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Abstract

Recently, Rao et al. (2004) introduced an alternative measure of uncertainty known as
the cumulative residual entropy (CRE). It is based on the survival (reliability) function
F̄ instead of the probability density function f used in classical Shannon entropy. In
reliability based system design, the performance characteristics of the coherent systems
are of great importance. Accordingly, in this paper, we study the CRE for coherent and
mixed systems when the component lifetimes are identically distributed. Bounds for the
CRE of the system lifetime are obtained. We use these results to propose a measure to
study if a system is close to series and parallel systems of the same size. Our results
suggest that the CRE can be viewed as an alternative entropy (dispersion) measure to
classical Shannon entropy.
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1. Introduction

One of the most important measures of uncertainty is Shannon entropy which plays an
important role in various areas of sciences such as probability and statistics, financial analysis,
engineering, and information theory; see, e.g. Cover and Thomas [6]. Let X be an absolutely
continuous nonnegative random variable with cumulative distribution function (CDF) F and
probability density function (PDF) f . The Shannon entropy of X is defined as

H(X) = −
∫ ∞

0
f (x) log f (x) dx, (1)

where ‘log’ stands for the natural logarithm and where, by convention, 0 log 0 = 0. The
Shannon entropy (1) represents the predictability and information onX. Some recent properties
can be seen in [2], [8], [9], and [13]. Other measures of uncertainty were developed in various
disciplines and contexts.

Recently, Rao et al. [22] introduced an alternative measure of uncertainty called the cumula-
tive residual entropy (CRE) which is based on the survival (reliability) function F̄ (x) = 1−F(x)
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instead of the PDF f (x) used in Shannon entropy (1). For a nonnegative random variable X
with survival function F̄ = 1 − F , the CRE of X is

E(X) = −
∫ ∞

0
F̄ (x) log F̄ (x) dx. (2)

This measure has been applied in reliability engineering and in computer vision; see, e.g. [22]
and [29]. Recent papers have obtained several properties of this alternative entropy but its
meaning and interpretation have not yet been made sufficiently clear.

In this paper we study general properties of E(X) and properties of E(T ) for a coherent or
mixed system with lifetime T . We show that the CRE is closely related to the standard deviation
and that it can be used to define a measure to see if a system is close to the series system (the
worst system) or to the parallel system (the best system). Our results shed light upon E(X) as
an alternative measure of entropy (dispersion).

The rest of the paper is organized as follows. In Section 2 we study basic properties of the
CRE and provide some recent references for additional properties and practical applications.
The general properties of the CRE in coherent and mixed systems are studied in Section 3.
Bounds are obtained in Section 4 and a measure for comparing systems based on the CRE is
proposed in Section 5.

2. General properties of the CRE

It is clear that (2) can be used for both continuous and discrete distributions. Moreover, for
an atom distributionFX for whichX = c (almost surely), we have E(X) = 0. This is, of course,
the most informative case (with the minimum uncertainty possible). Then E(X) can be used
to measure if the X is close to an atom distribution (i.e. it is a dispersion measure). However,
for continuous distributions, Shannon entropy is a measure of disparity of the PDF f (x) from
the uniform distribution. Some examples of the CRE are provided in Table 1. In Figure 1 we
show that, in these models, there is a close relationship between the standard deviation and the
cumulative residual entropy. Furthermore, the CRE has the following property: E(aX + b) =
aE(X) for all a > 0 and b ≥ 0. This is similar to the well-known property σ(aX+b) = aσ(X)

for the standard deviation. Moreover, the CRE has an interesting connection with another
dispersion measure, the Gini mean difference DG(X) = ∫ ∞

0 2F̄ (x)(1 − F̄ (x)) dx. Since
0 ≤ x(1 − x) ≤ −x log x for x ∈ [0, 1], then we have 2E(X) ≥ DG(X). It is evident from
(2) that E(X) ≥ 0, while the Shannon entropy may take negative values when F is absolutely
continuous. For an absolutely continuous nonnegative random variableXwith survival function
F̄ = 1 − F , by applying the probability integral transformation U = F(X), the CRE may be

Table 1: The cumulative residual entropy and the standard deviation for some models.

Model F̄ (x) Support E(X) σ(X)

Uniform
β − x

β
0 ≤ x ≤ β

β

4

β

2
√
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(
β

β + x

)α
x ≥ 0

αβ

(α − 1)2
, α > 1

β

α − 1

√
α

α − 2
, α > 2

Weibull e−(λx)α x ≥ 0
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Figure 1: Comparative plots between the standard deviation (circles) and the CRE (solid line) for Pareto
(left) and Weibull (right) distributions with β = 1 and λ = 1.

rewritten as

E(X) =
∫ 1

0

ψ(u)

f (F̄−1(u))
du, (3)

whereψ(u) = −u log u,ψ(0) = ψ(1) = 0, and where the function F̄−1(u) = sup{x : F̄ (x) ≥
u} is known as the quantile function of F̄ .

