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Transient energy growth of a swirling jet with
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We investigate the existence of short-time, local transient growth in the helical modes
of a rapidly swirling, high-speed jet that has transitioned into an axisymmetric bubble
breakdown state. The time-averaged flow consisting of the bubble and its wake
downstream constitute the base state, which we show to exhibit strong transient
amplification owing to the non-modal behaviour of the continuous eigenspectrum. A
pseudospectrum analysis mathematically identifies the so-called potential modes within
this continuous spectrum and the resultant non-orthogonality between these modes and
the existing discrete stable modes is shown to be the main contributor to such growth.
As the swirling flow develops post the collapsed bubble, the potential spectrum moves
further toward the unstable half-plane, which along with the concurrent weakening
of exponential growth from the discrete unstable modes, increases the dynamic
importance of transient growth inside the wake region. The transient amplifications
calculated at several locations inside the bubble and wake confirm this, where strong
growths inside the wake far outstrip the corresponding modal growths (if available)
at shorter times, but especially at the higher helical orders and smaller streamwise
wavenumbers. The corresponding optimal perturbations at initial times consist of
streamwise streaks of azimuthal velocity, which if concentrated inside the core vortical
region, unfold via the classical Orr mechanism to yield structures resembling core (or
viscous) Kelvin waves of the corresponding Lamb–Oseen vortex. However, in contrast
to that in Lamb–Oseen vortex flow, where critical-layer waves are associated with
higher transient gains, here, such core Kelvin modes with the more compact spiral
structure at the vortex core are seen to yield the maximum transient amplifications.

Key words: instability, vortex flows, vortex instability

1. Introduction
In modern gas turbine combustors, the swirl component of mean flow is intended

to provide improved mixing and flame anchoring via development of appropriate
recirculation zones (e.g. Candel et al. 2014), while e.g. as the swirl intensity crosses
a certain threshold at low to moderate Reynolds numbers (Re), these reverse flow
regions that start at a breakdown bubble (which itself can be unstable at higher
Re) are eventually closed at the downstream end. Such flows have the distinct
potential for newer types of hydrodynamic instabilities, beyond the classical helical
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and double-helical ones (see Escudier 1988; Billant, Chomaz & Huerre 1998; Ruith
et al. 2003; Liang & Maxworthy 2005; Gallaire et al. 2006), e.g. non-modal transient
instabilities, which we explore here. These flows are characterized by a transition from
an initial jet-like profile (more correctly, a ring jet with the recirculation region at
its core, see e.g. Oberleithner et al. 2011) to a wake-like profile as the recirculation
bubble collapses via the appearance of a stagnation point. Although the inherent
multi-dimensional nature of such flows involving recirculation zones, twin shear
layers and the associated shear forces in different directions may appear complex,
in most cases, a two-dimensional axisymmetric analysis is more than sufficient to
compute the associated stability states.

A significant amount of past research has been directed to uncover any universal
mechanism behind vortex breakdown in swirling flows, either axisymmetric or spiral,
and the connection to its stability state, where it seems that the nature of inlet velocity
profile plays an important role (e.g. Liang & Maxworthy 2005), as does the degree of
swirl S, a parameter representing the ratio between the axial components of azimuthal
and axial momentums (e.g. Oberleithner et al. 2011) and the corresponding Re (in
this context, see also the mode selection scenarios discussed in Gallaire & Chomaz
2003, for a pre-breakdown jet). The axisymmetric vortex breakdown is sometimes
simply attributed to a change in flow criticality (e.g. Benjamin 1962; Escudier 1988;
Liang & Maxworthy 2008). However, at higher swirl numbers helical modes outside
the bubble take over and a major focus in the past has been to identify whether a
pocket of absolutely unstable flow could be directly linked to this bubble collapse
via higher-order spiral breakdown states (see e.g. Billant et al. 1998; Ruith et al.
2003; Liang & Maxworthy 2005; Gallaire et al. 2006). In this context, Gallaire
et al. (2006) found two such locations of absolute instability: one inside the bubble,
while a second one developed inside the wake downstream of the bubble, with an
analysis that concluded spiral breakdown to be driven by the global frequency of
the convective to absolute transition at the latter location. This contrasts the finding
of Qadri, Mistry & Juniper (2013), who discovered, via investigating the structural
sensitivity of the spiral mode, the flow around the bubble to be more sensitive to
feedback and hence must be the possible location of a wavemaker region. Others have
also proposed this spiral breakdown to be initiated inside the recirculation bubble
(e.g. Billant et al. 1998; Liang & Maxworthy 2005). Although from these analyses it
appears that absolute/convective instability concepts based on modal analysis provide
a convincing picture of the final unsteady structures of swirling flows, the onset of
such instabilities as the flow develops in time remains unknown. Whether short-time
transient growths are strong enough to nonlinearly enhance the exponential growths
from the corresponding modes, thereby yielding a final instability state due to a
multi-mode mechanism, is yet to be explored in a measured swirling jet, which is
one of the motivations behind this study. Here we note that in the related Batchelor
vortex model of swirling flows, strong transient growths have indeed been observed
(see Schmid et al. 1993; Ben-Dov, Levinski & Cohen 2004) at parametric spaces
where strong modal growths also co-exist. Further, considering the fact that typical
swirling flows encompass large parametric spaces with multiple tuning parameters, it
is possible for such non-modal growths to be more relevant over certain parametric
configurations to yield some sort of a ‘bypass’ mechanism in reaching a breakdown
state (for similar discussions on Batchelor vortex, see Heaton & Peake 2007).

In this work, our goal is therefore to investigate whether important transient growths
(compared to exponential modal growths) can exist in a strongly swirling (S= 1.22)
high Reynolds number (ReD= 20 000) jet that has undergone an axisymmetric bubble
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breakdown (as measured by Oberleithner et al. 2011), a case for which global
instability at a specific frequency is known to exist. In a temporal framework, we
ascertain whether certain combinations of streamwise wavenumber α and azimuthal
wavenumber m are more favourable for non-modal growths to appear, while at
the same time analysing how it differentially affects portions of the swirling flow,
including the recirculation bubble region and the wake downstream by particularly
focusing on their respective growth mechanisms. In this context, we note here that a
large body of classical work exists on non-modal transient analysis in bounded and
semi-unbounded flows (see e.g. Reddy & Henningson 1993; Andersson, Berggren &
Henningson 1999; Schmid 2000; Schmid & Henningson 2001; Akervik et al. 2007),
while for open flows like jets and mixing layers such studies have appeared only
more recently (e.g. Nichols & Lele 2011; Arratia, Caulfield & Chomaz 2013; Garnaud
et al. 2013; Vitoshkin & Gelfgat 2014). For the first class of simple bounded flows
(see Couette, pipe, channel, etc.), modal analysis predicts the flow either to be stable
or unstable at higher Reynolds numbers (compared to experimental measurements),
so for these flows to reach turbulent states via short-time transient growths appears
unambiguous. In contrast for shear flows, unstable exponential modes are present that
dominate the large-time dynamics. Here, how the short-time transient gains may fit
into the overall flow instability picture is quite unclear. Moreover, any non-normality
is usually regarded as unimportant at the lower Re (see e.g. Qadri et al. 2013), but as
the advection effects grow at higher Re this is presumed important (Chomaz 2005),
as we will show for the relatively higher Re (compared to other existing studies)
swirling jet considered here. Nevertheless, it is always possible for the collective
growth from algebraic modes to be important at shorter times, as has been observed
for the Batchelor and Lamb–Oseen vortex models of swirling flow (Antkowiak &
Brancher 2004; Pradeep & Hussain 2006; Heaton 2007; Fontane, Brancher & Fabre
2008; Mao & Sherwin 2012), so that such transient perturbations, if allowed to reach
finite amplitudes, may yield non-trivial modifications of the underlying mean flow to
fundamentally alter its primary instability character.

In this context, we note that the local stability approach followed here is of a
quasi-laminar nature (e.g. Mettot, Sipp & Bézard 2014), where molecular viscosity
is used in the viscous terms of the governing equations, further linearized about the
turbulent mean obtained from the experiments of Oberleithner et al. (2011). However,
it is also possible to include a turbulence model equation, e.g. unsteady RANS
(URANS), along with our governing equations, both linearized about a fixed point of
the former to yield stability equations for a fully turbulent flow (Crouch, Garbaruk
& Magidov 2007; Meliga, Pujals & Serre 2012). Alternatively, an easier option is to
simply extract a spatially varying turbulent eddy viscosity from the nonlinear stresses,
if available, which can be used with the viscous terms of the stability equations, in
addition to the molecular viscosity (Tammisola & Juniper 2016). This last approach
reduces the effective Re of the flow, especially in regions where turbulence kinetic
energy is high, providing improved agreement of global mode shapes (see Tammisola
& Juniper 2016) that appears to be attractive. Unfortunately, most models of eddy
viscosity are known to overestimate the turbulent dissipation, thereby markedly
stabilizing the exponential growth of the leading modes. In our work, it can be
particularly problematic as this would automatically increase the relative importance
of the non-modal algebraic modes via artificial overdamping of the exponentially
growing modal spectrum at most streamwise locations, unless the algebraic modes
are also equally damped. In the absence of adequate clarity on the role of turbulent
eddy viscosity models on the growth rates of, especially, the algebraic modes of the
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swirling jet spectrum, our preference is for a quasi-laminar approach via using a
uniform molecular viscosity.

