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We show that a coupling of non-colliding simple random walkers on the complete graph on

n vertices can include at most n − log n walkers. This improves the only previously known

upper bound of n − 2 due to Angel, Holroyd, Martin, Wilson and Winkler (Electron.

Commun. Probab. 18 (2013)). The proof considers couplings of i.i.d. sequences of Bernoulli

random variables satisfying a similar avoidance property, for which there is separate interest.
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1. Introduction and main results

The notion of an avoidance coupling was introduced by Angel, Holroyd, Martin, Wilson

and Winkler [1]. Consider a simple random walk on a finite graph G, in which a walker

moves at each step by choosing an adjacent vertex uniformly at random. The goal of an

avoidance coupling is to couple two or more random walkers, who are restricted to move

one at a time in cyclical order, in such a way that they never meet. At the same time,

each walker must be performing a simple random walk on G when viewed separately

from the other walkers. Clearly, if an avoidance coupling of k walkers can take place on

a given graph, then so can one of k − 1 walkers, simply by making one of the walkers

invisible. So given G, a natural question is: ‘What is the maximum number of walkers in

an avoidance coupling on G?’

Like Angel et al., we restrict ourselves to the case when G = Kn, the complete graph on

n vertices, or G = K∗
n , the complete graph with a loop at every vertex. In this setting, the

construction of avoidance couplings is made easier by symmetry, but also made harder

by the great freedom each walker must have in moving. Nevertheless, the authors of [1]

construct an avoidance coupling of k walkers on K2k+1, K
∗
2k+1 and K∗

2k , when k is a power
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of 2. This established a linear number of walkers on the complete graphs Kn and K∗
n ,

but only for specific values of n. In the looped case, though, they were able to prove that

an avoidance coupling of k walkers on K∗
n could be extended to one on K∗

n+1, thereby

making possible �n/4� walkers on any K∗
n . Later Feldheim [8] proved this monotonicity

principle in the loopless case, thereby extending the same linear lower bound to Kn.

In the way of upper bounds, less progress has been made. The only previously known

result [1, Theorem 8.1] says that there is no avoidance coupling of n − 1 walkers on

K∗
n for n � 4. This observation is trivial on the loopless graph Kn, where each of n − 1

walkers could only move deterministically to the open site. It would be satisfying to prove

a linear upper bound of cn with c < 1, as Angel et al. propose in [1, Section 9]. A more

manageable task, however, is to produce an upper bound U(n) such that n − U(n) → ∞,

which we are able to do in Theorem 1.2 below. The result is obtained by considering

couplings satisfying a weaker avoidance property described below, for which our bound

may be closer to the truth.

For a fixed p ∈ (0, 1), we say that k coupled walkers on K∗
2 = {0, 1} form a 1-avoidance

if, while taking turns in cyclical order as before, no two walkers simultaneously occupy

site 1 but each walker’s trajectory forms a sequence of i.i.d. Bernoulli(p) random variables.

That is, any given walker can be found at site 1 with probability p at any given turn,

independent of all other turns, but only site 0 can accommodate more than one walker.

For this scenario, we have the following result.

Theorem 1.1. If there exists a 1-avoidance coupling of k Bernoulli(p) walkers, then p(1 −
p log p) � 1/k.

We give the proof in Section 3 after providing an overview of relevant literature

in Section 2. The connection between standard avoidance couplings and 1-avoidance

couplings is seen by tracking which walker on K∗
n , if any, currently occupies vertex 1.

Any given simple random walker on K∗
n will be found at vertex 1 with probability

1/n, independently of that walker’s position at all other times. Therefore, if there exists

an avoidance coupling of k walkers on K∗
n , then there is a 1-avoidance coupling of k

Bernoulli(1/n) walkers, an observation originally made in [1, Lemma 5.2]. Therefore,

Theorem 1.1 easily produces the following result, as shown in Section 3.3.

