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Abstract

We compute the Pin(2)-equivariant Seiberg–Witten Floer homology of Seifert rational

homology three-spheres in terms of their Heegaard Floer homology. As a result of this

computation, we prove Manolescu’s conjecture that β =−µ̄ for Seifert integral homology

three-spheres. We show that the Manolescu invariants α, β, and γ give new obstructions

to homology cobordisms between Seifert fiber spaces, and that many Seifert homology

spheres Σ(a1, . . . , an) are not homology cobordant to any −Σ(b1, . . . , bn). We then use

the same invariants to give an example of an integral homology sphere not homology

cobordant to any Seifert fiber space. We also show that the Pin(2)-equivariant Seiberg–

Witten Floer spectrum provides homology cobordism obstructions distinct from α, β,

and γ. In particular, we identify an F[U ]-module called connected Seiberg–Witten Floer

homology, whose isomorphism class is a homology cobordism invariant.

1. Introduction

Let Y be a closed, oriented three-manifold with b1 = 0 and spin structure s, and let G = Pin(2),

the subgroup S1 ∪ jS1 of the unit quaternions. Manolescu introduced the G-equivariant

Seiberg–Witten Floer homology SWFHG(Y, s) in [Man16], and with it the suite of homology

cobordism invariants α, β, γ. These are defined analogously to the Frøyshov invariant of the

usual, S1-equivariant, Seiberg–Witten Floer homology. To construct the Pin(2)-equivariant Floer

theory, Manolescu does finite-dimensional approximation of the Seiberg–Witten equations for

(Y, s), and obtains a G-equivariant homotopy type SWF (Y, s). The invariant SWFHG(Y, s) is

then the G-equivariant Borel homology of SWF (Y, s). As the G-equivariant homology of

some stable homotopy type, SWFHG(Y, s) comes with the structure of a module over

H∗(BG;F) ' F[q, v]/(q3), where F is the field of two elements. The invariants α, β, and γ are

defined using the module structure.

The invariant β was then used to disprove the triangulation conjecture. Let θH3 denote the

homology cobordism group of integral homology three-spheres. By the work of Galewski and

Stern [GS80] and Matumoto [Mat78], there exist nontriangulable manifolds in dimension at

least 5 if and only if θH3 does not contain an element [Y ] of order 2, with µ(Y ) = 1. However,

the invariant β : θH3 → Z satisfies β(Y, s) = −β(−Y, s) and β(Y, s) ≡ µ(Y, s) mod 2, from which

Manolescu concludes that there exist manifolds of all dimensions at least 5 which cannot be

triangulated.
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Let Y be a Seifert rational homology sphere with spin structure s, such that the base orbifold
of the Seifert fibration of Y has S2 as underlying space.1 In the present paper, we use the
description of the Seiberg–Witten moduli space given by Mrowka, Ozsváth and Yu [MOY97] to
compute SWFHG(Y, s), as a module over F[q, v]/(q3) (here, the action of v decreases grading
by 4, and that of q decreases grading by 1). The description is in terms of the Heegaard
Floer homology HF +(Y, s), defined in [OS04a, OS04b]. In particular, this description makes
SWFHG(Y, s) quickly computable, as Ozsváth-Szabó, Némethi, and Can and Karakurt [OS03b,
Ném05, CK14] have developed algorithms to calculate HF+(Y, s) for Y a Seifert space. In
order to obtain SWFHG(Y, s) in terms of HF+(Y, s), we use both the equivalence of HF + and
~HM due to Kutluhan, Lee and Taubes [KLT10], and Colin, Ghiggini and Honda [CGH11] and

Taubes [Tau07], and the equivalence of ~HM and SWFH S1
due to Lidman and Manolescu [LM18].

Here SWFH S1
(Y, s) denotes the S1-equivariant Borel homology of the stable homotopy type

SWF (Y, s).

We will need to relate SWFH S1
(Y, s) and SWFHG(Y, s) when the underlying homotopy type

SWF (Y, s) is simple enough. This should be compared with [Lin17], in which Lin calculates the
Pin(2)-monopole Floer homology in the setting of [Lin18] for many classes of three-manifolds Y
obtained by surgery on a knot. The approach there is based, similarly, on extracting information
from the S1-equivariant theory ~HM(Y, s) of [KM07], when ~HM(Y, s) is simple enough.

To state the calculation of SWFHG(Y, s), let T + denote F[U,U−1]/UF[U ], and T +(i) =
F[U−i+1, U−i+2, . . .]/UF[U ], with deg(U) = −2. We also introduce the notation V+ to denote
F[v, v−1]/vF[v], and V+(i) = F[v−i+1, v−i+2, . . .]/vF[v], with deg(v) =−4. For any graded module
M , let Mn denote the submodule of homogeneous elements of degree n, and define M [k] by
M [k]n = Mn+k. Let T +

d (n) = T +(n)[−d] and V+
d (n) = V+(n)[−d]. The module T +

d (n) is then
supported in degrees from d to d+ 2(n− 1), with the parity of d.

Fix Y a Seifert rational homology three-sphere with negative fibration; that is, the orbifold
line bundle of Y is of negative degree (see § 5). For example, the Brieskorn sphere Σ(a1, . . . , an),
for coprime ai, is of negative fibration. Using Corollary 5.4 we may write

HF +(Y, s) = T +
s+d1+2n1−1⊕

N⊕
i=1

T +
s+di

(
di+1 + 2ni+1 − di

2

)
⊕

N⊕
i=1

T +
s+di

(ni)⊕ J⊕2[−s], (1)

for some constants s, di, ni, N and some F[U ]-module J , all determined by (Y, s). Moreover,
di+1 > di, ni+1 < ni for all i. Roughly, in terms of Seiberg–Witten theory, the term T +

s+d1+2n1−1
accounts for the reducible critical point, and the modules

T +
s+di

(ni) and T +
s+di

(
di+1 + 2ni+1 − di

2

)
account for the irreducibles which cancel against the bottom of the infinite U -tower. The term
J⊕2 accounts for the other irreducibles.

