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Abstract. A simple class of chaotic systems in a random environment is considered and
their shadowing properties are studied. As an example of application, the fluctuation
theorem is extended under the assumption of reversibility.

1. Random chaos
A chaotic system in a random environment is defined by:
(1) an environment which can be in states ω belonging to a space � and varying in time,

the time evolution being given by a map τ on �;
(2) a τ -invariant probability distribution P on � describing the statistical properties of

the environment evolution; and
(3) a family of maps x→ fω(x) of a manifold M (phase space) into itself.

The space of the random events� will be assumed to be a space of sequences of finitely
many symbols ω = {ω j }

∞

j=−∞, for instance a sequence of spins ω j =±1, with the usual

metric d(ω, ω′)=
∑

j |ω j − ω
′

j |2
−| j |, and with τ the shift to the left: (τω) j = ω j+1.

A ‘reflection’ operation will be defined on � as ω←→ωT , with (ωT ) j = ω− j . The
probability distribution P will be a τ -invariant and reflection-invariant mixing process
on �, for instance a Bernoulli shift or a Markov process with symmetric transition
probabilities or a suitably symmetric general Gibbs distribution on �. Reflection-invariant
means that P(E)≡ P(ET ) for every Borel set E , where ET is the image of E under
the reflection ω←→ωT . The manifold M will be a torus Tm and fω will be assumed
to be close to a map f which is a ‘linear hyperbolic torsion’ of Tm , independent of the
environment, i.e. close to a map which is defined by the action of a hyperbolic matrix with
integer entries and determinant ±1 on the torus.
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22 F. Bonetto et al

For instance, the point x ∈M can be visualized as a pair of clock arms x = ϕ = (ϕ1, ϕ2)

frantically moving as
ϕ→ f ϕ = (ϕ1 + ϕ2, ϕ1). (1.1)

The map in (1.1) is a ‘linear hyperbolic torsion’ of T2 and is a paradigmatic example of an
Anosov map.

The actual fω will be small perturbations of f . For a small ε, we will take them of the
form

fω(x)= f x + εψω(x), (1.2)

where ψω is periodic on Tm , analytic in a domain independent of ω and Hölder continuous
in ω (we say that a function g(ω, x) on �× Tm is Hölder continuous of modulus C > 0
and exponents 0≤ β < 1, β ′ > 0, if |g(ω, x)− g(ω′, x ′)| ≤ C(|x − x ′|β + 2−β

′n(ω,ω′)),
where n(ω, ω′) is the maximum integer such that ωi = ω

′

i for |i |< n(ω, ω′)). For instance
one can take ψω(x)= ω0ψ(x) with ψ a trigonometric polynomial.

Therefore we are led to consider the dynamical system (�×M, F), with

F(ω, x)= (τω, fω(x)). (1.3)

In other words, at every instant t the ‘next coin is flipped’, i.e. the next spin state
is observed, and the system point xt is moved by f xt + εψω(xt ). We shall denote
by ξ = (ω, x) the points in �×M. We shall consistently denote by roman letter f
(possibly with labels) maps of M and by calligraphic letters F (possibly with labels) the
corresponding random maps.

According to standard terminology if µ0 denotes the normalized volume measure on
M (‘Liouville measure’) the system will be said to possess a well-defined statistics if, for
almost all (ω, x) ∈�×M in the P × µ0-distribution sense, the limit

lim
T→∞

1
T

T−1∑
j=0

F( f ∗ j
ω (x))=

∫
M
µ(dy) F(y) (1.4)

exists for all continuous ‘observables’ F onM (hence for many others), and is independent
of ξ = (ω, x), thus defining a probability distribution µ which will be called the statistics
of the motion or the SRB distribution; here f ∗ j

ω , j ∈ Z, is the x-component of the map
F j (ω, x), i.e. the composition of j maps fτ j−1ω ◦ · · · ◦ fω if j > 0 and f −1

τ j ω
◦ · · · ◦ f −1

τ−1ω

if j < 0, while f ∗0ω = 1. Here, and when appropriate below, 1 is used to denote any
identity map.

More ambitiously one could look for a distribution µsrb of the form

µsrb(dω dx)= P(dω)µω(dx), (1.5)

with limT→∞(1/T )
∑T−1

j=0 F(F∗ j (ω, x)) existing for all continuous observables F on
�×M, apart from a 0-probability set with respect to the distribution P × µ0, and having

the form
∫
�×M F(ω′, y)µsrb(dω′dy)

def
= 〈F〉srb; when it exists, µsrb is also called the SRB

distribution and it is related to (1.4) by µ(dx)=
∫
�
µω(dx)P(dω).

Systems more general than the above have been considered in [2]: there the quantity

σω(x)=−log

∣∣∣∣det
∂ fω(x)

∂x

∣∣∣∣ (1.6)
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is introduced and called the entropy production rate. Furthermore it is proved that σ+
def
=

〈σ 〉srb ≥ 0. Here we shall mainly consider the case σ+ > 0, which is the generic case for ε
small.

Particular attention will be given to reversible systems, namely systems for which there
is an ε-independent smooth map I : I(ω, x)= (ωT , I x), with (ωT ) j = ω− j in our cases,
such that I2

=±1 and I ◦ Fk
= F−k

◦ I for some integer k; by ‘smooth’ here we mean
analytic in x . Examples of such systems are rather simple to give in the non-random case;
see below for a few examples.

It can be remarked that the dynamical system (1.3) is a ‘skew product map’ as the
dynamics of the random generator of the ω is independent of the dynamics of the x but
controls it. Furthermore if the dynamics of the generator of the ω is a Markov process,
then the stationary distribution is also a Markov process.

Our aim in this paper is to discuss a method for constructing the properties of the
stationary distribution, with all details necessary to treat concrete applications like the
analysis of the large deviations and the corresponding fluctuation theorem. We follow the
general ideas of the ‘cluster expansion’ techniques, which were introduced in [3–7], but
we develop them by following the tree expansion method already used in [1]; see also [8].

2. Fluctuation theorem
In the non-random case, i.e. if fω = f is independent of ω, and for f a general Anosov
map, it has been shown that a time reversal symmetry can be translated into certain
relations between the probabilities of the ‘large fluctuations’ of the time averages of the
dimensionless observable σω(x)/σ+ (see after (1.6) for the definition of σ+). Namely
consider the observable

p(ξ)
def
=

1
T

T−1∑
j=0

στ j ω( f ∗ j
ω (x))

σ+
, (2.1)

which is ω-independent if fω ≡ f and which is introduced in a more general form for
later reference; and call πT (p ∈1) the probability that it takes a value in an interval
1 evaluated in the stationary SRB distribution (which for Anosov maps exist). Then
πT (p ∈1)= eT maxp∈1 ζ(p)+O(1), where ζ(p) is an analytic function of p defined in the
interval (−p∗, p∗), for some p∗ ≥ 1. The time reversal symmetry implies that

ζ(−p)= ζ(p)− pσ+, |p|< p∗, (2.2)

which is called the fluctuation theorem, and was proven in [9–11].
The above statements concern non-random maps (i.e. fω = f is ω-independent). In the

present paper we work in the following frame (which summarizes the notions introduced
so far).

Definition 1. (i) Let �
def
= {1, 2, . . . , n}Z be a space of bilateral sequences with n symbols

per site, and let P(dω) be a probability distribution on � which is a short-range Gibbs
distribution (i.e. it has exponentially decaying potentials, for instance a stationary Bernoulli
scheme or a stationary Markov process) and which is reflection invariant, i.e. invariant
under the operation ω←→ωT with (ωT ) j = ω− j .
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(ii) A ‘simple random map’ �× Tm will be a map of the form F(ω, x)= (τω, fω(x))
with fω(x)= f x + εψω(x), where f is a hyperbolic linear toral automorphism on Tm and
the function ψω(x) is periodic and real analytic in x , with analyticity domain independent
of ω, and Hölder continuous in ω with modulus C and exponent β ′.

(iii) A ε-independent map I, I(ω, x)= (ωT , I x) such that I x is analytic in x , I2
=±1

and I ◦ Fk
= F−k

◦ I for some integer k and for all ε, is called a ‘time reversal symmetry’
for F and F is called a ‘reversible’ random map.

Examples of simple reversible maps can be obtained easily. Consider the paradigmatic
example in which for ε = 0 the map f is the map of T2 in (1.1) and let F be any simple
random map on �× T2; let T be the map T (ω, x, η, y) defined on �× T2

×�× T2 by

T (ω, x, η, y)= (F(ω, x), F−1(η, y)). (2.3)

Then a time reversal symmetry for T (i.e. a smooth isometry anticommuting with time and
squaring to the identity) can be defined as I(ω, x, η, y)= (η, y, ω, x).

The latter example is somewhat artificial: in applications time reversal should be a
built-in symmetry so that its checking should be immediate. This is often the case in
non-random systems. Note that in numerical simulations realizing the system T out of a
simulation realizing a system F would be easy.

The above is a formal description of the structures so far discussed. In this paper we
shall prove the following result.

THEOREM 1.
(i) Let F(ω, x)= (τω, fω(x)) be a simple random map with fω(x)= f x + εψω(x)

(see Definition 1). Then for ε small enough the SRB distribution µsrb, introduced in
(1.5), exists and is unique.

(ii) If furthermore F is reversible and the entropy production, i.e. (1.6), is such that

σ+
def
=

∫
σω(x)µsrb(dω dx) > 0, relation (2.2) is satisfied by the large deviations of

the random variable p(ξ) in (2.1).

