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A theoretical and numerical investigation of two classes of models for pressure-driven
core–annular flow is presented. Both classes, referred to as ‘long-wave’ and ‘thin-film’
models, may be derived from a unified perspective using long-wave asymptotics, but
are distinct from one another in the role played by the curved tube geometry with
respect to the planar (limiting) case. Analytical and numerical techniques are used to
show and quantify the significant differences between the behaviour of solutions to
both model types. Temporal linear stability analysis of the constant solution is carried
out first to pinpoint with closed-form mathematical expressions the different dynamical
regimes associated with absolute or convective instabilities. Numerical simulations
for the models are then performed and qualitative differences in the evolution of the
free surface are explored. Mathematically, different levels of asymptotic accuracy are
found to result in different regularizing properties affecting the long-time behaviour
of generic numerical solutions. Travelling wave solutions are also studied, and
qualitative differences in the topology of streamline patterns describing the flow of
the film in a moving reference frame are discussed. These topological differences
allow for further classification of the models. In particular, a transition from a regime
in which waves trap a fluid core to one where waves travel faster than any parcel
of the underlying fluid is documented for a variant of the primary model. In the
corresponding thin-film model, no such transition is found to occur. The source of
these differences is examined, and a comparison of the results with those of related
models in the literature is given. A brief discussion of the merits of each class of
models concludes this study.

Key words: core–annular flow, instability, thin films

1. Introduction
Viscous liquid film flows have received much attention over recent decades due to

their presence in numerous industrial and biological applications. Such flows have a
free surface, often an interface between air and liquid, which can be unstable to long-
wave perturbations, as demonstrated by, e.g., Goren (1962), Yih (1967) and Hickox
(1971). A desire to better understand these flows and their instabilities has driven
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

22
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:ogrosky@math.wisc.edu
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.221&domain=pdf
https://doi.org/10.1017/jfm.2015.221


570 R. Camassa and H. R. Ogrosky

the development of many asymptotic models that encapsulate the fundamental physics
of the free surface evolution without the complexity of the parent equations. One
such approach assumes that the amplitude of perturbations of an exact (flat interface)
solution is small relative to the thickness of the film. The resulting weakly nonlinear
models have given insight into the cause and nature of instability development; see,
e.g., Papageorgiou, Maldarelli & Rumschitzki (1990) and Joseph & Renardy (1993).
In many flows of practical interest, however, instabilities saturate well outside of the
weakly nonlinear regime, exposing the limitation of the weak nonlinearity assumption
and giving rise to the need to develop models capable of handling large-amplitude
dynamics.

Strongly nonlinear models for flows over either a flat or a curved surface have
typically been derived by exploiting a small ratio of length scales, often the film
thickness to a typical wavelength. These ‘long-wave’ asymptotic models have been
used successfully to describe many flows, see, e.g., the review articles by Oron, Davis
& Bankoff (1997) and Craster & Matar (2009). Viscous film flows over a curved
surface offer a second natural choice of length scale ratio, namely the film thickness
versus a radial scale (such as, e.g., a tube or fibre radius); here, we will refer to
models derived under the assumption that the film thickness is small with respect to a
radial scale as ‘thin-film’, and note that these models can be derived directly from the
governing equations or recovered from their long-wave counterparts in the appropriate
limit. While both the terms ‘thin-film’ and ‘long-wave’ are often used interchangeably
in the literature to describe asymptotic models derived for film flows over flat surfaces,
the distinction becomes somewhat necessary for flows over curved surfaces, which are
the subject of the present study.

In axisymmetric flows along cylindrical surfaces, both modelling approaches of
long-wave and thin-film result in a single nonlinear partial differential equation (PDE)
for the evolution of the film’s free surface. However, thin-film models have been
somewhat more popular as (i) the nonlinearities that arise are generally of a much
simpler form than their long-wave model counterparts, (ii) elimination of the thin-film
parameter from the evolution equation reduces the dimensions of the parameter space
by one and (iii) they bear a strong resemblance in form to well-studied models
for corresponding film flows over flat surfaces. This resemblance to flat-surface
models reflects the way in which taking the thin-film limit can ‘flatten’ the geometry
by making the local curvature of the surface negligible over the scale of the film
thickness, thus simplifying the cylindrical geometry effects retained in long-wave
models.

We will consider here the specific problem of the axisymmetric flow of a viscous
film which coats the interior of a cylinder, and focus on the case where the core region
consisting of a second fluid (air or liquid) is forced to flow due to an imposed pressure
gradient. Long-wave models for this core–annular flow problem in the case where
the ratio of annular-to-core fluid viscosities is large were derived in Camassa & Lee
(2006) and Camassa et al. (2012), with the latter incorporating the effects of different
core and annular fluid densities. Corresponding thin-film models can be recovered in
the appropriate limit; for the case of equal density fluids, a model in this limit was
derived directly from the governing equations by Kerchman (1995).

The primary purpose of this paper is to demonstrate both qualitative and quantitative
differences between the behaviour of solutions to these two classes of models for
viscous-dominated core–annular flow. This is done through a detailed quantitative
assessment of solutions to both classes of models using analytical and numerical
tools. This assessment reveals qualitative differences in (i) the transient growth of
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Modelling viscous films coating the interior of a tube 571

free surface instabilities in both the linear and nonlinear regimes, (ii) the behaviour
and structure of saturated free surface instabilities and (iii) the streamline topology
within the annular fluid flow. New mathematical and physical arguments are given to
demonstrate the manner in which important effects of the cylindrical geometry are
lost when taking the thin-film limit.

This primary purpose is achieved by implementing a unifying and organizing
viewpoint of the various classes of models that have appeared in the literature for
related problems. This is done in two steps. First, a general long-wave model for
fully coupled core–annular flow is derived and presented; the new model encompasses
the equations in Camassa & Lee (2006) and Camassa et al. (2012) which can be
recovered in the appropriate large-viscosity-ratio limit. Second, by taking additional
appropriate limits, the model in Camassa et al. (2012) is shown to contain other
long-wave and thin-film models which have been derived to study the free surface
of an interior viscous liquid coating under the influence of some combination of
gravity, pressure-driven core flow and capillary forces (Hammond 1983; Frenkel
1992; Kerchman 1995; Camassa, Ogrosky & Olander 2014). The resulting hierarchy
of models is documented, and analogies with the case of an exterior liquid coating
documented in Craster & Matar (2009) are made.

The rest of the paper is organized as follows. In § 2, long-wave equations for the
fully coupled core–annular flow are derived, and both the long-wave models derived
in Camassa & Lee (2006) and Camassa et al. (2012) as well as their thin-film
counterpart models are recovered in the appropriate limit of large viscosity ratio.
Linear stability analysis of these four model equations is performed in § 3. Numerical
solutions to two of the model equations will be discussed in § 4. In addition, travelling
wave solutions are found numerically, and the associated motion of fluid parcels is
studied. A discussion of how these results compare with those of related models is
given in § 5, and an extended hierarchy of models is documented. Conclusions are
given in § 6. Some details of the derivation of the fully coupled long-wave equations
are found in appendix A.

2. Long-wave asymptotic models
The problem to be studied is that of a highly viscous film which coats the interior

of a vertical rigid tube with radius ā. Henceforth, all dimensional quantities are
marked by overbars (except for those quantities that are obviously dimensional,
e.g. density ρ, viscosity µ, surface tension γ , etc.). The core region of the tube
is occupied by another, possibly less viscous, fluid which may be forced to flow
upwards against gravity by an imposed pressure gradient, resulting in a constant
volume flux Q̄(c). The resulting total volume flux for both fluids is denoted by
Q̄ = Q̄(c) + Q̄(a), where Q̄(a) is the volume flux of the annular fluid. The flow is
assumed to be axisymmetric so that the independent coordinates are (r̄, z̄), with z̄
taken to be positive moving up the tube. Here, r̄ = 0 and r̄ = ā correspond to the
centre and wall of the tube respectively. The location of the free surface is denoted
by R̄(z̄, t̄); see figure 1(a) for a definition sketch of the flow variables.

Using long-wave asymptotics, models have previously been derived for core–annular
flows where the annular film has much higher viscosity than the core fluid; the case
where both fluids have equal density was derived in Camassa & Lee (2006), while
the case of unequal densities was treated in Camassa et al. (2012). We summarize
these models next, and show how they derive in an appropriate limit from a ‘master’
long-wave model for fully coupled core–annular flows (i.e. no assumed large viscosity
ratio). Corresponding thin-film models are subsequently recovered in the limit of small
film thickness.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

22
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.221


572 R. Camassa and H. R. Ogrosky

(a) (b)

FIGURE 1. (a) Definition sketch of the flow variables. R̄ denotes the location of the
interface, R̄0 is the mean radius of the core region, λ̄ is a typical free-surface wavelength,
(ū, w̄) are the velocity components in the (r̄, z̄) direction, and g is acceleration due to
gravity. (b) Velocity profile of the flat-interface exact solution to the governing equations.
h̄0 is the mean thickness of the annular film.