Let us denote by res
F[U ]
F[v] the restriction functor from the map of modules F[v]→ F[U ] given

by v→ U2. The restriction functor converts T +
d (n) to V+

d (b(n+ 1)/2c)⊕ V+
d+2(bn/2c).

Theorem 1.1. Let Y be a Seifert rational homology three-sphere of negative fibration, fibering
over an orbifold with underlying space S2, and let s be a spin structure on Y . Let HF +(Y, s) be as

1 There are also Seifert fibered rational homology spheres with base orbifold RP2, and some of them do not have
a Seifert structure over S2. These are not considered in this paper. None of them are integral homology spheres.
Furthermore, in order for a Seifert fiber space Y to be a rational homology sphere, it must fiber over an orbifold
with underlying space either RP2 or S2.
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in (1). Then there exist constants (ai, bi) and an F[q, v]/(q3)-module J ′′, specified in Corollary 5.4
and depending only on the sequence (di, ni), so that, as an F[v]-module,

SWFHG(Y, s) = V+
s+4b(d1+2n1+1)/4c ⊕ V

+
s+1 ⊕ V

+
s+2

⊕
N ′⊕
i=1

V+
s+ai

(
ai+1 + 4bi+1 − ai

4

)
⊕ J ′′[−s]⊕ res

F[U ]
F[v] J [−s].

The q-action is given by the isomorphism V+
s+2 → V+

s+1 and the map V+
s+1 →

V+
s+4b(d1+2n1+1)/4c, which is an F-vector space isomorphism in all degrees at least s +

4b(d1 + 2n1 + 1)/4c and vanishes otherwise. Further, q annihilates res
F[U ]
F[v] J [−s] and

⊕N ′

i=1 V
+
s+ai

((ai+1 + 4bi+1 − ai)/4). The action of q on J ′′ is specified in Corollary 5.4.

Theorem 1.1 specifies α, β, and γ, which we state as Corollary 1.2. For Y an integral homology
three-sphere, let d(Y ) be the Heegaard Floer correction term [OS03a]. Using Theorems 1.1
and 1.3 below we obtain the following.

Corollary 1.2.

(a) Let Y be a Seifert integral homology sphere of negative fibration. Then β(Y ) = γ(Y ) =
−µ̄(Y ), and

α(Y ) =

{
d(Y )/2 if d(Y )/2 ≡ −µ̄(Y ) mod 2,

d(Y )/2 + 1 otherwise.

(b) Let Y be a Seifert integral homology sphere of positive fibration. Then α(Y ) = β(Y ) =
−µ̄(Y ), and

γ(Y ) =

{
d(Y )/2 if d(Y )/2 ≡ −µ̄(Y ) mod 2,

d(Y )/2− 1 otherwise.

From Corollary 1.2, we see that for Seifert integral homology spheres the Manolescu invariants
α, β, and γ are all determined by d and µ̄. In particular, α, β, and γ provide no new obstructions
to Seifert spaces bounding acyclic four-manifolds.

In [Man16], Manolescu also conjectured that for all spin Seifert rational homology spheres
β(Y, s) = −µ̄(Y, s), where µ̄ is the Neumann–Siebenmann invariant defined in [Neu80, Sie80].
We are able to prove part of this conjecture.

Theorem 1.3. Let Y be a Seifert integral homology three-sphere. Then β(Y ) = −µ̄(Y ).

We prove Theorem 1.3 by showing that β is controlled by the degree of the reducible, and
by using a result of Ruberman and Saveliev [RS11] that gives µ̄ as a sum of eta invariants.

Fukumoto, Furuta and Ue showed in [FFU01] that µ̄ is a homology cobordism invariant for
many classes of Seifert spaces, and Saveliev [Sav02] extended this to show that Seifert integral
homology spheres with µ̄ 6= 0 have infinite order in θH3 . Theorem 1.3 generalizes the result of
Fukumoto, Furuta and Ue, showing that the Neumann–Siebenmann invariant µ̄, restricted to
Seifert integral homology spheres, is a homology cobordism invariant.

For Seifert spaces with HF +(Y, s) of a special form, SWFHG(Y, s) may be expressed more
compactly than is evident in the statement of Theorem 1.1. If Y is of negative fibration and

HF +(Y, s) = T +
d ⊕ T

+
−2n+1(m)⊕

⊕
i∈I
T +
ai (mi)

⊕2, (2)
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for some index set I, we say that (Y, s) is of projective type. We will say that Y is of projective
type if Y is an integral homology sphere such that (2) holds. There are many examples of such
Seifert spaces, among them Σ(p, q, pqn ± 1), by work of Némethi and Borodzik [Ném07, BN13]
and Tweedy [Twe13]. The condition (2) also admits a natural expression in terms of graded
roots; see § 5.2.