A proof could be attempted by trying to fall back on the already existing proofs of
extensions of the fluctuation theorem to stochastic processes; the first one in [12] has been
followed and widely extended in [13, 14].

In the first examples mentioned at the beginning of §1, in which the ω are a sequence
of±1 with independent distribution or with finite range coupling, the process µsrb(dω dx)
should be the stationary distribution generated by P(dω)µ0(dx) by an evolution that
is (essentially) a Markov process and the analysis in §2 of [13] should in principle be
applicable. In the present case the phase space is a continuum but the results in [13]
nevertheless apply formally, at least if one is willing to consider formally ratios of delta
functions and interpret them as suitable Jacobian determinants.

To discuss the example of a general Gibbs distribution, in which the distribution of the
ω is far from Markovian, along the lines of [13] is harder. But one could consider the
more general approach in [14]. However in this case one would have to prove that the SRB
distribution is a ‘space-time Gibbs state’, which is the basic object studied in [14].

In all cases an explicit determination of the stationary state seems necessary in order
to check the assumptions and to define and compute the quantity e(λ) of the quoted
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references. In other words the existing literature provides strong arguments (particularly
in the Markovian cases) for the validity of a relation like (2.2): but some work to check it
remains to be done, on a case-by-case basis, and substantial further work is necessary if
one wishes to compute the function ζ(p) or, at least, some of its properties.

We shall also obtain (applying ideas and techniques in [1, 15]) the following result.

THEOREM 2. For ε small enough and under the same assumptions as Theorem 1(i), the
following statements hold:
(i) the SRB distribution µsrb is a short-range Gibbs distribution; and
(ii) one has, generically, σ+ > 0 for ε 6= 0.

In §3 we construct a Hölder continuous homeomorphism conjugating F0 with F
(‘shadowing’, Lemma 1). In §5 we derive the relation (which is not a conjugation) between
the tangent map to F0 with the tangent map to F (‘overshadowing’, Lemma 2) preparing
it by heuristic remarks in §4. The recognition that the SRB distribution is a Gibbs state
with short-range potential is in §6 (Lemma 3), allowing us to prove Theorem 2. In §7
the time reversal symmetry is used for the first time and from it a symmetry property of
the short-range potential is derived (Lemma 4); the proof of Theorem 1, which includes
a fluctuation theorem, is then completed by collecting all the previous results. Several
remarks throughout the text and in the concluding §8 address open problems and related
conjectures.

Remark. The restriction to perturbations of Anosov maps generated by a linear torsion
of a torus is due to the use made of the flatness and parallelism properties of the stable
(respectively unstable) planes for such torsions. However by applying the methods in [1]
we think that the same results could be extended to the general case in which perturbations
of generic analytic Anosov maps of tori of arbitrary dimension are considered: this is a
conjecture; see also comments in §8.

3. Decoupling and shadowing
The key for fulfilling the programme set in §2, i.e. the proof of the two theorems, is to
show the following result.

LEMMA 1. Under the assumptions of Theorem 1(i), there is a unique map Hε of the form

(ω′, x ′)= Hε(ω, x)
def
= (ω, x + hω(x)), (3.1)

with hω(x) analytic in ε (but not in x, in general) such that if F0(ω, x)= (τω, f x) one
has

F ◦ Hε = Hε ◦ F0, (3.2)

and, for every fixed ω, Hε(ω, ·) is a Hölder continuous homeomorphism of Tm , hence Hε
is also a Hölder continuous homeomorphism of �× Tm .

Remark. This means that there is a change of variables turning the perturbed map into the
unperturbed one, i.e. the perturbed map F can be ‘conjugated’ to the unperturbed one F0.
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Proof. For simplicity the proof will be presented in the simplest case in which m = 2 and
f is given by (1.1). The general case requires adding a few labels that enumerate a basis
in the stable and unstable planes of the map f . Consider first that ψω is a trigonometric
polynomial of degree N . The relation (3.2) becomes, see (1.2),

f hω(x)− hτω( f x)=−εψω(x + hω(x)), (3.3)

where f is a 2× 2 matrix.
We look for a solution which is analytic in ε, i.e. hω(x)= εh

(1)
ω (x)+ ε2h(2)ω (x)+ · · · ,

with h(k)ω (x) ε-independent functions. For instance, the equation for the first order is

f h(1)ω (x)− h(1)τω( f x)=−ψω(x). (3.4)

Call v± the two normalized eigenvectors of f relative to the eigenvalues λ± and let λ be
the inverse of the larger one (λ= 1/2(

√
5− 1)), so that λ+ = λ−1, λ− =−λ. Note that

λ < 1.
The functions ψω, hω can be split into two components along the vectors v±:

ψω(x)= ψω,+(x)v+ + ψω,−(x)v−, hω(x)= hω,+(x)v+ + hω,−(x)v−, (3.5)

and equation (3.4) for h(1)ω,± gives

λ+h(1)ω,+(x)− h(1)τω,+( f x)= ψω,+(x), λ−h(1)ω,−(x)− h(1)τω,−( f x)= ψω,−(x), (3.6)

which can be solved uniquely by simply setting

h(1)ω,α(x)=−
∑
p∈Zα

αλ−|p+1|α
α ψτ pω,α( f px), (3.7)

where α =±, Z+ = [0,∞) ∩ Z, Z− = (−∞, 0) ∩ Z and the inequality λ < 1 ensures
convergence.

Hence the equations for h(k)± become

h(k)ω,α(x) = −
∞∑

s=0

1
s!

∑
k1+···+ks=k−1, ki≥0

α1,...,αs=±

∑
p∈Zα

αλ−|p+1|α
α

×

( s∏
j=1

(vα j · ∂x )

)
ψτ pω,α( f px)×

( s∏
j=1

h
(k j )

τ pω,α j
( f px)

)
. (3.8)

This uniquely determines, by recursion, h(k)ω,α and can be written via a graphical
representation as in Figure 1, where:
(a) the ‘graph elements’ consisting of an arrow emerging from a bullet and carrying the

labels α, k or αi , ki represent h(k)ω,α(x) or h(ki )
ω,αi (x), and will be called ‘endlines’;

(b) the ‘graph element’ consisting of the small black circle carrying a label p into which
the s lines merge represents the result of the operation

−
1
s!
αλ−|p+1|α

α

( s∏
j=1

(vα j · ∂x )

)
ψτ pω,α( f px),

and will be called a ‘node’; and
(c) the graph on the right represents the product of the quantities represented by its graph

elements (s endlines and 1 node).
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FIGURE 1. Graphical interpretation of (3.8) for k > 1.

Remarks.

(1) Note that the graphical representation is simply a way of visualizing (3.8): the graph
contains all labels present in (3.8) and necessary to represent the functions of (ω, x) which
intervene in the formula.

(2) Graphs are of great help when large expressions with many labels have to be studied:
in many cases they allow us to see immediately the validity of general bounds on quantities
of interest. They are of wide use in perturbation theory in quantum mechanics, both
non-relativistic and relativistic, and in classical mechanics. Their power is exploited in
studying the convergence of series in which cancelations or resummations have to be
exhibited in order to show convergence, as for the renormalized series in quantum field
theory or in Hamiltonian stability in classical mechanics.

(3) The present case is particularly simple because no cancelations will be needed and
the graphical representation will only be used to obtain ‘graph-by-graph’ bounds.

Representing again, in the same way, the graph elements that appear on the right-hand
side, one obtains an expression for h(k)ω,α(x) in terms of trees, oriented ‘toward the root’.

We recall briefly the notion of tree (by referring to [8] for further details). A graph is
a collection of points (nodes) and lines connecting all of them, and it is called planar if
it can be drawn in a plane without lines crossing. A tree is a planar graph containing no
closed loops. An oriented tree is a tree with a special node v0. We can add a further line `0

connecting v0 to a further point, which is not a node and which will be called the root of
the tree: the line `0 will be called the root line. The tree so modified will be called a rooted
tree. We shall say that the tree is labeled if the nodes and the lines carry some labels. In the
following by ‘tree’ we shall always mean a labeled rooted tree. A rooted tree is a partially
ordered set: each line can be imagined to carry an arrow pointing toward the root.

The labels will be defined as follows. A tree θ with k nodes will carry on each line `
a pair of labels α`, p`, with p` ∈ Z and α` ∈ {−,+}, and on each node v a pair of labels
(not shown in Figure 1) αv, pv , with αv = α`v and pv ∈ Zαv such that

p(v)= p`v =
∑
w�v

pv, (3.9)

where the sum is over the nodes following v (i.e. over the nodes w, denoted w � v, along
the path connecting v to the root) and `v denotes the line exiting from the node v. To each
tree we shall assign, given ω, a value given by the product of all the quantities represented
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by its graph elements:

Val(θ)=
∏

v∈V (θ)

−αv

sv!
λ−|pv+1|αv
αv

( sv∏
j=1

∂αv j

)
ψτ p(v)ω,αv

( f p(v)x), (3.10)

where ∂α
def
= vα · ∂x , V (θ) is the set of nodes in θ , and the nodes v1, . . . , vsv are the sv

nodes preceding v (if v is a top node then the derivatives are simply missing). If 2k,α

denotes the set of all trees with k nodes and with label α associated with the root line, then
one has

hω,α(x)=
∞∑

k=1

εkh(k)ω,α(x), h(k)ω,α(x)=
∑
θ∈2k,α

Val(θ), (3.11)

and the ‘only’ problem left is to estimate the radius of convergence of the above formal
power series.