It is well known that some probability models can be characterized by maximizing the
Shannon entropy under given conditions (see, e.g. [2] and the references therein). For example,
for a fixed mean μ > 0, the model with support (0,∞) and maximum Shannon entropy is the
exponential distribution. The same techniques can be applied to the CRE to obtain the more
dispersed models. As μ = ∫ ∞

0 F̄ (x) dx, we can define the (decreasing) PDF g(x) = F̄ (x)/μ

for x ≥ 0. Actually, this is the PDF of the equilibrium distribution in a renewal process. Thus,
maximizing E(X) for a fixed μ is equivalent to maximizing the Shannon entropy of g given by

H(g) = −
∫ ∞

0
g(x) log g(x) dx = −

∫ ∞

0

F̄ (x)

μ
log

F̄ (x)

μ
dx.

This problem was called the maximize equilibrium distribution entropy (MEDE) in [2, Sec-
tion 3]. There they proved that the exponential distribution is the MEDE model when we fix
E(X) and E(X2).

The dispersive ordering is defined as follows: X is smaller than Y in the dispersive order
(denoted by X ≤d Y ) if F̄−1(u)− F̄−1(v) ≤ Ḡ−1(u)− Ḡ−1(v), 0 < u ≤ v < 1. If X
and Y are absolutely continuous with PDFs f and g, respectively, the preceding condition is
equivalent (see [25, Equation (3.B.11)]) to

g(Ḡ−1(v)) ≤ f (F̄−1(v)), 0 < v < 1. (4)

Then, from (3), X ≤d Y implies E(X) ≤ E(Y ). Hence, E(X) ≤ E(Y ) is a necessary condition
for the dispersive ordering X ≤d Y and we can consider the following order.

Definition 1. We say thatX is smaller than Y in the cumulative residual entropy order (denoted
by X ≤CRE Y ) if E(X) ≤ E(Y ).
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Note that X
cre= Y does not imply that X and Y have the same distribution. Moreover, if

Y = φ(X) for a strictly increasing function φ on the support of X then

E(Y ) = −
∫ ∞

0
F̄Y (y) log F̄Y (y) dy

= −
∫ ∞

0
F̄X(φ

−1(x)) log F̄X(φ
−1(x)) dx

= −
∫ ∞

0
φ′(u)F̄X(u) log F̄X(u) du

= E(X)−
∫ ∞

0
(φ′(u)− 1)F̄X(u) log F̄X(u) du.

Therefore, if φ′(u) ≥ 1 thenX ≤CRE Y . This property is similar to that obtained in Theorem 1
of [10] for Shannon entropy.

The CRE is particularly suitable to describe the information (dispersion) in problems related
to ageing properties of reliability theory; see, e.g. [1], [3], [4], [16], [20], [21], and the references
therein. For example, Asadi and Zohrevand [1] showed that the CRE is the expected value of the
mean residual lifetime function m(x) = E(X − x | X > x), i.e. E(X) = E(m(X)). We have
obtained a similar expression in terms of the cumulative hazard function 	(x) = − log F̄ (x).
As

E(X) = −
∫ ∞

0
log F̄ (x)

∫ ∞

x

f (z) dz dx =
∫ ∞

0
f (z)

∫ z

0
	(x) dx dz

then we have E(X) = E(v(X)), where v(z) = ∫ z
0 	(x) dx. Moreover, as v(z) is increasing

and convex, X ≤icx Y implies X ≤CRE Y , where ‘≤icx’ denotes the increasing convex order;
see [25]. Hence, we have

X ≤d Y 	⇒ X ≤st Y 	⇒ X ≤icx Y 	⇒ X ≤CRE Y,

where ≤st denotes the usual stochastic order (see [25]).
It is well known that Shannon entropy was used to define the Kullback–Leibler divergence

measure. In a similar way, Baratpour and Rad [4] used the CRE to define the cumulative
Kullback–Leibler (CKL) distance as

CE(X, Y ) = E(Y )− E(X)+
∫ ∞

0
F̄ (t) log

F̄ (t)

Ḡ(t)
dt

= E(Y )− E(X)+ E(X, Y )− E(X)

≥ 0 (5)

for nonnegative random variables X and Y with survival functions F̄ and Ḡ and finite means
E(X) and E(Y ), respectively, provided that F̄ (t) = 0 whenever Ḡ(t) = 0, where

E(X, Y ) = −
∫ ∞

0
F̄ (t) log Ḡ(t) dt (6)

is known as the cumulative residual inaccuracy (CRI) of X and Y (see [26]). Of course, we
have CE(X, Y ) = 0 when F = G. Note that CE(X, Y ) is not necessarily equal to CE(Y,X).
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This measure will be more useful in situations where the survival function has a more simple
form than the PDF. We will see that this measure is appropriate to investigate the properties of
a system by using its representation based on signatures.

