U) are obtained recursively by

An(0|U) = −
n∑

j=1

An−j(0|U)
uj

n

j!
, n ≥ 1. (2.6)

Proof: First, applying Taylor’s formula to An(x|U) and using (2.1) yields the expan-
sion (2.5). Now, taking x = un in (2.5) and using (2.2) gives the recursion (2.6) for the
An−j(0|U)’s. �

For example, we get

A1(x|U) = −u1 + x,

A2(x|U) = −u2
2/2 + u1u2 − u1x+ x2/2,

A3(x|U) = −u3
3/6 + u1u

2
3/2 + u2

2u3/2 − u1u2u3 + (−u2
2/2 + u1u2)x− u1x

2/2 + x3/6.

It is easily seen that, putting a+ bU = {a+ bui, i ≥ 1},
An(a+ bx|a+ bU) = bnAn(x|U), n ≥ 1. (2.7)

Various other properties of these polynomials are known. A simple special case is when U
is an affine sequence.

Property 2.4: If ui = a+ bi, i ≥ 1,

An(x|{a+ bi, i ≥ 1}) = (x− a− bn)(x− a)n−1/n!, n ≥ 1. (2.8)

https://doi.org/10.1017/S0269964815000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964815000066
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Remarks: Many works refer to a small variant for the definition of Appell polynomials.
These polynomials, Ãn(x) say (U is omitted here), are constructed by substituting the
condition

Ã′
n(x) = nÃn−1(x), n ≥ 1,

for (2.1). This relation shows that the Ãn’s behave like power functions. Obviously,
Ãn(x)/n!, n ≥ 1, satisfy (2.1).

The condition (2.2) provides the constants of integration. In the context of central limit
theorems, a different condition is often considered, namely

Ã0(x|U) = 1 and E[Ãn(X)] = 0, n ≥ 1,

for some random variable X with finite moments (e.g., Giraitis and Surgailis [20], Salminen
[43], Ta [46]). In that case,

∞∑
n=0

Ãn(x|U)
sn

n!
=

esx

E(esX)
.

These polynomials are called Wick powers or polynomials in physics.

2.2. A–G Polynomials

Following Lefèvre and Picard [28] and Picard and Lefèvre [38], let us consider again a real
sequence U = {ui, i ≥ 0}. Note that, for convenience reasons, u0 is now added inside U .
To U is attached a unique family of A–G polynomials {Gn(x|U), n ≥ 0}, of degree n in x,
defined as follows.

Definition 2.5: The Gn(x|U)’s satisfy the conditions

G′
n(x|U) = Gn−1(x|EU), n ≥ 1, (2.9)

where EU ≡ {ui+1, i ≥ 0}, together with

G0(x|U) = 1 and Gn(u0|U) = 0, n ≥ 1. (2.10)

Note that Gn(x|U) depends on U through the n terms {u0, . . . , un−1} only. Since the
family U is shifted after differentiation, the presence of U in the notation becomes here
compulsory. By (2.9), Gn(x|U) can also be expressed under integral form, given by

Gn(x|U) =
∫ x

y0=u0

dy0

∫ y0

y1=u1

dy1 . . .

∫ yn−2

yn−1=un−1

dyn−1, n ≥ 1. (2.11)

Clearly, for each n, Gn(x|U) and An(x|U) are linked by the simple relation

Gn(x|u0, . . . , un−1) = An(x|un−1, . . . , u0), (2.12)

but the two families of polynomials (i.e., considered for all n) are different.
An A–G family can also be characterized as follows (the proof is easy).

Property 2.6: The Gn(x|U)’s are such that

G(j)
n (uj |U) = δn,j , j, n ≥ 0. (2.13)
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An important property of an A–G family is that it may be used as a basis for Abelian-
type expansions.

Property 2.7: Any polynomial R(x) of degree n can be expanded as

R(x) =
n∑

j=0

R(j)(uj)Gj(x|U). (2.14)

Proof: The Gn(x|U) being linearly independent, we can write

R(x) =
n∑

k=0

akGk(x|U),

for some coefficients ak. Using (2.13), we then get

R(j)(uj) =
n∑

k=0

akG
(j)
k (uj |U) = aj , 0 ≤ j ≤ n,

and formula (2.14) follows. �

Choosing R(x) = xn/n! in (2.14) leads to the recursion below for the evaluation of the
A–G polynomials:

Property 2.8:

Gn(x|U) =
xn

n!
−

n−1∑
j=0

un−j
j

(n− j)!
Gj(x|U), n ≥ 1. (2.15)

For example, we get

G1(x|U) = −u0 + x,

G2(x|U) = −u2
0/2 + u0u1 − u1x+ x2/2,

G3(x|U) = −u3
0/6 + u2

0u2/2 + u0u
2
1/2 − u0u1u2 − (u2

1/2 − u1u2)x− u2x
2/2 + x3/6.

By (2.12), the identity (2.7) holds too for Gn(x|U). In the affine case, the A–G
polynomials reduce to the classical Abel polynomials.

Property 2.9: If ui = a+ bi, i ≥ 0,

Gn(x|{a+ bi, i ≥ 0}) = (x− a)(x− a− bn)n−1/n!, n ≥ 1.

3. JOINT ORDER STATISTICS

3.1. Tail Distributions

Let (U(1:n), . . . , U(n:n)) be the order statistics for a sample of n (≥ 1) independent (0, 1)-
uniform random variables. From the integral representations (2.3) for An and (2.11) for
Gn, we directly get the following probabilistic interpretation of these polynomials (see also
Denuit, Lefèvre, and Picard [16]).
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Proposition 3.1: For 0 ≤ u1 ≤ · · · ≤ un ≤ x ≤ 1,

P [U(1:n) ≥ u1, . . . , U(n:n) ≥ un and U(n:n) ≤ x] = n!An(x|u1, . . . , un). (3.1)

For 0 ≤ x ≤ u1 ≤ · · · ≤ un ≤ 1,

P [U(1:n) ≤ u1, . . . , U(n:n) ≤ un and U(1:n) ≥ x] = n!(−1)nGn(x|u1, . . . , un). (3.2)

In other words, up to some constants, An corresponds to the joint survival function of
(U(1:n), . . . , U(n:n)) and Gn to their joint distribution function.