Theorem 1.4. If (Y, s) is of projective type, as in (2), with m 6= 0, then we have the following.
If d ≡ 2n+ 2 mod 4,

SWFHG(Y, s) = V+
d+2 ⊕ V

+
−2n+1 ⊕ V

+
−2n+2

⊕V+
−2n+3

(⌊
m

2

⌋)
⊕
⊕
i∈I
V+
ai

(⌊
mi + 1

2

⌋)
⊕
⊕
i∈I
V+
ai+2

(⌊
mi

2

⌋)
. (3)

If d ≡ 2n mod 4,

SWFHG(Y, s) = V+
d ⊕ V

+
−2n+1 ⊕ V

+
−2n+2 ⊕ V

+
−2n+3

(⌊
m

2

⌋)
⊕
⊕
i∈I
V+
ai

(⌊
mi + 1

2

⌋)
⊕
⊕
i∈I
V+
ai+2

(⌊
mi

2

⌋)
. (4)

The q-action is given by the isomorphism V+
−2n+2→ V

+
−2n+1 and the map V+

−2n+1→ V
+
d+2 (if

d ≡ 2n+ 2 mod 4), or V+
−2n+1→ V

+
d (if d ≡ 2n mod 4), which is an F-vector space isomorphism

in all degrees at least d + 2 (respectively, d), and vanishes otherwise. In (3) and (4), q acts on
V+
−2n+3(bm/2c) as the unique nonzero map V+

−2n+3(bm/2c)→ V+
−2n+2 if m > 2. The action of q

annihilates
⊕

i∈I V+
ai(b(mi + 1)/2c)⊕

⊕
i∈I V

+
ai+2(bmi/2c).

If m = 0, we define n by d = −2n, in which case (4) again holds, and the q action is as before.

To prove Theorem 1.1, we use [MOY97] to show that a space representative of the stable
homotopy type SWF (Y, s), away from the reducible, naturally splits into two disjoint pieces,
which are interchanged by the action of j ∈ G. For Z a topological space with G-action let
ZS

1 ⊂ Z denote the subset fixed by S1 ⊂ G. Say

X = SWF (Y, s)/(SWF (Y, s)S
1
).

Then
X = X+ ∨ jX+. (5)

That is, X is a wedge sum of two components related by the action of j. Then the chain complex
of EG ∧G SWF (Y, s), used to compute the G-Borel homology, is closely related to the chain
complex of ES1 ∧S1 SWF (Y, s), whose homology is the S1-Borel homology of SWF (Y, s). A
careful, but entirely elementary, analysis of the differentials in these two complexes then yields
Theorem 1.1.

1.1 Local equivalence
We call rational homology three-spheres Y1 and Y2 (integral) homology cobordant if there exists
a compact oriented four-manifold W with ∂W = Y1q−Y2 so that the maps induced by inclusion
H∗(Yi;Z)→ H∗(W ;Z) are isomorphisms for i = 1, 2.

Manolescu’s construction of SWF (Y, s) contains more information about homology
cobordism than the invariants α, β, and γ. Namely, a spin cobordism W from Y1 to Y2 with
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b2(W ) = 0 induces a map SWF (Y1, s1) → SWF (Y2, s2) which is a homotopy equivalence on
S1-fixed point sets. We call two G-spaces X1, X2 locally equivalent if there exist G-equivariant
stable maps X1 → X2 and X2 → X1 which induce homotopy equivalences on fixed point sets.
The local equivalence class [SWF (Y, s)]l is then a homology cobordism invariant of (Y, s). The
local equivalence class [SWF (Y, s)]l determines α(Y, s), β(Y, s) and γ(Y, s).

For a more computable version of local equivalence, we introduce chain local equivalence,
using the C∗(G)-equivariant chain complex associated to a G-CW complex. The chain
local equivalence class of a G-space X, denoted [X]cl, takes values in the set CE of
homotopy-equivalence classes of chain complexes of a certain form. In particular, using the
chain local equivalence class we have the following result.

Corollary 1.5. Let Y be a rational homology three-sphere with spin structure s. Then
there is a homology-cobordism invariant, SWFH conn(Y, s), the connected Seiberg–Witten Floer
homology of (Y, s), taking values in isomorphism classes of F[U ]-modules. More specifically,
SWFH conn(Y, s) is the isomorphism class of a summand of HF red(Y, s).

The connected Seiberg–Witten Floer homology is constructed using the CW chain complex
of a space representative X of SWF (Y, s). The CW chain complex CCW

∗ (X) splits, as a module
over CCW

∗ (G), into a direct sum of two subcomplexes, with one summand attached to the S1-
fixed-point set, and the other a free CCW

∗ (G)-module. Roughly, the S1-Borel homology of the
former component is SWFH conn(Y, s).

In the calculation of SWFHG(Y, s) for Seifert spaces, we provide enough information about
the G-equivariant chain complex of SWF (Y, s) to calculate the chain local equivalence class
[SWF (Y, s)]cl of Seifert spaces. As a corollary, we obtain the following.

Corollary 1.6. The sets {di}i, {ni}i in Theorem 1.1 are integral homology cobordism
invariants of negative Seifert fiber spaces. That is: say Y1 and Y2 are negative Seifert integral
homology spheres with Y1 homology cobordant to Y2; let Si be the set of isomorphism classes
of simple summands of HF +(Yi) that occur an odd number of times in the decomposition (1);
then S1 = S2.

We obtain Corollary 1.6 by showing that {di}i and {ni}i determine [SWF (Y, s)]cl.

Corollary 1.7. Let (Y1, s1) be a negative Seifert rational homology three-sphere with spin
structure, with HF +(Y1, s1) as in (1). Then

SWFH conn(Y1, s1) =

N⊕
i=1

T +
s+di

(
di+1 + 2ni+1 − di

2

)
⊕

N⊕
i=1

T +
s+di

(ni). (6)

In particular, if Y1 is an integral homology sphere and Y2 is any integral homology sphere
homology cobordant to Y1, then ~HM(Y2) ∼= HF +(Y2) contains a summand isomorphic to (6), as
F[U ]-modules.

Remark 1.8. In fact, SWFH conn(Y, s) is an invariant of spin rational homology cobordism, for
Y a rational homology three-sphere.

From Corollary 1.7 and (1), we see that for Seifert integral homology spheres Y , SWFH conn

(Y, s) = 0 if and only if d(Y, s)/2 = −µ̄(Y, s). As an application of the Corollaries 1.5 and 1.7,
we have the following result.