Finally, we provide some references for the reader interested in a deep discussion on the
interest and possible applications of the CRE in practice. A survey was given in [11] where
a general extension of the CRE was considered. This includes applications in five different
disciplines (fuzzy set theory, generalized maximum entropy principle, theory of dispersion
of ordered categorial variables, uncertainty theory, and reliability theory); see the references
therein for detailed applications. They also suggest that these measures can be seen as dispersion
measures. Some applications in risk theory were given in [30]. Toomaj and Doostparast [27],
[28] obtained an expression for the system’s entropy as well as the bounds for the entropy of
the system’s lifetime. They also provided expressions for the Kullback–Leibler discrimination
information of system and component lifetimes. Recently, Park and Kim [19] obtained some
recurrence relations for the CRE of order statistics (k-out-of-n systems).

3. Cumulative residual entropy for systems

A system is said to be coherent if it does not have any irrelevant components and its structure
function is monotone (see [5]). A special case of coherent systems is the k-out-of-n system,
where the system fails when the kth component failure occurs. A mixed system is a stochastic
mixture of coherent systems. Hence, any coherent system is a (degenerated) mixed system
(see, e.g. [23]). Let T denote the lifetime of a mixed system consisting of n independent
and identically distributed (i.i.d.) components with lifetimes X1, . . . , Xn having an absolutely
continuous CDF F . Then it follows (see, e.g. [23]) that its survival function F̄T satisfies

F̄ (t) = P(T > t) =
n∑
i=1

si F̄i : n(t), (7)

where F̄i : n(t) = ∑i−1
j=0

(
n
j

)[F(t)]j [F̄ (t)]n−j for i = 1, . . . , n are the survival functions of the
ordered component lifetimes X1 : n, . . . , Xn : n (i.e. the lifetimes of k-out-of-n systems). The
vector of coefficients s = (s1, . . . , sn) in (7) is called the system signature, where si = P(T =
Xi : n) is the probability that the ith failure causes the system failure. Note that s1, . . . , sn
are nonnegative real numbers which do not depend on the common CDF F and such that∑n
i=1 si = 1. One can see that the survival function of a mixed system is a mixture of the

survival functions of the i-out-of-n systems with weights si . Recent results on system signatures
can be seen in [7], [24].

First we provide an expression for the CRE of a given mixed system with signature s =
(s1, . . . , sn) consisting of n i.i.d. component lifetimes X1, . . . , Xn having a common CDF F .
If we use the probability integral transformation U = F̄ (X) then Ui = F̄ (Xi) is uniformly
distributed in [0, 1] and Wi : n = F̄ (Xi : n) has a beta distribution with parameters n − i + 1
and i and with the following distribution function:

Gi : n(w) =
i−1∑
j=0

(
n

j

)
(1 − w)jwn−j , 0 ≤ w ≤ 1,

for i = 1, . . . , n. The transformation V = F̄ (T ) has the distribution function

GV (v) =
n∑
i=1

siGi : n(v), 0 ≤ v ≤ 1.
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From (2) and the transforms mentioned earlier, we have F̄T (t) = GV (F̄ (t)) and

E(T ) = −
∫ ∞

0
F̄T (t) log F̄T (t) dt =

∫ 1

0

ψ(GV (v))

f (F̄−1(v))
dv, (8)

where the second integral is obtained with the variable change v = F̄ (t).
Navarro et al. [17] proved that the survival function F̄T of a coherent (or mixed) system with

identically distributed (i.d.) components can be written as

F̄T (t) = q̄(F̄ (t)), (9)

where F̄ is the common survival function of the components and q̄ is an increasing continuous
function in [0, 1] such that q̄(0) = 0 and q̄(1) = 1. The distortion function q̄ depends only on
the structure of the system and on the copula of the random vector (X1 . . . , Xn). In particular,
if (X1 . . . , Xn) is exchangeable (i.e. its joint distribution does not change if we permute the
components) then

q̄(v) =
n∑
i=1

aiK(vi ), (10)

where vi = (u1, . . . , un) with u1 = · · · = ui = v and ui+1 = · · · = un = 1, K is the
exchangeable survival copula of (X1, . . . , Xn), and (a1, . . . , an) is the minimal signature of
the system (see, e.g. [16]). In particular, if the components are i.i.d. then

q̄(v) = GV (v) =
n∑
i=1

aiv
i . (11)

Thus, representation (8) can be extended to the mixed systems with (possibly dependent) i.d.
components. In the general i.d. case, from (9),

E(T ) = −
∫ ∞

0
F̄T (t) log F̄T (t) dt =

∫ 1

0

ψ(q̄(v))

f (F̄−1(v))
dv (12)

holds. If the components are exchangeable or i.i.d. then q̄ can be replaced with the expressions
given in (10) or (11), respectively. In particular, if the components are i.i.d. with a common
exponential distribution with mean μ then

E(T ) = −μ
n∑
i=1

ai

∫ 1

0
vi−1 log

( n∑
i=1

aiv
i

)
dv. (13)

As an application of (8), (12), and (13), we have the following example.