Theorem 1.2. For any n � 3, an avoidance coupling on K∗
n (and therefore on Kn) can have

at most �n − log n� walkers.

Remark 1.3. Here log n denotes the natural logarithm. The upper bound �n − log n� is

strictly less than n − 2 as soon as n � 21.

Remark 1.4. If there exists an avoidance coupling of k walkers on the loopless graph Kn,

then one of the same size exists on K∗
n . To see this fact, one can modify any coupling on

Kn to one on K∗
n in the following way. Immediately before each turn of the first walker, it

is decided independently with probability 1/n that all walkers will stay stationary during

the coming round. The authors of [1] call this modification ‘staying in waves’.
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Given that 1-avoidance is a weaker notion, it is natural to expect that the conclusion

of Theorem 1.2 is not optimal. Nevertheless, there is separate interest in determining for

a fixed positive integer k the largest p ∈ (0, 1) such that k Bernoulli(p) walkers can be

coupled in a 1-avoidance. Theorem 1.1 provides an upper bound. In the other direction,

[1, Section 5] shows that if k � �n/4�, then any p � 1/n is possible.

2. Background

In this section we highlight several other questions concerning avoidance couplings, as

well as two adjacent families of problems.

2.1. Markovian avoidance couplings

The only published works on avoidance couplings are due to Angel et al. [1], Feldheim

[8] and Infeld [10]. The first two deal exclusively with the case G = Kn or K∗
n , and all

three give special consideration to couplings that satisfy some type of Markov property.

Following the terminology from [1], which considers the strongest such property, we say

that an avoidance coupling is Markovian if the probability distribution of any particular

walker’s next move is entirely determined by the current configuration of walkers. The

simplicity of the dynamics makes constructing Markovian couplings a greater challenge;

indeed, it is not even clear if a Markovian coupling of k walkers always yields one of k − 1

walkers. Furthermore, while the aforementioned constructions in [1] – for the special case

when k is a power of 2 – are Markovian, it is not known whether they can be extended

to larger n without losing this property. Consequently, it remains an open problem to

construct Markovian avoidance couplings on general Kn or K∗
n with a linear number of

walkers.

In [1, Theorem 7.1], Angel et al. construct Markovian avoidance couplings of k �
n/(8 log2 n) walkers on K∗

n and k � n/(56 log2 n) walkers on Kn. Dropping the Markovian

condition, they establish k � �n/4� walkers on K∗
n from extensions of the special cases,

as mentioned in Section 1. Feldheim [8, Theorem 1.1] shows that extensions can also be

done for Kn, thus allowing k � �n/4� walkers for general n, but still without preserving

the Markovian property. These extensions do, however, preserve a weaker property which

Feldheim calls label-Markovian. In a label-Markovian avoidance coupling, the walkers

need to agree on a random labelling of the vertices at the start of each round, in addition

to examining the current configuration at their turns.

A yet weaker Markov property is studied in the thesis of Infeld [10]. We will say an

avoidance coupling is round-Markovian if the configuration at the start of each round is a

Markov process. That is, the joint update of all walkers from round to round is Markovian,

although individual walkers’ moves may not be. By considering avoidance couplings on

graphs other than Kn and K∗
n , Infeld is able to introduce a notion not possible on

complete graphs: a uniform avoidance coupling. A round-Markovian avoidance coupling

is said to be uniform if the transition probabilities for each walker do not depend on the

configuration of the other walkers at the start of the round. In [10, Chapter 2], the reader

can find a breadth of examples as well as partial characterizations of graphs admitting a

uniform avoidance coupling of two walkers.
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2.2. Applications

Potential applications of avoidance couplings include scenarios in which multiple users

want to make decisions based on a random walk, but need to avoid affecting other users.