The estimates are most conveniently done by studying the Fourier transform of the
function hω,α(x). This is easily done, again, graphically. Since the value of a tree θ
is a product of functions of x associated with the nodes of θ , then its Fourier transform
is obtained simply by considering the Fourier transform of the functions associated with
each node v evaluated at some νv ∈ Z2 and taking their convolution. Hence it is enough to
attach a label νv ∈ Z2 to each node and define the momentum that ‘flows’ on the line `v as

ν`v
def
=

∑
w�v

νw, (3.12)

where the sum is over the nodes preceding v. Then in (3.11) we can write

h(k)ω,α(x)=
∑
ν∈Z2

eiν·x h(k)ω,α,ν, (3.13)

and the convolution necessary to produce the νth Fourier component of h(k) can be written
immediately as (note that f = f T for f as in (1.1))

h(k)ω,α,ν =

∑
θ∈2k,ν,α

Val(θ),

Val(θ) =
( ∏
v∈V (θ)

−αv

sv!
λ−|pv+1|αv
αv

ψτ p(v)ω,αv, f −p(v)νv

)
×

∏
v∈V (θ)
v 6=v0

(i f −p(v′)νv′ · vαv ),

(3.14)

where 2k,ν,α denotes the set of all trees with k nodes and with labels ν and α associated
with the root line, v′ denotes the node immediately following v (i.e. such that `v enters v′),
v0 is the special node of θ , i.e. the node immediately preceding the root, and we have
redefined the tree value in order to take into account also the new Fourier labels.

This completes the description of an algorithm leading to the explicit expression of the
Taylor coefficients h(k)ω for hω and we can proceed to bound them. Actually we want not
only to show that the power series for hω converges but also to prove that the resulting
function of x is quite regular, namely that it is Hölder continuous with exponent β < 1
which can be prefixed at the prize of taking ε small enough.
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Since we have at hand an expression for the Fourier transform of h(k) we can achieve
a proof of convergence and of Hölder continuity with exponent β simply by showing
that

∑
k
∑
ν |ν|

β
|h(k)α,ν |<∞ (a sufficient condition for Hölder continuity of exponent

β < 1 of a function g(x) is that
∑
ν |gν | |ν|

β <∞ because of the obvious inequality
|eiν·(x−y)

− 1| ≤ 2|ν|β |x − y|β for x, y ∈ Tm).
The only problem is given by the presence of the factor |ν|β . Consider first the case

β = 0. Recall that we are assuming that ψω(x) is a trigonometric polynomial of degree N ,
i.e. ψω,α,ν 6= 0 only for |ν| ≤ N . Then there are only (2N + 1)2 < (3N )2 possible choices
for each νv , given p(v), such that | f −p(v)νv| ≤ N . Hence for fixed θ , {αv}v∈V (θ) and
{pv}v∈V (θ), the remaining sum of products in (3.14) is bounded by (if λ≡ λ−1

+ ≡−λ−)

(3N )2k N k9k
∏

v∈V (θ)

λ|pv+1|

sv!
, 9 = max

|ν|≤N
α=±

max
ω∈�
|ψω,α,ν |, (3.15)

having bounded by N k the last product in (3.14). The sum over the {pv}v∈V (θ) is a multiple
geometric series bounded by (1/(1− λ))k .

The combinatorial factors arising from the Taylor expansion leading to (3.8) (see the
s!−1 factors in (3.8) or the sv!−1 factors in (3.15)) can be bounded by 1 in the case of
trigonometric polynomials. We shall see that, on the contrary, they will play a role in the
case of analytic perturbations.

We regard two trees as distinct if they cannot be superposed by pivoting the lines around
the nodes that they enter. The number of distinct trees with k lines is bounded by the
number of random walks of 2k steps, hence by 22k . (Note that, unlike in [8], we are not
numbering the lines of the trees: this would lead to a new combinatorial factor 1/k! instead
of

∏
v(1/sv!) and to the bound k!22k on the number of trees with numbered lines.)

In conclusion, for β = 0 the conjugating function Hε exists and it is uniformly
continuous and uniformly bounded with a uniformly summable Fourier transform, for ε

(even complex) in |ε|< ε0(0)
def
= (3N )−39−12−4(1− λ), where an extra factor 2−1 has

been inserted in order to obtain uniform bounds.
Given a tree θ , taking β > 0 requires estimating |ν|β : we bound it by

∑
v |νv|

β . Then
from | f −p(v)νv| ≤ N (otherwise the tree value vanishes), we infer that |νv| ≤ λ−|p(v)|B N ,
where B ≥ 1 is a suitable constant. The sum

∑
v |νv|

β is over k terms which can be
estimated separately so that we can write

∑
v |νv|

β
≤ k|νv|β where |νv| =maxv |νv|. This

can be taken into account by multiplying (3.15) by an extra factor (B N )βλ−β|p(v)| ≤
B Nλ−β

∑
v |pv |. Therefore if β < 1 the sum

∑
ν |ν|

β
|h(k)ω,α,ν | can be studied as in the case

β = 0 but the result is modified to

ε0(β)= (3N )−39−1(1− λ1−β)2−4. (3.16)

This shows that Hε is analytic in ε in the disk with radius ε0(β). Furthermore, since
in (3.16) we inserted (for simplicity) an extra factor 2−1 in excess of the result obtained
by the procedure described, the Hölder modulus is also uniformly bounded by a suitable
function C(β) of β. Note that ε0(β)→ 0 as β→ 1 so that the function hω cannot be shown
to be Lipschitz continuous for ε small (and in general it is not). The map Hε is a Hölder
continuous map of T2 at fixed ω and we have shown that (3.2) is an identity between the
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Taylor coefficients of the two sides which are also holomorphic for small |ε|: hence (3.2)
holds. The hyperbolicity of f and (3.2) imply that Hε(ω, x)= Hε(ω, x ′) if and only if
x = x ′ since in F0 the evolution of the noise ω and of the point x are independent, so that
Hε(ω, ·) is a homeomorphism for each ω and therefore Hε is also a homeomorphism as its
action on ω is trivially the identity.

Finally we discuss what changes in the above discussion if ψω(x) is analytic in x . In
that case one has |ψω,α,ν | ≤9e−κ|ν|, for some ω-independent constants 9 and κ . We
have still to study the series

∑
ν |ν|

β
|h(k)ω,α,ν |. For β = 0 we can perform the sum over

the Fourier labels by using that for each node v there is a factor e−κ|ν
′
v |9 times a factor

|ν′v|
sv/sv!, with ν′v

def
= f −p(v)νv . The sums over the νv can be bounded by a factor Dsv

κ per
node, with Dκ = 2/κ (this leaves a factor e−κ|νv |/2 per node that in this case we neglect),
hence they produce an overall factor Dk

κ , because
∑
v∈V (θ) sv = k − 1. The bound on

the number of trees proceeds as before, and gives 22k . If β 6= 0, by reasoning as in the
case of trigonometric polynomials, we obtain an extra factor k|νv|β ≤ kλ−|p(v)|βB|ν′v|

β .
The factor |ν′v|

β can be bounded together with the remaining factor e−κ|ν
′
v |/2 by

D̃
def
=

∑
ν∈Z e−κ|ν|/2|ν|β , while the extra k is harmless for the convergence analysis. Since

the factor λ−|p(v)|β can be dealt with exactly as in the trigonometric polynomial case, the
end result is simply convergence for |ε| smaller than ε0(β)= (Dκ9)−1(1− λ1−β)2−4,
which replaces (3.16). 2

Remark. The result can also be interpreted as a ‘shadowing theorem’. Consider the ‘noisy’
trajectory k→ F∗k(ω, x) as a perturbation of a noiseless one. Then a noisy trajectory
starting at (ω, x)will remain forever close to the trajectory of the point H−1

ε (ω, x) evolving
under the noiseless motion. This is usually called a shadowing property.

4. Heuristic considerations
In this section we develop the heuristic basis on which Lemma 2 in §5 and Lemma 3 in §6
are developed.

The notion of hyperbolicity or chaoticity can be extended [16] to random systems, for a
general map F acting on �×M, as follows:
(a) at every point ξ = (ω, x) ∈�×M the plane W (x) tangent to M contains two

planes W s
ω(x), W u

ω(x), called respectively the contracting and expanding planes,
with W (x)=W s

ω(x)⊕W u
ω(x), with positive dimensions ds, du and which are

covariant, i.e. FW a
ω(x)=W a

τω( fω(x));
(b) for some C, ρ > 0

‖∂x f ∗kω (x)v‖ ≤ Ce−kρ
‖v‖, v ∈W s

ω(x),

‖∂x f ∗(−k)
ω (x)v‖ ≤ Ce−kρ

‖v‖, v ∈W u
ω(x),

(4.1)

for all k > 0, where f ∗kω is defined after (1.4) and the sizes ‖ · ‖ of the vectors are
evaluated in the metrics at the points to which they are applied (i.e. f ∗kω (x) or x or
f ∗(−k)
ω (x)); and

(c) W a
ω(x) are continuous in ω, x .
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In the example (1.3) with ε = 0 one has ∂x ( f ∗(±k)
ω )= f ±k so that properties (a)–(c) are

satisfied, trivially, because the map considered is an Anosov map.
It is also natural to consider the logarithms of the Jacobian determinants at time N along

the unstable and stable manifolds of F , as a measure of the expansion and contraction
under the action of F . They will simply be

J a
ω,N (x)= log

∣∣∣∣det
(
∂ f ∗(aN )

ω (x)

∂x

)
a

∣∣∣∣, a = u, s, (4.2)

where (aN )means N if a = u and−N if a = s, while the label a appended to the Jacobian
matrix means that it is regarded as acting as a map from the plane W a

ω(x) to the plane
W a
τ N ω

( f ∗N
ω (x)).