203

https://doi.org/10.1112/S0010437X19007620 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007620


M. Stoffregen

Corollary 1.9. The spaces Σ(5, 7, 13) and Σ(7, 10, 17) satisfy

d(Σ(5, 7, 13)) = d(Σ(7, 10, 17)) = 2,

µ̄(Σ(5, 7, 13)) = µ̄(Σ(7, 10, 17)) = 0.

However, SWFH conn(Σ(5, 7, 13)) = T +
1 (1), while

SWFH conn(Σ(7, 10, 17)) = T +
−1(2)⊕ T +

−1(1). (7)

Thus Σ(5, 7, 13) and Σ(7, 10, 17) are not homology cobordant, despite having the same d, µ̄, α,
β, and γ invariants.

There are many other examples of homology cobordism classes that are distinguished by
di, ni, but not by d and µ̄. As an example, we have the following corollary.

Corollary 1.10. The Seifert space Σ(7, 10, 17) is not homology cobordant to Σ(p, q, pqn ± 1)
for any p, q, n.

This result follows from Corollary 1.6. Indeed, since Σ(p, q, pqn ± 1) are of projective type,
SWFH conn(Σ(p, q, pqn± 1)) is a simple F[U ]-module, using the definition (2) and equation (6).
Using (7), Corollary 1.10 follows.

Moreover, using a calculation from [Man13], we are able to show the existence of three-
manifolds not homology cobordant to any Seifert fiber space. This result is also due to Frøyshov
using instanton homology, and has been independently proved by Lin [Lin17]. For example, we
have the following.

Corollary 1.11. The connected sum Σ(2, 3, 11)#Σ(2, 3, 11) is not homology cobordant to any
Seifert fiber space.

Proof. In [Man13], Manolescu shows α(Σ(2, 3, 11)#Σ(2, 3, 11)) = β(Σ(2, 3, 11)#Σ(2, 3, 11)) = 2,
while γ(Σ(2, 3, 11)#Σ(2, 3, 11)) = 0. In addition, d(Σ(2, 3, 11)) = 2, so d(Σ(2, 3, 11)#Σ(2, 3, 11))
= 4. To obtain a contradiction, say first that Σ(2, 3, 11)#Σ(2, 3, 11) is homology cobordant to a
negative Seifert space Y . Corollary 1.2 implies

2 = β(Σ(2, 3, 11)#Σ(2, 3, 11)) = β(Y ) = γ(Y ) = γ(Σ(2, 3, 11)#Σ(2, 3, 11)) = 0,

a contradiction. Say instead that Σ(2, 3, 11)#Σ(2, 3, 11) is homology cobordant to a positive
Seifert space Y . Then by Corollary 1.2, γ(Y ) = d(Y )/2 = d(Σ(2, 3, 11)#Σ(2, 3, 11))/2 = 2.
However, γ(Y ) = 0. Again we have a contradiction, completing the proof. 2

Note that Corollary 1.11 readily implies the following statement for knots.

Corollary 1.12. There exist knots, such as the connected sum of torus knots T (3,11)#T (3,11),
which are not concordant to any Montesinos knot.

We also have that many Seifert integral homology spheres of negative fibration are not
homology cobordant to any Seifert integral homology sphere of positive fibration. For instance
we have the following.

Corollary 1.13. The Seifert spaces Σ(2, 3, 12k+ 7), for k > 0, are not homology cobordant to
−Σ(a1, a2, . . . , an) for any choice of relatively prime ai.
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This corollary is a direct consequence of Corollary 1.2, which shows that if Y is a negative
Seifert space with d(Y )/2 6= −µ̄(Y ), then Y is not homology cobordant to any positive Seifert
space. We note d(Σ(2, 3, 12k+7)) = 0 and µ̄(Σ(2, 3, 12k+7)) = 1, and the corollary follows. This
should be compared with a result of Fintushel and Stern [FS85] that gives a similar conclusion: if
R(a1, . . . , an) > 0, then Σ(a1, . . . , an) is not oriented cobordant to any connected sum of positive
Seifert homology spheres by a positive definite cobordism W , where H1(W ;Z) contains no
2-torsion. However, there are examples with R < 0, but d/2 6= −µ̄, so we can apply Corollary 1.2.
For instance, Σ(2, 3, 7) has R-invariant −1, but d/2 6= −µ̄. Thus, Corollary 1.13 is not detected
by the R-invariant, nor the d-invariant, since d(Σ(2, 3, 12k + 7)) = 0.

The organization of the paper is as follows. In § 2 we provide the necessary equivariant
topology constructions and define local and chain local equivalence. We also provide means for
computing chain local equivalence class, particularly Lemma 2.24, as well as the definition of
connected homology. In § 3 we compute the G-Borel homology of j-split spaces. In § 4 we review
the finite-dimensional approximation of [Man16]. In § 5 we recall the results of [MOY97] and
prove Theorems 1.1, 1.3, and 1.4. In § 6 we provide applications and examples of the homology
calculation. Throughout the paper all homology will be taken with F = Z/2 coefficients, unless
stated otherwise.

2. Spaces of type SWF

2.1 G-CW complexes
In this section we recall the definition of spaces of type SWF from [Man16], and introduce local
equivalence. Spaces of type SWF are the output of the construction of the Seiberg–Witten Floer
stable homotopy type of [Man03] and [Man16]; see § 4.

First, we recall some basics of equivariant algebraic topology from [tDie87]. The reader is
encouraged to consult both [Man16] and [tDie87] for a fuller discussion. For now, G will denote
a compact Lie group. We define a G-equivariant k-cell as a copy of G/H × Dk, where H is a
closed subgroup of G. A (finite) equivariant G-CW decomposition of a relative G-space (X,A),
where the action of G takes A to itself, is a filtration (Xn|n ∈ Z>0) such that:
• A ⊂ X0 and X = Xn for n sufficiently large;
• the space Xn is obtained from Xn−1 by attaching G-equivariant n-cells.