In shear flows, the transient growth of perturbations is usually attributed to two
classical inviscid theories: the Orr mechanism (Orr 1907) and the lift-up mechanism
(see Landahl 1980; Butler & Farrell 1992). In the former, initially spanwise vortices
are kinematically deformed due to the base-flow mean shear, which owing to their
reorientation toward the direction of maximum stretching get energetically amplified,
while in the latter mechanism streamwise vortices are perturbed via their interaction
with this mean shear. In vortical flows, Antkowiak & Brancher (2004) found the
presence of a ‘core-contamination’ mechanism, which in essence is a combination of
the advection and unfolding effects of vortex spirals, analogous to the inviscid Orr
mechanism, followed by velocity induction at the vortex core. Another process specific
to vortical flows, as identified by Antkowiak & Brancher (2007) for axisymmetric
amplifications, is referred to ‘anti-lift-up’ to contrast the lift-up mechanism in plane
shear flows. In the former, optimal initial perturbations in the form of streamwise
azimuthal velocity streaks are shown to evolve into streamwise rolls or vortex rings.
Since similar evolution mechanisms are also evidenced in Batchelor vortex flows (see
Mao & Sherwin 2012), quite naturally, the question arises whether such idealized
mechanisms could be identified in experimentally measured swirling flows with
streamwise variations, like we consider here. In fact, we show that the strong and
contrasting nature of transient growths that we observe in our swirling mean flow
could indeed be explained by focusing on these optimal perturbation mechanisms,
where the imposed wavenumbers select one of these optimal mechanisms that further
depends upon the corresponding streamwise location.

To quantify transient amplifications, we perform a series of local analyses on the
time-averaged mean flow, as extracted from the axisymmetric bubble and its wake
of the relatively higher-Re, strongly swirling post-breakdown jet, as measured by
Oberleithner et al. (2011). Of course, the parallel (or quasi-parallel) assumption that
is inherent in such local analyses may be questioned (see e.g. Gallaire et al. 2006),
especially at the upstream and downstream edges of the recirculation bubble, but at
a few jet diameters downstream in the wake region and, perhaps, near the centre
of the bubble where the streamlines are nearly parallel (see figure 2 of Oberleithner
et al. 2011), local solutions can be fairly accurate. It is later shown in this work
that the mean flow non-parallelism and its effect on the respective transient growth
can be qualified via noting the relative smoothness of the maximum transient growth
variation along the streamwise direction. At higher times, this procedure clearly
identifies three distinct regions within which this maximum growth curve can be
smoothly varying, where the effect of flow non-parallelism is thus minimal. One such
region is at the core of the recirculation bubble, away from the edges, while the
other two are located inside the wake. Here, we mention that a fully global transient
analysis using a reconstructed, continuously varying base flow, via interpolating
the available discrete data, is also possible, although not explored here. However, a
similar global transient analysis of Batchelor vortex by Mao & Sherwin (2012), found
answers that are not qualitatively dissimilar from a corresponding local analysis. The
strong transient growths from the respective continuous spectra that our present local
analysis confirms at several streamwise locations are also expected to be qualitatively
unaltered even for a fully global approach.

The remaining paper is organized as follows. In § 2, a brief description of the
underlying base flow as extracted from Oberleithner et al. (2011) is given. Some
highlights of our linear stability solver along with the local transient analysis is
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FIGURE 1. (Colour online) The fitted mean velocity profiles from Oberleithner et al.
(2011) in a meridian (θ) plane, showing (a) axial profiles (ūz) and (b) azimuthal profiles
(ūθ ) at selected streamwise locations where transient growths are computed in § 5.3. The
shaded area approximately represents the streamwise extent of the recirculation bubble,
while the dashed curves are for locations downstream of the bubble collapse and within
the wake region.

in § 3. Section 4 classifies the linear stability spectrum, which also motivates the
pseudospectrum analysis, as introduced in this section. The main results are in § 5,
where §§ 5.2, 5.3 and 5.4 focus on establishing the dynamically important transient
amplifications inside the wake region, while § 5.5 deals with the corresponding
optimal energy growth mechanisms. The paper is concluded via § 6, while appendix A
documents more parametric details of the transient calculations and appendix B lists
matrix terms of the eigenvalue problem.

2. The mean flow
The mean flow as extracted from the measurements of Oberleithner et al. (2011)

for a turbulent swirling free jet of ReD = 20 000 and S = 1.22 is shown in figure 1.
Here, ReD is the Reynolds number based on the nozzle diameter D∗ and average axial
velocity U∗, with ( )∗ denoting dimensional quantities, while the swirl number S is the
ratio between the axial fluxes of angular and axial momentum, which does not vary
along the streamwise direction.

The distinguishing feature of this time-averaged swirling flow, as seen in figure 1,
is the appearance of a region of reversed flow in the form of a bubble, immediately
downstream of the nozzle, which is bound by the inner shear layer and the upstream
and downstream stagnation points. This bubble collapses at approximately z∗/D∗> 1.4,
as indicated in the figure, after which the jet enters a region resembling a wake with
the gradual increase of axial centreline velocity, further downstream. The axial ūz
and azimuthal ūθ profiles shown in figure 1 are analytical fits (due to Monkewitz
& Sohn 1988; Michalke 1999) to the actual measurements, whose details are in
Oberleithner et al. (2011), and are not repeated here. Note here that, in Oberleithner
et al. (2011), fitting parameters for the mean profile curves are available at only
four streamwise locations of figure 1, while at other locations the same curve fitting
procedure described in Oberleithner et al. (2011) is used to obtain the corresponding
parameter values. Similar to Gallaire et al. (2006), this time-averaged flow can be
taken as a baseline axisymmetric breakdown state to study the effects of helical
modes (m > 0) on its stability, which we do here by focusing on the non-modal
linear dynamics, via a local analysis. In doing so, along with the neglect of ūr,
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we invoke the parallel (or quasi-parallel) flow assumption for all the mean profiles.
As discussed in § 1, flow parallelism is unlikely to be valid at z∗/D∗ = 0.25 which is
at the upstream edge of the bubble and at locations z∗/D∗ = 1.5 and 1.6 which are
at its downstream edge, although we do report results from some of these locations
too. On the contrary, positions in the wake from around z∗/D∗ > 1.8 may yield more
accurate local answers as might the location around z∗/D∗ = 1.0, located near the
middle of the bubble.

3. Methodology
3.1. Linear stability equations

The incompressible, viscous equations without body force terms are formulated in
cylindrical polar coordinates (r, θ, z), non-dimensionalized at each streamwise location
by the local maxima of the mean streamwise velocity ū∗z |max and its corresponding
radial location r∗|max (see figure 1) to yield

∂ur

∂r
+

ur

r
+

1
r
∂uθ
∂θ
+
∂uz

∂z
= 0, (3.1a)

Dur
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−
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1
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∂p
∂r
+

1
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(
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∂θ

)
, (3.1b)

Duθ
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+
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1
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+

2
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∂ur

∂θ

)
, (3.1c)

Duz

Dt
=−

1
ρ

∂p
∂z
+

1
Re
1uz, (3.1d)

where D/Dt and ∆ are respectively the material derivative and the Laplacian operator,
given by

D
Dt
=
∂

∂t
+ ur

∂

∂r
+

uθ
r
∂

∂θ
+ uz

∂

∂z
, (3.2a)

∆=
∂2

∂r2
+

1
r
∂

∂r
+

1
r2

∂2

∂θ 2
+
∂2

∂z2
, (3.2b)

with Re = ū∗z |maxr∗|max/ν being the local Reynolds number that varies along the
streamwise direction (in contrast to ReD), ν is the kinematic viscosity and ρ is the
density.

Linear stability equations are now formed from (3.1) via standard procedures where
the flow variables q are first decomposed into mean q̄ and fluctuations q′ from which
the mean equations are then subtracted out. The fluctuations are modelled to possess
travelling-wave-like solutions along the axial z and azimuthal θ directions with a
periodic time t via

q′(r, θ, z, t)= q̂(r) exp(iαz+ imθ − iωt), (3.3)

where q′ = [u′r u′θ u′z p′]T, q̂(r) is the unknown complex eigenfunction, α and m
are respectively the axial and azimuthal wavenumbers and ω is the frequency, a
complex number in our temporal setting. On using (3.3) in (3.1) and linearizing for
small fluctuations, the stability equations may be written as a generalized eigenvalue
problem of the form

C · q̂= λ q̂, (3.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

71
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.712


294 G. Muthiah and A. Samanta

where

C = A−1B and λ= i/ω, (3.5a,b)

where, A and B are 4 × 4 matrices (B is singular) whose details are given in
appendix B.