The above Jacobian determinants are not intrinsic geometric objects: as well as the
constants C, ρ they depend on the coordinates used on the manifold.

The volume measure µ0(dx) on M can be visualized, for fixed ω ∈�, in terms of the
above expansions and contractions: imagine fixing, for every point x ∈M, two ‘surface
elements’ located with center in x and lying on the unstable or on the stable planes through
x : the surface elements will all have the same infinitesimal surface and we call them
1u

ω(x) and 1s
ω(x), respectively. Then we can build a tiny ‘parallelepiped’ through x by

considering the surface elements through x

δu(N , x)= f ∗(−N )
τ N ω

(1u
τ N ω

( f ∗N
ω (x))), δs(N , x)= f ∗N

τ−N ω
(1s

τ−N ω
( f ∗(−N )

ω (x))), (4.3)

and by drawing through each point y ∈ δs(N , x) the surface element δu(N , y) and through
each point of y ∈ δs(N , x) the surface element δu(N , y) and collecting the intersections.
This is a well-defined set, and will be called δω,N (x). It is a set close to a parallelepiped
with volume exponentially small as N →∞ and, to leading order in N , given by

vol δω,N (x)= e−J u
ω,N (x)eJ s

ω,N (x)γω,N (x), (4.4)

with
γω,N (x)

def
= sin αω(x)

∏
a=u,s

|1a
τ (aN )ω

( f ∗(aN )
ω (x))|, (4.5)

where αω(x) equals the angle between the stable and unstable planes W a
ω(x) at x , the

symbol |1| denotes the area of the surface element1, and (aN ) has the meaning explained
after (4.2). The function γω,N (x) is uniformly bounded away from 0 and ∞. Hence the
ratio of the volumes of two such parallelepipeds, centered at x and y, can be computed by
the ratio between the contraction factors in (4.3) evaluated at the two points (because the
basic surface elements 1a

ω(x) all have the same size).
A consequence is that, if we attribute to each such parallelepiped a measure proportional

to
e−J u

ω,2N ( f ∗(−N )
ω (x))

, (4.6)

then we expect that in the limit as N →∞ the probability distribution has a limit

µω(dx) such that P(dω)µω(dx)
def
= µ(dω dx) is an invariant distribution for the system

(�×M, F) which should describe the statistical properties of almost all data initially
chosen with the distribution P(dω)µ0(dx): i.e. µ(dω dx) should be the SRB distribution.
Likewise replacing in (4.6) N with −N and J u with −J s one should obtain the SRB
distribution for the backwards motion (i.e. for the map F−1).
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5. Overshadowing

Therefore we look for an explicit algorithm to construct a useful representation of (4.6) or,
which is the same, for the function Jω,1(x) because

J u
ω,2N ( f ∗(−N )

ω (x))=
N∑

j=−N

J u
ω,1( f ∗ j

ω (x)), (5.1)

by the chain differentiation rule for composition of functions and by the multiplication rules
of determinants of matrices. Note that J u

ω,1 is the logarithm of the Jacobian determinant
at time 1 (or simply Jacobian determinant) along the unstable manifold. We shall use
the notation of §3, where the conjugation Hε, transforming the perturbed map F(ω, x)=
(τω, f x + εψω(x)) of the torus �× Tm into a noiseless map F0(ω, x)= (τω, f x), has
been derived. The homeomorphism (ω′, x ′)←→ (ω, x + hω(x))≡ Hε(ω, x) can be used
to construct not only the dynamics but also the stable and unstable manifolds of each point.
The latter manifolds through (ω, x + hω(x)) are given by parametric equations of the form

γα(t)= (ω, hω(x + tvα)), t ∈ R, α =±, (5.2)

where t→ x + tvα is symbolically a parameterization of the unstable or stable manifold
for the unperturbed map f of T2 into itself, respectively if α =+ or α =−. The actual

meaning is tvα
def
=

∑dα
i=1 tiv

(i)
α if v(i)α is a base on the unstable or stable plane, of dimension

dα , tangent to the torus at x , and t = (1, . . . , tdα ) ∈ Rdα .

The construction of §3 gives a Hölder continuous conjugation with a prefixed exponent
β < 1 for a perturbation strength ε that is suitably small, depending on how close β is to 1.
However, in general, the conjugation is not differentiable: therefore (5.2) cannot be used to
compute the derivatives appearing in the Jacobians J a

ω,1(x) and the simple parameterization
(5.2) is not very useful.

Instead of constructing the stable and unstable manifolds parameterized so that the
required derivatives appearing in (5.1) can be computed (or just shown to exist), we remark
that all we need are the expansion coefficients in the stable and unstable directions of any
point (ω, x). For this purpose it is useful to introduce a few more definitions.

Definition 2. (i) Let 2̂ be the (non-compact) space �× Tm
× Rm and define on it the

dynamical system (2̂, F̂0) with

F̂0(ω, x, v)= (τω, f x, f v), (5.3)

where v is a tangent vector to Tm in x and f v denotes the action of the derivative of the
map x→ f x on the tangent vector v.

(ii) A ‘simple’ perturbation of the map F̂0 is any map on �× Tm
× Rm defined by

F̂(ω, x, v)= (τω, f x + εψω(x), f v + ε(v · ∂x )ψω(x)), (5.4)

where the third term specifies how the tangent vector v at x is transformed by the map
x ′ = f x + εψω(x) into a tangent vector at x ′.
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Remarks.
(1) Since the map f is locally linear and constant there is no point in distinguishing

between the constant matrix ∂x f x and the map f so that we indulge, here and below, in
the abuse of notation implicit in (5.3) and (5.4).

(2) The dynamical system (2̂, F̂0) fails to be an Anosov system not only because of
the noise (which acts trivially, however) but also because the space �× Tm

× Rm is not
compact.

(3) Nevertheless we can still try to find an isomorphism between the two systems.
Success would mean the possibility of decoupling from the noise also the evolution of the
tangent vectors, i.e. of the infinitesimal displacements: we could not only match individual
trajectories in the perturbed and in the unperturbed system, as done in §3, but also even
achieve ‘shadowing’ of infinitesimally close pairs of trajectories which would split apart
at the same rates as the unperturbed ones. Not surprisingly this turns out to be in general
impossible (as will be implicit in what follows).

If the property in the last remark is impossible the notion can be usefully weakened and
one is led, in trying to compare infinitesimally close pairs of trajectories, to the following
definition of ‘overshadowing’.

Definition 3. (i) The map F0 (acting on the same space �× Tm
× Rm but different from

the above F̂0), given by

F0(ω, x, v)= (τω, f x, f v + 0ω(x)v), (5.5)

where 0ω(x) is a matrix which leaves invariant the expanding and contracting planes of f
and is Hölder continuous in (ω, x), is called ‘similar’ to F̂0.

(ii) The map F̂ of �× Tm
× Rm is ‘overshadowed’ by F0 if there exists a

transformation

Ĥε : (ω, x, w)←→ ((ω, x + hω(x)), w + Kω(x)w), (5.6)

with Kω(x) Hölder continuous, which satisfies the conjugation equation F̂ ◦ Ĥε =
Ĥε ◦ F0.

In guessing (5.6), advantage is taken of the already known conjugation Hε between F
and F0, from the analysis of §3, giving us the function hω(x).

Remarks.
(1) Let Lω(x)= f + 0ω(x) be functions with values in the m × m matrices. Then the

matrix 0ω(x) has to consist of two blocks of respective dimension du × du and ds × ds , if
du and ds are the respective dimensions of the stable and unstable planes of f . Then the
conjugation equation after (5.6) is equivalent to

∂x fω(Hε(ω, x))Kω(x)v =Kτω( f x)Lω(x)v (5.7)

and to (3.3) for Hε, which is an equation independent of (5.7) (already solved in §3). Here
we have set Kω(x)= 1+ Kω(x).
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(2) Let v(i)+ , i = 1, . . . , du , be a basis in the du-dimensional expanding plane for f

and let v(i)− be a basis in the ds-dimensional contracting plane of f . Then the vectors

w
(i)
ω,±(x)=Kω(x)v

(i)
± satisfy

∂x fω(Hω(x))w
(i)
ω,±(x)= (λω,±(x))i,sw

(s)
τω,±( f x), (5.8)

where λω,±(x) are the transposes of the mentioned blocks of Lω(x) regarded as matrices
on the bases selected in the expanding and contracting planes of f , and repeated indices
mean implicit summation (to abridge notation).

(3) The conjugation defined in (5.6) is the right one to look at for the stable and
unstable directions. Its solution gives the stable and unstable directions as functions of
the unperturbed point H−1

ε (ω, x). Note that (5.6) is not a conjugation of F̂ to F̂0, as it
conjugates F̂ to F0.

(4) Equation (5.7) does not determine Kω(x) uniquely. Indeed, if lω,±(x) are two non-
zero matrices of respective dimensions du × du and ds × ds , then if λω,±(x), w

(i)
ω,±(x)

solve (5.8), also

λω,±(x)= lω,±(x)λω,±(x)lτω,±( f x)−1, w
(i)
ω,±(x)= (lω,±(x))i,sw

(s)
ω,±(x) (5.9)

solve it. To fix this ambiguity we will require that the diagonal blocks of Kω(x), on both
bases v(i)+ and v(i)− are equal to 0, i.e. the matrix Kω(x) is completely off-diagonal with
respect to the expanding and contracting planes of f .