Example 1. Let s = (0, 2
3 ,

1
3 , 0) be the signature of the coherent system with lifetime T =

max{min{X1, X2},min{X3, X4}} and i.i.d. components having the common exponential sur-
vival function F̄ (t) = exp(−t/μ) forμ > 0 and t ≥ 0. It is easy to see that f (F̄−1(v)) = v/μ

and, hence, from (8), we obtain E(T ) ≈ 0.5569μ. One can see that the CRE is increasing with
respect to μ, i.e. the system’s uncertainty in terms of the CRE increases with increasing the
scale (dispersion) parameter μ. The minimal signature of the system is (0, 2, 0,−1) and so,
from (13), integrating by parts (with x = log(2v2 − v4) and dy = 2v − v3), we obtain

E(T ) = −μ
∫ 1

0

2v2 − v4

v
log(2v2 − v4) dv =

(
5

4
− log 2

)
μ ≈ 0.5569μ.
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If the system have dependent i.d. exponential components with an exchangeable survival
copula K , then we have

E(T ) = −μ
∫ 1

0

2K(v, v, 1, 1)−K(v, v, v, v)

v
log(2K(v, v, 1, 1)−K(v, v, v, v)) dv.

For example, if the components have the following Farlie–Gumbel–Morgenstern copula:

K(u1, u2, u3, u4) = u1u2u3u4(1 + α(1 − u1)(1 − u2)(1 − u3)(1 − u4))

for α ∈ [−1, 1], then the system survival function is

F̄T (t) = 2F̄1 : 2(t)− F̄1 : 4(t) = q̄(F̄ (t)),

where q̄(v) = 2K(v, v, 1, 1)−K(v, v, v, v) = 2v2 − v4(1 + α(1 − v)4). If the components
have a common exponential distribution and α = 1

2 , then

E(T ) = −μ
∫ 1

0

2v2 − v4(1 + (1 − v)4/2)

v
log

(
2v2 − v4

(
1 + 1

2
(1 − v)4

))
dv = 0.5565μ.

Numerically, we see that E(T ) decreases when the dependence parameter α increases.

The minimal signatures of systems with 1–5 components were computed in [15]. So it is
easy to compute the values of E(T ). In Table 2 we give these values for systems with 1–4 i.i.d.
exponential components.The system lifetimes can be seen in Table 1 of [18]. In Table 2 we
see that the values of E(T ) are well approximated to that of the respective standard deviations.
An interesting application of (12) is the comparison of the CRE of mixed systems when two
systems have the same structure with different i.d. component lifetimes. Equation (12) gives
the following theorem.

Theorem 1. LetT X andT Y be the lifetimes of two mixed systems with the same structure, based
respectively on i.d. component lifetimes X1, . . . , Xn and Y1, . . . , Yn with the same copula and
CDFs F and G and PDFs f and g.

(i) If X ≤d Y then T X ≤CRE T
Y .

(ii) If X ≤CRE Y and

inf
v∈A1

ψ(q̄(v))

ψ(v)
≥ sup
v∈A2

ψ(q̄(v))

ψ(v)
(14)

for A1 = {v ∈ [0, 1] : f (F̄−1(v)) > g(Ḡ−1(v))} and A2 = {v ∈ [0, 1] : f (F̄−1(v)) ≤
g(Ḡ−1(v))}, then T X ≤CRE T

Y .

Proof. (i) As the systems have the same structure and the same copula, then they have a
common distortion function q̄. Moreover, since X ≤d Y , from (4),

ψ(q̄(v))

f (F̄−1(v))
≤ ψ(q̄(v))

g(Ḡ−1(v))

holds for 0 < v < 1, where ψ(q̄(v)) ≥ 0. Hence, (12) completes the proof.
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Table 2: Signature s, minimal signature a, CRE, standard deviation, and distance symmetric measure
(DSM) for all the coherent systems with 1–4 i.i.d. components and a standard exponential distribution.

N s a E(T ) σ (T ) DSM(T )

1 (1) (1) 1.0000 1.0000
2 (1, 0) (0, 1) 0.5000 0.5000 −1.0000
3 (0, 1) (2,−1) 1.1137 1.1180 1.0000
4 (1, 0, 0) (0, 0, 1) 0.3333 0.3333 −1.0000
5 ( 1

3 ,
2
3 , 0) (0, 2,−1) 0.5758 0.5773 −0.3333

6 (0, 1, 0) (0, 3,−2) 0.5974 0.6009 −0.1807
7 (0, 2

3 ,
1
3 ) (1, 1,−1) 0.9566 0.9574 0.3079

8 (0, 0, 1) (3,−3, 1) 1.1580 1.1667 1.0000
9 (1, 0, 0, 0) (0, 0, 0, 1) 0.2500 0.2500 −1.0000
10 ( 1

