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Oceanic waves registered by satellite observations often have curvilinear fronts and
propagate over various currents. In this paper we study long linear and weakly
nonlinear ring waves in a stratified fluid in the presence of a depth-dependent
horizontal shear flow. It is shown that, despite the clashing geometries of the
waves and the shear flow, there exists a linear modal decomposition (different from
the known decomposition in Cartesian geometry), which can be used to describe
distortion of the wavefronts of surface and internal waves, and systematically derive
a 2+1-dimensional cylindrical Korteweg–de Vries-type equation for the amplitudes
of the waves. The general theory is applied to the case of the waves in a two-layer
fluid with a piecewise-constant current, with an emphasis on the effect of the shear
flow on the geometry of the wavefronts. The distortion of the wavefronts is described
by the singular solution (envelope of the general solution) of the nonlinear first-order
differential equation, constituting generalisation of the dispersion relation in this
curvilinear geometry. There exists a striking difference in the shapes of the wavefronts
of surface and interfacial waves propagating over the same shear flow.
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1. Introduction
The Korteweg–de Vries (KdV) equation and its generalisations are successfully used

to describe long weakly nonlinear internal waves that are commonly observed in the
oceans (Benjamin 1966; Benney 1966; Maslowe & Redekopp 1980; Grimshaw et al.
1997, 1998; Grimshaw 2001; Grue 2006; Helfrich & Melville 2006; Apel et al. 2007),
as well as to describe weakly nonlinear shallow-water surface waves (Boussinesq
1871; Korteweg & de Vries 1895; Ablowitz & Baldwin 2012; Chakravarty & Kodama
2014). The waves described by these models have plane or nearly plane fronts.
However, waves registered by satellite observations often look like a part of a ring,
motivating the present study of annular waves (see figure 1 for the image of a nearly
annular internal soliton). Observations of internal waves with curvilinear fronts have
been reported in several studies, e.g. Farmer & Armi (1988), Nash & Moum (2005)
and Jackson et al. (2013). Internal waves have a strong effect on acoustic signalling,
as well as impacting submersibles, offshore structures and underwater pipelines. They
also significantly contribute to the ocean mixing processes. Therefore, it is important
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to develop a good understanding of the main properties and behaviour of these
waves. In natural oceanic environments these waves often propagate over currents,
for example, tides, wind-drift currents, river flows, etc. Thus, we aim to develop an
asymptotic theory which could be used to model long ring waves in a stratified fluid
over a shear flow. In this paper we focus on the basic balance between nonlinearity
and dispersion, considering waves with cylindrical divergence on horizontal shear
flows in the KdV regime.

Currently, there is considerable interest in both internal and surface waves
on sheared currents. Among recent results, the effect of a shear flow on linear
surface waves was studied by Ellingsen (2014a,b), while Thomas, Kharif & Manna
(2012) studied how vorticity modifies the modulational instability properties of
weakly nonlinear surface wave trains. Analytical considerations of the latter paper
complemented a strongly nonlinear numerical analysis developed by Nwogu (2009).
The complementary nature of the analytical weakly nonlinear studies and strongly
nonlinear numerical modelling is also notable in the research on internal waves.
Analytical studies help to identify the main trends and dependences, creating the
framework for the discussion of the observed and modelled phenomena, while
advanced numerical modelling allows one to describe important features of the waves
in more realistic settings not amenable to theoretical analysis (see, for example, the
reviews by Helfrich & Melville (2006) and Apel et al. (2007)).

The effects of various sheared currents on internal waves and their role in the
oceanic processes have been studied by a number of authors (e.g. Lee & Beardsley
1974; Voronovich, Sazonov & Shrira 2006; Buhler 2009). Modifications of large
internal solitary waves by a background shear flow have been studied analytically
by Choi (2006) and modelled numerically, for example, by Stastna & Lamb (2002)
and Stastna & Walter (2014), within the framework of two-dimensional simulations.
Three-dimensional numerical modelling, although expensive, has also been developed.
In particular, large-amplitude internal waves in the Strait of Gibraltar have been
modelled by Vlasenko et al. (2009) and Sannino et al. (2014). Tidal generation of
internal waves in the Celtic Sea has been modelled by Vlasenko et al. (2013, 2014)
and Grue (2015). We note that the waves generated in the Strait of Gibraltar are
nearly annular (see figure 1), as are the waves generated near a sea mountain in the
Celtic Sea (see Vlasenko et al. (2014, figure A1)).

The cylindrical (or concentric) Korteweg–de Vries (cKdV) equation is a universal
weakly nonlinear weakly dispersive wave equation in cylindrical geometry. Originally
derived in the context of ion-acoustic waves in plasma (Maxon & Viecelli 1974),
it was later derived for the surface waves in a uniform fluid, first from Boussinesq
equations (Miles 1978), and then from the full Euler equations (Johnson 1980).
Versions of the equation were also derived for internal waves in a stratified fluid
without shear flow (Lipovskii 1985), and surface waves in a uniform fluid with
a shear flow (Johnson 1990). The original equation is integrable (Dryuma 1976;
Calogero & Degasperis 1978), and there exists a useful map between cKdV and
Kadomtsev–Petviashvili (KP) equations (Johnson 1980, 1997; Klein et al. 2007),
while a generic shear flow leads to a non-integrable cKdV-type equation.

In this paper we study the propagation of internal and surface ring waves in a
stratified fluid over a prescribed shear flow, generalising the previous studies. The
paper is organised as follows. In § 2 we derive a 2+1-dimensional cKdV-type model
for the amplitudes of surface and internal waves, by finding an appropriate linear
modal decomposition (different from the known modal decomposition in Cartesian
coordinates) and using techniques from the asymptotic multiple-scale analysis.
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Long ring waves in a stratified fluid over a shear flow 19

FIGURE 1. (Colour online) Internal soliton generated in the Strait of Gibraltar (NASA
image STS17-34-098, Lunar and Planetary Institute, http://www.lpi.usra.edu/publications/
slidesets/oceans/oceanviews/oceanviews_index.shtml). A very large collection of images of
various nonlinear internal waves can be found at http://www.internalwaveatlas.com/Atlas2_
index.html.

The detailed structure of the wavefronts is analysed analytically, for the case of a
two-layer model with a piecewise-constant current, in § 3. We also obtain conditions
guaranteeing that there are no critical levels, and calculate explicit expressions for the
coefficients of the derived amplitude equation, listed in appendix B. Some conclusions
are drawn in § 4.

2. Problem formulation and amplitude equation
2.1. Problem formulation

We consider a ring wave propagating in an inviscid incompressible fluid, described by
the full set of Euler equations:

ρ(ut + uux + vuy +wuz)+ px = 0, (2.1)
ρ(vt + uvx + vvy +wvz)+ py = 0, (2.2)

ρ(wt + uwx + vwy +wwz)+ pz + ρg= 0, (2.3)
ρt + uρx + vρy +wρz = 0, (2.4)

ux + vy +wz = 0, (2.5)

with the free surface and rigid bottom boundary conditions appropriate for oceanic
conditions:

w= ht + uhx + vhy at z= h(x, y, t), (2.6)
p= pa at z= h(x, y, t), (2.7)

w= 0 at z= 0. (2.8)

Here, u, v, w are the velocity components in the x, y, z directions respectively, p is
the pressure, ρ is the density, g is the gravitational acceleration, z= h(x, y, t) is the
free surface height (equal to the depth of the fluid under the free surface; z = 0 at
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FIGURE 2. (Colour online) Schematic of the problem formulation.

the bottom) and pa is the constant atmospheric pressure at the surface. We assume
that in the basic state u0 = u0(z), v0 = w0 = 0, p0z = −ρ0g, h = h0. Here, u0(z) is a
horizontal shear flow in the x direction and ρ0= ρ0(z) is a stable background density
stratification (see figure 2).