For instance, a pollster sampling a large population over time may use a random walk to

select people to survey. If several pollsters work simultaneously to increase data collection,

these walks must be coordinated to avoid repeated sampling at any given time. As another

example, several background applications might run simultaneously on a computer and

access random parts of the hard drive, yet for speed or corruption reasons, they should

not access any particular part at the same time [13]. Finally, in communication systems

it can be necessary for users to periodically change transmission frequencies in order to

counteract malicious attempts at interference or interception. These updates should be

random so as not to be predictable, but also separate messengers will not be able to

transmit over the same frequency.

In each of these examples, it might further be desirable to make decisions independent

of history, either for practicality (e.g. the first example above), for conservation of memory

(the second), or to avoid becoming more predictable as time goes on (the third). For this

reason, Markovian avoidance couplings are of special interest. Moreover, there are simple

cases for which an avoidance coupling exists, but a Markovian version does not (see e.g.

[1, Theorem 3.1]).

2.3. Related problems

The task of keeping random walkers apart has also been studied in the context of

scheduling problems, which frequently appear in computer science. In this setting, the

interest is solely in avoiding collisions rather than in also maintaining the law of a

random walk. The moves of independent walkers, usually two, can be delayed by a

scheduler, although collisions are still inevitable [7, 12] unless the scheduler is clairvoyant

and knows the full future of both walkers [2, 3, 9, 14] (at least on large enough complete

graphs).

A problem of a slightly different flavour is that of co-adapted reflected Brownian

motions that are ‘shy’, that is, they remain a fixed positive distance apart. The non-

existence of such a process has been established on bounded domains with various

regularity properties [4, 5, 6, 11].

3. Proofs of Theorems 1.1 and 1.2

We now prove Theorem 1.1 and deduce Theorem 1.2 as an easy corollary.

3.1. Preliminaries

Let us begin by establishing some notation. We use the conventions N := {1, 2, . . . } and

[k] = {1, . . . , k} for a fixed positive integer k.

Definition 3.1. A 1-avoidance coupling of k Bernoulli(p) walkers is a {0, 1}k-valued

process X = (X(t))t∈N = (X1(t), . . . , Xk(t))t∈N such that:
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(i) (faithfulness) for each i = 1, . . . , k, (Xi(t))t∈N is a sequence of i.i.d. Bernoulli(p) random

variables;

(ii) (avoidance) for every t ∈ N and 1 � i < j � k, we have P(Xi(t) = Xj(t) = 1) = P(Xi(t +

1) = Xj(t) = 1) = 0.

Note that property (ii) includes two conditions. First, at each time t, the vector X(t) can

have at most one coordinate equal to 1. Second, at time t + 1 either the location of that

coordinate weakly increases toward k or no coordinate is equal to 1 (in the latter case,

any coordinate is permitted to equal 1 at time t + 2). Because of the first condition, a

sample of the coupling can almost surely be represented by an infinite sequence (a(t))t∈N

of characters in the alphabet A := [k] ∪ {B}, where B is the ‘blank’ placeholder for times at

which no coordinate is equal to 1. More precisely, we set a(t) = j if and only if Xj(t) = 1,

and a(t) = B if and only if Xi(t) = 0 for all i ∈ [k]. Then the latter condition translates to

the following analogue.

Definition 3.2. We say that a sequence (a(t))t∈N ∈ AN is permissible if a(t) � a(t + 1)

whenever a(t), a(t + 1) ∈ [k].

Once we encode a 1-avoidance coupling as a random, almost surely permissible

sequence, it will be useful to consider the ‘gaps’ between successive occurrences of a

given symbol i ∈ [k]. Indeed, such an occurrence appears with probability p at any given

time, independently of all other times. We thus make the following definitions.

Definition 3.3. Let S = (a(t))Tt=1 ∈ AN be a finite sequence in the alphabet A.

(a) We say t1 < t2 are neighbours if there is i ∈ [k] such that a(t1) = a(t2) = i and a(t) 
= i

for all t1 < t < t2.

(b) The weight of a pair of neighbours t1 < t2 is defined to be 1/b, where b � k is the

number of distinct elements of A appearing in (a(t))t1<t<t2 . If b = 0, we simply set the

pair’s weight to 0.