3.2. Boundary conditions
At r= 0, the boundary conditions depend upon the azimuthal wavenumber m, whose
treatment is standard (see e.g. Batchelor & Gill 1962; Khorrami, Malik & Ash 1989;
Yadav & Samanta 2017):

m= 0 : ûr = 0, ûθ = 0, ûz = χ1, p̂= χ2,

m= 1 : ûr + iûθ = 0,
∂ ûr

∂r
+ i
∂ ûθ
∂r
= 0, ûz = 0, p̂= 0,

m> 1 : ûr = 0, ûθ = 0, ûz = 0, p̂= 0,

 (3.6)

while at r= rmax, the maximum radial extent of the mean flow, all fluctuations go to
zero:

∀m : ûr = 0, ûθ = 0, ûz = 0, p̂= 0, (3.7a−d)

where χ1 and χ2 are constants, set here to zero, with no loss of accuracy.
Equation (3.4) along with the boundary conditions (3.6) and (3.7) are solved

using a standard Chebyshev spectral collocation technique, described in detail in
Yadav & Samanta (2017). A simple linear mapping of r = (1 + ξ)/2 is used to
map the Chebyshev interval −1 6 ξ 6 1 to the physical domain 0 6 r 6 rmax. Note
here that unlike in Oberleithner et al. (2011), no stretching of collocation points
toward the jet core is done, which is presumed to increase the convergence speed of
exponentially varying modes in an eigen system. This is because faster convergence
of the continuous spectrum is deemed equally important in this work. In fact, modes
within the continuous spectrum, as discussed later, are known to dominate near and
outside the jet outer shear layer that makes the natural Gauss–Lobatto-type clustering
more efficient, apart from the fact that most types of numerical stretching are known
to worsen the condition number of matrices, e.g. that of A in (3.5) (similar to in
Mao & Sherwin 2011).

3.3. Local transient analysis
In this section, only a brief overview of the local transient analysis, as used in this
work is given, which follows established procedures (see e.g. Schmid & Henningson
2001, for more details). In this, once we assume solutions of the form q̃(r, t) =
q̂(r) exp(−iωt), the corresponding initial value problem for (3.4) is

B ·
∂ q̃
∂t
= A · q̃, (3.8)

where on restricting to the first M eigenfunctions of C, a new vector κ may be
introduced (see Schmid & Henningson 2001) via

q̃(r, t)=
M∑

j=1

κj(t)q̂j(r), (3.9)
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where κj(t)= exp(−iωjt)κj(0) are the expansion coefficients for the reduced basis of
eigenfunctions {q̂1, . . . , q̂M} of (3.4), with ωj being the corresponding eigenvalues. In
this work, M contains all the stable eigenmodes contained within ωj > −5, yielding
sufficiently accurate transient growth for all the cases considered. Now, the energy
norm ‖q̃‖2

E using (3.9) yields

‖q̃‖2
E =

π

2
κHUκ =

π

2
κHF HFκ = ‖Fκ‖2

2, (3.10)

where ( )2 denotes the matrix 2-norm (Euclidean or the L2 norm), ( )H indicates
conjugate transpose, U = F HF is a square Hermitian and positive definite matrix of
dimension M, whose elements are obtained via the Chebyshev coefficients (see also
Reddy, Schmid & Henningson 1993) to yield

Uij = q̂H
i Γ1q̂j + q̂H

i Γ2q̂j, (3.11)

where

Γ1 =

∫ 1

−1
Ti(ξ)Tj(ξ) dξ =

0, if i+ j is odd,
1

1− (i+ j)2
+

1
1− (i− j)2

, if i+ j is even,
(3.12)

and

Γ2 =

∫ 1

−1
Ti(ξ)Tj(ξ)ξ dξ =


1

4− (i+ j)2
+

1
4− (i− j)2

, if i+ j is odd,

0, if i+ j is even,
(3.13)

where Ti is the ith Chebyshev polynomial.
The maximum amplification G(τ ) at time τ , over all possible initial conditions (see

Mao & Sherwin 2012), on using (3.10) yields

G(τ )= sup
q̃0

‖q̃τ‖2
E

‖q̃0‖
2
E
= ‖F exp(−iΩτ)F−1

‖
2
2, (3.14)

where exp(−iΩτ) is a diagonal matrix whose elements are exp(−iωjτ) for j = 1
to M, q̃0 is the optimal initial perturbation while q̃τ is the corresponding outcome
at time τ . We note here that the 2-norm of a matrix is simply its principal singular
value, denoted here by σ1( ), and thus the transient gain of (3.14) is

G(τ )= σ 2
1 (F exp(−iΩτ)F−1), (3.15)

which can thus be computed by simply knowing the eigenvalues ωj and the vector
eigenfunctions q̂j of the generalized eigenvalue problem (3.4).

Finally, the optimal initial perturbation and its outcome can be obtained via the use
of singular value decomposition principles, requiring (see e.g. Schmid & Henningson
2001)

F exp(−iΩτ)F−1v1 = u1σ1, (3.16)

which describes a mapping F exp(−iΩτ)F−1 of the input vector v1 (right singular
vector) onto the output vector u1 (left singular vector), amplified by σ1, the 2-norm
of this mapping, at time τ . These optimal conditions corresponding to G(τ ) of (3.15)
are simply

q̃0 =QF−1v1 and q̃τ =QF−1u1, (3.17a,b)

where Q is a matrix of eigenvectors obtained from (3.4) (see also Mao & Sherwin
2012).
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FIGURE 2. (Colour online) Convergence of the spectrum (symbols) and ε-pseudospectrum
(lines) for the swirling mean flow of figure 1 at m = 1, α = 1 and z∗/D∗ = 0.25. In
(a) the radial extent of the domain (rmax) varies, where (A, – – –) rmax = 5; (E, ——)
rmax = 10; and (C, – · – ·) rmax = 20, with N = 1000 except the last case where N = 1500.
In (b) the Chebyshev polynomial order (N) varies, where (A, – – –) N = 800; (@, – · – ·)
N = 900; (E, ——) N = 1000; and (C, · · · · · ·) N = 1100, with rmax = 10 in all cases. The
ε-pseudospectrum contours in all cases indicate ε = 10−9.

4. Spectrum and pseudospectrum
4.1. Discrete and continuous spectrum

Figure 2 shows the numerical convergence results of the discrete spectrum with
respect to the radial extent of the domain rmax (figure 2a) and the order of Chebyshev
polynomial N (figure 2b). For the parametric space of figure 2, there are two
discrete unstable modes (ωi > 0) with exponential growth, which quickly converge
to fixed points in the complex-ω plane once the numerical tuning parameters of
rmax and N are gradually increased. Note that the order of Chebyshev polynomials
required here for such a convergence is larger than in Oberleithner et al. (2011), who
reported convergence around N = 300. This is not surprising since we do not use any
additional stretching of the Gauss–Lobatto points, as discussed before in § 3.2, since
it can potentially worsen the convergence of the continuous spectrum. Once any of
the discrete modes cross the neutral axis (ωi= 0) toward the positive half-plane, they
turn hydrodynamically unstable. The other discrete modes which are below this axis
(ωi < 0) are stable modes with exponentially decaying eigenfunctions along the radial
direction. Here, such stable exponential modes are seen to converge into branches
of distinct shape, similar to e.g. the plane Couette and pipe flow spectra (see e.g.
Schmid & Henningson 2001).

The remaining spectrum is now referred to as the continuous spectrum, where
we introduce classifications originally due to Obrist & Schmid (2010), Mao &
Sherwin (2011). Within this spectrum, we classify as ‘potential modes’ those that
have significant radial variations outside the jet core, while still being asymptotically
stable, with a slower algebraic decay (rather than the exponential decay of typical
stable discrete modes) at larger radial distances (see figure 3 for visualizations). In
figure 2, these modes can be seen to be scattered over a large part of the spectrum,
as their numbers depend upon N. Mathematically, such modes are also known to be
highly non-orthogonal (Obrist & Schmid 2003; Mao & Sherwin 2011) and hence there

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

71
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.712


Transient growth of swirling jet 297

0

–0.5

1.4 1.6

Group A

Group B

0.5

0

1.0

0.5 1.0 1.5 2.0

(a) (b)

FIGURE 3. (Colour online) Radial decay of the potential mode (E) eigenfunctions (|ûθ |),
shown in (b) for the modes highlighted in (a) at u, (1.479 − 0.198i) and p, (1.436 −
0.348i) in the marked group A region and at u, (1.413 − 0.430i); p, (1.384 − 0.516i)
and f, (1.352 − 0.605i) in the group B region. The parameters are m = 1, α = 1 at
z∗/D∗ = 1.0, while in (a) the solid lines indicate the pseudospectrum of ε = 10−6;6 are
discrete unstable and@ are discrete stable modes.

is a greater chance for them to participate in the short time transient growth, which
we investigate here. Although seemingly spurious in nature, we shall find in § 4.2 that
these potential modes too can be bounded (i.e. numerically converged) within an area
in the complex plane via computing a pseudospectrum. Further, potential modes, for
which ωi→ 0 are called ‘free-stream modes’, following terminologies from boundary
layer flows (see e.g. Mack 1976; Zaki & Saha 2009), used for vortical flows by Mao
& Sherwin (2011, 2012), which at the limit have zero radial decay rate. As we shall
see, these modes ensure a small but finite transient growth even at larger times. In
this work, rmax = 10 and N = 1000 are used in all computations.