It is convenient to use the vertical particle displacement ζ as an additional
dependent variable, which is defined by the equation

ζt + uζx + vζy +wζz =w (2.9)

and satisfies the obvious surface boundary condition

ζ = h− h0 at z= h(x, y, t), (2.10)

where h0 is the unperturbed depth of the fluid.
We aim to derive an amplitude equation for the amplitudes of the long surface and

internal waves. Thus, we use the following non-dimensional variables:

x→ λx, y→ λy, z→ h0z, t→ λ

c∗
t, (2.11a−d)

u→ c∗u, v→ c∗v, w→ h0c∗

λ
w, (2.12a−c)

(ρ0, ρ)→ ρ∗(ρ0, ρ), h→ h0 + aη, p→ pa +
∫ h0

z
ρ∗ρ0(s)g ds+ ρ∗gh0p.

(2.13a−c)

Here, λ is the wavelength, a is the wave amplitude, c∗ is the typical long-wave speed
of surface or internal waves (

√
gh0 or h∗N∗ respectively, where N∗ is a typical value

of the buoyancy frequency, and h∗ is a typical depth of the stratified layer), ρ∗ is the
dimensional reference density of the fluid, while ρ0(z) is the non-dimensional function
describing stratification in the basic state, and η = η(x, y, t) is the non-dimensional
free surface perturbation. In both cases non-dimensionalisation leads to the appearance
of the same small parameters in the problem, the amplitude parameter ε = a/h0 and
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Long ring waves in a stratified fluid over a shear flow 21

the wavelength parameter δ = h0/λ. In the second case, a third small (Boussinesq)
parameter will appear as well, but the Boussinesq approximation is not used in the
subsequent derivation. Thus, it is natural to non-dimensionalise the general problem
formulation, including both surface and internal waves, using the parameters of the
faster surface waves, and to measure the speeds of the internal waves as fractions of
the surface wave speed, etc. However, if one is primarily interested in the study of
internal waves, it is more natural to use the typical speed of the internal waves.

Introducing the cylindrical coordinate system moving at a constant speed c (a
natural choice is the flow speed at the bottom, as we will show later), considering
deviations from the basic state (the same notations u and v have been used for the
projections of the deviations of the speed on the new coordinate axis) and scaling
the appropriate variables using the amplitude parameter ε,

x→ ct+ r cos θ, y→ r sin θ, z→ z, t→ t, (2.14a−d)

u→ u0(z)+ ε(u cos θ − v sin θ), v→ ε(u sin θ + v cos θ), (2.15a,b)

w→ εw, p→ εp, ρ→ ρ0 + ερ, (2.16a−c)
we arrive at the following non-dimensional problem formulation in the moving
cylindrical coordinate frame:

(ρ0 + ερ)
[

ut + ε
(

uur + vr uθ +wuz − v
2

r

)
+ ((u0 − c)ur + u0zw) cos θ

− (u0 − c)(uθ − v)sin θ
r

]
+ pr = 0, (2.17)

(ρ0 + ερ)
[
vt + ε

(
uvr + vr vθ +wvz + uv

r

)
+ (u0 − c)vr cos θ

−
(
(u0 − c)

(
vθ

r
+ u

r

)
+ u0zw

)
sin θ

]
+ pθ

r
= 0, (2.18)

δ2(ρ0 + ερ)
[

wt + ε
(

uwr + vr wθ +wwz

)
+ (u0 − c)

(
wr cos θ −wθ

sin θ
r

)]
+ pz + ρ = 0, (2.19)

ρt + ε
(

uρr + vr ρθ +wρz

)
+ (u0 − c)

(
ρr cos θ − ρθ sin θ

r

)
+ ρ0zw= 0, (2.20)

ur + u
r
+ vθ

r
+wz = 0, (2.21)

w= ηt + ε
(

uηr + vr ηθ
)
+ (u0 − c)

(
ηr cos θ − ηθ sin θ

r

)
at z= 1+ εη, (2.22)

εp=
∫ 1+εη

1
ρ0(s) ds at z= 1+ εη, (2.23)

w= 0 at z= 0, (2.24)

with the vertical particle displacement satisfying the following equation and boundary
condition:

ζt + ε
(

uζr + vr ζθ +wζz

)
+ (u0 − c)

(
ζr cos θ − ζθ sin θ

r

)
=w, (2.25)

ζ = η at z= 1+ εη. (2.26)
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For the sake of simplicity, in the subsequent derivation we impose the condition δ2= ε,
although this is not the necessary condition. Indeed, variables can be scaled further to
replace δ2 with ε in the equations (Johnson 1997).

We look for a solution of this problem in the form of asymptotic multiple-scale
expansions of the form

ζ = ζ1 + εζ2 + · · ·, (2.27)

and similar expansions for other variables, where

ζ1 = A(ξ , R, θ)φ(z, θ), (2.28)

with the following set of fast and slow variables:

ξ = rk(θ)− st, R= εrk(θ), θ = θ, (2.29a,b)

where we define s to be the wave speed found assuming the absence of a shear
flow (with k(θ) = 1), while for a given shear flow the function k(θ) describes the
distortion of the wavefront. The speed s and the function k(θ) are to be determined.
In this description, when a shear flow is present, the radial wave speed is not equal
to s, but to s/k(θ). The choice of the fast and slow variables is similar to that in
the derivation of the cKdV-type equation for the surface waves (Johnson 1990), with
the formal range of asymptotic validity of the model being defined by the conditions
ξ ∼ R ∼ O(1). To leading order, the wavefront at any fixed moment of time t is
described by the equation

rk(θ)= constant, (2.30)

and we consider outward propagating ring waves, requiring that the function k(θ) is
strictly positive. By writing (2.28) we anticipate that the solution of the linearised
problem allows for a modal decomposition, similar to the well-known result in the
Cartesian geometry, but expect that it has a more complicated structure for the ring
waves on a shear flow because of the loss of the radial symmetry in the problem
formulation (the shear flow is parallel).