Remark: A forthcoming paper will be devoted to bivariate Appell and A–G polynomials. To
be able to extend (3.1) and (3.2), it is convenient to provide an equivalent interpretation of
these formulas in terms of a particular random walk. Consider the path with unit steps going
from point 0 to point n, that is, {(i− 1, i), 1 ≤ i ≤ n}. To each step (i− 1, i) we associate
a level ui that is nondecreasing in i. Let us now follow this path by means of the ordered
statistics (U(1:n), . . . , U(n:n)). A step (i− 1, i) is taken by U(i:n) if U(i:n) ≥ ui; so, ui repre-
sents a lower bound to be exceeded. Then, the joint survival function of (U(1:n), . . . , U(n:n))
can be viewed as the probability that there is a path that allows us to reach point n. By
(3.1), we thus have

P [there is a path from 0 to n and U(n:n) ≤ x] = n!An(x|u1, . . . , un). (3.3)

A similar interpretation holds for (3.2) when each ui corresponds to a level not to be
exceeded by U(i:n).

3.2. Randomized Boundary

A randomization of the boundary {ui} above leads us to consider Appell and A–G polyno-
mials with random parameters. Such polynomials can be easily evaluated in the two special
cases discussed here.

The first case is when the successive parameters are partial sums of exchangeable ran-
dom variables. Let Sj = X1 + · · · +Xj , j ≥ 1, where the Xj ’s are exchangeable random
variables.

Proposition 3.2: For any integer l ≥ n ≥ 1,

E [An(x|S1, . . . , Sn) |Sl] =
xn−1

(n− 1)!

(
x

n
− Sl

l

)
a.s. (3.4)

Proof: Let us first establish the identity (3.4) when x = 0, that is,

E[An(0|S1, . . . , Sn) |Sl] = −δn,1 Sl/l, l ≥ n ≥ 1. (3.5)

When n = 1, as A1(x) = x− S1 and the Xi’s are exchangeable,

E[A1(0|S1) |Sl] = −E(S1|Sl) = −Sl/l, (3.6)

as desired. When n ≥ 2, we have by (2.6) that

An(0|S1, . . . , Sn) = −
n∑

j=1

An−j(0|S1, . . . , Sn−j)
Sj

n

j!
.
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Using E(.|Sl) = E[E(.|Sn, Sl)|Sl] = E[E(.|Sn)|Sl] (as l ≥ n), we then write that

E[An(0|S1, . . . , Sn) |Sl] = −
n∑

j=1

E

{
Sj

n

j!
E[An−j(0|S1, . . . , Sn−j)|Sn, Sl]|Sl

}

= −E
(
Sn

n

n!
|Sl

)
− E

{
Sn−1

n

(n− 1)!
E[A1(0|S1) |Sn]|Sl

}

−
n−2∑
j=1

E

{
Sj

n

j!
E[An−j(0|S1, . . . , Sn−j)|Sn]|Sl

}
. (3.7)

By (3.6), we know that E[A1(0|S1) |Sn] = −Sn/n, so that the right-hand side (r.h.s.) of
(3.7) reduces to the term −∑n−2

j=1 E{. . .}. Applying induction, we thus deduce that this
term is equal to 0, hence (3.5) holds too for n ≥ 2. Now, for x �= 0, Taylor’s expansion (2.5)
of An(x|S1, . . . , Sn) together with formula (3.5) yields the announced result (3.4). �

The special case where l = n is proved in Lemma 2.1 of Lefèvre and Picard [31] through
a different method. It is easily seen to be a generalization of formula (2.8).

The second case is when the successive parameters are partial products of i.i.d. random
variables. This time, we will see that the expectation of the randomized polynomials reduces
to similar polynomials with adapted fixed parameters. More precisely, let Πj = X1 . . . Xj ,
j ≥ 1, where the Xj ’s are i.i.d. random variables (distributed as X), and put Π0 = 1. Let
Y be a random variable independent of the Xj ’s. All the variables are assumed to have
finite moments.

Proposition 3.3: For any reals α, β, x,

E
[
Y α(Πn)βGn(x|YΠi, i ≥ 0)

]
=

n∑
j=0

xj

j!
E(Y α+n−j) [E(Xβ+n−j)]j Gn−j(0|E(Xβ+i), i ≥ 0), n ≥ 0. (3.8)

Proof: We first establish (3.8) when Y = 1 a.s. Denote by Rn(x) the left-hand side (l.h.s.)
of (3.8), that is,

Rn(x) = E[(Πn)βGn(x|Πi, i ≥ 0)], n ≥ 0. (3.9)

By (2.10), R0(x) = 1 and Rn(1) = 0 when n ≥ 1. From (2.9) and (2.7), we get

Gn(x|Πi, i ≥ 0) =
∫ x

1

Gn−1(y|Πi, i ≥ 1)dy

= (X1)n−1

∫ x

1

Gn−1(y/X1|Π̃i, i ≥ 0)dy a.s.,

where Π̃0 = 1 and Π̃i = X2 . . . Xi+1 for i ≥ 1. Thus, (3.9) can be rewritten as

Rn(x) = E

[
(X1)β+n−1

∫ x

1

(Π̃n−1)β Gn−1(y/X1|Π̃i, i ≥ 0)dy
]
.