(5) Therefore the dimensions of λω,+(x) and λω,−(x) are, respectively, du × du and
ds × ds , while the matrices Kω(x) consist of off-diagonal blocks of dimension du × ds

and ds × du .

LEMMA 2.
(i) Under the assumptions of Theorem 1(i), there exist two Hölder continuous matrices

0ω(x), Kω(x), analytic in ε for ε small enough, such that the map F̂ in (5.4) is
overshadowed by a map F0 similar to F̂0 with a transformation of the form (5.6).

(ii) The matrices 0ω(x) can be taken diagonal with respect to the decomposition of Rm

into expanding and contracting planes for f , while the matrices Kω(x) can be taken
off-diagonal. Therefore the first consist of two blocks λω,±(x) of dimensions du × du

and ds × ds , if du and ds are the dimensions of the stable and unstable planes for
f (du + ds ≡ m), and the second is a matrix with two blocks kω,±(x) of dimensions
du × ds and ds × du .

(iii) The Jacobian determinant exp J u
ω,1(x), along the unstable manifold of F , is

det λω,+(x) and, therefore, it is analytic in ε and Hölder continuous in (ω, x).

Proof. Also in this case we give explicitly the proof in the case of m = 2, f given by (1.1)
and ψω a trigonometric polynomial (adaptation to the general case proceeds as in §3).
This will make the matrices λω,±(x) simply scalars and Kω(x) will be a 2× 2 matrix with
off-diagonal entries kω,±(x) only, because in this case the stable and unstable planes are
one-dimensional. To simplify the rather heavy notation we denote

ψα(ω, x)≡ ψω,α(x), H(ω, x)≡ (ω, x + hω(x)),

0(ω, x)≡ 0ω(x), K (ω, x)≡ Kω(x), ξ = (ω, x),
(5.10)
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and in the following we will not write explicitly the subscripts ω. The equation that the
matrices K (ξ), 0(ξ) have to satisfy is a transcription of (5.7),

( f K (ξ)− K (F0ξ) f )i j

=−ε∂x jψi (H(ξ))− ε∂xkψi (H(ξ))K (ξ)k j + 0(ξ)i j + (K (Fξ)0(ξ))i j , (5.11)

where ∂x denotes a derivative of ψ with respect to its argument and repeated indices mean
implicit summation.

We write the above matrix equation on the basis in which f and 0 are diagonal, i.e. on
the basis formed by the two eigenvectors v± of f in which the matrices K and 0 have been
assumed to take the form

0(ξ)=

(
γ+(ξ) 0

0 γ−(ξ)

)
, K (ξ)=

(
0 k+(ξ)

k−(ξ) 0

)
. (5.12)

If α =±, β =−α and ∂α
def
= vα · ∂x , (5.11) becomes for i = j

0=−ε∂αψα(H(ξ))− εKβ,α(ξ)∂βψα(H(ξ))+ γα(ξ), (5.13)

and, for i 6= j and if λ+ = λ−1, λ− =−λ are the eigenvalues of f (with λ= (
√

5− 1)/2),

λαKα,β(ξ)− λβKα,β(F0ξ)

=−ε∂βψα(H(ξ))− εKα,β(ξ)∂αψα(H(x))+ Kα,β(F0ξ)γβ(ξ). (5.14)

If α′ = (α − 1)/2 and α′′ = (α + 1)/2, we can rewrite equations (5.13) and (5.14) as

γα(ξ)= ε ∂αψα(H(ξ))+ εkβ(ξ) ∂βψα(H(ξ)), (5.15)

and, respectively,

kα(ξ)+ λ
2kα(Fα0 ξ)= αλ[−ε ∂βψα(H(F

α′

0 ξ))

− εkα(Fα
′

0 ξ) ∂αψα(H(F
α′

0 ξ))+ kα(Fα
′′

0 ξ)γβ(Fα
′

0 ξ)]. (5.16)

These equations are in a form suitable for a recursive solution in powers of ε. For instance
the first order is

γ (1)α (ξ)= ∂αψα(ξ), α =±, (5.17)

k(1)+ (ξ)+ λ
2k(1)+ (F0ξ)=−λ ∂−ψ+(ξ), k(1)− (ξ)+ λ

2k(1)− (F0
−1ξ)= λ ∂+ψ−(F0

−1ξ),

which has the solution

γ (1)α (ξ)= ∂αψα(ξ), α =±, (5.18)

k(1)+ (ξ)=−λ
∞∑

q=0

(−1)qλ2q∂−ψ+(Fq
0 ξ),

k(1)− (ξ)= λ
∞∑

q=0

(−1)qλ2q∂+ψ−(F−(q+1)
0 ξ).

The equations for γ (k)α (ξ) and k(k)α (ξ) can be represented in graph form by suitably
modifying the similar representation derived for h(k)ω,α(x) in §3. Figure 2 corresponds to
Figure 1 and translates into a graphical representation (5.15) and (5.16). This time new
symbols have to be introduced, but in the end one just has to check that all the graph
elements contain enough labels to identify terms appearing in (5.15) and (5.16).
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FIGURE 2. Graphical interpretation of (5.15) and (5.16) for k > 1.

We denote by
α
◦(1) the first line of (5.18) and by

α
(1) the second line of (5.18) and

for k > 1 we have the graphical representation of Figure 2 (the reader will recognize in the
first line a pictorial rewriting of (5.15) and in the second a rewriting of (5.16)), where:
(a) α =± and β =−α;
(b) all the lines have to imagined to carry arrows (not drawn) pointing toward the root;
(c) the line carrying a label α and emerging from a circle or a square with label (k)

denotes γ (k)α or k(k)α , respectively;
(d) the wavy line emerging from a bullet with label (p) and ending in a small circle and

carrying a pair of labels γ, δ represents [∂γψδ ◦ H ](p), the pth order in the power
expansion in ε of (∂γψδ) ◦ H ;

(e) the small square in the node closest to the root into which a wavy line arrives will
carry a label q = 0, 1, 2, . . . (see the graphs in the second line) and it expresses that
the functions (∂γψδ) ◦ H , kα and γβ must be computed at Fqα

0 ξ , with qα = α′ + αq
in all cases except for the argument of kα in the third graph, where qα = α′′ + αq;
and

(f) a summation over q = 0, 1, . . . , p = 1, . . . , k − 1 and a multiplication by
−α(−1)qλ1+2q is understood to be performed over the nodes represented as small
squares, while a trivial factor 1 is associated with the nodes represented as small
circles.

In this case too we can continue the expansion until in the right-hand side of Figure 2 all
top nodes of the graph are either squares or circles carrying a label (1), i.e. they represent
a first-order contribution to 0 (circle) or to K (square), or bullets representing ∂αψβ .
With each wavy line ` we associate two labels α′`, α` and with each non-wavy line we
associate only one label α`. With each node represented as a small square we associate
two labels αv = α`v and qv ≥ 0, and we define qαv as in item (e) above, while with each
node represented as a small circle we associate only the label αv = α`v and we set qαv = 0.
There are constraints on the possible choices of the labels α′`, α`, αv , which can be easily
deduced from (5.15) and (5.16)—or equivalently from Figure 2. With each top node we
associate a label αv = α`v if the node is either a circle or a square, and a pair of labels
α′v = α

′

`v
and αv = α`v if the node is a bullet. Finally for each node represented as a

circle or a square we define q(v)
def
=

∑
w�v qαv : then each top node v represents either

k(1)αv (F
q(v)
0 ξ) or γ (1)αv (F

q(v)
0 ξ) or [∂α′vψαv (H(F

q(v)
0 ξ))](p).

Of course the latter quantities can themselves be represented by the tree expansion
discussed in §3: if we do so then we obtain a full expansion in powers of ε in which
the wavy lines with label p are replaced by a tree with p nodes.
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The rule to construct the value of each tree graph is easily read from (5.11) and from
the rules discussed above, and in §3, to build the value of trees representing hω. It is
again a product of factors associated with the graph elements. Therefore the estimates
are immediate: one just has to imagine the trees developed until the endlines represent
first-order contributions and count how many labels pertain to each node, repeating the
procedure described in the case of §3.

The estimate of the kth-order contribution is given by (3.15) with an extra factor N k to
take into account the extra derivatives due to the (wavy) lines with two labels. Also the
counting of the trees has to be modified (see Appendix B) but the end result will be that 0
and K are expressed by convergent series in ε for |ε|< ε0(β), where ε0(β) can be taken
of the form (3.16) with a different numerical factor and with N replaced by N 2.

Hölder continuity of exponent β < 1 will hold for |ε|< ε0(β) for all the functions and
property (iii) is also implicit in the construction.