4.2. Pseudospectrum
The continuous modes which do not converge to fixed points in space may at first
glance seem spurious. But on closer inspection, most of these modes in figure 2
are seen to roughly fill a rectangular area bounded approximately by the lines
ωr − 1 = 0, 2ωi + ωr + 1 = 0 and the imaginary axis on its three sides, even
as the numerical parameters are varied. These bounds do not appear to satisfy
simple analytical relations, as they change significantly with the mean swirling flow
developing downstream into the wake region.

Mathematically, the potential modes are not exact solutions of the modal system
(3.4) and the corresponding boundary conditions, but satisfy them to some finite error.
The ε-pseudospectrum σε of operator C in (3.4) is required to quantify such errors in
estimating the continuous modes, defined as (e.g. Trefethen & Embree 2005)

σε(C)= {λ ∈C : ‖(λI − C)−1
‖2 < ε}, (4.1)

where λ is a complex eigenvalue and for σε the minimum singular value is used. For
the discrete modes, ε = 0, while for the continuous modes the finite magnitude of ε
represents the error in estimating such modes.
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In this work, the ε-pseudospectrum is computed after projection of (3.4) into
a lower-dimensional subspace via a partial Schur decomposition and then an
inverse Lanczos iteration is done to compute the smallest singular values, following
procedures described in Trefethen (1999).

Figure 2 also shows convergence of this ε-pseudospectrum where the ε = 10−9

contour is plotted for different parametric combinations of N and rmax. In spite
of an apparent lack of convergence of potential modes in the discrete sense, the
ε-pseudospectrum contour clearly marks a region for such modes, whose top and
right boundaries have converged for all parameters of the figure. This process also
identifies a second distinct region for the potential modes at the junction of discrete
stable mode branches, which are further classified in figure 3(a) for a different set
of parameters. Such a splitting up of the potential modes region into two distinct
sections is observed for the first time, which we label here as ‘group A’ and ‘group B’,
respectively (see figure 3a), where the former group lies at the junction of discrete
stable mode branches. In figure 3(b), the absolute value of ûθ is plotted for a selection
of the potential modes, as marked in figure 3(a), gradually moving from the group A
to group B regions. The nature of radial decay for all these modes in these twin
regions follows |ûθ | ∼ r−ν (see e.g. Obrist & Schmid 2010), where the exponent ν
varies. The potential modes inside the group A region show characteristics resembling
the discrete stable modes, with the first mode at (1.479− 0.198i) in figure 3(a) being
almost indistinguishable from a discrete stable mode with a peak near r = 0.5, as
shown in figure 3(b). As we move toward the group B potential modes, a secondary
peak appears outside the core vortical region, which becomes dominant for modes of
the group B region, starting from the (1.413 − 0.430i) mode marked in figure 3(a),
with the eventual disappearance of the peak inside the jet core (see figure 3b). The
group A potential modes show slower decay at ν ≈ 0.1, while for the group B modes
this is much faster at ν ≈ 0.4. As we shall find out in § 5.2, such different decay
rates play an important role in their respective transient gain calculations, where the
group A modes show higher dominance.

The ε-pseudospectrum contours when plotted for the discrete modes appear as
concentric circles (not shown here, but see e.g. Mao & Sherwin 2011), which are
possible to be resolved only at lower N, when some of these discrete modes are yet
to be fully converged and thus have finite convergence errors.

The ε-pseudospectrum calculations as shown here, allow for a more definitive way
of classifying the continuous spectrum discussed in § 4.1. We use this in the transient
growth calculations of § 5, where we adopt the convention that potential modes belong
to the part of the continuous spectrum bounded by a specific pseudospectrum contour
level, chosen to be ε = 10−6 in this work (see also figure 4), with the remaining
spectrum automatically classified into free-stream modes.

5. Results and discussion

In this section, our first goal is to establish the presence of strong transient
growths in the swirling jet considered here and understand the relevance of this
when compared to exponential modal growths from the discrete unstable mode(s). We
quantify this growth by analysing a range of streamwise and azimuthal wavenumber
perturbations on top of the mean profiles at the several streamwise locations shown
in figure 1. Afterwards, our focus shifts to mechanisms where the aim is to
find connections between known transient growth mechanisms with the observed
growth. The solvers computing the temporal eigenvalues and eigenvectors, as given
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FIGURE 4. (Colour online) Modal classification and local transient growths for (a,b) m=1,
α = 1 at z∗/D∗ = 0.25; (c,d) m = 1, α = 1 at z∗/D∗ = 1.0 and (e, f ) m = 2, α = 0.5 at
z∗/D∗ = 2.6. The specific modes are f discrete unstable; @ discrete stable; E potential
andA free-stream types, while the solid line in (a,c,e) show pseudospectrum of ε = 10−6.
Transient gains in (b,d, f ) are from – – – discrete stable; – · – · potential; – ·· – ·· potential
+ discrete stable; — — — all stable (including free stream) and —— all unstable modes,
while the thick grey line indicates net gain from all modes. In addition, in (d) gain
curves for – · –u – group A potential; – · –p – group B potential and – ·· –u – group A
potential + stable discrete modes are shown, where these potential mode groupings are
labelled in (c). The insets in (a,c) show content of respective grey boxes.
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by (3.4) and (3.5), and transient growths of (3.14) are validated for accuracy against
the Hagen–Poiseuille flow calculations of Schmid & Henningson (1994), whose
details are reported elsewhere (see Muthiah 2017).

5.1. Parametric space
The transient growths are computed at 10 streamwise locations as depicted in figure 1:
z∗/D∗= 0.25, 0.5, 0.6, 1.0, 1.4, 1.5, 1.8, 2.2, 2.6 and 3.0, where the first five locations
are approximately inside the recirculation bubble, while the others are inside its wake.
We study perturbations composed of five azimuthal wavenumbers: m = 0, 1, 2, 3
and 4, where our choice of the higher wavenumbers (m> 2) reflects the expectation
that higher-order helical modes should have significant role in high-Re, high swirl
number flows (see also Ruith et al. 2003; Gallaire et al. 2006), which point is as yet
unexplored. The streamwise wavenumber, on the other hand, is known to play a key
role in the selection of transient growth mechanism for swirling flows (e.g. Fontane
et al. 2008), where completely different processes seem to dominate at the lower and
higher end of the wavenumbers. Keeping this in mind, we have chosen 12 different
values of α, with α = 0.05, 0.1 and 0.3 near the long-wavelength end, α = 0.5, 0.7
and 1.0 for intermediate values, and α = 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 to study the
effect of higher wavenumber perturbations. In what follows, owing to the large size
of this database, we attempt to highlight and summarize the major findings, while the
detailed results for all the parameters are available in appendix A.

5.2. Role of potential modes in transient growths
The role of a continuous spectrum, if present, for the short-time transient growth has
long been argued, especially for the boundary layer type flows (see e.g. discussions
in Schmid & Henningson 2001), and different techniques have often been required
in order to include this continuous spectrum and to calculate its optimal transient
growth (see Butler & Farrell 1992; Corbett & Bottaro 2000). Obrist & Schmid (2003)
found important short-time transient growths in a class of boundary layer flows (swept
Hiemenz flow) from algebraically decaying modes, which were later demonstrated to
be part of the continuous spectrum of such a flow (see Obrist & Schmid 2010). Mao
& Sherwin (2011) took this forward and found the existence of such a continuous
spectrum in the Batchelor vortex model, where the transient optimal growth from
the full spectrum was found to be almost identical to that from just the continuous
eigenmodes (see Mao & Sherwin 2012), while the growth from only the discrete
stable modes was one order of magnitude smaller.

In this section, we first investigate the source of transient gains in the swirling jet
spectrum of figure 2 and whether potential modes contribute significantly to it, as has
been found for the Batchelor vortex flow. For this, we pick three streamwise locations
from figure 1, at z∗/D∗= 0.25, which is at the leading edge of the recirculation bubble
(see figure 4a,b), at z∗/D∗ = 1.0, near the centre of this bubble (see figure 4c,d) and
at z∗/D∗ = 2.6, well inside the downstream wake region (see figure 4e, f ). We first
note that there appears to be significant broadening of the continuous spectrum
at the downstream locations, where the leading pseudospectra move closer toward
the unstable half of the complex plane. This points to increased expectations of
strong transient growth at such downstream locations (e.g. Trefethen et al. 1993).
This is especially true for profiles inside the wake region (see for z∗/D∗ = 2.6
in figure 4e), which further indicates a greater probability for the wake region
to support such non-modal growths. When compared to modal growths from the
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corresponding discrete unstable mode(s), such non-modal growths may dominate, as
the former growth rates are also significantly weakened at the wake (consistent with
the findings of Oberleithner et al. 2011). This is also reflected in the number of
discrete unstable modes at z∗/D∗ = 1.0 (figure 4c), which decreases drastically at the
location z∗/D∗ = 2.6 (figure 4e), confirming reduced modal dynamics at the latter
location. Such a trend can now be visualized in figure 4(b,d, f ), where at z∗/D∗= 1.0,
the exponential growth from the modally unstable spectrum quickly exceeds the
transient gain from continuous spectrum, at τ < 10, well before the latter reaches its
peak (see figure 4d). In contrast, at z∗/D∗ = 2.6, for the parameters of figure 4, the
transient gain from all stable modes peaks at τ ≈ 77, while the exponential growth
from the sole unstable discrete mode exceeds this transient gain only at τ > 108,
well after the latter starts to saturate. In figure 4(b), the nature of unstable energy
gain is the result of exponential gains from two discrete unstable modes of almost
equal strength (see figure 4a), which at smaller τ yields an algebraic behaviour with
oscillations, whose amplitudes progressively diminish with time.