As the Xi’s are i.i.d., the products Π̃i and Πi are equidistributed. Using E(.) = E[E(.|X1)],
we then obtain

Rn(x) = E

[
Xβ+n−1

∫ x

1

Rn−1(y/X)dy
]
,
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by virtue of (3.9) for Rn−1(x/X). This shows that Rn(x), n ≥ 1, is a polynomial in x of
degree n whose derivative satisfies

R′
n(x) = E

[
Xβ+n−1Rn−1(x/X)

]
. (3.10)

Let us now express Rn(x) under the form

Rn(x) =
n∑

j=0

an,j
xn−j

(n− j)!
, n ≥ 0. (3.11)

For n = 0, (3.11) gives a0,0 = 1. For n ≥ 1, substituting (3.11) into (3.10) and identifying
the coefficients of xn−j−1/(n− j − 1)! yields

an,j = E[Xβ+n−1 an−1,j (1/X)n−j−1]

= an−1,jE(Xβ+j) = · · · = aj,j [E(Xβ+j)]n−j , 0 ≤ j ≤ n. (3.12)

It remains to determine the coefficients aj,j using the condition Rn(1) = δn,0, that is,

n∑
j=0

aj,j
[E(Xβ+j)]n−j

(n− j)!
= 0, n ≥ 1,

with a0,0 = 1. In fact, from the Abelian expansion (2.15) at point x = 0 in which ui =
E(Xβ+i), i ≥ 0, we see that

n∑
j=0

[E(Xβ+j)]n−j

(n− j)!
Gj(0|E(Xβ+i), i ≥ 0) = 0, n ≥ 1,

which implies
aj,j = Gj(0|E(Xβ+i), i ≥ 0), j ≥ 0. (3.13)

Inserting (3.12) and (3.13) into (3.11), we deduce that Rn(x) is given by the r.h.s. of (3.8)
when Y = 1.

Finally, let us examine the effect of the factor Y . Denote by Rc
n(x) the l.h.s. of (3.8).

Using (2.7) and E(.) = E[E(.|Y )] with Y independent of the Xi’s, we can write

Rc
n(x) = E[Y α+nRn(x/Y )].

From (3.11), we then obtain

Rc
n(x) =

n∑
j=0

E

[
Y α+n an,j

(x/Y )n−j

(n− j)!

]

=
n∑

j=0

E(Y α+j) an,j
xn−j

(n− j)!
,

which provides the r.h.s. of (3.8) using (3.12) and (3.13). �

The identity (3.8) generalizes Theorem 4.1 of Picard and Lefèvre [40]. Moreover, the
method of proof followed here has the advantage to be constructive and not to rely on an
argument by induction.
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4. INSURANCE MODELS

4.1. Ordered Arrivals

Recently, Lefèvre, and Picard [30,31] investigated a risk model with ordered claim arrivals
defined on a finite-time interval [0, t]. The key assumption is that the claim arrival pro-
cess {Nt(s), 0 ≤ s ≤ t} satisfies an order statistic property (see e.g., Puri [41]). Specifically,
the total number of claims during [0, t], N(t) say, has any given distribution, and given
N(t) = n ≥ 1, the claim arrival times (T1, . . . , Tn) are distributed as the order statistics
(R(1:n), . . . , R(n:n)) associated with a set of n i.i.d. random variables, with a continuous
distribution function Ft on [0, t]. We notice that a similar claim arrival process is examined
by Sendova and Zitikis [45].

On the other hand, the successive claim amounts Xj , j ≥ 1, are nonnegative random
variables, possibly dependent but independent of the claim arrival times. For each Xj , the
claim amount covered by the insurance is f(Xj) where f is some positive nondecreasing
function. Furthermore, the company begins with initial reserves u ≥ 0 and receives premi-
ums at a determistic rate. The cumulated premium until time s (including initial reserves)
is the nondecreasing function h(s) where h(0) = u.

Let {Ut(s), 0 ≤ s ≤ t} be the surplus process over the period [0, t]. The aggregate claim
amount until time s is St(s) =

∑Nt(s)
j=1 f(Xj), so that Ut(s) = h(s) − St(s). Ruin occurs at

a claim instant T when the aggregate claim amount cannot be covered by the aggregate
premium income. In other words, the non-ruin probability until time t > 0 is given by

φ(t) ≡ P (T > t) = P [St(s) ≤ h(s), for 0 ≤ s ≤ t].

Suppose that N(t) = n ≥ 1, and consider the conditional non-ruin probability until
time t, φ(t|n) say. Of course, φ(t) = E[φ(t|N(t))]. To derive φ(t|n), it will be useful to
introduce the instant where the total premium h allows us to cover any given effective claim
amount y > 0. Evidently, this instant corresponds to h−1(y) (and reduces to 0 if y ≤ u).
Write Sj = f(X1) + · · · + f(Xj) for the total effective claim amount caused by the first j
claims, j ≥ 1.

Proposition 4.1: For t > 0,

φ(t|n) = n!E {An(1|V1, . . . , Vn)1 [Sn ≤ h(t)]} , (4.1)

where 1(A) is the indicator of the event A, and

Vi = Ft(h−1(Si)), 1 ≤ i ≤ n. (4.2)

Proof: Suppose for the moment that S1 = s1 ≤ · · · ≤ Sn = sn are fixed. By definition, if
sn > h(t), then φ(t|n) = 0. Otherwise, that is, when sn ≤ h(t), we have

φ(t|n) = P [h(T1) ≥ s1, . . . , h(Tn) ≥ sn]

= P [T1 ≥ h−1(s1), . . . , Tn ≥ h−1(sn)].

By the order statistics property, this can be rewritten as

φ(t|n) = P [R(1:n) ≥ h−1(s1), . . . , R(n:n) ≥ h−1(sn)],

and therefore,

φ(t|n) = P [U(1:n) ≥ Ft(h−1(s1)), . . . , U(n:n) ≥ Ft(h−1(sn))]

= n!An(1|Ft(h−1(s1)), . . . , Ft(h−1(sn))), (4.3)
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using (3.1). Taking the expectation of (4.3), valid provided Sn ≤ h(t), with respect to the
Sj ’s and using the notation (4.2), we then deduce the formula (4.1). �

A result similar to (4.1) is derived in Lefèvre and Picard [30]. In Lefèvre and Picard
[31], the theory of Appell polynomials is exploited to obtain explicit expressions for the
finite and ultimate non-ruin probabilities when the premium function h is linear, the claim
amounts are i.i.d. variables and the distribution function Ft is of linear or exponential form.