2.2. Amplitude equation
To leading order, assuming that perturbations of the basic state are caused only by the
propagating wave, we obtain

u1 =−Aφu0z cos θ − kF
k2 + k′2

Aφz, (2.31)

v1 = Aφu0z sin θ − k′F
k2 + k′2

Aφz, (2.32)

w1 = AξFφ, (2.33)

p1 = ρ0

k2 + k′2
AF2φz, (2.34)

ρ1 =−ρ0zAφ, (2.35)

η1 = Aφ at z= 1, (2.36)
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where the function φ(z, θ) satisfies the following modal equations:(
ρ0F2

k2 + k′2
φz

)
z

− ρ0zφ = 0, (2.37)

F2

k2 + k′2
φz − φ = 0 at z= 1, (2.38)

φ = 0 at z= 0, (2.39)

with
F=−s+ (u0 − c)(k cos θ − k′ sin θ), (2.40)

k= k(θ) and k′= dk/dθ . We now have fixed the speed of the moving coordinate frame
c to be equal to the speed of the shear flow at the bottom, c= u0(0) (then F=−s 6= 0
at z= 0, and the condition Fφ= 0 at z= 0 implies (2.39)). Of course, the physics does
not depend on the choice of c (see a discussion in Johnson (1990)), but our derivation
shows that the mathematical formulation simplifies if we choose c = u0(0). For a
given density stratification the values of the wave speed s of concentric waves, found
assuming the absence of a shear flow (with k(θ)= 1), and the pair of functions φ(z, θ)
and k(θ), found for a given shear flow, constitute solution of the modal equations
(2.37)–(2.39). Assuming the absence of a shear flow, the modal equations (2.37)–(2.39)
reduce to the modal equations for plane waves (e.g. Grimshaw 2001, see also § 2.4).
Therefore, the speed of the long concentric waves (in the absence of a shear flow)
coincides with the speed of the long plane waves. Unlike the surface wave problem
considered by Johnson (1990), the exact form of the equations for the wave speed
s and the function k(θ) depends on the stratification. An example for the case of a
two-layer fluid with a piecewise-constant current is discussed in § 3.

At O(ε) we obtain the following set of equations:

ρ0
(
Fu2ξ + u0zw2 cos θ

)+ ρ1
(
Fu1ξ + u0zw1 cos θ

)+ ρ0

[
(F+ s)u1R

− (u0 − c)(u1θ − v1)
k
R

sin θ + (ku1 + k′v1)u1ξ + u1zw1

]
+ k(p2ξ + p1R)= 0, (2.41)

ρ0
(
Fv2ξ − u0zw2 sin θ

)+ ρ1
(
Fv1ξ − u0zw1 sin θ

)+ ρ0

[
(F+ s)v1R

− (u0 − c)(v1θ + u1)
k sin θ

R
+ (ku1 + k′v1)v1ξ + v1zw1

]
+ kp1θ

R
+ k′(p2ξ + p1R)= 0,

(2.42)

p2z + ρ2 + ρ0Fw1ξ = 0, (2.43)

Fρ2ξ + ρ0zw2 + (F+ s)ρ1R − (u0 − c)
k
R
ρ1θ sin θ + (ku1 + k′v1)ρ1ξ +w1ρ1z = 0, (2.44)

ku2ξ + k′v2ξ +w2z + ku1R + k
R
(v1θ + u1)+ k′v1R = 0, (2.45)

Fζ2ξ −w2 + (F+ s)ζ1R − (u0 − c)
k
R
ζ1θ sin θ + (ku1 + k′v1)ζ1ξ +w1ζ1z = 0; (2.46)
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and boundary conditions:

w2 = 0 at z= 0, (2.47)

p2 = ρ0η2 + 1
2ρ0zη

2
1 − η1p1z at z= 1, (2.48)

w2 = Fη2ξ + (F+ s)η1R − (u0 − c)
k
R
η1θ sin θ

+ (ku1 + k′v1)η1ξ + Fzη1η1ξ − η1w1z at z= 1, (2.49)

ζ2 = η2 − η1ζ1z at z= 1. (2.50)

Substituting the leading-order solution (2.28), (2.31)–(2.33) into (2.46) we obtain

w2 = Fζ2ξ + (F+ s)ARφ − (u0 − c)
k
R

sin θ(Aφ)θ − Fzφ
2AAξ . (2.51)

Next, we find u2ξ from (2.41) and v2ξ from (2.42) and substitute them into (2.45),
obtaining the following equation:

−(k2 + k′2)p2ξ + ρ0(Fw2z − Fzw2)= ρ0

{
− k

R
F(v1θ + u1)− (u0 − c)

k
R

sin θ [k(u1θ − v1)

+ k′(v1θ + u1)] +s(ku1R + k′v1R)+ 1
2
[(ku1 + k′v1)

2]ξ + (ku1 + k′v1)zw1

}
− ρ1(Fw1z − Fzw1)+ (k2 + k

′2)p1R + kk′

R
p1θ . (2.52)

On the other hand, finding ρ2 from (2.43) and substituting it into (2.44) we get

Fp2zξ −ρ0zw2=−ρ0F2w1ξξ + (F+ s)ρ1R− (u0− c)
k
R
ρ1θ sin θ + (ku1+ k′v1)ρ1ξ +ρ1zw1.

(2.53)
Equating the expressions for p2zξ from (2.52) and (2.53), using (2.51) to exclude
w2, substituting the leading-order solution (2.28), (2.31)–(2.36) and using the modal
equation (2.37), we obtain the equation for ζ2 in the form(

ρ0F2

k2 + k′2
ζ2ξz

)
z

− ρ0zζ2ξ =M2, (2.54)

where

−(k2 + k′2)M2 = 2s(ρ0Fφz)zAR + (k2 + k′2)ρ0F2φAξξξ

+ [−(3ρ0F2φ2
z )z + 2ρ0F2φzφzz + (2ρ0F2φφzz)z]AAξ

−
{
ρ0

{
k(k+ k′′)

[
F2

k2 + k′2
−
(

2k′F
k2 + k′2

+ (u0 − c) sin θ
)2
]
φz

+ 2kF
(

k′F
k2 + k′2

+ (u0 − c) sin θ
)
φzθ

}}
z

A
R

−
{

2ρ0kF
[

k′F
k2 + k′2

+ (u0 − c) sin θ
]
φz

}
z

Aθ
R
. (2.55)
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Next, substituting (2.51) into the boundary condition (2.47) and recalling that
φ|z=0 = 0, we obtain Fζ2ξ = 0 at z= 0, implying that

ζ2ξ = 0 at z= 0, (2.56)

since F=−s at z= 0 by our choice of the constant c. The boundary condition (2.50)
implies

η2 = ζ2 + A2φφz at z= 1. (2.57)

Substituting (2.57) into (2.48), we get

p2 = ρ0(ζ2 + A2φφz)− A2φ

k2 + k′2
(ρ0zF2φz + 2ρ0FFzφz + ρ0F2φzz)+ 1

2
ρ0zA2φ2 at z= 1.

(2.58)
Substituting the expression (2.51) into (2.49), we obtain

Fζ2ξ = Fη2ξ − 2FAAξφφz, (2.59)

which coincides with the product of the partial derivative of η2 in (2.57) with respect
to ξ with F. Therefore, the boundary condition (2.49) is the differential consequence
of (2.57).