When A is a point, we call (X,A) a pointed G-CW complex. We always assume that G acts on
the left.

Let EG be the total space of the universal bundle of G. For two pointed G-spaces X1 and
X2, write

X1 ∧G X2 = (X1 ∧X2)/(gx1 × x2 ∼ x1 × g−1x2).

The Borel homology of a pointed G-space X is given by

H̃G
∗ (X) = H̃∗(EG+ ∧G X),

where EG+ is EG with a disjoint basepoint. Similarly, we define Borel cohomology:

H̃∗G(X) = H̃∗(EG+ ∧G X).

Additionally, we have a map given by projecting to the first factor:

f : EG+ ∧G X → BG+.
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From f we have a map pG = f∗ : H∗(BG) → H̃∗G(X). Then H∗(BG) acts on H̃G
∗ (X), by

composing pG with the cap product action of H̃∗G(X) on H̃G
∗ (X). We may also define the

unpointed version of the above constructions in an apparent way.
As an example, consider the case G = S1. Here BS1 = CP∞, so H∗(BS1) = F[U ], with

degU = 2. Then F[U ] acts on HS1

∗ (X), for X any S1-space.
From now on we let G = Pin(2). The group G = Pin(2) is the set S1 ∪ jS1 ⊂ H, where S1

is the unit circle in the 〈1, i〉 plane. The group action of G is induced from the group action of
the unit quaternions. Manolescu shows in [Man16] that H∗(BG) = F[q, v]/(q3), where deg q = 1
and deg v = 4, so H̃G

∗ (X) is naturally an F[q, v]/(q3)-module for X a pointed G-space. Moreover
S∞ = S(H∞) has a free action by the quaternions, making S∞ a free G-space. Since S∞ is
contractible, we identify EG = S∞. We may view EG = S∞ also as ES1 (as an S1-space) by
forgetting the action of j.

We will also need to relate G-Borel homology and S1-Borel homology. Consider

f : CP∞ = BS1
→ BG,

the map given by quotienting by the action of j ∈ G on BS1 = ES1/S1. Then we have the
following fact (for a proof, see [Man16, Example 2.11]).

Fact 2.1. The natural map

f∗ = resGS1 : H∗(BG)→ H∗(BS1)

is an isomorphism in degrees divisible by 4, and zero otherwise. In particular, v→ U2.

Moreover, for X a G-space, we have a natural map

g : EG+ ∧S1 X → EG+ ∧G X.

The map g induces a map
g∗ = corS

1

G : H̃S1

∗ (X)→ H̃G
∗ (X),

called the corestriction map. As a Corollary of Fact 2.1, we have a relationship between the
action of U and v (see [tDie87, § III.1]).

Fact 2.2. Let X be a G-space. Then, for every x ∈ HS1

∗ (X),

v(corS
1

G (x)) = corS
1

G (U2x).

We shall use that Borel homology with F coefficients behaves well with respect to suspension.
If V is a finite-dimensional (real) representation of G, let V + be the one-point compactification,
where G acts trivially on V + − V . Then ΣVX = V + ∧X will be called the suspension of X by
the representation V .

We mention the following representations of G:
• let R̃s be the vector space Rs on which j acts by −1, and eiθ acts by the identity, for all θ;
• we let C̃ be the representation of G on C where j acts by −1, and eiθ acts by the identity

for all θ;
• the quaternions H, on which G acts by multiplication on the left.

Definition 2.3. Let s ∈ Z>0. A space of type SWF at level s is a pointed finite G-CW complex
X with:
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• the S1-fixed-point set XS1
is G-homotopy equivalent to (R̃s)+;

• the action of G on X −XS1
is free.

Remark 2.4. We list some examples of spaces of type SWF. The simplest space of type SWF
is S0. More interesting examples may be produced as follows. Let X be a free, finite G-CW
complex. Define

Σ̃X = X × [0, 1]/(0, x) ∼ (0, x′) and (1, x) ∼ (1, x′) for all x, x′ ∈ X.

We call Σ̃X the unreduced suspension of X. Here G acts on Σ̃X by multiplication on the first
factor. We fix one of the cone points as the base point. Then the S1-fixed-point set is precisely
S0 ⊂ Σ̃X, and Σ̃X is a space of type SWF. As a particular example, let X = G, where G acts
on X by multiplication on the left, as usual. Then Σ̃X is, topologically, the suspension of two
disjoint circles.

We also find it convenient to recall the definition of reduced Borel homology, for spaces X of
type SWF:

H̃S1

∗,red(X) = H̃S1

∗ (X)/ImUN , (8)

for N � 0. Indeed, for all N sufficiently large ImUN = ImUN+1, so H̃S1

∗,red(X) is well defined.

Associated to a space X of type SWF at level s, we take the Borel cohomology H̃∗G(X), from
which we define a(X), b(X), and c(X) as in [Man16]:

a(X) = min{r ≡ s mod 4 | ∃x ∈ H̃r
G(X), vlx 6= 0 for all l > 0},

b(X) = min{r ≡ s+ 1 mod 4 | ∃x ∈ H̃r
G(X), vlx 6= 0 for all l > 0} − 1,

c(X) = min{r ≡ s+ 2 mod 4 | ∃x ∈ H̃r
G(X), vlx 6= 0 for all l > 0} − 2.

(9)

The well-definedness of a, b, and c follows from the equivariant localization theorem (see [tDie87]
§ III). We also list an equivalent definition of a, b, and c from [Man16], using homology:

a(X) = min {r ≡ s mod 4 | ∃x ∈ H̃G
r (X), x ∈ Im vl for all l > 0},

b(X) = min {r ≡ s+ 1 mod 4 | ∃x ∈ H̃G
r (X), x ∈ Im vl for all l > 0} − 1,

c(X) = min {r ≡ s+ 2 mod 4 | ∃x ∈ H̃G
r (X), x ∈ Im vl for all l > 0} − 2.