We limit ourselves here to reexamine the particular case where there are no initial
reserves, the premium rate is a constant c > 0, the claim amounts are exchangeable variables
and Ft(s) = s/t, 0 ≤ s ≤ t, which occurs when claims arrive according to a (mixed) Poisson
process. The following result, classical, can be proved by different methods (e.g., using the
ballot theorem).

Proposition 4.2 (e.g., Takács [47]): Under these assumptions,

φ(t|n) = E

[(
1 − Sn

ct

)
+

]
. (4.4)

Proof: We first observe that h(s) = cs, s ≥ 0, so that h−1(y) = y/c, y > 0. Now, from
(4.1) and (4.2), by conditioning on Sn and using (2.7), we have

φ(t|n) = n!E
[
An

(
1|S1

ct
, . . . ,

Sn

ct

)
1(Sn ≤ ct)

]

=
n!

(ct)n
E {1(Sn ≤ ct)E[An(ct|S1, . . . , Sn)|Sn]} .

From (3.4), we then obtain

φ(t|n) =
n!

(ct)n
E

[
1(Sn ≤ ct)

(ct)n−1

(n− 1)!
(
ct

n
− Sn

n
)
]
,

hence the formula (4.4). �

4.2. Schur-Constant Arrivals

Let us consider a variant of this risk model that is studied by following the reserves process
until the arrival time of the nth claim (and not over a fixed period of time [0, t] as before).
The probability of non-ruin over the period [0, Tn] is denoted by φn (instead of φ(t|n) above).

Specifically, the same (general) assumptions are made on the claim amounts, but the
claim arrivals here follow a different model. Let τi = Ti − Ti−1, 1 ≤ i ≤ n, be the n successive
claim interarrival times. We suppose that the vector (τ1, . . . , τn) forms a continuous Schur-
constant model (as defined e.g., in Caramellino and Spizzichino [7], Nelsen [34], Chi, Yang,
and Qi [8]). By definition, this means that

P (τ1 > x1, . . . , τn > xn) = G(x1 + · · · + xn), x1, . . . , xn ≥ 0,

for some adequate function G. Under this assumption, it is known that

(i) (τ1/Tn, . . . , τn/Tn) is independent of Tn,
(ii) (T1/Tn, . . . , Tn−1/Tn) is distributed as the order statistics (U(1:n−1), . . . , U(n−1:n−1))

associated with (n− 1) independent (0, 1)-uniforms,

https://doi.org/10.1017/S0269964815000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964815000066


RISK MODELS IN INSURANCE AND EPIDEMICS 409

(iii) the distribution function of Tn is given by

FTn
(x) = 1 +

n−1∑
k=0

(−1)k+1 t
k

k!
G(k)(x), x > 0.

Moreover, if the Schur-constant property holds for all n ≥ 1, the τi are necessarily mixed
exponentials, that is, the occurrence of claims follows a mixed Poisson process.

Proposition 4.3: For t > 0,

φn = (n− 1)!E {An−1(1|Wn,1, . . . ,Wn,n−1)1 [Sn ≤ h(Tn)]} , (4.5)

where

Wn,i =
h−1(Si)
Tn

, 1 ≤ i ≤ n. (4.6)

Proof: Let us fix S1 = s1 ≤ · · · ≤ Sn = sn and Tn = tn. Evidently,

φn = P [h(T1) ≥ s1, . . . , h(Tn−1) ≥ sn−1]1[h(tn) ≥ sn]

= P

[
T1

tn
≥ h−1(s1)

tn
, . . . ,

Tn−1

tn
≥ h−1(sn−1)

tn

]
1[h(tn) ≥ sn].

As the n claim interarrival times are Schur-constant, we can write

φn = P

[
U(1:n−1) ≥ h−1(s1)

tn
, . . . , U(n−1:n−1) ≥ h−1(sn−1)

tn

]
1[h(tn) ≥ sn],

and by virtue of (3.1),

φn = (n− 1)!An−1

[
1|h

−1(s1)
tn

, . . . ,
h−1(sn−1)

tn

]
1[h(tn) ≥ sn]. (4.7)

It remains to take the expectation with respect to the Sj ’s and Tn, which gives formula
(4.5) using (4.6). �

Let us examine the particular case where there are no initial reserves, the premium rate
is a constant c > 0 and the claim amounts are exchangeable variables.

Proposition 4.4: Under these assumptions,

φn = E

[(
1 − n− 1

n

Sn

cTn

)
1(Sn ≤ cTn)

]
. (4.8)

Proof: From (4.5) and (4.6) and the assumptions, we have

φn = (n− 1)!E
[
An−1

(
1| S1

cTn
, . . . ,

Sn−1

cTn

)
1(Sn ≤ cTn)

]
.

Using (2.7) and conditioning on (Sn, Tn) then yields

φn = (n− 1)!E
{
1(Sn ≤ cTn)

1
(cTn)n−1

E [An−1(cTn|S1, . . . , Sn−1)|Sn, Tn]
}
.

By formula (3.4), we deduce that

φn = (n− 1)!E
[
1(Sn ≤ cTn)

1
(cTn)n−1

(cTn)n−2

(n− 2)!

(
cTn

n− 1
− Sn

n

)]
,

which reduces to (4.8). �
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4.3. Schur-Constant Claims

The Schur-constant property can also be applied to the claim amounts. So, consider a risk
model with initial reserves u, a constant premium rate c > 0 and a Poisson claim arrival
process. We now suppose that the n claims are totally covered (i.e., f(Xj) = Xj) and their
amounts (X1, . . . , Xn) form a continuous Schur-constant model. As in Section 4.1, let φ(t|n)
be the non-ruin probability until time t given that N(t) = n.