Differentiating (2.58) with respect to ξ , using (2.52) to eliminate p2ξ and using
(2.49) to exclude w2 (all at z= 1), we obtain

ρ0

[
F2

k2 + k′2
ζ2ξz − ζ2ξ

]
=N2 at z= 1, (2.60)

where

−(k2 + k′2)N2 = 2sρ0FφzAR + [−3ρ0F2φ2
z + 2ρ0F2φφzz]AAξ

− ρ0

{
k(k+ k′′)

[
F2

k2 + k′2
−
(

2k′F
k2 + k′2

+ (u0 − c) sin θ
)2
]
φz

+ 2kF
(

k′F
k2 + k′2

+ (u0 − c) sin θ
)
φzθ

}
A
R

− 2ρ0kF
[

k′F
k2 + k′2

+ (u0 − c) sin θ
]
φz

Aθ
R
. (2.61)

Thus, we obtain the non-homogeneous equation (2.54) for the function ζ2ξ with the
boundary conditions (2.56), (2.60). The compatibility condition∫ 1

0
M2φ dz− [N2φ]z=1 = 0 (2.62)

yields the 2+1-dimensional evolution equation for the slowly varying amplitude of the
ring wave in the form

µ1AR +µ2AAξ +µ3Aξξξ +µ4
A
R
+µ5

Aθ
R
= 0, (2.63)
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where the coefficients are given in terms of the solutions of the modal equations
(2.37)–(2.39) by the following formulae:

µ1 = 2s
∫ 1

0
ρ0Fφ2

z dz, (2.64)

µ2 =−3
∫ 1

0
ρ0F2φ3

z dz, (2.65)

µ3 =−(k2 + k′2)
∫ 1

0
ρ0F2φ2 dz, (2.66)

µ4 =−
∫ 1

0

{
ρ0φ

2
z k(k+ k′′)

(k2 + k′2)2
(
(k2 − 3k′2)F2 − 4k′(k2 + k′2)(u0 − c) sin θF

− sin2 θ(u0 − c)2(k2 + k′2)2
)+ 2ρ0k

k2 + k′2
Fφzφzθ(k′F+ (k2 + k′2)(u0 − c) sin θ)

}
dz,

(2.67)

µ5 =− 2k
k2 + k′2

∫ 1

0
ρ0Fφ2

z [k′F+ (u0 − c)(k2 + k′2) sin θ ] dz. (2.68)

2.3. Reduction 1: surface ring waves over a shear flow in a homogeneous fluid
Let us now consider a reduction of the derived equation (2.63) to the case of surface
ring waves in a homogeneous fluid, studied by Johnson (1980, 1990). Here, ρ0 is a
constant and we normalise φ by setting φ = 1 at z = 1. The wave speed s, in the
absence of a shear flow, as well as the function k(θ) and the modal function φ, for a
given shear flow, can be easily found from the modal equations (2.37)–(2.39). Indeed,
the modal function φ is given by

φ = (k2 + k′2)
∫ z

0

1
F2

dz. (2.69)

Assuming first that there is no shear flow, we set k = 1, u0(z) = c = 0, and the
normalisation condition φ = 1 at z= 1 then implies∫ 1

0

1
s2

dz= 1H⇒ s2 = 1. (2.70)

Thus, we recover that the wave speed of the outward propagating surface ring wave
in the absence of a shear flow is equal to 1. Next, let us assume that there is a shear
flow, then F = −1 + (u0 − c)(k cos θ − k′ sin θ). Requiring again that φ = 1 at z = 1
we obtain the equation

(k2 + k′2)
∫ 1

0

1
F2

dz= 1, (2.71)

which, of course, coincides with the generalised Burns condition (Johnson 1990).
The generalised Burns condition (2.71) constitutes a nonlinear first-order differential

equation for the function k(θ). The function relevant to the ring wave is provided by
the singular solution (the envelope of the general solution) of this equation (Johnson
1990, 1997):

k(θ)= a cos(θ)+ b(a) sin(θ), (2.72)
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0= cos θ + b′(a) sin θ, (2.73)

[a2 + b2(a)]
∫ 1

0

dz
[1− (u0(z)− c)a]2 = 1. (2.74)

Indeed, the general solution k(θ) = a cos θ + b(a) sin θ = √a2 + b(a)2 sin(θ + ϕ),
where a is an arbitrary constant, b(a) is a constant defined by formula (2.74) and
tan ϕ = a/b(a), cannot describe an outward propagating ring wave since sin(θ + ϕ)
is not strictly positive. However, (2.71) also has a singular solution (an additional
solution, not described by the general solution but instead given by its envelope),
defined by formulae (2.72)–(2.74), where a=a(θ). The singular solution does not have
any free parameters and has the desired property (see Johnson 1990, 1997).

Differentiating the generalised Burns condition, we obtain

2(k+ k′′)
∫ 1

0

k′F+ (u0 − c)(k2 + k′2) sin θ
F3

dz= 0. (2.75)

Since k+ k′′ 6= 0 on the singular solution, then

µ5 =−2ρ0k(k2 + k′2)
∫ 1

0

k′F+ (u0 − c)(k2 + k′2) sin θ
F3

dz= 0. (2.76)

Thus, the derived amplitude equation (2.63) reduces to the form of the 1+1-
dimensional cKdV-type equation (i.e. µ5 = 0) for any shear flow, and not just for
stationary and constant shear flows, as previously thought (Johnson 1990, 1997).

Substituting the modal function (2.69) into the expressions for the remaining
coefficients (2.64)–(2.67), the amplitude equation can be written as

µ̃1AR + µ̃2AAξ + µ̃3Aξξξ + µ̃4

R
A= 0, (2.77)

and the expressions for the coefficients can be brought to the previously known form
(Johnson 1990):

µ̃1 = 2(k2 + k′2)I3, (2.78)

µ̃2 =−3(k2 + k′2)2I4, (2.79)

µ̃3 =−(k2 + k′2)2
∫ 1

0

∫ 1

z

∫ z1

0

F2(z1, θ)

F2(z, θ)F2(z2, θ)
dz2 dz1 dz, (2.80)

µ̃4 = −k(k+ k′′)
k cos θ − k′ sin θ

((k cos θ + 3k′ sin θ)I2 + 4k′ sin θ I3)

− 3k(k+ k′′)(k2 + k′2) sin2 θ

(k cos θ − k′ sin θ)2
(I2 + 2I3 + I4), (2.81)

where

In =
∫ 1

0

dz
Fn
, µ̃i = µi

k2 + k′2
, i= 1, 4. (2.82a,b)

We note that unlike the formula for µ̃3 above, our representation of the coefficients
by the formulae (2.64)–(2.67) does not involve multiple integrals.
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2.4. Reduction 2: interfacial concentric waves in the absence of a shear flow
Let us now consider another reduction of the derived equation (2.63). If there is no
shear flow, i.e. u0(z) = 0, the ring waves become concentric waves. Here, F = −s,
k(θ)= 1 and k′(θ)= 0. Then µ5= 0, and the derived equation (2.63) again reduces to
the form of the 1+1-dimensional cKdV-type equation:

µ̃1AR + µ̃2AAξ + µ̃3Aξξξ + µ̃4

R
A= 0, (2.83)

and expressions for the coefficients are given by

µ̃1 = 2
∫ 1

0
ρ0φ

2
z dz, µ̃2 = 3

∫ 1

0
ρ0φ

3
z dz, (2.84a,b)

µ̃3 =
∫ 1

0
ρ0φ

2 dz, µ̃4 =
∫ 1

0
ρ0φ

2
z dz, (2.85a,b)

where
µ̃i =−µi

s2
, i= 1, 4. (2.86)

Here, φ = φ(z) is the modal function, satisfying the same equations as in Cartesian
geometry:

(s2ρ0φz)z − ρ0zφ = 0, (2.87)
s2φz − φ = 0 at z= 1, (2.88)

φ = 0 at z= 0. (2.89)

This reduction agrees with the equation previously derived by Lipovskii (1985).
Thus, in both cases the derived amplitude equation (2.63) correctly reduces to the

previously derived models. Importantly, in both of these previously studied cases the
coefficient µ5 = 0. However, it is not equal to zero in the general case of the waves
in a stratified fluid with a shear flow. Interestingly, Johnson has caught the ‘ghost’ of
the additional term in his study of the surface waves on a shear flow. However, as we
noted earlier, the complicated formula for the coefficient µ5 given by Johnson (1990)
will lead to a zero coefficient for any shear flow.