Figure 4 also indicates how different portions of the stable spectrum participate
in transient amplification. Clearly, the discrete stable modes and potential modes
by themselves, but especially the former group, yield relatively little transient gain,
while when considered together the resulting increased non-orthogonality yields a
growth higher by significant orders of magnitude (e.g. almost three orders higher
than the transient growth due to only potential modes and five orders over discrete
stable modes, as shown in figure 4f ), similar to observations for Batchelor vortex
flows (Mao & Sherwin 2012). Here, the role of free-stream modes seems to be rather
minimal except at higher times by which point the transient gain from the rest of
stable spectrum has almost disappeared, when these modes add a small but finite gain
at all subsequent times, as evident in figure 4(b) but mostly invisible in the other two
cases.

Next, focusing further on the details of potential spectrum, our particular choice of
ε-pseudospectrum contour (ε= 10−6) in figure 4(c) has demarcated the entire potential
spectrum into two groups, as classified before in figure 3(a). The group A modes,
which show relatively slower algebraic decay in figure 3(b), are shown here to produce
higher transient gains at higher times (see figure 4d), while the group B spectrum does
this at relatively shorter times, yielding the two-hump curve for the growth from the
entire potential spectrum in figure 4(d). However, once the discrete stable spectrum
is added to the group A potential modes, it is observed (in figure 4d) to yield a
growth almost identical to that from the entire stable spectrum, which clearly points to
this part of the potential and discrete spectrum having the most significant non-modal
behaviour, owing to their proximity to the unstable half-plane.

5.3. Transient growth comparisons inside the bubble and wake
Once the potential for transient growths is apparent in § 5.2, in this section we
demonstrate this short-time transient growth in detail at 4 selected locations: two
locations inside the recirculation bubble at z∗/D∗ = 0.6 and 1.0 (near the middle of
this bubble) and for two locations inside the wake at z∗/D∗ = 1.8 (‘near wake’) and
2.6 (‘far wake’). Figure 5 shows the results for locations inside the bubble for m= 1,
2, 3 and 4 at the following six selected streamwise wavenumbers: α = 0.1, 0.3, 0.5,
1.0, 2.0 and 3.0, while figure 6 shows the same for the wake locations. In all these
figures, the exponential growth from the unstable exponential mode(s) are also plotted
simultaneously to show the extent (in time) to which the transient growths dominate.
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FIGURE 5. (Colour online) Local transient growths from the hydrodynamically stable
modes inside the recirculation bubble at locations z∗/D∗ = 0.6 and 1.0 (as labelled)
computed for (a,b) m= 1, (c,d) m= 2, (e, f ) m= 3 and (g,h) m= 4 perturbations at the
following streamwise wavenumbers α, — — — 0.1; – · – · 0.3; —— 0.5; — —u— 1.0;
– · –u 2.0 and ——u 3.0, shown as superimposed upon the corresponding exponential
growths from all the unstable modes (in dark grey).

Note here that in some of these figures, especially at the wake locations of figure 6, a
missing exponential mode growth curve indicates an absence of any modal instability
for those parameters.

Before proceeding further first note that, figure 5(a,b) clearly indicates the
remarkable similarity of the m = 1 transient gain curves for the exponential modes,
across all the calculated axial wavenumbers (excepts perhaps at α = 0.1), which
moreover remains largely unchanged at locations around the centre of the recirculation
bubble, unlike at the corresponding wake locations (see figure 6a,b). Such observations
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FIGURE 6. (Colour online) Same as in figure 5 but for locations in the wake region at
z∗/D∗ = 1.8 and 2.6, as labelled.

provide important clues in support of the m = 1 mode emerging as the dominant
exponentially unstable global mode, as has been found by Oberleithner et al. (2011)
for this flow and Gallaire et al. (2006) for a different swirling jet. In fact, the apparent
similarity of these gain profiles across the bubble locations in figure 5(a,b) also points
to the possible origin of such a global mode being inside the recirculation bubble.

Next, a quick glance through figure 5 reveals that at both locations inside the bubble,
the exponential growth remains quite strong, but especially at m = 1 and 2, which
easily exceeds the corresponding transient gains at relatively short times (τ < 20) for
all the streamwise wavenumbers explored here. Not until the higher helical modes of
m = 3 and 4, at the relatively lower streamwise wavenumbers of α = 0.1 and 0.3,
do we find such transient gains inside the recirculation bubble to dominate over the
corresponding exponential modal growth, over longer time periods (see figure 5e–h).
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The fact that the wake region has weaker modal instabilities coupled with the
increased shifting of the potential mode spectrum closer to the unstable half-plane
(see figure 4e) is illustrated in figure 6 by an increased importance of short-time
transient gains at these locations. Especially, for the higher helical modes of m > 1,
the transient gains are seen to reach their respective peaks before the corresponding
exponential modal growths exceeding them, for all axial wavenumbers α6 0.5, while
for m> 2, this bound is higher at α 6 1.0.

In summary, short-time transient gains are indeed more dynamically important in
the wake of the swirling flow, since the energy gains peak in time well before the
exponential growths exceed them (if at all present), but especially for the higher-order
helical (m > 2) and moderate to low streamwise wavenumber (α / 1.0) perturbations.

The details of transient gains from the remaining azimuthal wavenumbers (including
m = 0) and axial wavenumbers, at other streamwise locations are detailed in
appendix A. There, the axisymmetric m = 0 perturbations can be seen to be quite
ineffective (especially at the low to moderate α of figures 16 and 17), which is not
that surprising given the fact that the specific mean flow of figure 1 corresponds to
an axisymmetric breakdown state.

5.4. Evolution of the maximum amplification Gmax

Instead of dwelling on all the optimal transient growth data generated for the
parameters of § 5.1, which can be overwhelming (see appendix A), in this section,
we rather focus on the maximum amplification Gmax from the stable spectrum. Gmax

is defined as the maximum gain G(τ ) from all the stable modes over all times τ ,
computed in this section for several parametric combinations to make better physical
sense of the database. With the other flow parameters fixed, we first vary perturbation
wavenumbers m and α of (3.3), yielding the cases shown in figure 7, computed at
each of the ten streamwise locations of figure 1. Figure 7(a) documents the integer
azimuthal mode numbers mmax at which the maximum amplification Gmax occurs,
at each of the z∗/D∗ locations over all the α and τ investigated. Surprisingly, the
first helical mode m = 1 does not seem to peak at any of the locations studied, in
contrast to the findings of e.g. Oberleithner et al. (2011), for the same mean flow
and Gallaire et al. (2006) for a lower Re swirling flow, both of which have been
found to be globally unstable for m= 1 perturbations. Moreover, except at a couple of
locations near the beginning of the recirculation bubble, at all other locations an even
azimuthal mode (m = 2 or 4) yields the maximum optimal amplification. The fact
that the higher (and perhaps even) azimuthal modes are more sensitive to transient
growths possibly points to different mechanisms than at lower Re flows, which we
shall explore in § 5.5.

On the other hand, the maximum axial wavenumbers αmax as computed in
figure 7(b) at first glance may seem to be scattered all over, but at the highest
growth locations (on comparing with figure 7c) their numbers are always within a
range of 0.5/α/ 2.5, except for the result at z∗/D∗= 1.4. Recall that at the locations
z∗/D∗ = 0.25, 1.4 and 1.5, which are near the ends of the recirculation bubble, the
computed αmax is clearly dubious due to the strong non-parallel effects present in the
mean flow at these locations.

Figure 7(c) shows the location z∗/D∗ = 1.0 yielding the maximum Gmax among
all the streamwise locations studied here. However, this amplification, almost an
order higher than the next highest gain location at z∗/D∗ = 1.8 in the wake,
occurs at a relatively higher time τmax ≈ 90 (see figure 7d), by which point the
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FIGURE 7. Maximum transient energy gain Gmax at each streamwise location of figure 1
shown as a function of (a) azimuthal wavenumber (m), for all (α, τ ), (b) streamwise
wavenumber α, for all (m, τ ), along with (c) the respective magnitudes of this gain |Gmax|

and (d) the time τmax, at these locations. The shaded area represents the streamwise extent
of the recirculation bubble, similar to figure 1.

corresponding exponential growth easily exceeds it, rendering the algebraic growth
insignificant. In contrast, in the near wake region, the significant optimal amplifications
(105 < Gmax < 106) occur within a much shorter duration τmax < 50, when the
corresponding exponential growths may not be significant, if at all present. For
example, at z∗/D∗ = 1.8, the peak transient amplification occurs before exponential
modal growth exceeds it, as seen in figure 6(g) (at mmax = 4 and αmax = 2.0), which
is thus dynamically more important for short-time transients than a location inside
the bubble at z∗/D∗ = 1.0.