The case of higher-dimensional toral maps f is not different. Again a few more labels
have to be introduced. Everything remains essentially the same as soon as one becomes
convinced that the number of ‘free parameters’, which are the 2duds matrix elements of K ,
are just enough ‘free parameters’ to make equations (5.15) and (5.16) for 0 and K solvable.
The values of 0(k), K (k) should be regarded as necessary parameters to solve equations
(5.15) and (5.16) which, otherwise, if we tried to set 0(k), K (k)

= 0, would not be solvable
because the right-hand side of such relations does not necessarily vanish. Replacing λ±
with matrices does not lead to problems because the matrices are independent of (ω, x)
and in the estimates the negative powers of λ+ and the positive ones of λ− will still be
exponentially decreasing. 2

6. Construction of the SRB distribution

Consider the partition E0 of �×M by the sets Eω,σ = Cω × Pσ where C =
{C1, . . . , Cm} is the partition of � according to the value of the symbol ω0 and P0 =

{P1, . . . , Pn} is a Markovian pavement of M for the unperturbed map f (see [8]). Given
a point ξ0 ∈�×M let (ω, σ ) be its ‘history’ on the partition E0 for the map F0. This
means that F j

0 ξ0 ∈ Eω j ,σ j for all j ∈ Z. In terms of the sequences (ω, σ ) the motion is just
a translation τ such that τ(ω, σ ) j = (ω, σ ) j+1, i.e. we denote by τ both the translation of
(ω, σ ) and its restrictions to ω or σ .

The partition E = Hε(E0) will be called ‘Markovian for the perturbed system’ because
it generates a symbolic dynamics controlled by a transitive compatibility matrix M ′ (with
entries M ′

ωσ,ω′σ ′
≡ Mσ,σ ′ ; see Appendix A for definitions). A correspondence can be

generated between points in �×M by associating two points ξ and ξ0 if the first has
history (ω, σ ) on E under the action of F identical to the history of ξ0 on the partition
E0 under the action of the map F0: we denote ξ = Xε(ω, σ ) and ξ0 = X0(ω, σ ). The
correspondence so defined is identical to the correspondence between ξ and ξ0 defined
by ξ = Hε(ξ0). In §5 it has been proved (cf. Lemma 2) that there exists ε0(β) such that
the Jacobian determinant exp J u

ω,1(x)= det λω,+(x) is defined and holomorphic in ε in the
disk |ε|< ε0(β). As a function of (ω, x) it is Hölder continuous. We can write J u

ω,1(x)

in terms of the history (ω, σ ) by setting A0
ω,u(σ )≡ J u

ω,1(x), with (ω, x)= Xε(ω, σ ).
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We define the expansion rate Aω,u(σ ) as the logarithm of the ratio of the image of a volume
element on the unstable manifold at a point ξ = Xε(ω, σ ) and the volume itself: this is a
quantity depending on the local coordinates used, like J u

ω,1, as well as on the metric used.

The following result shows that it has a simple relation with A0
ω,u(σ ).

LEMMA 3. The function Aω,u(σ ) is Hölder continuous with some exponent 0< β < 1 and
modulus C(β). Its difference from A0

ω,u(σ ) has the form g(ω, σ )− g(τ (ω, σ )) with g a
Hölder continuous function.

Proof. We again discuss the case m = 2 and f given by (1.1) and in this case the Jacobian
matrix restricted to the unstable manifold is simply a scalar λω,+(x)≡ λ+ + γω,+(x). We
remark that if (ω, x)= Xε(ω, σ ) then the unstable direction at x , which is a vector tangent
to M, will be wω,+(x)= v+ + Kω(x)v+. The expansion rate at (ω, x) will be, by (5.8)
and (4.2),

Aω,u(σ )= log
(
(λ+ + γω,+(x))

|wτω,+( fω(x))|

|wω,+(x)|

)
= A0

ω,u(σ )+ g(τ (ω, σ ))− g(ω, σ ),

(6.1)

where |wω,+(x)| =
√

1+ kω,−(x)2 and g(ω, σ )
def
= log |wω,+(x)|.

The functions λ+ + γω,+(x), kω,−(x) and |wω,+(x)| are analytic in ε and Hölder
continuous in ξ = (ω, x) with a uniformly bounded modulus C(β) if β < 1 and ε is small
enough. Since (ω, σ ) fixed means ξ fixed, we see that Aω,u(σ ) is analytic, as well as
A0

ω,u(σ ), in ε at fixed (ω, σ ) and Hölder continuous in (ω, σ ) and therefore in ξ . 2

It is now possible to conclude the proof of Theorem 2.

Proof of Theorem 2 (Conclusion). The two functions Aω,u(σ ) and A0
ω,u(σ ) generate

two short-range potentials on the one-dimensional ‘spin system’ whose states are the
sequences (ω, σ ), in the sense of [14]. An identical argument holds for the function

A0
ω,s(σ )

def
= J s

ω,1(x), with (ω, x)= Xε(ω, σ ) and the corresponding contraction rate
Aω,s(σ ) (whose definition is worked out in the obvious way); see Appendix A or
[8, Proposition 4.3.1].

Suppose that the probability distribution P on ω has a short-range potential energy
density B(ω). Standard results on one-dimensional Gibbs distributions (see Appendix A,
where for the convenience of the reader the key definitions and results of the classical
Ruelle’s theory, used in the rest of this section, are quoted and referred to a single
bibliographic source) imply that the ‘short-range’ Gibbs distribution ν with formal energy
function

0∑
k=−∞

(A0
τ kω,s(τ

kσ )+ B(τ kω))+

∞∑
k=0

(A0
τ kω,u(τ

kσ )+ B(τ kω)) (6.2)

is well defined and it has the property that, if C N
ω,σ is defined as the ‘cylinder set’

C N
ω,σ

def
= {ω′, σ ′ | ω′i = ωi , σ

′

i = σi , ∀ |i | ≤ N }, then

D−1
≤

ν(C N
ω,σ )

vol(C N
ω,σ )
≤ D (6.3)
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for a suitable constant D > 0. This property is called the ‘absolute continuity’ of the stable
and unstable manifolds, and its proof is the same as in the classical Anosov case because
the presence of ω is just an index that has to be carried along possibly applying translations
to it; see also [8, Proposition 4.3.2]; the heuristic basis for it has been discussed in §4;
see (4.6).

Furthermore the Gibbs distribution with energy function A0
ω,u(σ ) is defined by a

potential differing from that of Au,ω(σ ) by what is often called a Hölder continuous
‘cocycle’, i.e. by g(ω, σ )− g(τ (ω, σ )) in Lemma 4, which, therefore, generates the same
Gibbs distribution. Hence the distribution ν is absolutely continuous with respect to the
volume distribution; see Appendix A or [8, Appendix 6.4].

The distribution ν is not translation invariant because its Gibbs potential in the ‘far
future’ is governed by A0

ω,u(σ ) while in the ‘far past’ it is governed by A0
ω,s(σ ); see (6.2).

But short-range Gibbs distributions (whether invariant or not) enjoy exponentially mixing
properties: hence the distribution ν, and consequently the volume distribution, will be
very close on the evolution of the cylinders, for very large times, to the invariant Gibbs
distributions with (formal) potentials

+∞∑
k=−∞

Aτ kω,a(τ
kσ ),

{
as p→+∞ if a = u,

as p→−∞ if a = s,
(6.4)

respectively. Therefore the distribution with potential in (6.4) with a = u is the SRB
distribution for the forward evolution while for a = s the distribution is the SRB
distribution for the backward evolution and item (i) of Theorem 2 is proved.

The positivity of σ+ is a genericity result. Let σω(x)= (σω(x)ε−1)ε=0, and assume for
simplicity that f is diagonalizable, with diagonal elements f1, . . . , fN , so that

σω(x)=−
∑
ν∈Z

m∑
j=1

iν jψω, j,ν f −1
j eiν·x def

=

∑
ν∈Zm

qω,νeiν·x . (6.5)

Then a sufficient and generic condition for a non-zero value of σ+ is that σω(0) 6= 0 or,
more generally, that the sum

∑
k στ kω( f k x) 6= 0 for some F-periodic point (ω, x), when

the sum over k is extended over the period; see [8, Appendix 6.4]. See Appendix C for
some examples in the more difficult case of genericity under the presence of a time reversal
symmetry. 2

7. Time reversal symmetry
The result of §6 allows us to conclude that the SRB distribution µsrb will be a Gibbs state
for the energy function Aω,u(σ ) in the sense of [14].

We now assume the existence of an ε-independent analytic time reversal symmetry
I : I(ω, x)= (ωT , I x) and I ◦ f k

= f −k
◦ I for some integer k. In the following k ≡ 1

will be taken without loss of generality (if k > 1 the analysis could be performed by making
use of f k instead of f ).

We shall also suppose that the Markovian pavement P0 is ‘reversible’, i.e. such that
for all σ = 1, . . . , n one has I Pσ = Pσ T for some σ T . This is not restrictive because it
can be achieved by considering the new pavement E0 = IP0 ∩ P0. The uniqueness of the
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homeomorphism Hε (see Lemma 2) and the analyticity of I , hence of I, assure that Hε
and I commute (because another conjugating homeomorphism would be I ◦ Hε ◦ I and
it would be analytic in ε: hence I ◦ Hε ◦ I ≡ Hε). Therefore also E is invariant under the
action of I: the map I applied to an element of the partition E gives another element of
the partition.

The pavement E = Hε(E0) considered in §6 will generate, under the action of F ,
histories (ω, σ ) of points ξ = (ω, x) such that the history of Iξ is (ωT , σ T ), where
σ T
= {σ− j }

∞

j=−∞.
The above analysis implies that the SRB distribution µsrb is a probability distribution

with a Gibbs weight generated by a function Aω,u(σ )+ B(ω), as shown in §6. The
functions Aω,a , a = u, s, are related to each other as follows.

LEMMA 4. Under the assumptions of Theorem 1, one has

Aω,u(σ )=−Aτ−1ωT ,s(τ
−1σ T ), (7.1)

if τ is the translation of a generic sequence.