(10)

Remark 2.5. The Manolescu invariants of [Man16] are defined in terms of a, b, and c, as we will
review in § 4.

Definition 2.6 (see [Man14]). Let X and X ′ be spaces of type SWF, m,m′ ∈ Z, and n, n′ ∈ Q.
We say that the triples (X,m, n) and (X ′,m′, n′) are stably equivalent if n − n′ ∈ Z and there
exists a G-equivariant homotopy equivalence, for some r� 0 and some nonnegative M ∈ Z and
N ∈ Q:

ΣrRΣ(M−m)R̃Σ(N−n)HX → ΣrRΣ(M ′−m′)R̃Σ(N−n′)HX ′. (11)

Let E be the set of equivalence classes of triples (X,m, n) for X a space of type SWF, m ∈ Z,
n ∈ Q, under the equivalence relation of stable G-equivalence.2 The set E may be considered
as a subcategory of the G-equivariant Spanier–Whitehead category [Man16], by viewing

2 This convention is slightly different from that of [Man14]. The object (X,m, n) in the set of stable equivalence
classes E, as defined above, corresponds to (X,m/2, n) in the conventions of [Man14].
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(X,m, n) as the formal desuspension of X by m copies of R̃+ and n copies of H+. For
(X,m, n), (X ′,m′, n′) ∈ E, a map (X,m, n)→ (X ′,m′, n′) is simply a map as in (11) that need
not be a homotopy equivalence. We define Borel homology for (X,m, n) ∈ E by

H̃G
∗ ((X,m, n)) = H̃G

∗ (X)[m+ 4n]. (12)

In (12), we needed to use the suspension-invariance H̃G
∗ (ΣR̃X) = H̃G

∗ (X)[−1], which only
holds with Z/2-coefficients. For Z-coefficients and other cohomology theories there need not
be suspension-invariance of the same form and E must be replaced with a category involving
suspension only by certain representations (cf. [Man14, Remark 4.4]).

Definition 2.7. We call X1, X2 ∈ E locally equivalent if there exist G-equivariant (stable) maps

φ : X1→ X2,

ψ : X2→ X1,

which are G-homotopy equivalences on the S1-fixed-point set. For such X1, X2, we write X1 ≡l
X2, and let LE denote the set of local equivalence classes.

Local equivalence is easily seen to be an equivalence relation. The set LE comes with an
abelian group structure, with multiplication given by smash product. One may check that inverses
are given by Spanier–Whitehead duality.

2.2 G-CW decompositions of G-spaces
Throughout this section X will denote a space of type SWF. Here we will give example G-CW
decompositions and construct a G-CW structure on smash products of G-spaces.

For W a CW complex, we write CCW
∗ (W ) for the corresponding cellular (CW) chain complex.

We fix a convenient CW decomposition of G. The 0-cells are the points 1, j, j2, j3 in G, and the
1-cells are s, js, j2s, j3s, where s = {eiθ ∈ S1 | θ ∈ (0, π)}. We identify each of the cells of this
CW decomposition with its image in CCW

∗ (G), the corresponding CW chain complex of G. Then
∂(s) = 1 + j2. To ease notation, we will refer to CCW

∗ (G) by G.
We will use that this CW decomposition also induces a CW decomposition of S1, for which

CCW
∗ (S1) is the subcomplex of G generated by 1, j2, s, j2s.

AG-CW decomposition ofX also induces a CW decomposition ofX, using the decomposition
of G into cells as above, which we will call a G-compatible CW decomposition of X.

Example 2.8. Note that the representation (R̃s)+ admits a G-CW decomposition with 0-skeleton
a copy of S0 on which G acts trivially, and an i-cell ci of the form Di × Z/2 for i 6 s. One of
the two points of the 0-skeleton of (R̃s)+ is fixed as the basepoint.

Example 2.9. We find a CW decomposition for H+ as a G-space. We write elements of H as pairs
of complex numbers (z, w) = (r1e

iθ1 , r2e
iθ2) in polar coordinates. The action of j is then given by

j(z, w) = (−w̄, z̄). Fix the point at infinity as the base point. We let (0, 0) be the (G-invariant)
0-cell labeled r0. We let y1 be the G-1-cell given by the orbit of {(r1, 0) | r1 > 0}:

{(r1e
iθ, r2e

iθ) | r1r2 = 0}.

We take y2 the G-2-cell given by the orbit of {(r1, r2) | r1r2 6= 0}:

{(r1e
iθ1 , r2e

iθ2) | θ1 = θ2 mod π, r1r2 6= 0}.

Finally, y3 consists of the orbit of {(r1e
iθ1 , r2) | θ1 ∈ (0, π), r1r2 6= 0}:

{(r1e
iθ1 , r2e

iθ2) | θ1 6= θ2 mod π, r1r2 6= 0}.

208

https://doi.org/10.1112/S0010437X19007620 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007620


Pin(2)-equivariant Seiberg–Witten Floer homology of Seifert fibrations

Figure 1. Homotopy of the action of G on G×G.

We now give X1 ∧X2 a G-CW structure for X1 and X2 spaces of type SWF. To do so, we

proceed cell by cell on both factors, so we need only find a G-CW structure on G×G, Z/2×G,

and Z/2×Z/2, each with the diagonal G-action. The space Z/2×G has a G-CW decomposition

as GqG, as may be seen directly, and Z/2×Z/2 may be written as a disjoint union of G-0-cells

Z/2q Z/2.