2.1. Governing equations
The governing equations for the flow of each fluid are the cylindrical axisymmetric
Navier–Stokes equations,

ρ i(ūi
t̄ + ūiūi

r̄ + w̄iūi
z̄)=−p̄i

r̄ +µi

(
1
r̄
∂r̄(r̄ūi

r̄)+ ūi
z̄z̄ −

ūi

r̄2

)
, (2.1)

ρ i(w̄i
t̄ + ūiw̄i

r̄ + w̄iw̄i
z̄)=−p̄i

z̄ +µi

(
1
r̄
∂r̄(r̄w̄i

r̄)+ w̄i
z̄z̄

)
− ρ ig, (2.2)

1
r̄
∂r̄(r̄ūi)+ w̄i

z̄ = 0, (2.3)

where i= (a) corresponds to the annular film and i= (c) to the core fluid. Here, (ū, w̄)
are the velocity components in the (r̄, z̄) directions respectively, p̄ is pressure, ρ is
density, µ is molecular viscosity and g is gravity. Subscripts denote partial derivatives.
The boundary conditions at the wall, r̄= ā, are no-slip,

ū(a) = 0, w̄(a) = 0, (2.4a,b)

while at the free surface, r̄= R̄(z̄, t̄), the boundary conditions

ū(a) = ū(c), w̄(a) = w̄(c), (2.5a,b)

µ(a)[(w̄(a)
r̄ + ū(a)z̄ )(1− R̄2

z̄ )+ 2(ū(a)r̄ − w̄(a)
z̄ )R̄z̄]

=µ(c)[(w̄(c)
r̄ + ū(c)z̄ )(1− R̄2

z̄ )+ 2(ū(c)r̄ − w̄(c)
z̄ )R̄z̄], (2.6)

2µ(c)[ū(c)r̄ + w̄(c)
z̄ R̄2

z̄ + R̄z̄(w̄
(c)
r̄ + ū(c)z̄ )] − 2µ(a)[ū(a)r̄ + w̄(a)

z̄ R̄2
z̄ + R̄z̄(w̄

(a)
r̄ + ū(a)z̄ )]

= (−p̄(a) + p̄(c))(1+ R̄2
z̄ )− γ (1+ R̄2

z̄ )

(
1

R̄(1+ R̄2
z̄ )

1/2
− R̄z̄z̄

(1+ R̄2
z̄ )

3/2

)
(2.7)
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Modelling viscous films coating the interior of a tube 573

are enforced, corresponding to the continuity of velocity, continuity of tangential stress
and jump in normal stress according to the Young–Laplace law respectively. Here, γ
denotes the surface tension. In addition, at the free surface the kinematic boundary
condition,

ūi = R̄t̄ + w̄iR̄z̄, (2.8)

must also be satisfied. Of course, physical significance requires that at the tube
centreline the velocity field be finite, which provides an additional constraint for the
core flow solutions.

The flow governed by the system (2.1)–(2.8) always admits an exact solution
corresponding to flow with a flat interface, R̄= R̄0,

w̄(a) = r̄2 − ā2

4µ(a)
(p̄(a)z̄ + ρ(a)g)+

gR̄2
0

2µ(a)
(ρ(c) − ρ(a)) log

(
r̄
ā

)
, (2.9)

w̄(c) = r̄2 − R̄2
0

4µ(c)
(p̄(c)z̄ + ρ(c)g)+

R̄2
0 − ā2

4µ(a)
(p̄(a)z̄ + ρ(a)g)+

gR̄2
0

2µ(a)
(ρ(c) − ρ(a)) log

(
R̄0

ā

)
,

(2.10)

where the only non-zero velocity component is the axial one, w̄, and the only non-
zero gradient is the radial one, ∂r̄. Here, the normal stress boundary condition (2.7)
reduces to p̄(a)z̄ = p̄(c)z̄ ≡ p̄z̄. This parallel-flow flat solution is a balance of viscous
and gravitational forces and the imposed pressure gradient driving the core flow; an
example of velocity profiles given by (2.9) and (2.10) is shown in figure 1(b). It
should be noted that if R̄0 = 0, corresponding to the tube being entirely filled with
the annular fluid, (2.9) reduces to the profile of Poiseuille pipe flow; likewise, if one
sets R̄0 = ā, (2.10) reduces to that of Poiseuille flow of the core fluid.

The stability of the exact solution given by (2.9) and (2.10) was studied by Hickox
(1971) for various values of the parameters of the problem (see also Yih 1967 for
an analysis with a similar set-up without surface tension). In order to study the
evolution of these interfacial disturbances and the flow of the annular film in the
simplest possible setting, we turn to a model of the flow developed using long-wave
asymptotics.

2.2. Fully coupled long-wave equations

The dimensional parameters µi, ρ i, g, γ , Q̄(c), ā, R̄0 and λ̄, where λ̄ denotes the length
of a typical interfacial disturbance, combine to form seven dimensionless parameters:
(i) Reynolds number Re, (ii) Froude number Fr, (iii) capillary number C, (iv) viscosity
ratio m, (v) density difference ratio l, (vi) film thickness parameter a and (vii) aspect
ratio ε, defined by

Re= 2ρ(c)Q̄(c)

πR̄0µ(c)
, Fr= 2Q̄(c)

πR̄5/2
0 g1/2

, C= 2Q̄(c)µ(c)

πγ R̄2
0
,

m= µ
(a)

µ(c)
, l= ρ

(a) − ρ(c)
ρ(c)

, a= ā
R̄0
, ε = R̄0

λ̄
.

 (2.11)

The dynamics of the film flow is uniquely determined by the values of these seven
dimensionless parameters. We note that other parameter choices are also valid. For
instance, (2.11) corresponds to a viewpoint where the core volume flux Q̄(c) and
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mean film thickness R̄0 are prescribed, and the annular volume flux Q̄(a) and pressure
gradient respond accordingly. One could replace the aspect ratio a with a flux-ratio
parameter Q(a) = Q̄(a)/Q̄(c), corresponding to a viewpoint where both fluid fluxes are
prescribed and the mean film thickness and pressure gradients respond accordingly.
Moreover, in other studies of core–annular flows the Weber number We = C × Re
is sometimes used in place of the capillary number. Finally, we note that with the
density ratio defined as in (2.11), the case where equal density fluids occupy the core
and annular regions is defined by l= 0.

System (2.1)–(2.8) can be made dimensionless by typical scales

r= r̄/R̄0, z= z̄/λ̄, u= ū/U0,

w= w̄/W0, t= t̄W0/λ̄, pi = εp̄iR̄0/(µ
(c)W0),

}
(2.12)

where W0 = 2Q̄(c)/πR̄2
0 is the core flow centreline velocity and U0 ≡ εW0. After

substitution of (2.12) into (2.1)–(2.8), we consider first the leading order in an
asymptotic expansion for the limit of the long-wave parameter ε→ 0. In addition to
small ε, we also restrict the values of Re by requiring that in the long-wave limit the
limit εRe→ 0 as well. Under these assumptions, the motion equations (2.1)–(2.3) and
boundary conditions (2.4)–(2.8) made dimensionless by (2.12) yield a leading-order
velocity profile w(a)

LW and w(c)
LW given in appendix A by (A 1)–(A 2); this solution

is a slowly varying z-dependent modulation of the exact parallel flow (2.9)–(2.10).
The slowly varying annular pressure is now related to that of the core fluid by the
asymptotic normal stress boundary condition (2.7)

p(a)z = p(c)z +
1
C

(
1
R
− ε2Rzz

)
z

(2.13)

at the long-wave interface r= R(z, t). As is customary, while the second term Rzz in
the capillary tension force balance expressed by (2.13) is formally of higher order,
it is retained to account for uniform matched-asymptotics validity of the long-wave
expansion (see, e.g., Oron et al. 1997).

Next, we seek approximate expressions for the pressure gradients pi
z. These are

found through the dimensionless volume fluxes

q(c)(z, t)= 2π

∫ R

0
w(c)

LWr dr, q(a)(z, t)= 2π

∫ a

R
w(a)

LWr dr, (2.14a,b)

which are given in expressions (A 3)–(A 4) in appendix A. Incompressibility of both
core and annular fluids implies that the total volume flux q(a) + q(c) through the tube
is independent of the spatial location z. In the case where the volume flux Q̄i of each
fluid is prescribed at one end of the tube, the total flux anywhere in the tube is thus

q(a)(z, t)+ q(c)(z, t)=Q(a) +Q(c), (2.15)
where the Qi are the prescribed fluxes made dimensionless by W̄0R̄2

0. Then, with the
free surface boundary condition (2.13), equations (A 3)–(A 4) determine the pressure
terms p(a)z and p(c)z as functions of R and its spatial derivatives; p(a)z is given in (A 5)
in appendix A and p(c)z is recovered through (2.13).