Proof. This is simply a consequence of the supposed isometric nature of the time reversal

I(ω, x)= (ωT , I x)
def
= (ω′, x ′) and its smoothness. Let ξ = (ω, x)= Xε(ω, σ ) and call

Aω,u(σ ) the expansion rate and Aω,s(σ ) the contraction rate at ξ . Then I maps the stable
manifold at ξ into the unstable one at Iξ and the forward expansion rate at ξ into the
backward expansion rate at Iξ , because I is isometric and smooth. 2

Proof of Theorem 1 (Conclusion). We now have all the elements to conclude the proof of
(2.2), under the assumptions of Theorem 1, because it is now reduced, thanks to Lemmas 2
and 4, to the proof of validity of (2.2) in the case in which the SRB distribution is a short-
range Gibbs distribution with a potential energy Au,ω(σ )+ B(ω) with the property (7.1)
and B(ω)≡ B(ωT ) which is the analytic form of the assumed reversibility of the random
noise (see Definition 1(i)). This was done first in [9] and a more formal mathematical proof
is repeated in [10, §§3 and 4].

In other words the presence of the noise just increases the number of symbols necessary
to describe motions by a symbolic dynamics. The number of symbols however remains
finite and the potentials for the future and past evolutions remain finite range. Hence the
assumptions in [10, §§3 and 4] hold in the present case too so that if time reversal is
assumed, as in Theorem 1, the proof of the fluctuation relation is reduced to the usual one
for Anosov maps and (2.2) follows, completing the proof of Theorem 1. 2

Remarks on time reversal.
(1) The genericity of σ+ > 0 is here obtained only for maps satisfying the assumptions

in Theorem 1(i). It is likely, but not proved as far as we know, that σ+ > 0 also for generic
time reversible systems. Therefore it is important to show that such systems at least exist;
examples are provided in Appendix C.

(2) It is manifest that the assumption of ε-independence on I can be weakened into
analyticity in ε uniformly in ω, keeping of course the uniform analyticity in x . The
independence has been used at the beginning of this section to insure the existence of a
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reversible partition: this was based upon the commutation property between Hε and I.
If I = Iε depends on ε, x analytically and uniformly in ω, the same construction can be
performed by using that if Hε is a conjugating homeomorphism then Iε ◦ Hε ◦ I0 = Hε,
which is all that is necessary to insure that the partition considered in §6 is reversible.

(3) Time reversal symmetry is a symmetry that should be inherited from the microscopic
time reversal symmetry of purely Hamiltonian dynamics where it is independent of the
perturbation size. For this reason we have supposed I to be ε-independent, which has also
allowed us to point out the commutation property between conjugation and time reversal,
which is interesting on its own. The time reversal symmetry, or just its analyticity, might be
destroyed by the thermostats, or better by the models that are introduced to describe them.
Therefore it is worth considering the case in which I exists for a fixed value of ε and is just
‘somewhat smooth’. In fact the analyticity of I as a function of ε, x is not really necessary:
if there is a map I with the properties of being an isometry with I2

= 1 and anticommuting
with F , i.e. I ◦ F = F−1

◦ I, for some fixed ε small enough so that Theorem 2 applies,
then one defines E = IHε(E0) ∧ Hε(E0) where E0 is as in §6. Then if Eω,σ,σ ′ are the
elements of the partition E one has IEω,σ,σ ′ = Eω,σ ′,σ and for fixed ω0 each Eω0,σ,σ

′ is
a parallelepiped with axes contained in the manifolds generated by W s

ω(x) and W u
ω(x),

if ξ = (ω, x) ∈ Eω0,σ,σ
′ (see (a) in §4), so that the volume of

⋂N
j=−N F∗ j Eω j ,σ j ,σ

′
j

is
proportional, to leading order as N →∞, to the exponential of (6.2) in the sense that (6.3)
holds. This means that the SRB distribution is a Gibbs distribution with energy function
Aω,u(σ )+ B(ω) satisfying (7.1) and this is all that is necessary to prove (2.2) for given ε
small enough.

(4) The results of the previous sections provide motivation for the following further
considerations on time reversal. Under the assumptions that we have posed upon F it
is possible to show that if the noiseless system F0 is reversible a ‘kind’ of time reversal
symmetry will continue to hold without extra assumptions when the noisy perturbation is
not neglected, provided the noise also has a reversibility property.

We supposed, since the very beginning in §1, reversibility of the stationary probability
distribution P on � in the sense that the operation θ defined by θω = ωT with (ωT ) j =

ω− j (‘history reversal’) conserves the distribution P:

P(ET )= P(E), (7.2)

where ET
= {ωT

: ω ∈ E}, for all (Borel) sets E .
Suppose that the unperturbed system evolution on M, that we assume to be an Anosov

map f , is reversible in the sense that there is a map I0 :M→M with the property
I0 ◦ f k

= f −k
◦ I0 for some k and I 2

0 =±1, or more generally I k′
0 = 1 for some k′ even.

The above assumption is satisfied in the simplest cases treated in the previous sections
because the time reversal operation I0(ϕ1, ϕ2)= (ϕ2,−ϕ1) has the property I0 ◦ f 2

=

f −2
◦ I0, if f is given by (1.1).

The problem is that it is not clear that a time reversal symmetry holds when there is
a perturbation, even if small. But, if ε is small, the time reversal symmetry I0(ω, x)=
(ωT , I0x) is not ‘broken’ by the perturbation and the noisy system admits a time reversal
symmetry Iε. The latter can be immediately written as

Iε
def
= Hε ◦ I0 ◦ H−1

ε . (7.3)
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However for the same reasons for which the conjugacy between F and F0 was not
smoother than Hölder continuous it will turn out that Iε is also not necessarily smoother
than Hölder continuous.

In terms of symbolic dynamics the time reversal Iε acts on a point whose symbolic
history is (ω, σ ) by transforming it into the point with symbolic history (ωT , σ T ),
where (ωT ) j = ω− j , (σ

T ) j = σ
T
− j , and σ T is defined assuming that the unperturbed time

reversal I0 transforms the element Pσ of the Markov pavement for f into another element
Pσ T of the same Markov pavement. It is therefore clear that Ik′

ε = 1 if I k′
0 = 1.

The lack of smoothness of the new time reversal implies that the fluctuation theorem can
be proved only in cases in which the perturbed system also admits a smooth time reversal.
However, it would be interesting to understand what implications a strong property like
(7.3) has on the rate of the large fluctuations. For instance to what extent is it possible to
use it (and its moderate smoothness) to study the deviations from the fluctuation relation
and estimate them?

8. Structural stability

Consider the case in which the map x→ f x is just an Anosov map of a general manifold
M, still assuming analytic regularity. If the unperturbed Anosov map f is close to some
hyperbolic linear torsion f0 of a torus it will be possible to conjugate analytically (in ε)
the systems F to F0 simply because we can think that the perturbation εψω contains a
non-random part which is the perturbation of f0 into f . The same can be said of maps that
can be analytically conjugated to hyperbolic torsions. Of course to extend the results on
the fluctuation relation, however, the strong assumption about time reversal always has to
be added.

More interesting and subtle is the further question of how much the above analysis
depends on the assumption that we are perturbing a system close to one F0 in which a
reversible noise and a linear torsion of a torus f do not interact.

Under the only assumption that f is analytic and Anosov, hence not necessarily close
to a linear hyperbolic map of a torus, the equations for H will have to be written in
coordinates and possibly several coordinate charts will have to be used. An apparently
unsurmountable difficulty may seem that the directions v± will now depend on x and
therefore the solution algorithm will simply fail. A more attentive study of the equations
shows, nevertheless, that the equations are solvable order by order since at every order the
curvature of the manifolds systematically gives contributions of higher order. See [1] for
details, showing the existence of a convergent power series in ε for H . Since that is the
main difficulty, it is a natural conjecture that the analysis that we have performed in detail
for the case of the random perturbations of linear hyperbolic maps of tori carries to the last
case.

A. Appendix. One-dimensional Gibbs distributions

Here we collect a few basic elements of the theory of ‘Gibbs distributions’ in one
dimension [8, §5.1].
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Definition A.1. (i) A ‘compatibility matrix’ M is an n × n (n ∈ N) matrix with entries
0 or 1 and with the ‘transitivity’ property: for some p one has (M p)i, j > 0 for every
i, j = 1, . . . , n. The space �M = {1, 2, . . . , n}ZM is the space of the bilateral sequences
ω such that Mωi ,ωi+1 ≡ 1. Such sequences will be called ‘M-compatible’. Likewise if
X = {x, x + 1, . . . , x + q} is a finite ‘interval’ in Z a sequence ωX ∈ {1, 2, . . . , n}Z is
called M-compatible if Mωx+i ,ωx+i+1 = 1 for i = 0, . . . , q − 1.

(ii) A ‘potential function’ 8 on �= {1, 2, . . . , n}Z associates with every finite
subset X ⊂ Z and every ‘configuration ωX ∈ {1, . . . , n}X in X ’ a ‘potential energy’
8X (ωX ) ∈ R.

(iii) A potential function has ‘short range’ if there exist κ, B > 0 such that

‖8‖ = sup
z∈Z

∑
X3z

max
ωX
|8X (ωX )| e

κ diam(X)
= B. (A.1)

(iv) A potential function 8 is ‘translation invariant’ if the translation τ of the lattice Z
by one unit is such that 8X (ωX )=8τ X (ωX ) for all X ⊂ Z and for all configurations ωX .