Proposition 4.5: For t > 0,

φ(t|n) = 1 −
n∑

j=1

E

[(
u+ cTj

Sj

)j−2(
u+ cTj/j

Sj

)
1(Sj > u+ cTj , Tj ≤ t)

]
, (4.9)

where (T1, . . . , Tn) is distributed as the order statistics of n independent (0, t)-uniforms.

Proof: We will argue with ψ(t|n) = 1 − φ(t|n), the conditional probability of ruin before
time t. First, let us fix T1 = t1 ≤ · · · ≤ Tn = tn ≤ t. By definition,

ψ(t|n) =
n∑

j=1

P [S1 ≤ h(t1), . . . , Sj−1 ≤ h(tj−1), Sj > h(tj)].

Let us also fix Sj = sj in each probability above. Then,

ψ(t|n) =
n∑

j=1

P

[
S1

sj
≤ h(t1)

sj
, . . . ,

Sj−1

sj
≤ h(tj−1)

sj

]
1[sj > h(tj)],

and as the n claim amounts are Schur-constant,

ψ(t|n) =
n∑

j=1

P

[
U(1:j−1) ≤ h(t1)

sj
, . . . , U(j−1:j−1) ≤ h(tj−1)

sj

]
1[sj > h(tj)].

By virtue of (3.2), this becomes

ψ(t|n) =
n∑

j=1

(j − 1)!(−1)j−1Gj−1

[
0|h(t1)

sj
, . . . ,

h(tj−1)
sj

]
1[sj > h(tj)].

Finally, taking h(s) = u+ cs and using (2.7), we obtain

ψ(t|n) =
n∑

j=1

(j − 1)!(−1)j−1Gj−1

(
−u
c
|t1, . . . , tj−1

) ( c

sj

)j−1

1(sj > u+ ctj). (4.10)

Remember that (4.10) holds insofar as tj ≤ t in each jth term of this sum.
Now, let us take the expectation in (4.10) with respect to the Tj ’s and Sj ’s. Given

N(t) = n, the arrival times (T1, . . . , Tn) are distributed as the order statistics of n
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independent (0, t)-uniforms. Thus, each Ti is the sum of i interarrivals periods τi that are
exchangeable random variables. By (2.12) and (2.7), we can write

Gj−1

(
−u
c
|T1, . . . , Tj−1

)
= Aj−1

(
−u
c
|Tj−1, . . . , T1

)
= Aj−1

(
−u
c
− Tj |Tj−1 − Tj , . . . , T1 − Tj

)
= (−1)j−1Aj−1

(u
c

+ Tj |τj , τj−1 + τj , . . . , τ2 + · · · + τj

)
a.s.

By substitution in the expectation of (4.10), we then get

ψ(t|n) =
n∑

j=1

(j − 1)!E

[
Aj−1

(u
c

+ Tj |τj , . . . , τ2 + · · · + τj

) ( c

Sj

)j−1

1(Sj > u+ cTj , Tj ≤ t)

]
.

Conditioning each jth expectation above on Tj yields

ψ(t|n) =
n∑

j=1

(j − 1)!E

{(
c

Sj

)j−1

1(Sj > u+ cTj , Tj ≤ t)

× E
[
Aj−1

(u
c

+ Tj |τj , . . . , τ2 + · · · + τj

)
|Tj

]}
.

Since the τj ’s are exchangeable, we finally obtain by (3.4) that

ψ(t|n) =
n∑

j=1

(j − 1)!E

[(
c

Sj

)j−1

1(Sj > u+ cTj , Tj ≤ t)
(u/c+ Tj)

j−2

(j − 2)!

(
u/c+ Tj

j − 1
− Tj

j

)]
.

The announced formula (4.9) follows after some simplifications. �

5. EPIDEMIC MODELS

5.1. Final Size

Consider a closed homogeneous population with initially n susceptibles and m infectives.
The spread of the epidemic is of the Susceptible → Infective → Removed schema (see e.g.,
Andersson and Britton [1]). Any infective, j say, remains infectious during a random period
of time Xj . The variables Xj are i.i.d. (=d X). During its infectious period, the infective j
exerts on each susceptible an infection pressure measured by f(Xj) where f is a positive
nondecreasing function. Any susceptible, i say, has a random resistance to infection Ri. The
variables Ri are i.i.d. (=d R), with a continuous distribution function F . The susceptible i is
not infected by the (only) infective j if Ri > f(Xj); it remains uninfected if Ri exceeds the
sum of the infection pressures exerted by the infectives present. The epidemic terminates
at time T when all the infectives, initial and subsequent, are removed. The random variable
under study is the final size of the epidemic, FT , which counts the new infected cases among
the n initial susceptibles.

As long as the final size is concerned, an equivalent representation of the epidemic
consists in following the set of n susceptibles after the infection first by the m initial infec-
tives and then by each new infected case (e.g., Lefèvre and Utev [32]). In this framework,
a final size of at least k individuals, 1 ≤ k ≤ n, means that the k weakest susceptibles
have not been able to resist to the infection pressure exerted by the m initial infectives
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412 C. Lefèvre and P. Picard

and the first k new infectives. That is the starting point for deriving formula (5.1) below.
Denote by Sj = f(X1) + · · · + f(Xj) be the total infection pressure exerted by the first j
infectives, j ≥ 1.

Proposition 5.1:

P (FT = k) = n[k]E
{
(Vm+k)n−kGk(1|Vm, . . . , Vm+k−1)

}
, 0 ≤ k ≤ n, (5.1)

where
Vm+i = 1 − F (Sm+i), 0 ≤ i ≤ n. (5.2)

Proof: Let (R(1:n), . . . , R(n:n)) be the order statistics associated with the n resistances
(R1, . . . , Rn). As explained above, we can assert that, for 1 ≤ k ≤ n,

P (FT ≥ k) = P [R(1:n) ≤ Sm, R(2:n) ≤ Sm+1, . . . , R(k:n) ≤ Sm+k−1].