2 ,
1
2 , 0, 0) (0, 0, 2,−1) 0.3814 0.3818 −0.5923

11 ( 1
4 ,

3
4 , 0, 0) (0, 0, 3,−2) 0.4064 0.4082 −0.5147

12 ( 1
4 ,

7
12 ,

1
6 , 0) (0, 1, 1,−1) 0.5061 0.5069 −0.3256

13 ( 1
4 ,

1
4 ,

1
2 , 0) (0, 3,−3, 1) 0.6255 0.6291 −0.1505

14 (0, 1, 0, 0) (0, 0, 4,−3) 0.4139 0.4166 −0.4522
15 (0, 5

6 ,
1
6 , 0) (0, 1, 2,−2) 0.4984 0.5000 −0.2840

16, 17 (0, 2
3 ,

1
3 , 0) (0, 2, 0,−1) 0.5568 0.5590 −0.1918

18, 19 (0, 1
2 ,

1
2 , 0) (0, 3,−2, 0) 0.5974 0.6009 −0.1171

20, 21 (0, 1
3 ,

2
3 , 0) (0, 4,−4, 1) 0.6238 0.6291 −0.0515

22 (0, 1
6 ,

5
6 , 0) (0, 5,−6, 2) 0.6385 0.6455 0.0084

23 (0, 0, 1, 0) (0, 6,−8, 3) 0.6431 0.6508 0.0645
24 (0, 1

2 ,
1
4 ,

1
4 ) (1, 0, 1,−1) 0.9607 0.9610 0.2042

25 (0, 1
6 ,

7
12 ,

1
4 ) (1, 2,−3, 1) 0.9446 0.9465 0.3011

26 (0, 0, 3
4 ,

1
4 ) (1, 3,−5, 2) 0.9255 0.9279 0.3476

27 (0, 0, 1
2 ,

1
2 ) (2, 0,−2, 1) 1.0793 1.0833 0.5763

28 (0, 0, 0, 1) (4,−6, 4,−1) 1.1815 1.1932 1.0000

(ii) Since X ≤CRE Y , from (2), we have

E(Y )− E(X) =
∫ 1

0

(
ψ(v)

g(Ḡ−1(v))
− ψ(v)

f (F̄−1(v))

)
dv ≥ 0.

Moreover, if 
(u) = ψ(v)/g(Ḡ−1(v))− ψ(v)/f (F̄−1(v)), we have

E(T Y )− E(T X) =
∫ 1

0

ψ(q̄(v))

ψ(v)

(u) dv (by (12))

=
∫
A1

ψ(q̄(v))

ψ(v)

(u) dv +

∫
A2

ψ(q̄(v))

ψ(v)

(u) dv (since A1 ∪ A2 = [0, 1])

≥ inf
v∈A1

ψ(q̄(v))

ψ(v)

∫
A1


(u) dv + sup
v∈A2

ψ(q̄(v))

ψ(v)

∫
A2


(u) dv

(since 
(u) ≥ 0 in A1 and 
(u) ≤ 0 in A2)

≥ sup
v∈A2

ψ(q̄(v))

ψ(v)

∫ 1

0

(u) dv (by (14))

≥ 0 (by (3)).

Then T X ≤CRE T
Y holds. �
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Under the assumptions of the preceding theorem, if q̄ is strictly increasing in (0, 1) then
Theorem 2.9 of [17] proved thatX ≤d Y is equivalent to T X ≤d T

Y . If the components are i.i.d.
then q̄ is always strictly increasing in (0, 1) (since it is a polynomial) and so this equivalence
holds.

4. Bounds for the CRE of mixed systems

In this section we provide bounds for the CRE of mixed systems by using the properties
obtained in the preceding section. Generally, it is not easy to compute the CRE of the system’s
lifetime, especially when the number of components of the system is large or the system has
a complicated structure. This is a common situation in practice. Hence, in such situations it
is important to have bounds to approximate the behavior of the CRE of the system’s lifetime.
In the first result, the CRE of the system is bounded in terms of the common CRE of the
components.

Proposition 1. Let T be the lifetime of a mixed system with i.d. component lifetimes X1, . . . ,

Xn. Let q̄ be the associated distortion function. Then

B1E(X1) ≤ E(T ) ≤ B2E(X1),

where B1 = infv∈(0,1)ψ(q̄(v))/ψ(v), B2 = supv∈(0,1)ψ(q̄(v))/ψ(v), and ψ(u) = −u log(u).

Proof. The upper bound can be obtained from (12) as

E(T ) =
∫ 1

0

ψ(q̄(v))

f (F̄−1(v))
dv

=
∫ 1

0

ψ(q̄(v))

ψ(v)

ψ(v)

f (F̄−1(v))
dv

≤ sup
v∈(0,1)

ψ(q̄(v))

ψ(v)

∫ 1

0

ψ(v)

f (F̄−1(v))
dv

= B2E(X1).

The lower bound can be obtained in a similar way. �
Other simple and interesting bounds, which depend on the extremes of the PDF and the

distortion function of the system, are given in the following proposition.