In figures 8 and 9, we plot the contours of Gmax in several parametric planes to
further visualize its significance. The temporal evolution seen in figure 8 repeats some
of the observations just made in figure 7, including the fact that higher Gmax contours
tend to be clustered at m = 2 at larger times, while at even higher helical modes
(m = 3, 4) this appears at much smaller times τ < 50 (see figure 8a). As for α in
figure 8(b), several such ‘hot spots’ do seem to exist, especially at α< 2 that is spread
over a longer τ and at 2 < α < 3, active over much shorter times. In figure 8(c), it
is interesting to note that at z∗/D∗ = 1, which has been found in figure 7 to yield
the highest amplification at relatively longer times, in fact, also supports high optimal
growth at relatively smaller τ <50. This particular figure also clearly identifies the two
other locations in the wake that are important for transient dynamics, at z∗/D∗ = 1.8,
where this is relevant at shorter times (τ < 50), while at the far wake location of
z∗/D∗ = 2.6 this occurs at two distinct time instants of τ ≈ 75, and then later at
τ ≈ 175, with the former being more important.

In this context, it may be noted that the Gmax contours in figure 8(a–c) undergo a
relatively slow decay, thereby stretching the time axis to relatively larger values of τ ,
which may not be physically realizable (see discussions in Pradeep & Hussain 2006;
Mao & Sherwin 2012). In contrast, the growth phase of Gmax happens quite fast, so
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FIGURE 8. (Colour online) Transient evolution of Gmax as a function of (a) m, for all
(α, z∗/D∗), (b) α, for all (m, z∗/D∗) and (c) z∗/D∗, for all (m, α). In (d), spatial evolution
of Gmax is shown at —— τ = 10, – – – τ = 30, – · – · τ = 75 and — — — τ = 125, with
the three distinct regions differently shaded (see text). In (a–c), there are 25 Gmax contour
levels in between 1 (blue) and 2× 107 (red), distributed exponentially. The dashed straight
line in (c,d) indicates the approximate collapsing location of the recirculation bubble.

that at τ < 30, the maximum transient gain exceeds Gmax > 5 × 106, at z∗/D∗ = 1.0,
while by τ < 75 this is at Gmax > 7 × 105, located at the far wake z∗/D∗ = 2.6 (see
figure 8d). Such times taken to reach peak energy growth compare favourably with the
peak nonlinear growth of a Batchelor vortex, observed at τ ≈60, via direct simulations
(see Mao & Sherwin 2012). Further, figure 8(d) shows that as τ rises, the Gmax curves
appear more discontinuous over the streamwise extent of the flow domain. Now this
is not surprising, since the inherent non-parallelism of the underlying mean flow is
expected to be more severe at higher τ . At the same time, this procedure confirms
the existence of three distinct regions inside the flow (see figure 8d), within which
the maximum transient growth curves appear to be smooth, each of which are perhaps
subjected to distinct transient dynamics, as we explore in the next section.

When plotted on the m–α plane as in figure 9(a), this procedure shows higher
azimuthal wavenumbers to yield higher Gmax levels at increasingly higher α levels.
For example, m = 2 yields the highest amplification at α ≈ 1.5, m = 3 at α ≈ 2.5
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FIGURE 9. (Colour online) Same evolution of Gmax as in figure 8, but in the following
planes: (a) (α−m), for all (z∗/D∗, τ ), (b) (z∗/D∗−m), for all (α, τ ) and (c) (z∗/D∗−α),
for all (m, τ ) values.

and m = 4 at α ≈ 3. Along the streamwise locations of figure 9(b,c), the expected
locations z∗/D∗ = 1.0, 1.8 and 2.6 get highlighted yet again, where at z∗/D∗ = 1.0
and 2.6, the azimuthal mode m=2 produces the largest optimal amplification, while at
z∗/D∗=1.8 both m=2 and 4 seem to have the highest sensitivities, consistent with the
findings of figure 7(a). As for α, figure 9(c) shows that as we move toward the wake
region the highest transient amplifications tend to increasingly appear at the lower
wavenumbers that yield longer-wavelength waves, which are therefore more likely to
penetrate into these wake regions, further downstream.

In summary, the above analysis clearly establishes the locations of z∗/D∗ = 1.0,
inside the bubble and z∗/D∗ = 1.8 and 2.6, at the near and far wake, respectively,
as most sensitive for transient amplifications, with the latter two locations far more
dynamically important when considering the nature of corresponding exponential
modal growth.

5.5. Transient growth mechanisms from optimal perturbations
After establishing the presence of strong short-time transient gains in the swirling
jet of figure 1 in §§ 5.3 and 5.4, where the observed growths at the downstream
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FIGURE 10. (Colour online) Absolute values of the optimal input perturbations (grey
curves) and outcomes (coloured curves) computed for (a) m= 1, α = 0.1 at z∗/D∗ = 0.6
and (b) m= 1, α = 2.0 at z∗/D∗ = 2.6, showing —— ûθ , – · – · ûz and – – – ûr.

wake region are shown to be more dynamically relevant to those occurring in the
recirculation bubble, in this section, we focus on growth mechanisms to potentially
explain the observed differences. Prior investigation of stability mechanisms in vortical
flows have focused on several mathematical versions of such flows, starting from the
classical Rankine vortex model to the Lamb–Oseen and Batchelor vortices. Among
these, the Batchelor vortex model, that can represent both jet and wake-like vortices,
is perhaps the best suited to our understanding of growth mechanisms in the swirling
jet considered here. Mao & Sherwin (2011, 2012), in fact, have demonstrated the
presence of strong transient growths in Batchelor vortex flows, but they did not
investigate the corresponding growth mechanisms in much detail. Instead, their
analysis simply corroborates similar observations with the Lamb–Oseen vortex, for
which extensive knowledge of growth mechanisms exists via the works of Antkowiak
& Brancher (2004, 2007), Pradeep & Hussain (2006), Fontane et al. (2008), among
others. Although, the evolution of the measured swirling jet considered in this work
is unlikely to be accurately modelled by any of the model vortex flows, including
the Batchelor vortex (see e.g. Ruith et al. 2003), it is still worthwhile exploring
connections (if any) of the established transient evolution mechanisms in such model
vortex flows, including the anti-lift-up, Orr and core induction mechanisms (see,
especially Fontane et al. 2008; Mao & Sherwin 2012), with the transient evolution
of the present swirling jet, which we attempt in this section.

Toward that objective, figure 10(a) shows the radial structures of the optimal initial
perturbations and their respective outcomes (at the corresponding t= τmax times) at a
streamwise location inside the recirculation bubble (z∗/D∗ = 0.6), for the parameters
listed in the figure caption. Clearly, the swirl velocity ûθ dominates over other velocity
perturbations at the initial time. Such an optimal ûθ perturbation, computed here over
the continuous and stable discrete spectra (as discussed in § 5.2), peaks outside the
vortex core, reconfirming its dominance in that region. The low-amplitude oscillations
that can be seen at regions of r < 1 (also in figure 10b) for ûθ (but curiously not
for ûz and ûr) are likely due to the extra sensitivity that optimal initial azimuthal
perturbations have when not including the unstable discrete modes in the optimal
growth calculations. As these unstable modes dominate inside the swirling jet core
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at all times, especially during the input perturbation times when the response from
stable modes is predominantly outside, their non-inclusion therefore fails to form a
complete basis for an arbitrary perturbation inside the core region. As for the optimal
output perturbations at time t = τmax, shown in the same figure, it is easy to see the
decay of this initially large ûθ component. The other velocity components, initially
negligible, grow significantly, particularly ûz, which dominates at t = τmax. Further,
optimal outputs for ûθ and ûz exhibit two peaks, one inside the core vortex region
while the second one is immediately outside. At the low wavenumber of figure 10(a),
this reflects observations of Mao (2010) in the context of Batchelor vortices, which in
our case appears to point to a mechanism in which there is communication between
regions inside the vortex core with those located immediately outside.

In figure 10(b), when the same components are plotted (at a higher α = 2.0) at a
location in the far wake (z∗/D∗= 2.6), the presence of an equally strong ûz component
(along with ûθ ) can also be seen in the initial perturbations, essentially reflecting the
dominant ūz component at these wake locations, associated with the gradual reduction
of the velocity deficit (see figure 1). The output structures at t= τmax indicate a slight
reduction in ûz but a steep rise in the ûθ and ûr components, especially at the jet
core, where the twin-peak structures seen inside the bubble (figure 10a) are not much
apparent. At such higher wavenumbers in the wake, this is due to a strong energy
transfer toward the core vortical region, with a near depletion of fluctuating energy
outside.

The observations of figure 10 reveal that similar optimal initial perturbations can
yield radically different output structures, thereby pointing to separate transient growth
mechanisms active in such swirling flows that likely depend upon the streamwise
location and the perturbation wavenumbers. This is now explored via a detailed
parametric analysis through figures 11–15, where optimal spatial structures of the
input (initial) q̃0 and the corresponding output perturbations q̃τ at time t = τmax
(corresponding to figures 5 and 6), at the two streamwise locations (z∗/D∗ = 1.0
and 2.6) are presented for several combinations of α and m. In each case, the visual
evolution of optimal structures between the input and output times is achieved via
isocontours of azimuthal velocity ûθ on the streamwise (r − z) planes and axial
vorticity ωz on the cross-stream planes, with a dashed line at r = 1 locating the
local maximum mean streamwise velocity ū∗z |max (see § 3.1). Our primary aim is to
investigate connection between these optimal structures and the corresponding nature
of transient growth, particularly if certain spatial structures can be associated with the
strongest gains. The transient gain G(τ ) curves at these parameters are included within
the larger dataset of figures 16–18 of appendix A, where for quick identification the
specific two streamwise locations (z∗/D∗ = 1.0 and 2.6) are separately highlighted.