Therefore, we have, for 0 ≤ k ≤ n,

P (FT = k) = P [R(1:n) ≤ Sm, R(2:n) ≤ Sm+1, . . . , R(k:n) ≤ Sm+k−1, R(k+1:n) > Sm+k].
(5.3)

Suppose for the moment that Sm+j = sm+j are fixed, j ≥ 0. As the Ri’s are i.i.d., we see
by a simple probabilistic argument that (5.3) can be rewritten as

P (FT = k) =
(
n

k

)
[P (R > sm+k)]n−k

P [R(1:k) ≤ sm, R(2:k) ≤ sm+1, . . . , R(k:k) ≤ sm+k−1], (5.4)

where the order statistics are associated with the set of k variables (R1, . . . , Rk) only.
Since (R(1:k), . . . , R(k:k)) is distributed as [F−1(U(1:k)), . . . , F−1(U(k:k))], (5.4) is equiv-

alent to

P (FT = k) =
(
n

k

)
[P (R > sm+k)]n−k P [U(1:k) ≤ F (sm), . . . , U(k:k) ≤ F (sm+k−1)],

By virtue of (3.2), we then obtain

P (FT = k) =
(
n

k

)
[1 − F (sm+k)]n−k k!(−1)k Gk(0|F (sm), . . . , F (sm+k−1)). (5.5)

Moreover, we know by (2.7) that

(−1)k Gk(0|F (sm), . . . , F (sm+k−1)) = Gk(0| − F (sm), . . . ,−F (sm+k−1))

= Gk(1|1 − F (sm), . . . , 1 − F (sm+k−1)).

Thus, (5.5) becomes

P (FT = k) = n[k](vm+k)n−kGk(1|vm, . . . , vm+k−1), (5.6)

using the notation vm+i = 1 − F (sm+i) (see (5.2)). Finally, taking the expectation of (5.6)
to remove the conditioning on the Sm+j ’s yields the announced formula (5.1). �

An analogous result is obtained in Ball and O’Neill [5] and Lefèvre and Picard [29]. The
formula is rather easy to handle when the Sm+j ’s are fixed, that is, when all the infectious

https://doi.org/10.1017/S0269964815000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964815000066


RISK MODELS IN INSURANCE AND EPIDEMICS 413

periods are of constant length (not necessarily equal). Indeed, the expectation in (5.1) is
then superfluous, and the distribution of FT is expressed in terms of the A–G polynomials
which can be computed recursively using (2.15). The situation, however, becomes more
complicated if the infectious periods are random.

5.2. Exponential Resistances

A special case for which calculations remain simple is when the resistances of the susceptibles
are exponentially distributed, that is, if F (x) = 1 − e−rx, x > 0 (r > 0).

Proposition 5.2:

P (FT = k) = n[k]

k∑
j=0

1
j!

[q(n− j)]m+j Gk−j(0|q(n− k + i), i ≥ 0), 0 ≤ k ≤ n, (5.7)

where the parameters q(i) are defined by

q(i) = E(e−rif(X)), i ≥ 0. (5.8)

Proof: By (5.1) and (5.2) with F (x) = 1 − e−rx, we have

P (FT = k) = n[k]E
{
e−rSm+k(n−k)Gk(1|e−rSm , e−rSm+1 , . . . , e−rSm+k−1)

}
,

for 0 ≤ k ≤ n. Put Y = e−rSm and Πj = Z1 . . . Zj where Zj = e−rf(Xm+j), j ≥ 1. Then, this
probability can be rewritten as

P (FT = k) = n[k]E
{
Y n−k(Πk)n−kGk(1|Y, YΠ1, . . . , YΠk−1)

}
. (5.9)

Applying the identity (3.8) to the expectation in (5.9) now yields

P (FT = k) = n[k]

k∑
j=0

1
j!
E(Y n−j) [E(Zn−j)]j Gk−j(0|E(Zn−k+i), i ≥ 0), n ≥ 0. (5.10)

By definition of Y and Z and the notation (5.8),

E(Y n−j) = [q(n− j)]m and E(Zn−j) = q(n− j), j ≥ 0,

so that (5.10) reduces to the desired formula (5.7). �

The model with exponential resistances is analogous to the randomized Reed–Frost
process studied by for example, Ball [4], Martin-Löf [33], Picard and Lefèvre [37], Ball
and O’Neill [5], Clancy [10]. If the infectious periods are of constant length c, the model
corresponds to the classical Reed–Frost process for which, by (5.8),

q(i) = qi where q = e−rf(c), i ≥ 0.

For such epidemics, it is well-known that the distribution of FT is also given as the
solution of a triangular system of linear equations. We rederive this result below from
formula (5.7).
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Corollary 5.3:

E

{(
n− FT

l

)
1

[q(l)]FT

}
=
(
n

l

)
[q(l)]m, 1 ≤ l ≤ n. (5.11)

Proof: Let El denote the l.h.s. of (5.11). From (5.7), we have

El =
n!
l!

n−l∑
k=0

1
(n− l − k)!

1
[q(l)]k

k∑
j=0

1
j!

[q(n− j)]m+j Gk−j(0|q(n− k + i), i ≥ 0).

After permutation of the two sums and insertion of a factor [q(l)]n−l, we get

El =
n!
l!

n−l∑
j=0

1
j!

[q(n− j)]m+j 1
[q(l)]n−l

Fl,j , (5.12)

where

Fl,j ≡
n−l∑
k=j

1
(n− l − k)!

[q(l)]n−l−k Gk−j(0|q(n− k + i), i ≥ 0), 0 ≤ j ≤ n− l.

Putting k for k − j in Fl,j gives

Fl,j ≡
n−l−j∑
k=0

1
(n− l − j − k)!

[q(l)]n−l−j−k Gk(0|q(n− k − j + i), i ≥ 0), (5.13)

in which we can write, by virtue of (2.9),

Gk(0|q(n− k − j + i), i ≥ 0) = G
(n−l−j−k)
n−l−j (0|q(l + i), i ≥ 0).