Proposition 2. Let T denote the lifetime of a mixed system with i.d. components with a common
PDF f and distortion function q̄. If S is the support of f , m = infx∈S f (x) and M =
supx∈S f (x), then

1

M
Iq ≤ E(T ) ≤ 1

m
Iq, (15)

where Iq = ∫ 1
0 ψ(q̄(v)) dv and ψ(v) = −v log(v).

Proof. Since m ≤ f (F̄−1(v)) ≤ M, 0 < v < 1, from (8), we have

E(T ) =
∫ 1

0

ψ(q̄(v))

f (F̄−1(v))
dv ≥ 1

M

∫ 1

0
ψ(q̄(v)) dv.

The upper bound can be obtained in a similar way. �
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Note that

Iq =
∫ 1

0
ψ(q̄(v)) dv =

∫ 1

0
ψ(q̄(1 − v)) dv = E(TU),

where TU = F(T ) is the lifetime of a system with the same structure as T , the same survival
copula K, and i.d. components having a common uniform distribution over (0, 1). Hence, we
also have Iq = E(V ), where V = F̄ (T ). Of course, Iq depends only on q̄ (i.e. on the system
structure and on the survival copula). In particular, in the i.i.d. case, it depends only on the
system signature. Note that the bounds in (15) also depend on the extremes of the PDF f .
If m = 0 then we do not have an upper bound and if M = ∞ then we do not have a lower
bound.

Example 2. For the system in Example 1 with i.i.d. components, Iq = 0.1993.

(i) For the exponential distribution with mean μ, m = 0, and M = 1/μ, and, hence, from
the preceding proposition, we obtain E(T ) ≥ 0.1993μ. From Proposition 1, we obtain
the bounds 0 ≤ E(T ) ≤ B2E(X1) = 1.0452μ (since B1 = 0). The exact value of E(T )
was obtained in Example 1.

(ii) If X is uniformly distributed over the interval [α, β], m = M = (β − α)−1, and, hence
E(T ) = 0.1993(β − α). From Proposition 1, we obtain the bound E(T ) ≤ B2E(X1) =
1.0452 × 0.25(β − α) = 0.2613(β − α) which, in this case, is not useful.

(iii) If X has a Pareto type II distribution with the survival function given in Table 1, then
m = 0 and M = αβα . Therefore, E(T ) ≥ 0.1993/(αβα). From Proposition 1, we
obtain the upper bound E(T ) ≤ B2E(X1) = 1.0452αβ/(α − 1)2 whenever α > 1.

Proceeding as in the preceding example, we can obtain the bounds given in Table 3 for all
the coherent systems with 1–4 i.i.d. components having a continuous distribution F . From the
results in Table 3, we see that B1 = 0 for all the coherent systems with 1–4 i.i.d. components
different fromX1 (row 1). This is a general property for coherent systems with i.i.d. components
(see the next proposition). However, it is not true for mixed systems. For example, if we consider
the mixed system with signature ( 5

8 ,
1
8 ,

1
8 ,

1
8 ), a straightforward calculation shows that B1 = 1

2
and B2 = 5

2 . In any case, note that, if the PDF of the components is bounded then we can
use Iq to obtain a lower bound for E(T ).

Proposition 3. The lower bound B1 in Proposition 1 is 0 for all the mixed system with i.i.d.
components and signature (s1, . . . , sn) satisfying s1 = 0 or sn = 0. In particular, it is 0 for all
the coherent systems with n > 1 i.i.d. components.

Proof. If sn = 0 then from (7), we have a1 = 0. Hence, a straightforward calculation
proves that B1 = ψ(q̄(0))/ψ(0) = 0. If s1 = 0 then s∗n = 0 and a∗

1 = 0 for the dual system
whose distortion function is q̄∗(u) = 1 − q̄(1 − u) = ∑n

i=2 a
∗
i u
i . Hence, from L’Hôpital’s

rule, B1 = limu→1− ψ(q̄(u))/ψ(u) = q̄ ′(1) = 0 since q̄ ′(1 − u) = ∑n
i=2 ia

∗
i u
i−1.

From [7], we know that if n > 1 then s1 = 0 or sn = 0. So B1 = 0. �

Now, we obtain general lower and upper bounds for the CRE of T , which can be obtained
from the system signature and the CRE of k-out-of-n systems.

Proposition 4. If T denotes the lifetime of a mixed system with signature (s1, . . . , sn) based
on n i.i.d. components, then

EL(T ) ≤ E(T ) ≤ EU(T ), (16)
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Table 3: Bounds for E(T ) for the system given in Table 2 obtained from Propositions 1, 2, and 4. In
Proposition 4 we assume a standard exponential distribution. We also provide the optimal index j� in

(17) used to determine EU(T ).