Example 2.10. The G-CW structure on G×G is more complicated. Note that the product CW

decomposition on G × G is not equivariant. We choose a homotopy φt : G × G→ G × G as in

Figure 1, with t ∈ [0, 1], φ0 = Id, and φ1(G×G) shown. The arrows depict the action of S1. On

the left, the diagonal lines show the G-action before homotopy. For example, the homotopy φ

takes the line ` = {(eiθ × eiθ) | θ ∈ (0, π)}, the first half of the diagonal in S1 × S1, to the sum

of CW cells:

s⊗ 1 + j2 ⊗ s.

The arrows on the right show the G-action on G×G given by

g(g1 × g2) = φ1(gφ−1
1 (g1 × g2)). (13)

The action (13) is clearly cellular with respect to the product CW structure of G × G. Then

G × G admits a G-CW-decomposition so that the induced CW decomposition is the product

CW decomposition of G×G.

Now, let X1 and X2 be spaces of type SWF. We then give X1 ∧X2 a G-CW decomposition

proceeding cell-by-cell. That is, for G-cells e1 ⊆ X1, e2 ⊆ X2 we give e1 ∧ e2 the appropriate

G-CW decomposition as constructed above. This is possible because the cells ei are necessarily

of the form Dk, Z/2 ×Dk, or G ×Dk. In particular, the construction of a G-CW structure on

X1∧X2 gives us a G-CW structure for suspensions. For V a finite-dimensional G-representation

which is a direct sum of copies of R, R̃, and H, we have ΣVX = V + ∧X, and so we give ΣVX

the smash product G-CW decomposition.

Finally, we construct a CW structure for the G-smash product X1 ∧G X2 = (X1 ∧ X2)/G

(where G acts diagonally). More generally, we describe a CW structure for the quotient W/G

for W a G-CW complex. Indeed, let W =
⋃
ei a G-CW complex, where ei = G/Hi ×Dk(i) are

equivariant G-cells for some function k, and Hi ⊆ G are subgroups. Then W/G admits a CW

decomposition given by W/G =
⋃
ei/G =

⋃
Dk(i).
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2.3 Modules from G-CW decompositions

Throughout this section X will denote a space of type SWF. Here we will show that the CW

chain complex of X inherits a module structure from the action of G, and we will define chain

local equivalence.

From the group structure of G, CCW
∗ (G) = G acquires an algebra structure. Namely, the

multiplication map G × G→ G gives a map CCW
∗ (G) ⊗F C

CW
∗ (G)→ CCW

∗ (G). Here, we have

used the product G-CW decomposition of G×G, from Example 2.10, for which the multiplication

map is cellular. A small calculation yields

CCW
∗ (G) ∼= F〈s, j〉/(sj = j3s, s2 = 0, j4 = 1).

For any G-compatible decomposition of X, the relative CW chain complex CCW
∗ (X,pt),

which we will call the reduced G-CW chain complex of X, inherits the structure of a G-chain

complex, as the (cellular) map G×X→X gives a map G×CCW
∗ (X,pt)→ CCW

∗ (X,pt). That is,

CCW
∗ (X,pt) is a module over G, such that, for z ∈ CCW

∗ (X,pt), and a ∈ G, ∂(az) = a∂(z)+∂(a)z.

The assertion that (gh)x = g(hx) for g, h ∈ G and x ∈ CCW
∗ (X,pt) follows from the fact that

the map G × X → X is a group action. More concretely, having fixed a G-compatible CW

decomposition of X, CCW
∗ (X) is a G-module with basis (over G) given by the set of G-cells.

We find the module structure for the Examples 2.8–2.10 of § 2.2.

Example 2.11. Consider the G-chain complex structure of CCW
∗ ((R̃s)+,pt) from Example 2.8.

Each equivariant cell ci is itself the Z/2-orbit of a nonequivariant cell c′i = Di × 0. Identifying

c′i with its image in CCW
∗ ((R̃s)+,pt), we have ∂(c′0) = 0, ∂(c′1) = c′0, and ∂(c′i) = (1 + j)c′i−1 for

i > 2. One may check that the action of G is given by the relations jc′0 = c′0, j2c′i = c′i for i > 1,

and sc′i = 0 for all i (in particular, the CW cells of ((R̃s)+,pt) are precisely c′0, c
′
1, . . . , c

′
s and

jc′1, . . . , jc
′
s, and all of these are distinct).

Example 2.12. We also find the G-chain complex structure of CCW
∗ (H+,pt) from Example 2.9.

We choose CW cells r′0, y
′
i, as in Example 2.9, whose orbits are r0, yi. One may check that the

differentials are given by

∂(r′0) = 0, ∂y′1 = r′0, ∂y′2 = (1 + j)y′1, and ∂y′3 = sy′1 + (1 + j)y′2. (14)

The G-action on the fixed-point set, r′0, is necessarily trivial. However, elsewhere the G-action on

(H+,pt) is free, and so the submodule (not a subcomplex, however) of CCW
∗ (H+,pt) generated

by y′1, y
′
2, y
′
3 is G-free, specifying the G-module structure of CCW

∗ (H+, pt).

Example 2.13. The CW chain complex of the usual product CW structure on G×G becomes a

G-module via

CCW
∗ (G×G) = CCW

∗ (G)⊗F C
CW
∗ (G),

where the action of G is given by

s(a⊗ b) = sa⊗ b+ j2a⊗ sb,
j(a⊗ b) = ja⊗ jb. (15)

The differentials are induced by those of the usual product CW structure on G×G.
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For X1 ∧X2 with the G-CW decomposition described in § 2.2, we have

CCW
∗ (X1 ∧X2, pt) = CCW

∗ (X1, pt)⊗F C
CW
∗ (X2, pt), (16)

as G-chain complexes, using (15).
Furthermore the CW chain complex for the G-smash product X1 ∧G X2 is given by

CCW
∗ (X1 ∧G X2,pt) ' CCW

∗ (X1 ∧X2, pt)/G. (17)

Here, the right-hand side is defined by quotienting by the action of (1+ j) and s. One may check
directly that the result is a chain complex.