An evolution equation for R(z, t) follows from volume conservation of either the
core or the annular fluid and the kinematic boundary condition (2.8). Focusing for
definiteness on the annular fluid, this equation can be expressed in terms of the
annular flux as

π(a2 − R2)t + (q(a))z = 0. (2.16)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

22
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.221
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2.3. Decoupled long-wave models
Various model equations can be derived via different asymptotic balances between
the parameters m, l, a, C and Re/Fr2, and the free surface location R. The model
equation derived in Camassa et al. (2012) is recovered when the additional asymptotic
orderings m� (a/R̃)4 and m� l(a/R̃)4 are satisfied, where R̃ is a characteristic value
for the core radius, and when C=O(1) and Fr2 =O(Re). These asymptotic relations
are realized by a high annular-to-core viscosity ratio and a core region that is
not exceedingly small in volume (see appendix for a brief discussion of a model
appropriate under a different asymptotic balance corresponding to ‘very thick-film’
problems studied elsewhere), and imply that q(a) � q(c) so that the core fluid is
moving much faster than the annular fluid. This difference in time scales for the two
fluids allows the annular film flow to be decoupled from the core flow, in the sense
that the core flow experiences the free surface essentially as a rigid wavy wall.

Under these assumptions, the pressure gradient p(a)z simplifies to (A 8). Substitution
of this approximate p(a)z into (2.16) yields the model equation in Camassa et al. (2012)
after a rescaling in time t′ = t/m (and immediately dropping the prime for ease of
notation of the time derivative),

Rt + [ f1(R; a)− F(a)f2(R; a)]Rz + S(a)
R
[ f3(R; a)(Rz + R2Rzzz)]z = 0, (2.17)

where the functions fn, n= 1, 2, 3, are given by

f1(R; a)= a2

R4

(
a2

R2
− 1
)
,

f2(R; a)= a2 − R2 − 2R2 log
( a

R

)
,

f3(R; a)= a4

R2
− 4a2 + 3R2 + 4R2 log

( a
R

)


(2.18)

and the parameters F and S by

F(a)= Re l
2Fr2

, S(a)= 1
16C

. (2.19a,b)

Here, R(z, t)= R̄/R̄0 is the dimensionless radial location of the interface as a function
of axial location and time, where R̄0 is the mean radius of the core region, and a=
ā/R̄0 is the dimensionless tube radius. The parameter F represents the ratio of the free
surface stress created by the core flow to gravity and S is the inverse of a capillary
number. We have also adopted the convention of returning to the original aspect ratio
by rescaling z and t by ε as in Camassa et al. (2012). This results in ε being scaled
out of (2.17), but the validity of the model equation still depends on the condition
ε� 1 being satisfied.

Equation (2.17) is strongly nonlinear, i.e. no smallness assumption on the free
surface displacement from a reference flat configuration has been made. Moreover,
the model retains the cylindrical geometry of the problem, as evidenced by the inverse
powers and logarithms of R.

The dynamics of the governing equations was determined by seven dimensionless
parameters, while the dynamics of (2.17) is determined by three parameters: F, which
represents the competition between viscous forces at the interface and gravity forces;
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S, which keeps track of the competition between viscous forces at the interface
and stresses from capillary forces; and a, the film thickness parameter. Both S and
F are dependent on the thickness of the film. All three parameters play a role in
determining whether nonlinear disturbances to the free surface travel upwards or
downwards. As we will see, the weakly nonlinear regime is somewhat simpler in that
the direction of disturbance propagation is determined only by F and a. Specifically,
if F < f1(1; a)/f2(1; a) disturbances travel up the tube, i.e., the free surface stress
caused by the core flow dominates the effects of gravity, otherwise disturbances travel
downward due to gravity overpowering the effects of the core flow.

It should be noticed that F and S depend on the film thickness parameter a through
the Reynolds, Froude and capillary numbers as a result of the choice of length scales
used to define these parameters. An alternative choice for parameters which would
remove the a dependence from F and S and incorporate it into the functions fn

may be preferable, i.e. define new coefficients F̃ = a4F and S̃ = a2S which would
correspond to f̃2 = a−4f2 and f̃3 = a−2f3. This choice makes the coefficients F and S
independent of film thickness initial data and thus constant across different realizations
of an experiment with fixed ‘hardware’ set-up µi, ρ i, Q̄(c), ā and γ . However, to be
consistent with previous literature, we follow the definitions given in (2.19) for the
rest of this work.

In the case of equal densities of the core and annular fluid (or negligible gravity),
i.e. F = 0, (2.17) reduces to the model equation derived by Camassa & Lee (2006)
up to a choice of scalings:

Rt + f1(R; a)Rz + S(a)
R
[f3(R; a)(Rz + R2Rzzz)]z = 0. (2.20)

For ease of reference, it is worth labelling these two models with easily identifiable
tags. Thus, in the following we will refer to the long-wave models (2.17) and (2.20)
as (LW-PG) and (LW-P) respectively.

2.4. Thin-film models
If the liquid film is thin, further simplifications of (LW-PG)/(2.17) and (LW-P)/(2.20)
can be expected. We recall the non-dimensional scaling a= ā/R̄0 and R= R̄/R̄0: the
limit of thin films corresponds to R̄0→ ā, so that a limits to 1 from above and the
spatial mean of the non-dimensional interface position R also limits to unity. The thin-
film limit asymptotics can then be described by a thinness small parameter 0<β� 1,
where a = 1 + β, and by shifting to a new dependent variable h(z, t), with spatial
mean 1, defined by

R= 1+ β(1− h), (2.21)

so that βh represents the non-dimensional height of the interface measured from
the tube wall (i.e. the thickness of the annular film). Then, (LW-PG)/(2.17) can be
rewritten in terms of h, and each of the functions fn, n= 1, 2, 3, in (LW-PG) can be
expanded about β = 0:

f1 = 2hβ + (−6h+ 11h2)β2 + (12h− 44h2 + 36h3)β3 +O(β4),

f2 = 2h2β2

(
1− hβ

3

)
+O(β4),

f3 = 16h3

3
β3 +O(β4).


(2.22)
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Modelling viscous films coating the interior of a tube 577

Notice that the order of the gravity term is f2 = O(β2), while the order of the
core flow term is f1 = O(β). Thus, asymptotically the effects of tangential stress at
the interface dominate the effects of gravity in the thin-film limit. Notice also that
the effects of surface tension are of order O(β3); these effects are again typically
retained despite their higher order for reasons discussed in, e.g., Camassa et al. (2014).
Substituting the expanded fn into the long-wave model (LW-PG) and retaining up to
O(β2) hyperbolic terms (while retaining the O(β3) term of f3 to keep the effects of
surface tension) gives

ht + hhz + F̃h2hz + S̃∗[h3(hz + hzzz)]z = 0, (2.23)

where F̃=β(11−2F)/(2−6β) and S̃∗=8β2S/[3(1−3β)], and time has been rescaled
by t′ = (2β − 6β2)t (again having dropped primes).

If the densities of the two fluids are equal or the effects of gravity are negligible,
i.e. F = 0, then substitution of (2.22) into (2.17) and retention of only the O(β)
hyperbolic terms results in the standard form of the thin-film model for pressure-driven
flow (after a rescaling in time by t′ = 2βt, dropping primes hereafter),

ht + hhz + S̃[h3(hz + hzzz)]z = 0, (2.24)

where S̃ = 8β2S/3. Equation (2.24) is the thin-film counterpart to the long-wave
model (LW-P)/(2.20) and was derived directly from the governing equations and
studied numerically by Kerchman (1995). For models (2.23) and (2.24), we will use,
respectively, the tags (TF-PG) and (TF-P).

While a study of the general dynamical features of all the above models has to
rely in large part on their numerical simulations, much insight can be gained by
analysing special solutions such as travelling waves, or by studying transient growth
of perturbations from exact simple solutions such as those corresponding to a flat
interface, thereby determining their linear stability. We will use all these tools, starting
with linearized dynamics, next.

3. Linear stability analysis

We now analyse the linear stability of simple (flat) exact solutions for both pressure-
driven flow with negligible gravity (LW-P) and (TF-P), and the full equations (LW-PG)
and (TF-PG). A small perturbation to the free surface is introduced to each model,

R= 1+ A exp[i(kz−ωt)], h= 1+ Ã exp[i(kz−ωt)], (3.1a,b)

where A� 1 or Ã� 1 is the amplitude of the disturbance, k is its wavenumber and
ω is the temporal frequency. The dispersion relation obtained from substitution of
(3.1) into each model equation will first be examined from a temporal viewpoint. The
instabilities will then be classified as absolute or convective.

3.1. Pressure-driven flow
Introduction of the perturbation (3.1) into the pressure-driven model equations (LW-P)
and (TF-P) yields the dispersion relations

ωLW-P = (a4 − a2)k+ iS(a4 − 4a2 + 3+ 4 log a)(k2 − k4), (3.2)
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FIGURE 2. (a) Growth rates of (LW-P) (solid lines) and (TF-P) (dashed lines) for two
values of a. (b) Speed of linear perturbations as a function of a.

ωTF-P = 2(a− 1)k+ 16i(a− 1)3S
3

(k2 − k4). (3.3)

(It should be noted that (3.3) corresponds to (TF-P) prior to a rescaling of time
by 2β.)