N B1 B2 Iq EL(T ) EU(T ) j�

1 1 1.0000 0.2500 1.0000 1.0000 1
2 0 2.0000 0.2222 0.5000 0.5000 1
3 0 2.0000 0.1869 1.1137 1.1137 2
4 0 3.0000 0.1875 0.3333 0.3333 1
5 0 1.1509 0.2216 0.5094 0.5974 2
6 0 1.0121 0.1980 0.5974 0.5974 2
7 0 1.0564 0.2075 0.7843 1.1579 3
8 0 3.0000 0.1464 1.1580 1.1580 3
9 0 4.0000 0.1600 0.2500 0.2500 1
10 0 2.0000 0.1976 0.3320 0.4139 2
11 0 1.3437 0.1957 0.3729 0.4139 2
12 0 1.2493 0.2128 0.4111 0.5177 2
13 0 1.0572 0.2245 0.4876 0.6963 3
14 0 1.1591 0.1845 0.4139 0.4139 2
15 0 1.0967 0.1954 0.4521 0.5177 2
16, 17 0 1.0453 0.1993 0.4903 0.6216 2
18, 19 0 1.0121 0.1980 0.5285 0.6431 3
20, 21 0 1.0002 0.1924 0.5667 0.6431 3
22 0 1.0052 0.1830 0.6049 0.6431 3
23 0 1.0202 0.1703 0.6431 0.6431 3
24 0 1.0125 0.2196 0.6631 1.0609 3
25 0 1.0982 0.1924 0.7395 1.0609 3
26 0 1.1367 0.1746 0.7777 1.0609 3
27 0 2.0000 0.1653 0.9123 1.1815 4
28 0 4.0000 0.1198 1.1815 1.1815 4

where EL(T ) = ∑n
i=1 siE(Xi : n), EU(T ) = min1≤j≤n{E(T ,Xj : n)+ E(Xj : n)− E(T )}, and

E(T ,Xj : n) is the CRI defined in (6) of T and the j th order statistic Xj : n.

Proof. From Samaniego’s representation, we have q̄ = ∑n
i=1 si q̄i : n, where q̄i : n = Gi : n

is the distortion function associated toXi : n. Then from (12) and the concavity of ψ , the lower
bound can be obtained as

E(T ) =
∫ 1

0

ψ(q̄(v))

f (F̄−1(v))
dv ≥

∫ 1

0

∑n
i=1 siψ(q̄i : n(v))
f (F̄−1(v))

dv =
n∑
i=1

siE(Xi : n).

To provide an upper bound, we use the CKL expression given in (5) to obtain

CE(T ,Xj : n) = E(Xj : n)− E(T )+ E(T ,Xj : n)− E(T ) ≥ 0 for 1 ≤ j ≤ n,

provided that F̄T (t) = 0 whenever F̄j : n(t) = 0. Then the upper bound is derived by finding
the minimum of the above terms for 1 ≤ j ≤ n. �
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From (7), the upper bound can be rewritten as

min
j
(E(T ,Xj : n)+ E(Xj : n)− E(T )) = EL(T )+ min

j

( n∑
i=1

siCE(Xi : n,Xj : n)
)
. (17)

Let the optimal index, say j�, satisfy

E(T ,Xj� : n)+ E(Xj� : n)− E(T ) = min
1≤j≤n{E(T ,Xj : n)+ E(Xj : n)− E(T )}.

Then j� can be obtained through

cT (j
�) =

n∑
i=1

siCE(Xi : n,Xj� : n) = min
1≤j≤n

n∑
i=1

siCE(Xi : n,Xj : n). (18)

One can see that the optimal index j� depends on the system signature and on the parent
distribution function F . In Table 3 the bounds and the optimal index j� for all coherent systems
with 1–4 components are presented when the lifetimes of components follow the exponential
distribution with mean unity. Recalling (17), the upper bound can be computed as the sum of
two terms, the lower bound given by Proposition 4 and (18).

5. A CRE-based ordering of systems

The physical nature of certain system structures often restricts the use of the usual stochastic
ordering for pairwise comparison. For instance, the systems numbers 13 and 17 in Table 2, are
not comparable with the usual stochastic order (see [12], [14] or [18]). It is well known that
the survival function of any arbitrary mixed system is located between that of the series and
parallel systems, i.e. X1 : n ≤st T ≤st Xn : n for any system lifetime T . Therefore, instead of
pairwise comparison of systems, one can find a system in which its structure (or distribution) is
closer to the distribution of the parallel system or the series system. In other words, using these
systems, we seek an answer to the following question: which of these systems is similar (or
closer) to the configuration of the parallel system and far from the configuration of the series
system? We will use the CRE to answer this question.

To proceed with our results, we define the following measure of distance between two
distributions considered by Baratpour and Rad [4]. It is a symmetric version of the CKL
divergence CE(X, Y ) defined in Section 2.

Definition 2. If X and Y are two nonnegative random variables with a common support and
CDFs F and G, respectively, then the symmetric CKL is defined as:

SCE(X, Y ) = CE(X, Y )+ CE(Y,X) =
∫ ∞

0
[F̄ (x)− Ḡ(x)] log

F̄ (x)

Ḡ(x)
dx. (19)

The proposed measure (19) is nonnegative, symmetric, and SCE(X, Y ) = 0 if and only if
F̄ (x) = Ḡ(x) almost everywhere; see [3]. We also have the following properties.