(c) The total weight of S is the sum of the weights of all pairs of neighbours.

For example, consider the following sequence with k = 3 and T = 15:

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a(t) 1 3 B 2 3 3 B 3 B 1 B 2 B 1 3
.

There are four pairs of neighbours associated with the symbol ‘3’. The first such pair is

separated by two distinct characters, ‘B’ and ‘2’, and thus has weight 1/2. The second pair

has weight 0 since the two instances of ‘3’ are immediately adjacent. The third pair has

weight 1 since the two neighbours are separated by just ‘B’ (notice that in a permissible

sequence such as the one below, the only way for a pair of neighbours to have weight

1 is to be separated by a string of B’s). The fourth pair is separated by six characters,

although among these there are only three distinct symbols; hence the weight of this final

pair is 1/3.
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The crucial lemma for establishing Theorem 1.1 is the following.

Lemma 3.4. Let S = (a(t))Tt=1 be any finite, permissible sequence in the alphabet A. Then

the total weight of S is at most the number of B’s in S .

Proof. The argument proceeds by induction on the length T of the sequence. For

sequences of length one, the statement is trivially true (since there are no pairs of

neighbours). So henceforth fix a permissible sequence S and assume the claim has been

demonstrated for all shorter sequences. We may assume without loss of generality that

each of the numbers 1, . . . , k occurs at least once in S; otherwise we can simply work on a

smaller alphabet. Furthermore, replacing any instance of BB with just B does not change

the total weight of S , and so we may assume S contains no consecutive B’s.

First consider the case when S contains a pair of neighbours of weight 0, i.e. a(t) =

a(t + 1) = i for some t and i ∈ [k]. By deleting one of these identical characters from the

sequence, we obtain a shorter sequence with the total weight unchanged: see Figure 1(b).

Therefore, this case follows by the induction hypothesis, and we may henceforth assume

that no two adjacent characters in S are identical. Since Definition 3.2 forces the numeric

characters of S to be increasing until B appears, a consequence of this assumption is the

following: the symbol B appears at least once between any pair of neighbours.

Next suppose the sequence S contains a pair of neighbours of weight 1, i.e. a(t) =

a(t + 2) = i and a(t + 1) = B. In this case we replace the pattern iBi by i, as in Figure 1(c).

It is easy to see that this modification decreases the total weight by exactly 1 (one

neighbour-pair of i’s of weight 1 has disappeared, while all other weights are unchanged).

On the other hand, the number of B’s in the sequence has also decreased by one. As the

resulting sequence is shorter, the desired statement again follows by induction.

From the previous two paragraphs, we may assume that S contains neither a pair of

neighbours with weight 0 or 1. That is, for each pair of neighbours the number b in

the definition of weight satisfies b � 2. We can now calculate the total weight of S in

two different ways. On one hand, for each i ∈ [k] we can simply sum all the weights of

neighbour-pairs of i’s. Let us call this quantity the output of i, and then the total weight

of S is the sum of the outputs.

Let us next imagine a second way of summing weights. Consider any pair of neighbours

in S . Let b denote the number of distinct symbols occurring in between, so that the weight

of the neighbour-pair is 1/b. Recall that one of the symbols must be B by our earlier

assumption, hence there are exactly b − 1 different numbers appearing between the two

neighbours. Now imagine that the pair of neighbours ‘donates’ weight 1/(b(b − 1)) to each

of these b − 1 different numbers (note that these donated weights sum precisely to the

pair’s weight, 1/b). Imagine this redistribution happens for all pairs of neighbours so that

all the weights from the neighbour-pairs are distributed among the numbers 1, . . . , k. Note

that a neighbour-pair consisting of two i’s does not donate any weight to the number i

itself. For each i ∈ [k], let the input of i be the sum of all weights that i receives in this

redistribution process, e.g. Figure 1(d).