The maximum growth rate of each model occurs for disturbances with wavenumber
km= 1/

√
2, corresponding to a (dimensional) wavelength of λ̄m= 2π

√
2R̄0, indicating

that the typical wavelength of disturbances is set by the radius of the interface, in
analogy to the classical result for jets due to Rayleigh. The maximum growth rate for
each model is given by

Im[ωLW-P]|km =
S
4
(a4 − 4a2 + 3+ 4 log a), (3.4)

Im[ωTF-P]|km =
4S
3
(a− 1)3. (3.5)

Figure 2(a) shows the growth rates of each model for two values of a. The models
are in close agreement with one another, with model (TF-P) producing slightly smaller
growth rates. The real part of each dispersion relation describes the propagation speed
of infinitesimal interfacial disturbances. Figure 2(b) shows the phase speeds for each
model as a function of the film thickness parameter a; disturbances in the thin-film
model travel slower than those in the long-wave model.

We remark that both dispersion relations (3.2) and (3.3) are, to within a choice
of scaling, identical to the well-known Kuramoto–Sivashinsky (KS) equation (see,
e.g., Kuramoto & Tsuzuki 1980, Sivashinsky & Michelson 1980 or Kerchman 1995).
Variants of the KS equation have been used to model weakly nonlinear thin films,
and solutions to the KS equation are known to exhibit spatio-temporal chaos; we
return briefly to this in § 4.

Since solutions to both models are unstable to a range of small wavenumbers k,
we now examine whether solutions to each model are convectively or absolutely
unstable. This classification of instabilities is borrowed from the literature concerning
jets, and has been studied in the case of gravity-driven film flows which coat tubes,
e.g. Duprat et al. (2007) for exterior gravity-driven liquid coatings and Camassa
et al. (2014) for interior gravity-driven liquid coatings; see also Vellingiri, Tseluiko
& Kalliadasis (2015) for a study of absolute and convective instabilities in the related
problem of gas–liquid film flows in a channel geometry. It was shown by Duprat
et al. (2007) that there is a simple criterion for determining whether solutions to (5.3)
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Modelling viscous films coating the interior of a tube 579

are absolutely or convectively unstable using the method developed by Briggs (1964)
and Bers (1983), and expanded by Huerre & Monkewitz (1990).

The criterion for absolute instability in the Frenkel model (5.3) (Frenkel 1992; also
see § 5 for further discussion of its relation to the core–annular models) was found
by Duprat et al. (2007) to be

S′ >
3(−17+ 7

√
7)1/2

16(a− 1)2
. (3.6)

Since the dispersion relation for the Frenkel equation,

ωF =−2(a− 1)2k+ 16iS′(a− 1)3

3
(k2 − k4), (3.7)

can be transformed into (3.3) by the transformation ωF = −2(a − 1)ωTF-P and
S′ =−(a− 1)S, we find that interfacial perturbations to model (TF-P) are absolutely
unstable if the following condition is satisfied (after a sign change to account for the
different direction of disturbance propagation):

S>
3(−17+ 7

√
7)1/2

16(a− 1)2
. (3.8)

Alternatively, this condition can be expressed as a condition on the dimensional film
thickness:

h̄0 ≡ ā− R̄0 >

[
6Q̄(c)µ(c)(−17+ 7

√
7)1/2

πγ

]1/2

. (3.9)

If condition (3.9) is not satisfied, the free surface is convectively unstable.
The thin-film dispersion relation (3.3) can be transformed into (3.2) by the

transformation

ωTF-P = 2(a− 1)
a4 − a2

ωLW-P and S= 3(a4 − 4a2 + 3+ 4 log a)
8(a− 1)2(a4 − a2)

S∗. (3.10a,b)

Thus, the condition for interfacial disturbances to be absolutely unstable in the long-
wave model is (immediately dropping asterisks)

S>
(−17+ 7

√
7)1/2(a4 − a2)

2(a4 − 4a2 + 3+ 4 log a)
. (3.11)

Figure 3 shows the regions of S–a parameter space for which interfacial disturbances
are absolutely unstable for each model. While both models are convectively unstable
for small S and absolutely unstable for large S, there is an intermediate range of S
values for which disturbances in the thin-film model are absolutely unstable while
disturbances in the long-wave model are only convectively unstable. This is perhaps to
be expected from the results in figure 2. The thin-film model’s growth rate is slower
than its long-wave counterpart (recall that a>1 for fluid coating the interior of a tube),
which intuitively would decrease the region of parameter space in which absolute
instabilities are found. However, figure 2(b) shows that the phase speed for the thin-
film case is smaller than its long-wave counterpart, and this could be expected to have
the opposite effect of increasing the region of absolute instability for model (TF-P).
The results in figure 3 indicate that the lower phase speed is the dominant factor
in determining the nature of instabilities; this also agrees with the relatively large
difference in phase speeds and small difference in growth rates between the models,
as seen in figure 2, for values of the radius a sufficiently larger than unity.
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FIGURE 3. Shaded regions of S–a parameter space indicating interfacial disturbances that
are absolutely unstable for (TF-P) only (light grey) or both (LW-P) and (TF-P) (dark grey).

3.2. Full equations
We now briefly repeat the linear stability analysis for the full model equations.
Introduction of perturbations (3.1) into the long-wave and thin-film models (LW-PG)
and (TF-PG) respectively yields the dispersion relations

ωLW−PG = [a4 − a2 − (a2 − 1− 2 log a)F]k+ iS(a4 − 4a2 + 3+ 4 log a)(k2 − k4), (3.12)

ωTF−PG = [2(a− 1)+ (a− 1)2(5− 2F)]k+ 16i(a− 1)3S
3

(k2 − k4). (3.13)

The maximum growth rates of each model are identical to (3.4) and (3.5); the
wavelengths km of maximum growth rate are also unchanged by the addition of the
gravity term. The influence of gravity is seen solely in the speed of disturbances
through the real part of each dispersion relation. Figure 4(a) shows the speed of
disturbances in each model as a function of a for two values of F. For each model
there is a critical value Fc(a) for which the effects of gravity and surface stress
balance one another so that disturbances remain in a fixed location as long as their
growth remains in the linear regime. For F>Fc (gravity stronger than surface stress),
linear disturbances move down the tube, and for F<Fc (gravity weaker), disturbances
move up the tube. For the long-wave and thin-film models these critical values are,
respectively, FcLW = (a4 − a2)/(a2 − 1 − 2 log a) and FcTF = (5a − 3)/(2a − 2) (these
values are shown in figure 4b). It should be noted that the thin-film model once again
predicts lower velocities than the long-wave model, which is consistent with both
the pressure-driven subcase of speed in model (TF-P) being lower than its long-wave
counterpart and the gravity-driven subcase where the appropriate model (5.3) predicts
higher (downward) speed than its long-wave counterpart as in Camassa et al. (2014).

The dispersion relation (3.3) can be transformed into (3.13) by a similar trans-
formation to those in § 3.1. The condition for interfacial disturbances to be absolutely
unstable in the thin-film model (TF-PG) is then

S>

∣∣∣∣∣3(−17+ 7
√

7)1/2[2(a− 1)+ (a− 1)2(5− 2F)]
32(a− 1)3

∣∣∣∣∣ . (3.14)

The absolute value bars in (3.14) are necessary since, for F> 2.5, there is a range of
large enough a for which the speed of instabilities will be negative, due to the effects
of gravity being stronger than the interfacial stress from the core flow. For given F
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FIGURE 4. (a) Speed of an infinitesimal disturbance to (LW-PG) (solid line) and (TF-PG)
(dashed line) for two values of F; (b) F=FcLW (solid line) and F=FcTF (dashed line) for
(LW-PG) and (TF-PG) respectively, distinguishing between upwards and downwards flow
of linear disturbances.
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FIGURE 5. Shaded regions of S–a parameter space indicating interfacial disturbances that
are absolutely unstable for only one of (light grey) or both (dark grey) (LW-PG) and (TF-
PG) for four different values of F (1.0 (a), 2.5 (b), 5.0 (c), 7.5 (d)).

in the range F> 2.5 there is exactly one value of a, specifically a= (2F− 3)/(2F−
5), for which the right-hand side of (3.14) vanishes, indicating that disturbances are
absolutely unstable for any S; this is due to the effects of gravity and interfacial stress
exactly cancelling one another.

The long-wave model’s dispersion relation (3.12) can be recovered from (3.13) by
yet another transformation; this leads to the following condition for absolute instability
in the long-wave model (LW-PG):

S>

∣∣∣∣∣(−17+ 7
√

7)1/2[a4 − a2 − (a2 − 1− 2 log a)F]
2(a4 − 4a2 + 3+ 4 log a)

∣∣∣∣∣ . (3.15)

Figure 5 shows the regions in S–a parameter space for which disturbances are
absolutely unstable for four values of F. For small values of F, the long-wave model
predicts convective instability for more parameter combinations than the thin-film
model. For larger values of F, there is a range of a in which the long-wave model
predicts absolute instability for more parameter combinations than the thin-film model.
Unlike the thin-film model, for every F in the range F> 6.391 there are exactly two
values of a for which any value of S results in absolute instability.

4. Numerical solutions
The process of saturation of the instabilities discussed in the previous section,

beyond their initial transients, does not seem to be amenable to an analytical approach
and must be studied numerically. In this section, both transient solutions and travelling
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wave solutions to the pressure-driven models (TF-P) and (LW-P) are presented. The
two models’ transient solutions display qualitatively different interactions between
nonlinear free surface waves, while the travelling wave solutions, when viewed in a
travelling reference frame, exhibit two distinct flow regimes, one in which a region
of recirculating fluid exists near the wave crest and one in which no such region is
found.