Lemma 1. Let X, Y, and Z be random variables with CDFs F,G, and H , respectively. If
X ≤st Y ≤st Z then SCE(X, Y ) ≤ SCE(X,Z) and SCE(Y, Z) ≤ SCE(X,Z).
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Proof. As the function (x − 1) log(x) is decreasing in (0, 1) and increasing in (1,∞),
condition F̄ (t) ≤ Ḡ(t) ≤ H̄ (t) for t > 0, implies that

[Ḡ(t)− F̄ (t)] log
Ḡ(t)

F̄ (t)
≤ [H̄ (t)− F̄ (t)] log

H̄ (t)

F̄ (t)
, t > 0,

0 ≤ [Ḡ(t)− H̄ (t)] log
Ḡ(t)

H̄ (t)
≤ [F̄ (t)− H̄ (t)] log

F̄ (t)

H̄ (t)
, t > 0.

Integrating both sides of the above descriptions, the desired results follow. �
As X1 : n ≤st T ≤st Xn : n holds for any system T , we have the following result.

Proposition 5. IfT is the lifetime of a mixed system based onX1, . . . , Xn, then SCE(T ,Xi : n)≤
SCE(X1 : n,Xn : n) for i = 1, n.

Thus, we propose the following distance symmetric measure (DSM) for T :

DSM(T ) = SCE(T ,X1 : n)− SCE(T ,Xn : n)
SCE(X1 : n,Xn : n)

.

From Proposition 5, we have −1 ≤ DS(T ) ≤ 1. One can see that DS(T ) = 1 if and only if
T

st=Xn : n and DS(T ) = −1 if and only if T
st=X1 : n. In other words, one can say that if DS(T )

is closer to 1, the distribution of T is closer to the distribution of the parallel system, and if
DS(T ) is closer to −1, the distribution of T is closer to the distribution of the series system.
Now, we propose the following definition.

Definition 3. Let T1 and T2 be the lifetimes of two mixed systems. Then T2 is more preferable
than T1 in the DSM, denoted by T1 ≤DSM T2, if DSM(T1) ≤ DSM(T2).

We should note here that DSM(T1) = DSM(T2) does not implyT1
st=T2. Under the conditions

of Definition 3, we define DDS(T ) = SCE(T ,X1 : n)− SCE(T ,Xn : n). If the components are
i.d., (19) and the above transformations imply that

SCE(T ,Xi : n) =
∫ 1

0

[q̄(v)− q̄i : n(v)]
f (F̄−1(v))

log
q̄(v)

q̄i : n(v)
dv for i = 1, n. (20)

Then, from (20), we obtain

DDS(T ) =
∫ 1

0

[q̄(v)− q̄1 : n(v)]
f (F̄−1(v))

log
q̄(v)

q̄1 : n(v)
dv −

∫ 1

0

[q̄(v)− q̄n : n(v)]
f (F̄−1(v))

log
q̄(v)

q̄n : n(v)
dv,

SCE(X1 : n,Xn : n) =
∫ 1

0

[q̄n : n(v)− q̄1 : n(v)]
f (F̄−1(v))

log
q̄n : n(v)
q̄1 : n(v)

dv.

If the components are i.i.d. then q̄1 : n(v) = vn and q̄n : n(v) = 1 − (1 − v)n. As an application
of the proposed measure, consider the following example.

Example 3. Consider the two coherent systems numbers 13 and 17 in Table 3. These systems
are not comparable with the usual stochastic order (see [14]). If we suppose that component
lifetimes are i.i.d. and have a standard exponential distribution, we have DSM(T13) = −0.1505
and DSM(T17) = −0.1918 and, hence, T17 ≤DSM T13. Therefore, the system with lifetime T13
is closer to the distribution of the parallel system and hence to be preferred to T17.
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Theorem 2. Let T1 and T2 be the lifetimes of two mixed systems with signatures s1 and s2 based
on n i.i.d. (or exchangeable) components with the common CDF F (and the common copula
K). If s1 ≤st s2 then T1 ≤DSM T2.

Proof. Since s1 ≤st s2 then X1 : n ≤st T1 ≤st T2 ≤st Xn : n by Theorem 2.1 in Navarro et al.
[18]. Hence, from Lemma 1, we have SCE(T1, X1 : n) ≤ SCE(T2, X1 : n) and SCE(T1, Xn : n) ≥
SCE(T2, Xn : n). Therefore, the desired result follows. �

In a similar way it can be proved that if T1 and T2 are two coherent (or mixed) systems
based on the component lifetimes X1, . . . , Xn, T1 ≤st T2 implies T1 ≤DSM T2. Hence, the
DSM comparison can be seen as a necessary condition for the usual stochastic order. Thus,
the DSM order can be used to compare systems which cannot be compared by using the usual
stochastic order. In particular, T1

st=T2 implies T1
dsm= T2. The values of DSM(T ) for the coherent

systems with 1–4 i.i.d. components and a common standard exponential distribution are given
in Table 2.
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