Here, we note that because of the procedures employed in § 3.3 in calculating
the transient amplification, our method only yields the optimal initial and final
conditions via (3.17). This method does not yield the optimal structures at intermediate
times which may provide important clues to their transient evolution and hence the
associated mechanisms. An algorithm involving sequential time integrations of the
forward and adjoint evolution operators can yield such intermediate optimal states
(see e.g. Corbett & Bottaro 2001; Barkley, Blackburn & Sherwin 2008), which is not
pursued here. However, in the following we find several of the optimal input and
output pairs in the present swirling jet to be remarkably similar to the documented
optimal structures in a Lamb–Oseen vortex (see Fontane et al. 2008), while the
one Batchelor vortex evolution case shown in Mao & Sherwin (2012) also looks
identical. Such extensive similarity clearly suggests the associated mechanisms in the
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FIGURE 11. Real contours of ûθ shown in θ -planes and ω̂z in z-planes for the first
asymmetric mode m= 1 at z∗/D∗= 1.0 for the wavenumbers (a–d) α= 0.5, (e–h) α= 1.0
and (i–l) α = 2.0; and at z∗/D∗ = 2.6 for (m–p) α = 0.5 and (q–t) α = 2.0. In each case,
the first two columns represent the input structure for optimal perturbations, while the last
two columns are the corresponding outcome. The dashed lines in θ -planes refer to r= 1,
while the dashed circles in z-planes have a radius of 1. There are 20 uniformly spaced
ûθ and ω̂z contours in between ±1 and ±75, respectively.

present cases to be of similar origin, in spite of the unavailable intermediate states
of evolution.

As shown in § 5.4, the even azimuthal modes m = 2, 4 yield the highest transient
amplifications, which will therefore be our primary focus. However in the following,
we first use results from the lowest helical mode m = 1 perturbations, shown in
figure 11, to classify the different optimal structures observed in the present swirling
jet by comparing them with similar observations from the Lamb–Oseen vortex. Here,
the optimal initial perturbations appear as stacks of azimuthal velocity streaks in
the streamwise planes or axial vorticity rings in the cross-stream planes (similar to
observations elsewhere, e.g. Antkowiak & Brancher 2004, 2007; Fontane et al. 2008;
Mao & Sherwin 2012), which are seen to roll up differently depending upon their
location with respect to the core vortical region (marked approximately by dashed
lines in figures 11–15). If the streamwise ûθ streaks are located almost exclusively
inside the vortex core, as in α = 1.0 at z∗/D∗ = 1.0 (see figure 11e) and for α = 0.5
at z∗/D∗ = 2.6 (see figure 11m), these structures are uncoiled via the classical Orr
mechanism, wherein the initial ω̂z spirals condense into the output structures of
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figure 11(h) and (p), respectively, which are now concentrated over smaller areas of
the core vortical region. There is also a distinct reorientation of these streaks in the
respective outputs (better visible in figure 11g) toward the direction of maximum shear,
again a characteristic of the Orr mechanism. In other situations, the input optimal
streamwise ûθ streaks are either predominantly located outside the vortex core (see
figure 11a,q), or these span across the r=1 line (see figure 11i). Such initial structures
also evolve over time via the Orr mechanism, induced by the mean flow differential
rotation, but also undergo core contamination via a velocity induction, eventually
leading to the dominant optimal structures of figure 11(d,l) and (t), respectively. Each
of these has an inner core structure flanked by thin vortex spiral arms just outside
of r = 1. In the meridian plane, these output optimal perturbations resemble wavy
(sometimes breaded) structures in ûθ (see figure 11c,k,s).

Such optimal structures of the present swirling jet as shown in figure 11 and
the following figures can now be explained with reference to the classification of
Kelvin waves in the Lamb–Oseen vortex, extensively documented in Fabre, Sipp
& Jacquin (2006). Strictly speaking, Kelvin waves (or simply vortex waves) are a
family of damped and oscillatory modes, originally identified in the Rankine vortex.
Here, this definition of Kelvin waves is extended to include modes in any such
generic flows that include shear and rotation. Such waves appear via a transient
resonance phenomenon, whereas the vortex spirals of the optimal initial condition
uncoil and advect via the classical Orr mechanism, they concurrently yield a local
reorganization of the vortical perturbations which supports velocity induction toward
the core, leading to its eventual contamination (see discussions in Antkowiak &
Brancher 2004; Fabre et al. 2006; Pradeep & Hussain 2006; Fontane et al. 2008).
In the present case, two broad types of Kelvin wave structures are apparent, as
discussed via observations in figure 11. The output perturbations of figure 11(d,l)
and (t) represent an inner dipolar wave structure complemented by spiralling vorticity
sheets located beyond the outer periphery of the vortex core. Indeed, via stochastic
forcing of the Lamb–Oseen vortex similar structures can emerge (see Fontane et al.
2008), which are referred to as ‘critical-layer waves’ by Fabre et al. (2006). At
moderate to high wavenumbers such two-component wave structures are expected
in vortex flows, which can be ideal candidates for transferring the energy from an
external perturbation field to the inner core. Antkowiak & Brancher (2004) have
verified this, who observed the largest transient growths in the Lamb–Oseen vortex
when these waves appear. In contrast, appearance of such optimal output structures
only yield moderate maximum transient amplifications here (see in figures 17d
and 18d). The second type of Kelvin wave appears when the perturbations starting
from time t = 0 (see figure 11f,n) are mostly contained inside the core vortical
region (instead of spreading into the quasi-potential region) even at t = τmax (see
figure 11h,p). This yields optimal output spiral structures via the Orr uncoiling,
which are more compact than the respective initial optimal perturbations. Although
not immediately apparent, these outputs are similar to the ‘core waves’ or perhaps the
‘purely viscous modes’, yet to be identified in practical vortex flows (see discussions
in Fabre et al. 2006), whose structures are fully contained inside the vortex core. In
some cases (e.g. figure 11p), such spiral structures tend to fill the vortex core with a
larger number of spiral turns. Appearance of these Kelvin core waves, by far, yields
the strongest transient amplifications if the corresponding output spiral structures
are more concentrated inside the vortex core (see figure 11h), in this case for the
(m= 1, α= 1.0) perturbations, as can be confirmed via figure 17( f ) of appendix A. In
contrast, the input α= 0.5 perturbation case of figure 11(n) has an increased damping
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FIGURE 12. Same as in figure 11, but for m = 2 at z∗/D∗ = 1.0, shown for the
wavenumbers (a–d) α = 0.5; (e–h) α = 1.0; (i–l) α = 2.0 and (m–p) α = 3.0.

rate via its output core wave structure (see figure 11p), thus yielding only moderate
levels of transient growth (see figure 17d). Therefore, appearance of structures akin
to Kelvin core waves with a lower damping rate seems sufficient for strong transient
growth for the present swirling jet, which will be further confirmed next with the
higher-m perturbations.

For the higher helical modes, we show results for the even azimuthal modes m= 2
(figures 12, 13) and m= 4 (figures 14, 15), which are previously shown to cause the
largest transient amplifications in figures 7(a), 8(a) and 9(b). The nature of optimal
perturbations in the four cases of figure 12 is quickly apparent, where at all times the
streamwise streaks of azimuthal velocity are mostly confined inside the vortex core
(in contrast to, say, figure 11) thus resembling Kelvin core modes, with the potential
for higher transient amplifications. The α = 2.0 case (figure 12i–l) clearly supports
this with condensed spirals at the core region yielding the highest growth, which
can be further confirmed from the corresponding transient amplification curve in
figure 18(g). The other wavenumber cases pick output structures that fill the vortical
core, except the higher wavenumber α = 3.0 case (figure 12m–p) that yields braided
structures in the streamwise plane and a higher-order flat-top Kelvin wave structure
in the cross-plane, again similar to observations by Fabre et al. (2006), Fontane et al.
(2008) at such wavenumbers. This particular structure is also seen in figure 18(h) to
cause maximal amplification for the parameters. Figure 13 shows the situation at the
wake location of z∗/D∗= 2.6. The input perturbation structures here are more radially
spread out (see especially figure 13f,j,n) than those observed inside the bubble in
figure 12 yielding typical optimal output ω̂z structures of figure 13(h,l,p), each of
which is composed of a compact inner structure bounded by four uncoiled initial
vorticity sheets. In contrast to the observations of Fontane et al. (2008), such output
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FIGURE 13. Same as in figure 12, but at z∗/D∗ = 2.6.
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FIGURE 14. Same as in figure 12, but for m= 4.

structures that have undergone core contamination, yield moderate to low transient
amplifications here (see figures 17i, 18g,h). On the other hand, as the azimuthal
streaks are simply reoriented to resemble the output (α = 0.5) core wave, shown in
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FIGURE 15. Same as in figure 13, but for m= 4.

figure 13(a–d), it easily yields one of the highest transient amplifications among all
cases studied, as can be confirmed from figure 17(g).