Applying Taylor’s formula, we obtain from (5.13) that

Fl,j = Gn−l−j(q(l)|q(l + i), i ≥ 0), 0 ≤ j ≤ n− l.

By (2.10), we then deduce that Fl,n−l = 1, and Fl,j = 0 for 0 ≤ j ≤ n− l − 1. Therefore,
the l.h.s. El reexpressed by (5.12) reduces to

(
n
l

)
[q(l)]m, that is, the r.h.s. of (5.11). �

Furthermore, a closed expression for the probability generating function of ST = n− FT

easily follows from (5.7).

Corollary 5.4: For x real,

E(xST ) =
n∑

k=0

n[k][q(k)]m+n−kGk(x|q(i), i ≥ 0). (5.14)
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Proof: Inserting (5.7), we get

E(xST ) =
n∑

k=0

xn−kn[k]

k∑
j=0

1
j!

[q(n− j)]m+j Gk−j(0|q(n− k + i), i ≥ 0)

=
n∑

j=0

1
j!

[q(n− j)]m+j n[j]

n∑
k=j

xn−k(n− j)[k−j]Gk−j(0|q(n− k + i), i ≥ 0)

=
n∑

j=0

(
n

j

)
[q(n− j)]m+j

n−j∑
k=0

xn−j−k(n− j)[k]Gk(0|q(n− j − k + i), i ≥ 0).

Since by (2.9),

G
(n−j−k)
n−j (0|q(i), i ≥ 0) = Gk(0|q(n− j − k + i), i ≥ 0),

Taylor’s formula gives

Gn−j(x|q(i), i ≥ 0) =
n−j∑
k=0

xn−j−k

(n− j − k)!
Gk(0|q(n− j − k + i), i ≥ 0).

By substitution, we then obtain

E(xST ) =
n∑

j=0

(
n

j

)
[q(n− j)]m+j (n− j)!Gn−j(x|q(i), i ≥ 0),

which corresponds to formula (5.14). �

Remark: An alternative approach to derive these results is by exhibiting and exploiting a
family of martingales (see e.g., Picard [36], Lefèvre and Picard [28], O’Neill [35], Clancy
[9]). We briefly show in the Appendix how to apply that method to the present model.

5.3. Final Severity

The final severityAT is defined as the sum of the infectious periods until time T . It represents
an important component of the cost of the epidemic (e.g., Gani and Jerwood [19]). The
previous calculations can be easily adapted to incorporate AT in the analysis. Let Aj =
X1 + · · · +Xj denote the sum of the first j infectious periods, j ≥ 1.

Proposition 5.5: For θ ≥ 0,

E
(
1(FT =k) e

−θAT
)

= n[k]E
{
(Vm+k)n−k e−θAm+k Gk(1|Vm, . . . , Vm+k−1)

}
, 0 ≤ k ≤ n.

When the resistances are exponentially distributed,

E
(
1(FT =k) e

−θAT
)

= n[k]

k∑
j=0

1
j!

[q(n− j, θ)]m+j Gk−j(0|q(n− k + i, θ), i ≥ 0), 0 ≤ k ≤ n,

where the parameters q(i, θ) are defined by

q(i, θ) = E(e−rif(X)−θX), i ≥ 0.
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As a consequence,

E

{(
n− FT

l

)
1

[q(l, θ)]m+FT
e−θAT

}
=
(
n

l

)
, 1 ≤ l ≤ n,

and for x real,

E(xST e−θAT ) =
n∑

k=0

n[k][q(k, θ)]m+n−kGk(x|q(i, θ), i ≥ 0).

The proofs are omitted for brevity reasons. A small generalization of formula (3.8) is
needed to deal with the exponential special case; it is stated in the Remark below.

Remark: Let Π̃j = X̃1 . . . X̃j , j ≥ 1, where the X̃j ’s are i.i.d. random variables (distributed
as X̃), with each X̃j allowed us to depend on Xj . Let Z be a random variable independent
of the Xj and X̃j ’s, but allowed us to depend on Y . Then, (3.8) can be extended as follows:
for any reals α, β, x,

E[Y αZ(Πn)βΠ̃nGn(x|YΠi, i ≥ 0)] =
n∑

j=0

xj

j!
E(Y α+n−jZ) [E(Xβ+n−jX̃)]j Gn−j(0|E(Xβ+iX̃), i ≥ 0), n ≥ 0,

where all the involved moments are assumed to be finite.

5.4. Dependent Uniform Resistances

The maximum infection that can be generated in the population is of amount Sm+n. A sim-
ple assumption consists in considering that the resistances of the susceptibles are uniformly
distributed on the interval (0, Sm+n), that is,

Ri =d Sm+n Ui, 1 ≤ i ≤ n,

where the Ui’s are independent (0, 1)-uniform random variables. Observe that the Ri’s are
now dependent through the common factor Sm+n. We also note that by a well-known
theorem (Khintchine [26]), the marginal density of Ri is then a nonincreasing function,
which seems to be realistic for many situations.

Proposition 5.6:

P (FT = k) =
(
n

k

)
m

m+ k
E

[(
1 − Sm+k

Sm+n

)n−k (
Sm+k

Sm+n

)k
]
, 0 ≤ k ≤ n. (5.15)

Proof: Let us first proceed as for (5.1). Conditionally on Sm+j = sm+j , j ≥ 0, the p.m.f.
of FT is still given by the formula (5.6). Moreover, F (x) = x/sm+n in the present case.
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Thus, we get by (2.7)

P (FT = k) = n[k]E

[(
1 − Sm+k

Sm+n

)n−k

Gk

(
1|1 − Sm

Sm+n
, . . . , 1 − Sm+k−1

Sm+n

)]

= n[k]E

[
(Sm+n − Sm+k)n−k

(Sm+n)n
Gk(0| − Sm, . . . ,−Sm+k−1)

]
,

for 0 ≤ k ≤ n. Using E(.) = E[E(.|Sm+k, Sm+n)] then yields

P (FT = k) = n[k]E

{
(Sm+n − Sm+k)n−k

(Sm+n)n
E[Gk(0| − Sm, . . . ,−Sm+k−1)|Sm+k]