4.1. Transient solutions
We first seek solutions to the model equations (TF-P) and (LW-P) with periodic
boundary conditions. Numerical integration of each equation is achieved by a
pseudospectral method, whereby spatial derivatives and nonlinearities are calculated
in Fourier and physical space respectively. A simple second-order predictor–corrector
scheme for time integration is used. Due to the nonlinearities in all the models,
the Fourier coefficients are appropriately dealiased. The conserved quantities R2

or h are monitored throughout the simulations. For initial conditions, the flat free
surface is perturbed with either a single mode or multiple modes, i.e. h(z, 0) =
1 +∑n

k=1 δk cos(2πkz + αk), where αk is a random phase shift for each mode. See
Camassa et al. (2012), Ogrosky (2013) or Camassa et al. (2014) for more details on
the numerical simulations.

Figure 6(a–c) contains series of snapshots showing the evolution of a slightly
perturbed interface for long-wave model (LW-P) with various values of S and a;
figure 6(a) shows a relatively thick film (a = 1.25) and figure 6(c) shows a much
thinner film (a = 1.05). The values of S were chosen in such a way that all three
correspond to the thin-film case where S̃= 0.3 in order to make a direct comparison
with the dynamics of solutions to equation (TF-P). In addition, the initial conditions
were identical, i.e. each δk and αk used in one simulation was identical to those
used in every other simulation; the scaling for the initial condition h(z, 0) is shown
to the right of figure 6(d). Instabilities propagate up the tube, shown here from left
to right; it should be noted that successive snapshots are displayed here in a frame
of reference moving with the speed of the undisturbed interface. Unlike the case of
gravity-driven flow studied in Camassa et al. (2014), in no simulations of (LW-P) did
we observe unchecked amplitude growth in finite time (corresponding to ‘choking’ of
the core fluid). This highlights the coupling between the core flow and the annular
flow through the stress at the free surface; the effect of a growing instability on the
hyperbolic term (through the increase in free surface stress) prevents blowup. This is
in line with behaviour seen in experiments conducted in Camassa et al. (2012): at
high core volume fluxes Q̄(c) the rapid increase in the speed of the core fluid in order
to pass through a constricted opening prevents plug formation. We also remark that
the slight depression in front of each wave, and the corresponding fore–aft asymmetry,
is noticeable in all the wave forms in our simulations. This feature is shared among
wave solutions to long-wave, thin-film, flat-film and integral models, and it is even
observed in simulations of propagating liquid plugs; see, e.g., Campana et al. (2007)
and Ubal et al. (2008).

In figure 6(a–c), the free surface undergoes a period of instability growth
governed by the linear analysis discussed in § 3. In figure 6(a), the free surface
then exhibits spatio-temporal chaotic behaviour, reminiscent of solutions to the
Kuramoto–Sivashinsky equation. Indeed, all the models considered here reduce to
some form of the KS equation in the limit of weakly nonlinear disturbances. In
figures 6(b) and 6(c), instabilities grow into the strongly nonlinear regime where a
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FIGURE 6. (a–c) Time snapshots showing the evolution of the free surface for (LW-P)
in a periodic domain with (a) S = 1.8 and a = 1.25, (b) S = 11.25 and a = 1.1, and
(c) S = 45 and a = 1.05. Free surface profiles are shown successively shifted at equal
time intervals. Profiles are shown in the frame of reference moving with an undisturbed
interface. (d) Solution to (TF-P) is shown for S̃ = 0.3, which corresponds to each
combination of S and a used in (a)–(c). Shown below each snapshot is the initial condition
h(z, 0); its scale is shown to the right in (d). Note the different time and amplitude scales
of (d) with respect to the other panels.

nonlinear balance of forces allows the formation of more coherent wave motion. The
waves propagate up the tube while undergoing nonlinear interactions with one another,
eventually settling into a steady wavetrain. The effect of dispersive terms in KS-like
equations has been shown to be regularizing, leading to the formation of travelling
waves, see, e.g., Chang, Demekhin & Kopelevich (1993), Ogawa (1993) and Johnson
et al. (2012). Because of this, it is perhaps to be expected that solutions to the fully
nonlinear models (LW-P) and (TF-P) saturate to a coherent travelling wave regime.

Figure 6(d) shows the evolution of a perturbed interface for thin-film model (TF-P),
for the parameter choice S̃ = 0.3. There is a period of wave collisions and mergers
following the initial instability growth, but unlike the evolution depicted for the long-
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FIGURE 7. Snapshots of a single wave growing according to the linear theory of (3.2)
(dotted line) and the nonlinear model (LW-P) (solid line) at (a) t= 0, 8.3, 16.7 and (b) t=
25, 33.3, 41.7 with S= 11.25 and a= 1.1. (c) The amplitude (distance between wave crest
and trough) of the linear theory and strongly nonlinear model. Circles correspond to the
model solutions shown in (a) and (b).

wave model, the largest wave consumes all others it overtakes. Kerchman (1995) found
this to be the case in all his simulations with 0.15 < S̃ < 1.0 (see figures 4 and 5
in Kerchman 1995 for results with different values of S̃ in this range). Thus, even
for relatively thin films, i.e. a= 1.05, the behaviour of the thin-film model solutions
is qualitatively different from its counterpart in the corresponding long-wave model.
This difference in solution behaviour can be attributed to the thin-film model’s lack
of memory of the tube’s centreline. As the annular fluid waves grow in the long-
wave model, impinging on the core region, the core fluid moves faster to maintain
a constant volume flux. The additional stress caused by the increased velocity of the
core fluid contributes to the nonlinear balance of travelling wave solutions through the
hyperbolic term f1(R; a)Rz. It should be noted that for R� 1 this term behaves like
R−6Rz. In the thin-film model there is no memory of the centreline of the tube, and
instabilities can grow unchecked until they exhaust the supply of fluid in the rest of
the domain. Only then, due to conservation of h, do the instabilities saturate.

In figure 7, the initial period of instability growth shown in figure 6(b) is compared
with the linear theory of (3.2). A single wavelength with wavenumber closest to
km = 1/

√
2 while still fitting in the periodic domain is shown at equally spaced time

intervals in figure 7(a,b). For times t< 25 the growth is in excellent agreement with
the linear theory. Figure 7(c) shows the amplitude (trough to crest) of the wave
during this initial period of growth.

4.2. Travelling wave solutions
The numerical simulations show evidence of the dominant role played by travelling
waves in most time evolutions governed by some of the models. As they are easily
computable numerically with any desired accuracy, travelling wave solutions can thus
be used to further expose the different mathematical and physical features exhibited by
the models described in § 4.1, and to explore the kinematics of the underlying fluid,
which is relevant for studying transport phenomena in these flows.

We once again focus here on the case of pressure-driven flow without gravity.
Moving to a frame of reference travelling with the wave, i.e. letting

Z = z− ct, (4.1)
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FIGURE 8. (a) Maximum value of h attained in travelling wave solutions of (LW-P) and
(TF-P) for various values of S̃ and a. (b) Solutions to the long-wave model (LW-P) for
S̃=0.5 are plotted (solid lines) for various values of a. The solution to the thin-film model
(TF-P) for S̃= 0.5 is plotted (dashed line). The crosses in (a) correspond to profiles shown
in (b).

and substituting (4.1) into the long-wave (LW-P) and thin-film (TF-P) models yields
fourth-order ordinary differential equations (ODEs)

cR′ = f1(R; a)R′ + S
R

d
dZ
[ f3(R; a)(R′ + R2R′′′)], (4.2)

ch′ = hh′ + S̃
d

dZ
[h3(h′ + h′′′)] (4.3)

respectively. As neither (4.2) or (4.3) is solvable analytically, we seek solutions
numerically as in Camassa et al. (2012). We do so by providing an initial guess,
via a long-time simulation of the model PDEs, to an iteration scheme to solve a
boundary value problem. Specifically, we let the time-dependent simulations settle to
a steady series of travelling waves, from which a single wave form can be ‘clipped’.
This wave is then used as an initial approximation, within an appropriate domain, to
be refined with a collocation method for a two-point boundary value problem solver.

Figure 8(a) shows the amplitude (maximum value of h) of travelling wave solutions
to the long-wave model (LW-P) and thin-film model (TF-P) for two values of S̃ and
various values of a. The long-wave model predicts wave amplitudes smaller than those
of the thin-film model; even for moderate values of a this difference is significant.
Figure 8(b) shows several of the travelling wave solutions for S̃ = 0.5. As expected,
in the thin-film limit a→ 1 the long-wave model solutions approach the waveform of
their thin-film model counterparts.