(v) A potential 8 is ‘translation invariant at s∞’, s =±, if there exists a translation-
invariant 8s and κ, B > 0 such that∑

z∈Z

∑
X3z

max
ωX
|8X (ωX )−8s,X (ωX )| e

κ diam(X)eκsz
= B <∞, (A.2)

and a potential which is translation invariant at +∞ and at −∞ will be called a
‘semitranslationally invariant’ potential.

(vi) If 8 is a short-range potential, 3⊂ Z is finite, and ω ∈� the ‘energy of ω in 3’ is

U3(ω)=
∑

X∩36=∅

8X (ωX ). (A.3)

(vii) Let ωX + ωY denote the configuration ωX∪Y which coincides with ωX on X and
with ωY on Y . A probability distributionµ on�M is a ‘Gibbs distribution’ with short-range
potential 8 and ‘hard core’ M if for every interval 3⊂ Z and every sequence ω ∈�M

the conditional probability µ3(ω3; ωZ/3) that a sequence in �M randomly chosen with
probability µ coincides with ω3 on 3 given that it coincides with ωZ/3 on Z/3 is (‘DLR
equation’)

µ3(ω3; ωZ/3)= Z3(ωZ/3)
−1e−U3(ω3+ωZ/3) (A.4)

for all (ω3; ωZ/3) for which ω′3 + ωZ/3 is compatible, i.e. it is in �M . Here the
normalization factor Z3(ωZ/3) is

∑
∗

ω′3
e−U3(ω′3+ωZ/3) where the ∗ means that the sum

is restricted to the ω′3 which are compatible with ωZ/3.
(viii) The ‘energy density at z ∈ Z’ of a short-range potential 8 is the function on �,

Az(ω, 8)=
∑
X3z

8X (ωX )

|X |
, (A.5)

and the functions Az are uniformly Hölder continuous with exponent β ′ < β when 8 has
short range in the sense of (ii) above.
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In the physics literature the above setting would often be considered as describing a
‘spin system’ in one dimension with short-range interaction. This is a class of systems that
are so well understood to be considered trivial: remarkably it is nevertheless very useful to
study chaotic systems as shown by the following theorem and proposition.

The main theorem on Gibbs states with short-range interactions is as follows [8, §§5
and 6].

THEOREM A.1.
(i) If 8 is a short-range potential and M is a compatibility matrix, there is a unique

Gibbs state µ on �M with potential 8.
(ii) The Gibbs distribution µ mixes at exponential rate all Hölder continuous functions:

i.e. there exist constants C = C(F, G), κ = κ(F, G) such that∣∣∣∣∫
�M

F(ω)G(τ rω)µ(dω)−

(∫
�M

F(ω)µ(dω)

)(∫
�M

G(τ rω)µ(dω)

)∣∣∣∣≤ Ce−κ r .

(A.6)
(iii) If the potential 8 is translation invariant at s∞, s =±, with asymptotic value 8s∞,

then∣∣∣∣∫
�M

F(ω)G(τ rω)µ(dω)−

(∫
�M

F(ω)µ(dω)

)(∫
�M

G(ω)µs(dω)

)∣∣∣∣≤ Ce−κ r .

(A.7)
for C, κ > 0 suitable functions of F, G. Here µs is the Gibbs state generated by the
potential 8s∞.

(iv) The state µ is a Gibbs distribution with potential 8 on �M if and only if the
conditional probability in (A.4) satisfies, if A0 is the function defined in Aξ (A.5)
evaluated ξ = 0,

µ3(ω
′
3; ωZ/3)

µ3(ω
′′
3; ωZ/3)

= exp
(
−

+∞∑
k=−∞

{A0(τ
kω′)− A0(τ

kω′′)}

)
(A.8)

for all ω′ = ω′3 + ωZ/3, ω′′ = ω′′3 + ωZ/3 in �M .

Remarks.
(1) If the hard core is not trivial, i.e. Mi, j 6≡ 1, not all sequences are compatible and

the values 8X (ωX ) of the potentials 8 on incompatible ωX , i.e. on ωX which are not
substrings of a sequence ω ∈�M , are completely irrelevant: hence they can be set = 0.
The one-dimensionality of the lattice Z which labels the sequence elements is absolutely
essential for the above results.

(2) The result (i) is classical and a proof can be found in [8, Proposition 5.1.1] for
the existence in the case of translation-invariant 8 and in [8, Proposition 5.2.1] for the
uniqueness. The proofs however work unchanged if the more general non-translation-
invariant cases. The cases that are of interest in the theory of Anosov systems (hence in
this work) require the result only for potentials that are translation invariant at +∞ and
−∞ simultaneously and proofs of the results (ii) and (iii) (also classical) can be found in
[8, Proposition 6.3.3] and in [8, Corollary 6.3.1].

(3) The equivalence result (iv) is also a classical remark; see Remark (2) to [8,
Definition 5.1.2].
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(4) Any Hölder continuous function A(ω) on �M can be represented as the energy of a
short-range potential. This is immediate [8, Proposition 4.3.1].

(5) Any transitive Anosov system on a manifold V admits a Markov partition [8, §4],
i.e. a partition which codes the points x ∈ V into their history on the partition establishing a
correspondence between the points and a set of symbolic sequences�M for some transitive
compatibility matrix M . Every sequence in �M represents a single point in V and the
coding is one-to-one outside a set of zero volume in V .

PROPOSITION A.1.
(i) The normalized Lebesgue measure on a manifold V on which acts a transitive

Anosov map f is coded by the symbolic dynamics x←→ω(x) associated with f and
with a Markov partition into a probability distribution which is a Gibbs distribution
with a potential 8.

(ii) The potential8 is translation invariant at−∞ and at+∞ and8+∞ is generated by
the Hölder continuous function A+(ω)= log |det(∂ f (x)/∂x)+| where (∂ f (x)/∂x)+
is the Jacobian matrix of the restriction of the map f to the unstable manifold
through x and ω is the symbolic representation of x. Likewise 8−∞ is generated
by the analogous function A−(ω)=−log |det(∂ f (x)/∂x)−| relative to the stable
manifold.

Remark. The combination of Proposition A.1 and Theorem A.1 shows the interest of Gibbs
distributions to represent the statistics under the evolution of initial data x by f when the
data are chosen with a probability distribution which is absolutely continuous with respect
to the volume; a proof can be found in [8, Proposition 4.3.2].

B. Appendix. Details on overshadowing bounds
Comparing the trees in Figure 2 and those in Figure 1 we see that the new trees, once they
are fully developed—so that the labels (kv) of the top nodes, marking the order in ε, are all
(1)—have three kinds of nodes: namely , ◦, •.

The number of lines in a tree contributing to the formation of the kth order is not
necessarily k (unlike the case of the construction of H ): this is due to the last graph in
Figure 2 whose order in ε has to be read from the two incoming lines. Looking at the
structure of the graphs it follows that the maximum number of lines that a tree graph
contributes to the kth order in ε is at most 2k (as one can easily show by induction).

Furthermore for a node v which is either or ◦ both the label αv and labels (α′`, α`) or
α` of the entering lines ` are uniquely determined by the label α`v (see Figure 2). Thus
for each of them we have at most three possible choices (in fact two for ◦ and three for ).
On the contrary for each • we have two possible choices, as αv ∈ {±}. This means that the
factor 2k in §3 due to the sum over the labels αv has to be replaced by a factor 32k . Hence
in the worst case the number of labels cannot exceed 32k

× 24k while in the case for H it
was 23k (recall that in that case the number of nodes was k).

The nodes v with wavy lines give a contribution proportional to a derivative of ∂ψ of
order equal to the number of lines incident on the node while in the case of H the number
of derivatives acting on ψ was always equal to the number of lines that enter the node,
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hence 1 less. This means that when considering the Fourier transform there will be an
extra factor proportional to a component of νv per node (in the worst cases): this will give
in the bounds an extra factor N . Since each node involving a derivative of ψ raises by
one unit the order in ε to which the tree value gives a contribution (since in the map ψ is
multiplied by ε) we conclude that to order k there will be an extra factor N k , so that the
factor N 2k of §3 has to replaced with N 3k . (We note that a more careful analysis would
show that in fact again the same bound N 2k as before could be obtained, but we neglect
such an improvement as we are not looking at all for optimal bounds.)

Therefore the conclusion is that convergence follows for ε smaller than the value in
(3.16) with N replaced by N 2 and the constant 9 suitably increased by 32

× 2.

C. Appendix. A reversible dissipative system
The example in (2.3) can be used for this purpose. Consider the map acting on (ϕ, ϕ′) ∈ T4

(T4
≡ [0, 2π ]2 × [0, 2π ]2) defined by (ϕ, ϕ′)→ (Fϕ, F−1ϕ′) with Fϕ = (ϕ1 + ϕ2 +

ε sin ϕ2, ϕ1) if ϕ = (ϕ1, ϕ2), ϕ′ = (ϕ′1, ϕ
′

2). A direct calculation shows that the quantity
called σω in (6.5) is, in this case, σω,η(ϕ, ϕ

′)=−cos ϕ2 + cos(ϕ′1 − ϕ
′

2)+ O(ε). The
point ((0, 0), (π, π)) has period 3 and the sum of the values of σω,η on its orbit is
−4, hence not zero, so that σ+ > 0 for ε small enough, as remarked at the end of §6,
[8, Appendix 6.4]. Any further perturbation of the form εγψω,η(ϕ, ϕ

′) will also have
a σω,η(ϕ, ϕ

′) with positive average if γ is small enough; thus providing us with many
examples of reversible, random and non-random, maps analytic in ϕ, ϕ′.
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