3. Two-layer example: dispersion relation and wavefronts
3.1. Two-layer model

In order to clarify the general theory developed in the previous section and to
illustrate the different effect of a shear flow on the wavefronts of surface and internal
ring waves, here we discuss a simple piecewise-constant setting, frequently used
in theoretical and laboratory studies of long internal and surface waves (figure 3;
see, for example, Long 1955; Lee & Beardsley 1974; Miyata 1985; Weidman &
Zakhem 1988; Choi & Camassa 1999; Ramirez et al. 2002; Choi 2006; Grue 2006;
Voronovich et al. 2006; Chumakova et al. 2009; Alias, Grimshaw & Khusnutdinova
2014; Arkhipov, Safarova & Khabakhpashev 2014; Boonkasame & Milewski 2014
and references therein). In these theoretical and laboratory studies, the model is often
chosen to yield explicit formulae, but is regarded as a reasonable abstraction for
a background flow with smooth density and shear profiles across the interface, in
the long-wave approximation. It is also necessary to note that this background flow
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z

1

0

d

y

x

FIGURE 3. (Colour online) The two-layer model.

is subject to Kelvin–Helmholtz (K–H) instability arising as short waves, which is
excluded in the consideration of a long wave over a sufficiently weak shear flow both
because the two-layer model is an abstraction of the actual continuous density and
shear flow profiles, and due to the large separation of scales (see Turner 1973; Craik
1985; Drazin & Reed 2004 and references therein). The stability condition for the
long waves in a fluid of finite depth is briefly discussed in appendix A.

Here, in non-dimensional form, both the density of the fluid and the shear flow are
piecewise-constant functions (0 6 z 6 1):

ρ0 = ρ2H(z)+ (ρ1 − ρ2)H(z− d), (3.1)
u0 =U2H(z)+ (U1 −U2)H(z− d), (3.2)

where d is the thickness of the lower layer and H(z) is the Heaviside function.

3.2. Dispersion relation and approximations
Solution of the modal equations (2.37)–(2.39) in the two layers is given by the linear
functions of z (φ1 is the modal function in the upper layer and φ2 is the modal
function in the lower layer):

φ1 =
(

F2
1

k2 + k′2
+ z− 1

)
Λ, φ2 =

(
F2

1

k2 + k′2
+ d− 1

)
Λz
d
, (3.3a,b)

where Λ is a parameter and the continuity of φ is satisfied, while the jump condition
at the interface, [

ρ0F2φz
]

k2 + k′2
= [ρ0]φ at z= d, (3.4)

provides the ‘dispersion relation’,

(ρ2 − ρ1)d(1− d)(k2 + k′2)2 − ρ2[dF2
1 + (1− d)F2

2](k2 + k′2)+ ρ2F2
1F2

2 = 0, (3.5)

with F1 = −s + (U1 − U2)(k cos θ − k′ sin θ), F2 = −s. This nonlinear first-order
differential equation for the function k(θ) is a further generalisation of both the Burns
and generalised Burns conditions (Burns 1953; Johnson 1990). First, we assume that
there is no shear flow and find the wave speed s by letting U1=U2= 0, while k= 1.
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The dispersion relation takes the standard form

ρ2s4 − ρ2s2 + (ρ2 − ρ1)d(1− d)= 0. (3.6)

Therefore, the wave speed in the absence of the shear flow is given by

s2 = ρ2 ±
√
ρ2

2 − 4ρ2(ρ2 − ρ1)d(1− d)
2ρ2

= 1±√(2d− 1)2 + 4ρ1/ρ2d(1− d)
2

, (3.7)

where the upper sign should be chosen for the faster surface mode and the lower sign
for the slower internal mode. For example, if ρ1= 1, ρ2= 1.2 and d= 0.5, we obtain
ssur ≈ 0.98 and sint ≈ 0.21.

When the shear flow is present, equation (3.5) constitutes a nonlinear first-order
differential equation for the function k(θ). We have

k2 + k′2 = ρ2[dF2
1 + (1− d)F2

2] ±
√
∆

2(ρ2 − ρ1)(1− d)d
, (3.8)

where

∆ = ρ2
2 [dF2

1 + (1− d)F2
2]2 − 4ρ2(ρ2 − ρ1)d(1− d)F2

1F2
2

= ρ2
2 [dF2

1 − (1− d)F2
2]2 + 4ρ1ρ2d(1− d)F2

1F2
2 > 0, (3.9)

and the upper/lower signs correspond to the internal/surface modes respectively.
The generalised Burns condition for the surface waves in a homogeneous fluid with

this two-layer shear flow takes the form

(k2 + k′2)
(

1− d
F2

1
+ d

F2
2

)
= 1 ⇔ [dF2

1 + (1− d)F2
2](k2 + k′2)= F2

1F2
2, (3.10)

and can be recovered from our more general equation (3.5) in the limit ρ2 − ρ1→ 0.
If the density contrast is small, ρ2 − ρ1 � ρ1, ρ2, one can obtain a simplified

equation not only for the surface mode (see (3.10)), but also for the interfacial mode,
by replacing the free surface condition (2.38) with the rigid lid approximation,

φ = 0 at z= 1. (3.11)

Then, the modal functions φ in the two layers are found to be

φ1 =Λ(z− 1), φ2 = d− 1
d

Λz, (3.12a,b)

where Λ is a constant, and the jump condition at z= d again provides the ‘dispersion
relation’:

(ρ2 − ρ1)d(1− d)(k2 + k′2)= ρ1dF2
1 + ρ2(1− d)F2

2. (3.13)

Remarkably, the required singular solution k(θ) of the differential equation (3.13) can
be found explicitly, in the following form:

k(θ) = sign(cos θ)

√
1− α(U1 −U2)+ α2s2

1+ (1− α(U1 −U2)) tan2 θ

(
cos θ

1− α(U1 −U2)
+ sin2 θ

cos θ

)
− αs cos θ

1− α(U1 −U2)
, (3.14)
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where

α = ρ1(U1 −U2)

(1− d)(ρ2 − ρ1)
, s2 = (ρ2 − ρ1)d(1− d)

ρ1d+ ρ2(1− d)
. (3.15a,b)

The solution (3.14) can be verified directly, by substituting it into (3.13). It is shown
in figure 7 for the parameters ρ1 = 1, ρ2 = 1.2, d= 0.5 and U1 −U2 = 0.1.

Let us note that equations asymptotically equivalent to both approximate equations
(3.10) and (3.13) can be formally obtained from the full dispersion relation (3.5) if
we first solve it as a quadratic equation with respect to k2 + k′2, see (3.8), and then
Taylor expand

√
∆ in powers of the small parameter (ρ2 − ρ1)/ρ2:

k2 + k′2 = ρ2[dF2
1 + (1− d)F2

2]
2(ρ2 − ρ1)(1− d)d

[
1±

(
1+ 2

(ρ2 − ρ1)d(1− d)F2
1F2

2

ρ2[dF2
1 + (1− d)F2

2]2
+ · · ·

)]
. (3.16)

The approximate equations (3.10) and (3.13) correspond to the lower and upper signs
in the above equation respectively.