By design, the sum of inputs is equal to the sum of weights over all neighbour-pairs,

which in turn is equal to the sum of outputs. Hence, there must be some j ∈ [k] such that
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Figure 1. Reductions in the proof of Lemma 3.4. (a) The original sequence S . (b) All weight-0 pairs removed.

(c) All weight-1 pairs removed; the output of 2 is computed as 1/3 + 1/3 + 1/3 = 1. (d) The input of 2 is

computed as 2(1/2 + 1/6 + 1/6) = 5/3. Weights donated from 1 are shown on the bottom, those from 3 on top.

(e) Since 5/3 > 1, the symbol 2 can be removed to produce the shorter permissible sequence S ′ with a greater

total weight.

the input of j is at least the output of j. Let us now delete all j’s from the sequence S ,

producing a new permissible sequence S ′. We claim that the total weight of S ′ is at least

that of S .

The neighbour-pairs in S ′ are precisely the neighbour-pairs in S that do not consist

of two j’s. So let us consider any neighbour-pair in S consisting of two i’s with i 
= j.

Let the weight of this neighbour-pair in S be 1/b, that is, there are exactly b different

symbols occurring in between in S . If none of these b symbols is j, then the weight of the

neighbour-pair in S ′ is also 1/b. If instead j is one of the symbols, then there will be only

b − 1 different symbols between the neighbour-pair in S ′. So this pair’s new weight in S ′

is 1/(b − 1), constituting an increase in weight by 1/(b(b − 1)). In each of the two cases,

the weight of the neighbour-pair increases by the same amount said pair donated to j in

the weight redistribution process described above: in the first case 0, in the second case

1/(b(b − 1)). In summary, the sum of the weights of all neighbour-pairs in S ′ is equal to

the sum of their weights in S plus the input of j. More formally,

(total weight of S ′) =
∑

i∈[k]\{j}

∑
neighbour-pairs of i’s

(weight of neighbour-pair in S ′)

= (input of j) +
∑

i∈[k]\{j}

∑
neighbour-pairs of i’s

(weight of neighbour-pair in S)

= (input of j) + (total weight of S) − (output of j).

By our choice of j, the above equation proves the claim that the total weight of S ′ is at

least that of S .

Since S was assumed to contain at least one occurrence of j, the sequence S ′ is strictly

shorter than S . Furthermore, the two sequences contain the same number of B’s, and so

we are done by the above claim and induction.
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3.2. Proof of Theorem 1.1

Let (X(t))t∈N be a 1-avoidance coupling of k Bernoulli(p) walkers. Since each coordinate i

induces a sequence of i.i.d. Bernoulli(p) random variables, the law of large numbers gives

lim
T→∞

1

T

T∑
t=1

1{Xi(t)=1} = p a.s. (3.1)

Because no two coordinates can simultaneously equal 1, we also have

1⋃ k
i=1{Xi(t)=1} =

k∑
i=1

1{Xi(t)=1} a.s.,

and therefore

lim
T→∞

1

T

T∑
t=1

1⋃ k
i=1{Xi(t)=1} = kp a.s. (3.2)

Since

1

T

T∑
t=1

(
1⋃ k

i=1{Xi(t)=1} + 1⋂ k
i=1{Xi(t)=0}

)
= 1, (3.3)

the observation (3.2) immediately gives the trivial bound p � 1/k. The correction factor

(1 − p log p) will be obtained by considering the more complicated quantity

Z := lim inf
T→∞

1

T

T∑
t=1

1⋂ k
i=1{Xi(t)=0}.

In particular, we seek a lower bound on Z . The rest of the proof is to establish a

sufficiently strong bound.

Recall the definitions of Section 3.1. Let (a(t))t∈N ∈ AN be the random sequence obtained

from (X(t))t∈N, where A = [k] ∪ {B}. In particular, a(t) = B if and only if Xi(t) = 0 for

all i ∈ [k], and so Z is the (lower) asymptotic fraction of times t for which a(t) = B.