}
. (5.16)

It remains to evaluate the inner conditional expectation. By (2.12) and (2.7),

E[Gk(0| − Sm, . . . ,−Sm+k−1)|Sm+k] = E[Ak(0| − Sm+k−1, . . . ,−Sm)|Sm+k]

= E{Ak[Sm+k|f(Xm+k), . . . , f(Xm+k) + · · · + f(Xm+1)]|Sm+k}. (5.17)

Put X̃i = Xm+k−i+1 and S̃i = f(X̃1) + · · · + f(X̃i), 1 ≤ i ≤ m+ k; in particular, S̃m+k =
Sm+k. Then, (5.17) can be rewritten as

E[Ak(S̃m+k|S̃1, . . . , S̃k)|S̃m+k],

and by (3.4), this expectation is equal to

(S̃m+k)k−1

(k − 1)!

(
S̃m+k

k
− S̃m+k

m+ k

)
=

(Sm+k)k−1

(k − 1)!

(
Sm+k

k
− Sm+k

m+ k

)
=

(Sm+k)k

k!
m

m+ k
.

(5.18)

Substituting (5.18) for (5.17) and inserting in (5.16) then provides the formula (5.15). �

If the infectious periods are of constant length c, (5.15) gives

P (FT = k) =
(
n

k

)
m

m+ k

(
1 − m+ k

m+ n

)n−k (
m+ k

m+ n

)k

,

independently of c and the function f . Putting p1 = m/(m+ n) and p2 = 1/(m+ n), this
can be rewritten as

P (FT = k) =
(
n

k

)
p1 (p1 + p2k)k−1(1 − p1 − p2k)n−k, 0 ≤ k ≤ n, (5.19)

which shows that FT has a quasi-binomial distribution (Consul [11]). We note that the
same distribution is derived by Islam, O’Shaughnessy and Smith [23] for the final size of
household infections in a random graph model. We also refer to Dobson, Carreras, and
Newman [18] and Lefèvre [27] for the total number of failures in a cascading failure model.

Remark: A similar argument allows us to treat the more general case in which Ri =
dSm+n U

(ρ)
i , 1 ≤ i ≤ n, where the U (ρ)

i ’s are independent (ρ, 1)-uniform random variables
(0 < ρ < 1). Such an extension is relevant when the susceptibles possess a positive minimum
level of resistance to infection.
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40. Picard, P. & Lefèvre, C. (2003). On the first meeting or crossing of two independent trajectories for
some counting processes. Stochastic Processes and their Applications 104: 217–242.

41. Puri, P.S. (1982). On the characterization of point processes with the order statistic property without
the moment condition. Journal of Applied Probability 19: 39–51.

42. Rolski, T., Schmidli, H., Schmidt, V. & Teugels, J.L. (1999). Stochastic processes for insurance and
finance. Chichester: Wiley.

43. Salminen, P. (2011). Optimal stopping, Appell polynomials, and Wiener–Hopf factorization. Stochas-
tics: An International Journal of Probability and Stochastic Processes 83: 611–622.
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APPENDIX

An alternative approach to the final epidemic size is by using martingale theory. This is briefly
shown below in the special case of exponential resistances.

The spread of infection is represented through the time scale described in Section 5.1. Denote
by F1 the number of new infections caused by the m initial infectives, and let Ft, t ≥ 2, be the
number of new infections caused by the m initial infectives and the first t− 1 new infectives (if
ever). Here too, the q(i)’s are the parameters defined by (5.8).

Lemma A..1. For each 1 ≤ l ≤ n,

E

[(
n− F1

l

)]
=

(
n

l

)
[q(l)]m, (A.1)
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and conditionally on n− F1,{(
n− Ft

l

)
1

[q(l)]t
, t ≥ 1

}
is a martingale. (A.2)

Proof: The susceptibles present at time t ≥ 0 are in number n− Ft (F0 = 0). Consider all
the subsets of l individuals among these n− Ft susceptibles, for any 1 ≤ l ≤ n. Clearly, we can
write that (

n− Ft+1

l

)
=

(n−Ft
l )∑

α=1

1(α), t ≥ 0,

where 1(α) is the indicator of the event [the group of l susceptibles at time t labelled α remains
uninfected at time t+ 1]. Remember that F (x) = e−rx by assumption. When t = 0, we then have

E

[(
n− F1

l

)
|Sm = sm

]
=

(
n

l

)
[P (R > sm)]l =

(
n

l

)
e−rlsSm ,

so that taking the expectation with respect to Sm gives (A.1). For t ≥ 1, we get

E

[(
n− Ft+1

l

)
|Ft, Sm+t = sm+t, Sm+t−1 = sm+t−1

]

=

(
n− Ft

l

)
[P (R > sm+t|R > sm+t−1]

l

=

(
n− Ft

l

)
[1 − F (sm+t)]

l

[1 − F (sm+t−1)]l
=

(
n− Ft

l

)
e−rlf(xm+t) a.s.,

where xm+t = sm+t − sm+t−1. Taking again the expectation then gives

E

[(
n− Ft+1

l

)
|Ft

]
=

(
n− Ft

l

)
q(l), t ≥ 1,

hence the assertion (A.2). �

Corollary A..2: The distribution of FT satisfies the n relations (5.11).

Proof: The epidemic terminates at the first time T where there are no more infectives present.
Applying the martingale stopping theorem to (A.1), (A.2), we obtain

E

[(
n− FT

l

)
1

[q(l)]T

]
= E

[(
n− F1

l

)
1

q(l)

]

=

(
n

l

)
[q(l)]m−1. (A.3)

Now, we see that T = 1, 2, 3, . . ., means F1 = 0, F2 = 1, F3 = 2, . . ., respectively. In fact, the identity
T − 1 = FT holds true. Inserting this in (A.3) yields the relations (5.11). �
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