Next, we investigate the effect of period cell length on solutions for each model
class. Figure 9 depicts travelling waves for five different period cell lengths for
(a) the long-wave model (LW-P) and (b) the thin-film model (TF-P). As the period
cell length increases in the long-wave model, the geometry of the tube restricts
growth of the wave amplitude. In model (TF-P) the wave amplitude grows roughly
proportionally to the cell length, as shown by Kerchman (1995) (see figure 10 in
Kerchman 1995 for similar growth with a different value of S̃). This is consistent
with the model solution behaviour described in § 4.1: in the thin-film model (TF-P),
instability growth is bounded by mass conservation, while growth in model (LW-P)
is only bounded primarily by mass conservation for very thin films, with thicker film
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FIGURE 9. Various wavelength travelling wave solutions to (a) the long-wave model
(LW-P) with S = 4.17 and a = 1.25, and (b) the thin-film model (TF-P) with S̃ = 1.0.
The mean film thickness has been normalized to h0 = 1.

growth being bounded primarily by the core fluid’s increased velocity. This difference
has implications for the thickness of the substrate layer outside the wave crest as
well; in the long-wave model, as the cell length increases and the geometry restricts
the growth of the wave, the substrate layer increases in thickness to accommodate the
additional liquid that the increasing cell length introduces. This effect is missed by
the thin-film model where the waves are allowed to grow unbounded in amplitude;
in fact, the substrate layer slightly decreases in thickness with increasing cell length.

It is instructive to view these differences between travelling wave solutions of the
two model classes by monitoring the nonlinear balance of the terms in (4.2) and (4.3),
reported here for convenience after taking the overall derivatives as

6∑
i=1

gi(Z)= 0,
6∑

i=1

g̃i(Z)= 0 (4.4a,b)

respectively, where

g1 =−cR′, g2 = f1R′, g3 = S
R

f3R′′,

g4 = S
R

f3R′′′′, g5 = S
R
(R′)2

d
dR

f3, g6 = S
R

R′R′′′
d

dR
f3

 (4.5)

and

g̃1 =−ch′, g̃2 = hh′, g̃3 = S̃h3h′′,

g̃4 = S̃h3h′′′′, g̃5 = 3S̃h2(h′)2, g̃6 = 3S̃h2h′h′′′.

}
(4.6)

In each of these ODEs, the first two terms give the hyperbolic contributions, the third
and fourth terms give the weakly nonlinear contributions due to capillary forces and
the final two terms give the strongly nonlinear capillary contributions. Figure 10(a)
shows the profile of a solution to both equations (4.4) for S̃= 0.5. The contribution
of each of the six terms g̃i(Z), 1 6 i 6 6, to the solution of the thin-film equation
in (4.4) is shown in figure 10(b) and the contribution of each of the six terms gi(Z)
to the solution of the long-wave equation in (4.4) is shown in figure 10(c).
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FIGURE 10. (a) Travelling wave solution to the long-wave model (LW-P) and the thin-film
model (TF-P) for S̃= 0.5. (b) Contributions of the six terms gi(Z) for the thin-film model
solution shown in (a). The inset shows the percentage contribution ei defined in (4.7).
(c) Contributions of the six terms gi(Z) for the long-wave model solution shown in (a).
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FIGURE 11. (a) Travelling wave solution to the long-wave model (LW-P) for S̃ = 0.5
and the thin-film model (TF-P) for S̃= 0.2. (b) Contributions of the six terms gi(Z) for
the thin-film model solution shown in (a). The inset shows the percentage contribution ei
defined in (4.7). (c) Contributions of the six terms gi(Z) for the long-wave model solution
shown in (a).

The relative contribution of each term g̃i(Z) in the thin-film model (4.4) can be
assessed by evaluating their mean contributions

ei ≡
∫ L

0
|g̃i(Z)| dz

/ 6∑
i=1

∫ L

0
|g̃i(Z)| dz, i= 1, . . . , 6, (4.7)

where L is the solution domain length; this gives a percentage measure of the overall
contribution of each term to the solution across the domain. These percentages are
shown in the inset of figure 10(b). The analogous percentages for the corresponding
long-wave terms in (4.4) are shown in the inset of figure 10(c). We remark that the
term g1 which represents the free surface stress due to the core flow is a much larger
contributor to the nonlinear balance in the long-wave model than its counterpart g̃1
in the thin-film model. This suggests that, as in the case of periodic solutions to the
evolution equation found in the previous section, the free surface stress due to the core
flow is underestimated by the thin-film model; this agrees with the larger amplitudes
that this model’s travelling waves can attain, as free surface stress can act as a limiting
factor to amplitude growth.

Finally, we note that by fitting the parameter S̃ in the thin-film model its
solutions can be brought to provide better approximations to their long-wave model
counterparts. Figure 11 compares the same long-wave solution for S̃= 0.5 as shown
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in figure 10 with the thin-film model solution for S̃ = 0.2. While still significantly
larger, the amplitude of the thin-film solution is now closer to that of the long-wave
model. Moreover, the relative contributions of the various thin-film terms shown in
figure 10(b) closely mirror the contributions of the long-wave terms shown in (c).
This suggests that an alternative definition of the function S̃(S) could improve the
thin-film model’s ability to represent the dynamical effects due to cylindrical geometry
for a wider range of film thicknesses.

4.3. Streamline patterns of travelling waves and mass transport
To examine the flow pattern of the fluid comprising the annular film in the wave
frame, it useful to look at the streamfunction defined by the annular fluid’s radial and
axial velocity components u and w respectively. The streamfunction is

u=−∂zΨ, w− c= 1
r
∂r(rΨ ), (4.8a,b)

ũ=−∂zΨ̃ , w̃− c̃= ∂yΨ̃ (4.9a,b)

for the long-wave and thin-film models respectively; here, y = (a − r)/(a − 1) is
a stretched radial coordinate for the thin-film models. A straightforward calculation
shows that

Ψ =
[
− 1

R4
+ 4S

R2
(Rz + R2Rzzz)

] (
r3

4
− a2r

2
+ a4

4r

)
− 8S(Rz + R2Rzzz)

(
− r

4
+ a2

4r
+ r

2
log
( r

a

))
− cr

2
, (4.10)

Ψ̃ =−y2

2
+ c̃y+ S

2
(hz + hzzz)(y3 − 3hy2) (4.11)

respectively.
Streamline patterns for three travelling wave solutions to model (LW-P) are depicted

in figure 12, where the fluid thickness parameter a = 1.25 for all three solutions.
For small values of S as in figure 12(a), the streamlines are fanned and constricted
by the interfacial disturbance; such waves will be referred to as ‘shear-enhancing’
waves. For larger values of S as in figure 12(b,c), the additional feature of a region
of fluid recirculation, or trapped core, near the wave crest is seen by the presence of
closed streamlines; we will refer to these as ‘mass-transport’ waves. The volume of
the recirculation region for travelling wave solutions is shown as a function of S in
figure 12(d). (We note that the absence of a recirculation region in figure 12(a) is
not an artefact from lack of resolution, a point considered in more detail in Camassa
et al. 2012.) The wave solutions thus undergo a transition from shear-enhancing waves
to mass-transport waves as S increases. For some critical value of S, defined as the
largest value for which no recirculation region exists (in figure 12 this is Sc ≈ 0.6),
there is exactly one stationary point (in the travelling reference frame) at the wave
crest. As S increases past Sc, this one fixed point produces three fixed points: two
hyperbolic points at the free surface, which are endpoints of a separatrix dividing the
closed streamlines from the open ones, and one elliptic fixed point at the centre of
the closed streamlines. This change of streamline pattern as the parameters vary can
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FIGURE 12. (a–c) Streamlines plotted in a travelling reference frame for solutions to the
long-wave model (LW-P) for varying values of S (0.4 (a), 0.7 (b), 1.1 (c)) and a= 1.25.
(d) Volume of the recirculation region as a function of S. For a = 1.25, S < 0.6, no
recirculation region exists. Each cross corresponds to one of the three solutions shown.

be viewed as a bifurcation of the characteristic equations (4.8) and (4.9) governing
the fluid parcel motion.

Streamline patterns for S= 1 and varying film thickness parameter a are shown in
figure 13(a–e). As the film thins, the waves again transition from shear-enhancing
waves to mass-transport waves. Figure 13(f ) shows the dependence of the wave
volume on the film thickness. It is interesting to note that there is some film thickness
for which the wave volume is maximized (in figure 13 this is a≈ 1.1). The volume
of a recirculation region in films thinner than this critical thickness is limited by the
amount of liquid in the domain. For thicker films, wave amplitudes are suppressed
by the core flow, as discussed in § 4.1; increasing film thickness thus restricts, and
eventually eliminates altogether, the size of the recirculation region.

Figure 14 shows the streamlines for various values of the surface tension parameter
S̃ for the thin-film model (TF-P). Unlike solutions to (LW-P), there is no transition
from shear-enhancing waves to mass-transport waves; all waves are found to be mass-
transport waves. Three fixed points exist in all wave solutions: two on the free surface
and one in the recirculation zone, as described above. The volume of the recirculation
region vanishes as S̃→ 0. This difference in streamline topology is summarized in
figure 15, where the regions of mass-transport versus shear-enhancing waves for
(LW-P) are shown in S–a parameter space. The vertical boundary on the left represents
the thin-film limit a→ 1.