Consequently, Lemma 3.4 suggests we analyse weights of neighbour-pairs. We make this

analysis precise in the following way.

If a(t) = j ∈ [k] but t is not the first time j appears, then a(t) is the ‘right neighbour’

to some ‘left neighbour’ a(s) = j with s < t and a(u) 
= j for all s < u < t. Let b denote

the number of distinct symbols appearing between the two neighbours. If b � 1, then let

wj(t) = 1/b be the weight of this pair, and set wi(t) = 0 for all i ∈ [k] \ {j}. If either a(t)

is the first occurrence of j in the sequence, or a(t − 1) = j, or a(t) = B, then set wi(t) = 0

for all i ∈ [k]. By Lemma 3.4,

T∑
t=1

1⋂ k
i=1{Xi(t)=0} =

T∑
t=1

1{a(t)=B} �
T∑
t=1

k∑
i=1

wi(t), (3.4)

where the rightmost sum is the total weight of the sequence (a(t))Tt=1 as defined in

Definition 3.3. It is this quantity for which we can compute an asymptotic lower bound.

Fix i ∈ [k], and let t0 < t1 < · · · be all the (random) times for which a(t) = i, or

equivalently Xi(t) = 1. Because (Xi(t))t∈N is a sequence of i.i.d. Bernoulli(p) random
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variables, the differences (t� − t�−1)�∈N are also i.i.d., with

P(t� − t�−1 = b + 1) = p(1 − p)b, b = 0, 1, 2, . . . .

In particular, for each b the law of large numbers guarantees

lim
L→∞

1

L

L∑
�=1

1{t�−t�−1=b+1} = p(1 − p)b a.s.

That is, p(1 − p)b is the limiting proportion of those a(t) = i for which the previous i

appeared exactly b + 1 time steps earlier. As the limiting proportion of t for which a(t) = i

is precisely p, as stated in (3.1), it follows that

lim
T→∞

1

T

T∑
t=1

1⋃
��1{t=t�,t�−t�−1=b+1} = p2(1 − p)b a.s. (3.5)

Of course, if t� − t�−1 = b + 1 and b � 1, then wi(t�) � 1/b for the simple reason that

a(t�−1 + 1), . . . , a(t�−1 + b) = a(t� − 1) constitute at most b distinct symbols. Therefore, by

(3.5) we have that for any positive integer N,

lim inf
T→∞

1

T

T∑
t=1

wi(t) � lim inf
T→∞

1

T

T∑
t=1

∞∑
b=1

b−11⋃
��1{t=t�,t�−t�−1=b+1}

�
N∑
b=1

b−1 lim
T→∞

1

T

T∑
t=1

1⋃
��1{t=t�,t�−t�−1=b+1} =

N∑
b=1

p2(1 − p)b

b
a.s.

By allowing N to tend to infinity and making the Taylor series computation

∞∑
b=1

p2(1 − p)b

b
= −p2

∞∑
b=1

(−1)b+1 (p − 1)b

b
= −p2 log p,

we see

lim inf
T→∞

1

T

T∑
t=1

wi(t) � −p2 log p a.s.

Since this argument holds for each i ∈ [k], we conclude

Z
(3.4)

� lim inf
T→∞

1

T

T∑
t=1

k∑
i=1

wi(t) �
k∑

i=1

lim inf
T→∞

1

T

T∑
t=1

wi(t) � −kp2 log p a.s.,

which in turn gives kp − kp2 log p � 1 by (3.2) and (3.3).

3.3. Proof of Theorem 1.2

Suppose there exists an avoidance coupling of k walkers on K∗
n . By [1, Lemma 5.2], it

follows that there is a 1-avoidance coupling of k Bernoulli(1/n) walkers. By Theorem 1.1,

we must have

1

n

(
1 +

log n

n

)
� 1

k
⇒ k � n2

n + log n
= n − log n +

log2 n

n + log n
.

To complete the proof, note that (log2 n)/(n + log n) � 1 for n � 3.
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