At even higher helical orders, the appearance of critical-layer Kelvin wave patterns
diminishes over the wavenumbers studied, due to an apparent lack of the transient
resonance mechanisms which creates such patterns. Instead, at the lower wavenumbers,
the Orr mechanism which uncoils the initially spiralling structures yields the most
amplification via the appearance of core wave-like modes. This is shown in figures 14
and 15 for the m= 4 perturbations. The higher wavenumber α= 2.0 case at z∗/D∗ =
1.0 (figure 14i–l) and α = 3.0 case at z∗/D∗ = 2.6 (figure 15m–p) cause patterns
that are primarily at the periphery of the vortical core region, apparently due to the
maximum base-flow shear at these locations. Such instances also yield low transient
amplifications, but are rare at these higher azimuthal wavenumbers. Instead, optimal
output core modes of figure 14(a–d), figure 14(m–p) at z∗/D∗= 1.0 and figure 15(e–h)
at z∗/D∗= 2.6 that undergo minimal damping with compact spiral structures yield the
most significant transient gains (see figures 17m, 18n and 17o, respectively).

6. Conclusions
The key objective of this work is to assess the importance of transient energy

growth in an experimentally measured high Re and high swirling number jet,
within the perspective of prior observations made in model swirling flows like
the Lamb–Oseen and Batchelor vortices that were shown to include strong short-time
transient amplifications (e.g. by Antkowiak & Brancher 2004; Pradeep & Hussain
2006; Heaton & Peake 2007; Fontane et al. 2008; Mao & Sherwin 2012). The
swirling jet considered here (as measured by Oberleithner et al. 2011), is a model
for swirling flow inside a gas turbine combustion chamber that has undergone an
axisymmetric bubble breakdown near the nozzle exit. After this recirculation bubble
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closes via the appearance of a stagnation point, the flow further downstream resembles
a wake. Such flows are obviously more complex than the classical model vortex flows,
where a continuing interest has been to understand the role of helical modes (mostly
restricted to m= 1 and 2) on their long-term stability character. In this work, we have
instead focused on the onset of such instabilities by exploring their short-time and
time-dependent evolution at several jet locations to detect any non-modal algebraic
growth that can be dynamically more relevant at these initial times.

Previous transient gain calculations with the Lamb–Oseen vortex (e.g. Antkowiak
& Brancher 2004; Pradeep & Hussain 2006) have considered only the discrete
eigenspace, while Mao & Sherwin (2011) found strong short-time amplifications
via the inclusion of the continuous spectrum in their Batchelor vortex calculations.
Following on this line, our linear stability analysis is also complemented by a
computation of the pseudospectrum, which mathematically isolates this continuous
spectrum, as per Trefethen (2005). Hence, unlike in the analyses of the Lamb–Oseen
vortex (Antkowiak & Brancher 2004; Fabre et al. 2006), our present choice of
eigenmodes form a complete basis in representing an arbitrary perturbation, via the
inclusion of the continuous spectrum, but particularly the potential modes. These
modes, due to their high non-orthogonality with discrete stable modes, yield much
stronger transient amplifications for an extended set of parameters, reflecting the
findings of Mao & Sherwin (2011), while also underlining the importance of the
continuous spectrum. The discrete modes by themselves offer little gain, but the
potential and discrete modes together yield growths which are easily five orders of
magnitude higher than those due to the discrete modes only. The highest optimal
transient gain Gmax, based on the energy norm and calculated in this manner, exceeded
107 in one specific case, while being easily within the range of 105 and 106 in most
other cases.

In spite of the high numbers, whether such amplifications are dynamically important
at short times, especially for a swirling jet that is known to possess strong exponential
modal growth, is not easy to guess. To this end, our comparative analysis of the
linear stability spectrum found (unsurprisingly) the discrete unstable mode(s) to be
the strongest inside the recirculation bubble while their influence starkly diminishes
at the wake region, to the point that for certain parametric combinations the modal
instability completely disappears. Simultaneously, the pseudospectrum moves more
toward the unstable half of the complex plane at the wake, indicating that important
transient growths are likely to occur at these locations. Once the exponential growths
are superimposed on the corresponding algebraic gains, this clearly reveals transient
amplifications at the wake to be indeed more dynamically important than inside the
bubble, where peaks in transient amplifications are reached well before the exponential
growths, if present, eventually exceed them. At least two locations inside the wake,
one in the ‘near wake’ (at z∗/D∗ = 1.8) and the other inside the ‘far wake’ region
(at z∗/D∗ = 2.6) show perturbations at even helical orders (m = 2, 4) and moderate
streamwise wavenumbers (α 6 1) to quickly peak (at τ < 50 and 75, respectively) at
significantly high maximum transient amplifications (105<Gmax< 106, approximately),
easily exceeding the corresponding exponential growths at these times.

Finally, transient growth mechanisms are investigated via the input and output
optimal perturbation structures, where our focus on helical modes rules out the
m = 0 anti-lift-up mechanism of Antkowiak & Brancher (2007), while the classical
Orr mechanism seems to be the primary amplification mechanism. The computed
optimal output structures at t = τmax resemble patterns similar to Kelvin waves
of the Lamb–Oseen and Batchelor vortices, documented in Fontane et al. (2008),
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Mao & Sherwin (2012). The optimal initial perturbations appear as azimuthal velocity
streaks in the streamwise planes and as streamwise vorticity spirals in the cross-planes,
again similar to prior observations with other vortex flows (Antkowiak & Brancher
2004; Fontane et al. 2008; Mao & Sherwin 2011). Once such perturbations are
exclusively located inside the core vortical region, the corresponding spirals uncoil
with time via the Orr mechanism to resemble core (or maybe viscous) Kelvin modes
of the theoretical Lamb–Oseen vortex, perhaps observed for the first time in a
measured flow. Here, it is shown that once these core Kelvin wave-like structures
undergo the least damping with a compact spiral structure at the vortex core, they
always yield the strongest transient amplification. In contrast, initial perturbations that
are more spread out, with a major portion located inside the quasi-potential region
of the jet, roll up to yield thin spirals outside the core region with a second compact
region at the centre due to core contamination, thus mimicking the critical-layer
Kelvin wave structure of the Lamb–Oseen vortex (see Fabre et al. 2006; Fontane et al.
2008). However, unlike in the Lamb–Oseen vortex (see observations by Antkowiak
& Brancher 2004; Fontane et al. 2008), such waves yield only moderate transient
amplifications for the present swirling jet.
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Appendix A. Parametric study on transient amplification
In this appendix, we document a selection of our exhaustive parametric studies on

transient growth calculations carried out on the mean profile of figure 1. The entire
parametric space is detailed in § 5.1, while in the upcoming figures 16–18 we have
grouped the results in terms of the wavenumbers, with figure 16 showing results
at the lowest wavenumbers (α = 0.05, 0.1, 0.3), figure 17 showing the moderate
wavenumber cases (α = 0.5, 0.7, 1.0) and finally figure 18 showing a selection of
the higher wavenumber results (α = 2.0, 3.0, 4.0). In each of these figures, the
axisymmetric m = 0 perturbation case is also shown for reference. Further, the
location inside the bubble and wake are separately colour coded, with the specific
locations of z∗/D∗ = 1.0 and 2.6, which are discussed in § 5.5, highlighted for ease
of identification.

Appendix B. Details of stability matrices
Here, we detail the elements of 4× 4 A and B matrices of (3.5) in the following.

A=



d
dr
+

1
r

im
r

iα 0

A21 −2
(

1
Re

im
r2
−

ūθ
r

)
0 −

d
dr(

1
Re

2im
r2
−

ūθ
r
−

dūθ
dr

)
A32 0 −

im
r

dūz

dr
0 A43 −iα


, (B 1)
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FIGURE 16. (Colour online) Local transient gain G(τ ) at the following streamwise z∗/D∗
positions for (a–c) m = 0, (d–f ) m = 1, (g–i) m = 2, ( j–l) m = 3 and (m–o) m = 4
perturbations at α = 0.05, 0.1 and 0.3. Locations inside the bubble are in thicker red
curves: — — — 0.25; – – – 0.5; – · – · 0.6; —— 1.0 and – ·· – ·· 1.4; while wake
locations are in thinner blue curves: — — — 1.5; – – – 1.8; – · – · 2.2; —— 2.6 and
– ·· – ·· 3.0. Further, the locations z∗/D∗ = 1.0 and 2.6 (see text in § 5.5) are highlighted
via grey curves.
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FIGURE 17. (Colour online) Same as in figure 16 but for α=0.5, 0.7 and 1.0, as labelled.
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FIGURE 18. (Colour online) Same as in figure 16 but for α=2.0, 3.0 and 4.0, as labelled.

where A21 = A32 = (1/Re)(d2/dr2
+ (1/r)(d/dr)− (m2

+ 1)/r2
− α2)− (im/r)ūθ − iαūz,

A43 = (1/Re)(d2/dr2
+ (1/r)(d/dr)−m2/r2

− α2)− (im/r)ūθ − iαūz, and

B=

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 . (B 2)
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