The degree to which the recirculation region contributes to the overall annular
flux in travelling wave solutions to (LW-P) can be quantified by separating the total
annular flux into the portion due to the recirculation region and the portion due to
the underlying substrate, i.e.

q(a)r (Z, t)= 2π

∫ R∗

R
wr dr, q(a)s (Z, t)= 2π

∫ a

R∗
wr dr (4.12a,b)
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FIGURE 13. (a–e) The same as figure 12(a–c) but for fixed S = 1 and varying a
(1.35 (a), 1.32 (b), 1.25 (c), 1.14 (d), 1.04 (e)). (f ) The volume of the recirculation region
as a function of a. For thick films (a> 1.32 when S= 1) no recirculation region exists.
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FIGURE 14. (a–c) The same as figure 12(a–c) but for (TF-P) (S = 0.4 (a), 0.7 (b),
1.1 (c)). (d) The volume of the recirculation region as a function of S̃; every travelling
wave has a non-zero volume of fluid inside a recirculation region.
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FIGURE 15. Regions of S–a parameter space where mass-transport waves or shear-
enhancing waves exist for the long-wave model (LW-P).
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FIGURE 16. (a) The total dimensionless flux m〈q(a)〉 for travelling wave solutions to
(LW-P) with a= 1.25. The volume fluxes due to the recirculation region m〈q(a)r 〉 and the
substrate m〈q(a)s 〉 are shown as well. (b) Percentage of the total flux due to the recirculation
region and substrate in (a).

respectively, where R∗(Z) denotes the radial location of the separatrix at locations Z
that lie within the domain of the recirculation region, and R∗(Z)=R(Z) for all other Z.
Each quantity in (4.12) can be averaged over one wavelength, i.e. 〈q(a)r 〉 and 〈q(a)s 〉,
where 〈·〉 = L−1

∫ L
0 · dZ. Figure 16(a) shows each of these quantities, as well as the

average total flux 〈q(a)〉, for solutions with a= 1.25 and varying S; it should be noted
that in (a) the dimensionless annular volume flux has been rescaled by the viscosity
ratio m = µ(a)/µ(c) as liquid scales are being emphasized here. The percentage that
each portion of the flux contributes is shown in figure 16(b). Consistent with figure 12,
no recirculation region exists for S 6 Sc≈ 0.6. For larger S values, as S increases, the
recirculation region grows in size and contributes an increasingly large fraction of the
total flux. We note that the percentage of flux attributable to the recirculation region
appears to converge to 50 % in the limit of large S in (b), though this limiting value
cannot be expected to hold for all values of the film thickness parameter a.

The source of the difference in behaviour between the two models is worth
discussing. We remark that a recirculation region can only exist when the speed of
a fluid parcel somewhere on the free surface is identical to the wave speed; such a
parcel would be located at one of the two fixed stagnation points lying on the free
surface in the travelling reference frame. The velocity of a fluid parcel lying on an
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unperturbed interface in the long-wave (LW-P) and thin-film (TF-P) models is

w= a2 − 1= 2β + β2,

w̃= 2(a− 1)= 2β

}
(4.13)

respectively. The phase speed of a linear disturbance is the real part of ω/k in (3.2)
and (3.3),

c= a4 − a2 = 2β + 5β2 +O(β3),

c̃= 2(a− 1)= 2β.

}
(4.14)

Thus, in model (TF-P) the fluid can match the wave speed, w̃ = c̃, and it can be
expected that there exist fluid parcels moving at the speed of the wave regardless
of how small the free surface disturbance is. The long-wave model (LW-P), however,
has a larger disturbance speed than interface speed, i.e. w < c, guaranteeing that no
recirculation region can exist for small-amplitude waves.

We stress that simply retaining one additional power of β in the hyperbolic terms
is sufficient to prevent this phenomenon of persistence of closed streamlines at all
travelling wave amplitudes from occurring in the thin-film model. If F= 0 in (TF-PG),
then the phase speed of a linear disturbance in (TF-PG) is now given by c̃2 = 2β +
5β2 = c + O(β3), while the speed of the undisturbed interface is w̃2 = w; thus the
higher-order thin-film model (TF-PG) contains the same streamline bifurcation as seen
in its long-wave counterpart.

5. Discussion

The analytical and numerical results in §§ 3 and 4 have demonstrated a variety
of qualitative differences in model behaviour that can arise when the thin-film
approximation is applied to a long-wave model. We next show how the models
(TF-P), (TF-PG), (LW-P) and (LW-PG) fit into an extended hierarchy of asymptotic
models, and discuss whether the qualitative differences presented in the previous
sections are seen in these models.

The primary long-wave model (LW-PG) was derived by assuming an asymptotic
balance of three terms representing stress due to the core flow, gravity and capillary
forces, and in the case of small density difference between the fluids, i.e. l� 1, the
model reduced to (LW-P). In the case of weak core flow, i.e. C� 1 and l Re/Fr2� 1,
the primary model reduces to the model equation derived by Camassa et al. (2014)
(after a rescaling in time by F rather than 1/m),

Rt − f2(R; a)Rz + S′(a)
R
[f3(R; a)(Rz + R2Rzzz)]z = 0, (5.1)

where S′ ≡ S/F. Equation (5.1) is similar to that derived in Lin & Liu (1975) for
interior and exterior flows, and is analogous to the exterior models derived in Craster
& Matar (2006) and Kliakhandler, Davis & Bankoff (2001).

In the case of both weak core flow and near-equal density fluids, i.e. C� 1 and
C� l Re/Fr2, capillary forces dominate the dynamics, and the primary model reduces
to (after a rescaling in time by 1/C rather than 1/m)

Rt + 1
R
[ f3(R; a)(Rz + R2Rzzz)]z = 0. (5.2)
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Model Q̄(c) l Number of model
parameters

Reference

(2.17)–(LW-PG) >0 6=0 3 Camassa et al. (2012)
(2.20)–(LW-P) >0 =0 2 Camassa & Lee (2006)
(5.1)–(LW-G) =0 6=0 2 Camassa et al. (2014);

exterior flows: Craster & Matar (2006)
(5.2)–(LW) =0 =0 1

TABLE 1. Summary of long-wave models.

Model Q̄(c) l Number of model
parameters

Reference

(2.23)–(TF-PG) >0 6=0 2
(2.24)–(TF-P) >0 =0 1 Kerchman (1995)
(5.3)–(TF-G) =0 6=0 1 Frenkel (1992)
(5.4)–(TF) =0 =0 0 Hammond (1983)

TABLE 2. Summary of thin-film models.

For ease of reference we label models (5.1) and (5.2) with the tags (LW-G)
and (LW). It should be noted that the time scale for each of the four long-wave
models (LW-PG), (LW-P), (LW-G) and (LW) is different, with each rescaling of time
corresponding to a reduction of the number of model parameters by one. Table 1
summarizes the four long-wave models; the values of the core volume flow rate Q̄(c)

and the difference in density between the two fluids l appropriate to each model are
given, as is a reference where the model derivation can be found in the literature.

Likewise, similar reductions can be made to the primary thin-film model (TF-PG).
In the case of weak core flow, retaining O(β2) hyperbolic terms only and employing
a rescaling in time analogous to that used in deriving the long-wave gravity-driven
model (LW-G)/(5.1) produces

ht − h2hz + S̃′[h3(hz + hzzz)]z = 0, (5.3)

where S̃′ = 8βS′/3. Equation (5.3) is the thin-film counterpart to the gravity-driven
long-wave model (LW-G) and was derived by Frenkel (1992) using slightly different
scalings; it was subsequently studied analytically and numerically by Kalliadasis &
Chang (1994) and Kerchman & Frenkel (1994), among others.

Similarly, in the case of both weak core flow and nearly equal density fluids, (2.23)
simplifies to the evolution equation studied by Hammond (1983) after a rescaling of
time by t′ = (16β3S/3)t, immediately dropping primes again,

ht + [h3(hz + hzzz)]z = 0. (5.4)

A summary of the four thin-film models is given in table 2.
The long-wave models and their thin-film counterparts form a natural hierarchy

illustrated in figure 17. The number of parameters that govern the dynamics of each
model is indicated by the axis on the left.

A few comments are now in order. First, we note that the thin-film models (TF-G)
and (TF) apply to both interior and exterior liquid coatings; the hierarchy in figure 17
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FIGURE 17. The primary long-wave model (2.17)–(LW-PG) reduces to (2.20)–(LW-P) in
the absence of gravity or to (5.1)–(LW-G) in the absence of pressure-driven core flow; the
elimination of both forces results in (5.2)–(LW). Each long-wave model also corresponds
to a thin-film model to which it reduces in the thin-film limit. The number of parameters
governing the dynamics of each model is also shown.

thus overlaps with that outlined in Craster & Matar (2009), with (LW-G) being the
analogue to the exterior long-wave model in Craster & Matar (2006).

Second, the thin-film models are all conservation laws. However, the conserved
quantity in these thin-film models is not the film’s mass but the film’s thickness h;
mass is therefore only conserved in an approximate flattened-geometry sense. In
contrast, the long-wave models conserve the quantity R2, thus representing the mass
in the full cylindrical geometry. In fact, the (trivial) flat solution R = 1 of the
long-wave models can recover its exact counterpart (2.9)–(2.10) for the full governing
equation, while the analogous solution for the thin-film models can only lead to
an approximation, as these models are limited by the geometric rectification of an
annular cross section valid only in the limit of small film thickness.