3.3. Wavefronts
The general solution of (3.5) can be found in a form similar to the general solution of
the generalised Burns condition (Johnson 1990), allowing us then to find the necessary
singular solution relevant to the ring waves in a stratified fluid in the form

k(θ)= a cos θ + b(a) sin θ,

b′(a)=−1/ tan θ,

a2 + b2(a)= ρ2[d(−s+ a(U1 −U2))
2 + (1− d)s2] ±√∆

2(ρ2 − ρ1)d(1− d)
,

 (3.17)

where

∆= ρ2
2

[
d(−s+ a(U1 −U2))

2 − (1− d)s2
]2 + 4ρ1ρ2d(1− d)s2 [−s+ a(U1 −U2)]2 .

(3.18)
Therefore,

0 6∆6 ρ2[d(−s+ a(U1 −U2))
2 + (1− d)s2]. (3.19)

The upper sign should be chosen in (3.17) for the interfacial mode and the lower sign
for the surface mode, as previously discussed. In what follows, the singular solution
k= k(θ) is given in parametric form: k= k(a), θ = θ(a), where a is a parameter.

Let us denote

a2 + b2 = ρ2[d(−s+ a(U1 −U2))
2 + (1− d)s2] ±√∆

2(ρ2 − ρ1)d(1− d)
=Q, where b= b(a). (3.20)

Then the condition b2 = Q − a2 > 0 determines the domain of a ∈ [amin, amax]. We
require k(θ) to be positive everywhere to describe the outward propagating ring wave.
Therefore, one needs to choose the interval [amin,amax] containing a=0, since a should
take both positive and negative values (in particular, k(θ) should be positive at both
θ = 0 and θ =π). Then,

2bb′ =Qa − 2a, ⇒ b′ = Qa − 2a
2b

, ⇒ tan θ =− 2b
Qa − 2a

. (3.21a−c)
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Therefore, k(a)= k(θ(a)) can be written in the form

k(a)= a cos θ + b sin θ = cos θ(a+ b tan θ)= sign
(
−2b

cos θ
tan θ

)
aQa − 2Q√

(Qa − 2a)2 + 4b2
.

(3.22)

Since k(a) > 0, we obtain

sign(k(a))=−sign
[

b(aQa − 2Q)
cos θ
tan θ

]
= 1. (3.23)

When there is no shear flow, aQa− 2Q=−2Q< 0. Therefore, it is natural to assume
that this inequality will continue to hold in the case of the relatively weak shear
flow considered here, and check that it is satisfied once the solution is constructed.
Moreover, in the particular case of small density contrast, ρ2− ρ1� ρ1,2 and d∼ 0.5,
this condition can be verified directly using the approximation (3.13) for the interfacial
mode, which we do not discuss in detail here.

Thus, we assume that aQa − 2Q< 0 in the interval [amin, amax]. Then

k(a)=− aQa − 2Q√
(Qa − 2a)2 + 4b2

(3.24)

and

sign(b)= sign
(

cos θ
tan θ

)
= sign

(
cos2 θ

sin θ

)
=
{

1 if θ ∈ (0,π),
−1 if θ ∈ (π, 2π).

(3.25)

Therefore, if θ ∈ (0,π), then

b=
√

Q− a2, tan θ =−2
√

Q− a2

Qa − 2a
, (3.26a,b)

and we let

θ =


arctan

(
−2
√

Q− a2

Qa − 2a

)
if Qa − 2a< 0,

arctan
(
−2
√

Q− a2

Qa − 2a

)
+π if Qa − 2a> 0.

(3.27)

Similarly, if θ ∈ (π, 2π), then

b=−
√

Q− a2, tan θ = 2
√

Q− a2

Qa − 2a
, (3.28a,b)

and we let

θ =


arctan

(
2
√

Q− a2

Qa − 2a

)
+π if Qa − 2a> 0,

arctan
(

2
√

Q− a2

Qa − 2a

)
+ 2π if Qa − 2a< 0.

(3.29)
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FIGURE 4. (Colour online) The function k(a). (a) Surface mode: U1 − U2 = 0 (circles),
U1 − U2 = 0.2 (plus signs), U1 − U2 = 0.3 (stars) and U1 − U2 = 0.4 (triangles).
(b) Interfacial mode: U1 − U2 = 0 (circles), U1 − U2 = 0.1 (plus signs), U1 − U2 = 0.15
(stars) and U1 −U2 = 0.2 (triangles).
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FIGURE 5. (Colour online) The function θ(a). (a) Surface mode: U1 − U2 = 0 (circles),
U1 − U2 = 0.2 (plus signs), U1 − U2 = 0.3 (stars) and U1 − U2 = 0.4 (triangles).
(b) Interfacial mode: U1 − U2 = 0 (circles), U1 − U2 = 0.1 (plus signs), U1 − U2 = 0.15
(stars) and U1 −U2 = 0.2 (triangles).

Thus, we obtain the required singular solution analytically, in parametric form. The
functions k(a), θ(a) and k(θ) for both surface and interfacial ring waves are shown in
figures 4–6 respectively. As before, we let ρ1= 1, ρ2= 1.2 and d= 0.5, and consider
several values of the strength of the shear flow.

We also compare the approximate solution (3.14) for the internal waves with the
exact solution (3.17) in figure 7, for the case when U1−U2= 0.1. We can see that the
simpler approximate solution is rather close to the exact solution, with the advantage
that the function k can be written explicitly as a function of θ .

Next, we note that to leading order, the radial wave speed is given by s/k(θ).
As discussed before, wavefronts are described by the equation rk(θ) =constant. In
figures 8 and 9 we show the wavefronts for the surface mode and interfacial mode
of (3.5) respectively, for ρ1 = 1, ρ2 = 1.2, d = 0.5 and several values of the strength
of the shear flow.

We see that the shear flow has very different effects on the surface and internal
ring waves: the surface ring waves shown in figure 8 are elongated in the direction
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FIGURE 6. (Colour online) The function k(θ). (a) Surface mode: U1 − U2 = 0 (circles),
U1 − U2 = 0.2 (plus signs), U1 − U2 = 0.3 (stars) and U1 − U2 = 0.4 (triangles).
(b) Interfacial mode: U1 − U2 = 0 (circles), U1 − U2 = 0.1 (plus signs), U1 − U2 = 0.15
(stars) and U1 −U2 = 0.2 (triangles).
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FIGURE 7. (Colour online) The function k(θ): approximate solution (3.14) (circles) and
exact solution (3.17) (triangles) for internal waves; U1 −U2 = 0.1.

of the shear flow, while the interfacial ring waves shown in figure 9 are squeezed
in the direction of the flow. We note that, in a different setting, deformation of linear
surface waves by a sheared current was recently discussed by Ellingsen (2014a,b). We
also note that when the value of U1−U2 is increased, there is a threshold after which
the equation for k(θ) corresponding to interfacial waves does not have a real-valued
solution. This value coincides with the critical value given by (A 1).

To understand why this happens, we consider the behaviour of k(θ) around the
angles θ = 0,π. Locally, in the area around the angles θ = 0,π, the ring waves can be
treated as plane waves over a shear flow (propagating along or opposite to the flow).
The modal equation is given by Grimshaw (2001):

(ρ0(C− u0)
2φz)z − ρ0zφ = 0, (3.30)
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FIGURE 8. (Colour online) Wavefronts of surface ring waves described by k(θ)r = 50
(ε= 0.02 and R= 1).
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FIGURE 9. (Colour online) Wavefronts of interfacial ring waves described by k(θ)r= 50
(ε= 0.02 and R= 1).

(C− u0)
2φz − φ = 0 at z= 1, (3.31)
φ = 0 at z= 0. (3.32)

In the two-layer case, the dispersion relation takes the form

dρ1(C−U1)
2 − ρ2(C−U2)

2(d− 1+ (C−U1)
2)= d(ρ1 − ρ2)(d− 1+ (C−U1)

2).

(3.33)
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FIGURE 10. (Colour online) Wave speeds (3.34) as functions of the strength of the
shear flow.

This dispersion relation also follows from the results obtained by Ovsyannikov (1979)
for the free surface two-layer shallow-water model. Substituting the coefficients
ρ1 = 1, ρ2 = 1.2, d = 0.5 into the general solution of this quartic equation, one
obtains the following formula for the wave speed C:

C= U1 +U2

2
± 1

6

√
9(U1 −U2)2 ± 3

√
72(U1 −U2)2 + 30+ 18. (3.34)

Letting the Cartesian coordinate frame move at the speed U2, we now plot the four
solutions for the wave speed C in figure 10. Here, the top and bottom curves show
the speeds of surface waves, propagating along and opposite to the shear flow, while
the curves in between show the speeds of the slower moving internal waves. Both
surface and internal waves can propagate when there is no shear flow (U1= 0). When
the strength of the shear flow is increased (U1> 0), the difference between the speeds
of the surface waves along and opposite to the flow increases, while the similar
difference for the internal waves decreases. This indicates that the wavefronts of the
surface waves become elongated in the direction of the flow, while the wavefronts
of the internal waves are indeed squeezed in this direction. The graph also shows
the onset of the K–H instability for the long waves at U1 ≈ 0.5, and stabilisation
for values of the shear flow exceeding U1 ≈ 2, in agreement with the results of
Ovsyannikov (1979). We note that the stabilisation persists within the scope of the
full equations of motion (Ovsyannikov 1985; Lannes & Ming 2015).

3.4. Critical layer
The critical layer is a region in the neighbourhood of a line at which the local wave
speed is equal to the shear flow speed, see Freeman & Johnson (1970) and Johnson
(1990, 2012) and references therein. In this paper we only consider a relatively weak
shear flow, when the critical layer does not appear, which we justify next.
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The wavefront can be described as

H(r, θ, t)= rk(θ)− st= constant. (3.35)

Following Johnson (1990, 1997), we find that the local wave speed in the direction

∇H
|∇H| =

ker + k′eθ√
k2 + k′2

(3.36)

is given by

− Ht

|∇H| =
s√

k2 + k′2
. (3.37)

Therefore, the critical layer occurs when

s√
k2 + k′2

= (U1 −U2) cos(α + θ), where cos α = k√
k2 + k′2

, (3.38)

which is equivalent to the condition

F1 =−s+ (U1 −U2)(k cos θ − k′ sin θ)= 0, (3.39)

when the linear problem formulation fails. It should be noted that F2 =−s 6= 0.
We know that

F1θ =−(U1 −U2)(k+ k′′) sin θ, (3.40)

where, without loss of generality, we assume that U1 − U2 > 0 and k + k′′ > 0 on
the selected singular solution (k(θ) > 0). Then, F1θ < 0 if θ ∈ (0, π) and F1θ > 0 if
θ ∈ (π, 2π), which implies that F1 reaches its maximum value at θ = 0. Therefore, to
avoid the appearance of critical layers, we require that

F1 6 F1|θ=0 =−s+ (U1 −U2)k(0) < 0, (3.41)

which yields the following constraint on the strength of the shear flow:

(U1 −U2)k(0) < s. (3.42)

We note that k(0) depends on U1 − U2. However, since s/k(θ) represents the radial
wave speed, it is natural to impose the condition that s/k(0)> s (i.e. the downstream
wave speed is greater than or equal to the speed found assuming the absence of the
shear flow, see figure 10), implying that k(0)6 1. Therefore, we can replace the exact
condition (3.42) with a simplified estimate:

U1 −U2 < s 6
s

k(0)
. (3.43)

Thus, if the shear flow satisfies condition (3.43), then there are no critical layers.
We note also that the long waves in the two-layer fluid are K–H stable if the shear
flow satisfies the stability criterion (A 1) given in appendix A. The coefficients of the
derived 2+1-dimensional amplitude equation (2.63) for both surface and interfacial
ring waves in this two-layer case are listed in appendix B.
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4. Discussion
In this paper we have developed an asymptotic theory describing the propagation

of long linear and weakly nonlinear ring waves in a stratified fluid over a shear
flow in the KdV regime. The theory is based on the existence of a suitable linear
modal decomposition, which has more complicated structure than the known modal
decomposition in Cartesian geometry, when waves propagate along or opposite to the
horizontal shear flow. In our formulation, the shear flow is parallel, while the waves
in the absence of the shear flow are concentric. Thus, there is a clash of geometries,
and it is not clear a priori that there is any modal decomposition.

The developed linear formulation provides, in particular, a description of the
distortion of the shape of the wavefronts of the ring waves by the shear flow, which
has been illustrated by considering the classical setting of a two-layer fluid with a
piecewise-constant current. The wavefronts of surface and interfacial ring waves were
described in terms of two branches of the singular solution of the derived nonlinear
first-order differential equation, constituting further generalisation of the well-known
Burns and generalised Burns conditions (Burns 1953; Johnson 1990). Remarkably,
the two branches of this singular solution could be described in parametric form,
and an explicit analytical solution was developed for the wavefront of the interfacial
mode in the case of low density contrast. The constructed solutions have revealed the
qualitatively different behaviour of the wavefronts of surface and interfacial waves
propagating over the same shear flow. Indeed, while the wavefront of the surface ring
wave is elongated in the direction of the flow, the wavefront of the interfacial wave
is squeezed in this direction.

The derived 2+1-dimensional cylindrical Korteweg–de Vries-type equation constitutes
generalisation of the previously derived 1+1-dimensional equation for the surface
waves in a homogeneous fluid over a shear flow (Johnson 1990) and internal waves
in a stratified fluid in the absence of a shear flow (Lipovskii 1985). Strictly speaking,
Johnson derived a 2+1-dimensional model (Johnson 1990), but as a by-product of
our study we have shown that the complicated formula for one of the coefficients of
his equation will yield a zero coefficient for any shear flow, which then reduces the
equation to a 1+1-dimensional model. Finally, for the case of the two-layer model we
have also derived a constraint on the strength of the shear flow, which guarantees that
there are no critical layers, and obtained explicit expressions for the coefficients of
the derived amplitude equation in terms of the physical and geometrical parameters of
the model, which provides a fully developed asymptotic theory for this case. Further
work will include numerical and analytical studies of the long weakly nonlinear ring
waves using the derived equation.

It should be noted that the derived model can be generalised to include the effects
of variable environment and rotation, similarly to existing studies for plane waves
(see Grimshaw 2001; Grimshaw et al. 2013 and references therein). The modal
decomposition found in this paper can be used to derive other long ring wave
models, similar to the Benjamin–Ono and intermediate-depth equations for plane
waves (Benjamin 1967; Ono 1975; Joseph 1977; Kubota et al. 1978).