Next, we note that keeping higher-order terms in β would in principle allow for
thin-film models that potentially capture more physical effects. For example, in the
case of gravity-driven flow, i.e. let F = 0 in the primary thin-film model (TF-PG),
retaining an extra order in β for all terms (including the capillary terms) produces
a model analogous to that derived for gravity-driven exterior liquid coatings by Roy,
Roberts & Simpson (2002). Their model conserves mass and includes some effects of
the cylindrical geometry not contained in (TF-G). (The model derived in Roy et al.
2002 can be accurately said to be a ‘thin-film’ model, but has much in common with
its long-wave counterpart derived in Kliakhandler et al. 2001 and Craster & Matar
2006.)

Finally, we note that some, but not all, of the qualitative differences seen
between the long-wave and thin-film models for core–annular flow are also seen in
gravity-driven models. For instance, in the case of exterior flows, Roy et al. (2002)
note that (TF-G) produces higher-amplitude waves with slower speed than those
obtained by models that retain the curved geometry, consistent with the core–annular
results shown in figure 6. However, in interior gravity-driven flow the streamline
bifurcation discussed in § 4.3 occurs in both the long-wave (LW-G) and thin-film
(TF-G) models; the speed of a fluid parcel at the free surface is half the speed of an
infinitesimal free surface disturbance, guaranteeing that a recirculation region cannot
exist in a small-amplitude wave. Only for sufficiently large S̃′ does the nonlinear
balance of terms create a large enough wave amplitude and free surface speed to
allow for a recirculation region to form; numerically it was found that S̃′ > 1 was
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FIGURE 18. Regions of S̃′–a parameter space where mass-transport waves and/or
shear-enhancing waves were found numerically for model (LW-G).

sufficient to allow the formation of a recirculation region in (TF-G). Thus, truncation
to the leading-order hyperbolic term in β does not result in the same streamline
topology change as seen in the pressure-driven flow. Figure 18 shows the region of
S̃′–a parameter space in which shear-enhancing travelling wave solutions to (LW-G)
were found; see Camassa et al. (2014) for further discussion.

6. Conclusions
We have studied a collection of long-wave and thin-film models for the problem of

pressure-driven viscous core–annular flow, and examined their dynamical differences
with respect to the asymptotic assumptions made in the process of model derivation.
While the thin-film model equations have simpler nonlinearities and a parameter space
that is one dimension smaller than their long-wave counterparts, these simplifications
come at the expense of neglecting aspects of the cylindrical geometry of the problem.

In particular, we have shown how this cylindrical geometry makes an important
contribution to the behaviour of the film flow, since sufficiently large-amplitude
waves ‘feel’ the presence of the tube centre through self-interaction across the wave
crest and/or the constricted core fluid dynamics. Significant differences exist in the
qualitative behaviour of both the evolution of the free surface and the underlying fluid
flow between each class of model. It was seen that, given a set of parameter values,
the long-time behaviour of the free surface, the nature of the free surface instabilities
and the topology of streamlines in a travelling reference frame all depend on the class
of the model. Thin-film models such as (TF-PG), which retain higher-order terms
(analogous to the model derived by Roy et al. (2002) for the case of a gravity-driven
exterior liquid coating), can eliminate, at least on a qualitative level, these differences
with respect to their long-wave counterparts. These extra terms, of course, compromise
the simplicity offered by the leading-order thin-film models. Since long-wave models
used in the literature for both interior and exterior liquid coatings, e.g. Craster &
Matar (2006) and Camassa et al. (2014), have been shown to give good agreement
with experiments in Smolka, North and Guerra (2008) and Camassa et al. (2014)
respectively, one of the conclusions of our study is that it seems advisable to use the
full cylindrical geometry offered by long-wave modelling whenever possible.
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Appendix A. Long-wave expansion for fully coupled core–annular flow
A systematic expansion of the dimensionless governing equations in ε results in a

leading-order long-wave solution

w(a)
LW =

1
4m

[(
p(a)z +

(l+ 1)Re
Fr2

)
(r2 − a2)− 2l Re

Fr2
R2 log

r
a

]
, (A 1)

w(c)
LW =

1
4

(
p(c)z +

Re
Fr2

)
(r2 − R2)

+ 1
4m

[(
p(a)z +

(l+ 1)Re
Fr2

)
(R2 − a2)− 2l Re

Fr2
R2 log

1
a

]
, (A 2)

where we have also assumed εRe�1, allowing the inertial terms to be neglected. This
solution is a dimensionless slowly varying z-dependent modulation of (2.9)–(2.10).
Integrating each of the velocity profiles (A 1)–(A 2) across their respective domains as
in (2.14a,b) results in the following expressions for the dimensionless volume flux:

q(a) = πR4

8m

[
−
(

1− a2

R2

)2 (
p(a)z +

(l+ 1)Re
Fr2

)
− 2l Re

Fr2

(
1− a2

R2
− 2 log

R
a

)]
, (A 3)

q(c) = π

8

[
−
(

p(c)z +
Re
Fr2

)
+ 2

m

(
1− a2

R2

)(
p(a)z +

(l+ 1)Re
Fr2

)
− 4l Re

m Fr2
log

R
a

]
, (A 4)

where the z dependence enters the right-hand sides through the slowly varying
functions pi(z, t) and R(z, t).

Extraction of the dimensionless pressure gradient from the total flux invariance
(2.15) yields the leading-order expression

p(a)z =
[

1
C

(
Rz

R2
+ Rzzz

)
− Re

Fr2
− π

2R4

(
1+Q(a)

)− Re(l+ 1)
2m Fr2

(
1− a2

R2

)2

+ Re
m Fr2

(
1− a2

R2

)]/[
1− 1

m

(
1− a4

R4

)]
, (A 5)

where Q(a) = Q̄(a)/Q̄(c) is the dimensionless annular flux. This expression can be
simplified by assuming a balance between its first three terms, i.e.

C=O(1), Fr2 =O(Re), (A 6a,b)

and by also assuming that both

m� (a/R̃)4, m� l(a/R̃)4 (A 7a,b)
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hold true, where R̃ is a characteristic value for the core radius such that R(z, t)=O(R̃)
for all z and t. It should be noted that the asymptotic ordering (A 7) implies that the
fluxes in (A 3)–(A 4) satisfy q(a)� 1 and q(c)=O(1). Given both (A 6) and (A 7), the
pressure gradient (A 5) can be approximated by

p(a)z =
1
C

(
Rz

R2
+ Rzzz

)
− Re

Fr2
− π

2R4
; (A 8)

substitution of (A 8) into (A 3) and (2.16) results in the primary long-wave model
(2.17). We remark that the ordering (A 7) will not hold if the core region becomes
excessively narrow. In this case, the problem can be termed a ‘thick-film’ problem;
see, e.g., Lowman & Hoeffer (2013) for a model of a similar problem.

The dimensional forms of (A 1)–(A 5) and (A 8) are given for reference. The
dimensional velocities are

w̄(a)
LW =

r̄2 − ā2

4µ(a)
(p̄(a)z̄ + ρ(a)g)+

gR̄2

2µ(a)
(ρ(c) − ρ(a)) log

(
r̄
ā

)
, (A 9)

w̄(c)
LW =

r̄2 − R̄2

4µ(c)
(p̄(c)z̄ + ρ(c)g)

+ R̄2 − ā2

4µ(a)
(p̄(a)z̄ + ρ(a)g)+

gR̄2

2µ(a)
(ρ(c) − ρ(a)) log

(
R̄
ā

)
, (A 10)

the dimensional fluxes are

q̄(a) = πR̄4

8µ(a)

[
−
(

1− ā2

R̄2

)2

(p̄(a)z̄ + ρ(a)g)+ 2g(ρ(c) − ρ(a))
(

1− ā2

R̄2
− 2 log

R̄
ā

)]
,

(A 11)

q̄(c) = πR̄4

8µ(a)

[
−µ

(a)

µ(c)
(p̄(c)z̄ + ρ(c)g)+ 2

(
1− ā2

R̄2

)
(p̄(a)z̄ + ρ(a)g)+ 4g(ρ(c) − ρ(a)) log

R̄
ā

]
,

(A 12)

the dimensional pressure gradient is

p̄(a)z̄ =
[
γ

R̄2
(R̄z̄ + R̄2R̄z̄z̄z̄)− ρ(c)g− 8Q̄µ(c)

πR̄4
+ µ

(c)

µ(a)

[
2gρ(c)

(
1− ā2

R̄2

)

−gρ(a)
(

1− 2ā2

R̄2
+ ā4

R̄4

)] ]/[
1− µ

(c)

µ(a)

(
1− ā4

R̄4

)]
(A 13)

and the approximate dimensional pressure gradient used to derive (2.17) is

p̄(a)z̄ ≈
γ

R̄2
(R̄z̄ + R̄2R̄z̄z̄z̄)− ρ(c)g− 8Q̄(c)µ(c)

πR̄4
. (A 14)
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