Finally, we assume that theoretical results developed in this paper are relevant to
the description of the nearly annular internal waves observed in the oceans. Such
waves are generated in straits (e.g. in the Strait of Gibraltar, see figure 1), in river–sea
interaction zones (e.g. by a Columbia River plume, see Nash & Moum (2005)) and
by scattering from localised topographic features (e.g. from a sea mountain in the
Celtic Sea, see Vlasenko et al. (2014)). While the observed waves are often strongly
nonlinear, previous studies of such waves within the scope of KdV-like models and
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FIGURE 11. (Colour online) Solitons in the Strait of Gibraltar (NASA image STS17-
34-081, Lunar and Planetary Institute, http://www.lpi.usra.edu/publications/slidesets/oceans/
oceanviews/oceanviews_index.shtml).

their generalisations suggest that this is a useful asymptotic regime for this class
of problem (see, for example, Grimshaw et al. 1997, 1998; Apel 2003; Grue 2006;
Helfrich & Melville 2006; Apel et al. 2007).

Squeezing of the wavefronts of interfacial ring waves in the direction of the shear
flow should be a prominent feature, and we conjecture that this might be a factor
contributing to the change of the shape of internal waves generated by an exchange
flow in the Strait of Gibraltar, visible in figure 11 for the waves propagating further
into the Mediterranean Sea (two groups of internal waves are indicated by white
arrows), as well as to the change of the shape of the internal spiral waves generated
by a tidal flow near a sea mountain in Vlasenko et al. (2014, figure A1). We hope
that our study will help in better understanding and interpretation of numerical and
observational data for internal waves in three-dimensional settings.
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Appendix A. Stability condition for long waves
In the rigid lid approximation, the condition for the stability of the long waves in

a two-layer fluid of finite depth (see figure 3) in the non-dimensional variables used
in our paper is given by

(U1 −U2)
2 <

(ρ2 − ρ1)
(
ρ1d+ ρ2(1− d)

)
ρ1ρ2

(A 1)

(Ovsyannikov 1979, 1985); see also Bontozoglou (1991), Boonkasame & Milewski
(2011) and Lannes & Ming (2015) and references therein. The free surface results
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show that long waves are stable both for small shears, as in the rigid lid case, but
also for sufficiently large shears (Ovsyannikov 1979, 1985); see also Barros & Choi
(2014) and Lannes & Ming (2015).

Long interfacial waves satisfying the stability criterion (A 1) are observed both in
experiments and in natural environments (for example, see the reviews by Grue (2006)
and Apel et al. (2007)), which means that in the situations where they are observed
there exist some extra mechanisms which prevent the development of the K–H
instability for short-wavelength perturbations. Among such stabilising mechanisms
not present in the simplified model are the continuity of the actual density and shear
flow profiles, with a thin intermediate layer in between the two main layers, and
surface tension (see Turner (1973), Boonkasame & Milewski (2011), Lannes & Ming
(2015) and references therein). The two-layer model is an abstraction of the actual
continuous density and shear flow profiles, suitable for the theoretical study of long
internal waves.

Appendix B. Coefficients of the cKdV-type equation

In this appendix we list the coefficients of the derived 2+1-dimensional amplitude
equation (2.63) for both surface and interfacial ring waves in the two-layer case.

For surface waves, we normalise φ by setting φ = 1 at z= 1. The parameter Λ in
the modal function (3.3) is given by

Λs = k2 + k′2

F2
1

. (B 1)

Substituting the modal function into the formulae (2.64)–(2.68), we obtain the
coefficients in the form

µ1 = 2s(k2 + k′2)2

F4
1

(
(1− d)ρ1F1 + ρ2F2

d

(
F2

1

k2 + k′2
+ d− 1

)2
)
, (B 2)

µ2 =−3(k2 + k′2)3

F6
1

(
(1− d)ρ1F2

1 +
ρ2F2

2

d2

(
F2

1

k2 + k′2
+ d− 1

)3
)
, (B 3)

µ3 = −(k
2 + k′2)3

3F4
1

(
ρ1F2

1

(
F6

1

(k2 + k′2)3
−
(

F2
1

k2 + k′2
+ d− 1

)3
)

+ ρ2F2
2d
(

F2
1

k2 + k′2
+ d− 1

)2
)
, (B 4)

µ4 = −(1− d)ρ1k(k+ k′′)(k2 + k′2)
F4

1

× (F2
1 + 4k′F1(U1 −U2) sin θ + 3(k2 + k′2)(U1 −U2)

2 sin2 θ
)

− ρ2(k+ k′′)kF2
2

dF4
1

(
F2

1

k2 + k′2
+ d− 1

)(
(k2 − 3k′2)

(
F2

1

k2 + k′2
+ d− 1

)
+ 4(d− 1)k′(k′F1 + (U1 −U2)(k2 + k′2) sin θ)

F1

)
, (B 5)
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µ5 = −2k(k2 + k′2)
F4

1

(
(1− d)ρ1F1(k′F1 + (U1 −U2)(k2 + k′2) sin θ)

+ ρ2k′F2
2

d

(
F2

1

k2 + k′2
+ d− 1

)2
)
, (B 6)

where
F1 =−s+ (U1 −U2)(k cos θ − k′ sin θ), F2 =−s, (B 7a,b)

s2 = 1+√(2d− 1)2 + 4ρ1/ρ2d(1− d)
2

(B 8)

and the function k(θ) is defined by the formula (3.17) (lower sign).
For interfacial waves, we normalise φ by setting φ = 1 at z= d. The parameter Λ

in the modal function (3.3) is given by

Λi = k2 + k′2

F2
1 + (d− 1)(k2 + k′2)

. (B 9)

Substituting the modal function into the formulae (2.64)–(2.68), we obtain the
coefficients in the form

µ1 = 2s
(
(1− d)ρ1F1(k2 + k′2)2

(F2
1 + (d− 1)(k2 + k′2))2

+ ρ2F2

d

)
, (B 10a)

µ2 =−3
(
(1− d)ρ1F2

1(k
2 + k′2)3

(F2
1 + (d− 1)(k2 + k′2))3

+ ρ2F2
2

d2

)
, (B 10b)

µ3 =− ρ1F2
1

3(F2
1 + (d− 1)(k2 + k′2))2

(
F6

1 − (F2
1 + (d− 1)(k2 + k′2))3

)− 1
3

dρ2F2
2(k

2 + k′2),

(B 11)

µ4 = − (1− d)ρ1k(k+ k′′)
(
(k2 − 3k′2)F2

1 − 4k′(k2 + k′2)F1(U1 −U2) sin θ − (U1 −U2)
2(k2 + k′2)2 sin2 θ

)
(F2

1 + (d− 1)(k2 + k′2))2

− 4(1− d)ρ1k(k+ k′′)F2
1

(F2
1 + (d− 1)(k2 + k′2))3

(k′F1 + (k2 + k′2)(U1 −U2) sin θ)2 − ρ2k(k+ k′′)(k2 − 3k′2)F2
2

d(k2 + k′2)2
, (B 12)

µ5=− 2(1− d)ρ1F1k(k2 + k′2)
(F2

1 + (d− 1)(k2 + k′2))2
(k′F1+ (U1−U2)(k2+ k′2) sin θ)− 2kk′ρ2F2

2

d(k2 + k′2)
, (B 13)

where

F1 =−s+ (U1 −U2)(k cos θ − k′ sin θ), F2 =−s, (B 14a,b)

s2 = 1−√(2d− 1)2 + 4ρ1/ρ2d(1− d)
2

(B 15)

and the function k(θ) is defined by the formula (3.17) (upper sign). For the latter,
one can also use the explicit formula (3.14), obtained in the rigid lid approximation.
We note that, in the general case, the coefficient µ5 is non-zero for both surface and
interfacial waves.
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