We will write elements of the latter as x1 ⊗G x2. Note that Borel homology H̃G
∗ (X) is

calculated using a G-smash product, and so may be computed from the following chain complex:

H̃G
∗ (X) = H((CCW

∗ (EG)⊗F C
CW
∗ (X,pt))/G, ∂). (18)

In (18), we choose some fixed G-CW decomposition of EG to define CCW
∗ (EG). Following (18),

we make a definition.

Definition 2.14. Let Z a G-chain complex. We define the G-Borel homology of Z by

HG
∗ (Z) = H(CCW

∗ (EG)⊗G Z, ∂), (19)

and similarly for S1-Borel homology:

HS1

∗ (Z) = H(CCW
∗ (EG)⊗CCW

∗ (S1) Z, ∂), (20)

where CCW
∗ (S1) is viewed as a subcomplex of G.

Note then that the G-module CCW
∗ (X,pt) determines H̃G

∗ (X) for X a space of type SWF.

Definition 2.15. A G-chain complex Z of type SWF at level s is a G-chain complex Z generated
by

{c0, c1, c2, . . . , cs}∪
⋃
i∈I
{xi}, (21)

subject to the following conditions (perhaps with an overall grading shift). The element ci is of
degree i, and I is some finite index set. The only relations are j2ci = ci, sci = 0, jc0 = c0. The
differentials are given by ∂c0 = 0, ∂c1 = c0, and ∂ci = (1 + j)ci−1 for 2 6 i 6 s. The submodule
generated by {xi}i∈I is free under the action of G. We call the submodule generated by {ci}i the
fixed-point set (or fixed-point subcomplex ) of Z.

Note that the fixed-point subcomplex is part of the data of a complex of type SWF.
Chain complexes of type SWF are to be thought of as reduced G-CW chain complexes of

spaces of type SWF. Indeed, all spaces X of type SWF have reduced G-CW chain complex
homotopy equivalent to a complex of type SWF. To see this, we first choose a homotopy
equivalence XS1 ' (R̃s)+ and decompose the latter according to the CW decomposition of
Example 2.8. We note that XS1

is a G-CW subcomplex of X, and all cells of (X,XS1
) are free

G-cells, since X is a space of type SWF. Then X is homotopy-equivalent to a space obtained by
attaching X/XS1

to (R̃s)+. By a cellular approximation we obtain a chain map,

CCW
∗ (X/XS1

,pt)→ CCW
∗ (ΣR(R̃s)+,pt), (22)
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whose mapping cone is homotopy equivalent to CCW
∗ (X,pt)[−1]. However, any two equivariant

CW complexes for (R̃s)+ are chain homotopy equivalent. To see this, first note that for any such
CW decomposition, the standard CW chain complex 〈c0, . . . , cs〉 admits a quasi-isomorphism
to CCW

∗ ((R̃s)+,pt). This induces a quasi-isomorphism 〈c1, . . . , cs〉 → CCW
∗ ((R̃s)+, S0).

That is, we have a quasi-isomorphism between free Z2-complexes. By [Wei94, Theorem
10.4.8], these complexes are in fact homotopy equivalent, from which it also follows that
CCW
∗ ((R̃s)+, pt) ' 〈c0, . . . , cs〉. Similarly, we obtain that any two equivariant CW complexes

for ΣR(R̃s)+ are chain homotopy equivalent. Then we may replace (22) with the same sequence,
using the standard CW complex structure on (R̃s)+, and we see that CCW

∗ (X,pt) is homotopy-
equivalent to a chain complex of type SWF.

Let ⊕̃ denote a direct sum of G-modules that need not be a direct sum of chain
complexes. Note that a choice of decomposition R ⊕̃F of a chain complex of type SWF, where
R = 〈c0, . . . , cs〉 and F = spani{xi}, is not part of the data in the definition. However, for a space
X of type SWF, CCW

∗ (X,pt) comes with a preferred fixed-subset (from fixed cells), and much
of what follows could be rephrased where the decomposition is part of the data of a complex of
type SWF (this will turn out to be somewhat immaterial; cf. Lemma 2.24).

To introduce chain local equivalence, we will consider the CW chain complexes coming from
suspensions. For a module M and a submodule S ⊆ M , we let 〈S〉 ⊆ M denote the subset
generated by S.

Note that, by Example 2.11 and the G-CW decomposition constructed in § 2.2 for
suspensions, for X a space of type SWF:

CCW
∗ (ΣR̃X,pt) = 〈c0, c1〉⊗FC

CW
∗ (X,pt), (23)

with relations ∂c1 = c0, j2c1 = c1, jc0 = c0, sc0 = sc1 = 0. The differential on the right is given
by ∂(a⊗ b) = ∂(a)⊗ b+ a⊗ ∂(b). Similarly, using Example 2.12:

CCW
∗ (ΣHX,pt) = 〈r0, y1, y2, y3〉⊗FC

CW
∗ (X,pt),

with the product differential on the right, and differentials for the yi given as in Example 2.12.
For V = H, R̃, or R, and Z a G-chain complex, we set

ΣV Z = CCW
∗ (V +,pt)⊗F Z, (24)

with G-action given by

s(a⊗ b) = (sa⊗ b) + (j2a⊗ sb),
j(a⊗ b) = ja⊗ jb.

(25)

The chain complexes CCW
∗ (H+, pt) and CCW

∗ (R̃+,pt) were given in Examples 2.11 and 2.12,
respectively. Also, CCW

∗ (R+,pt) = 〈c1〉, where jc1 = c1, sc1 = 0, and deg c1 = 1. Hence, for
example,

ΣRZ = Z[−1]. (26)

Lemma 2.16. Let V = H, R̃, or R. If Z = CCW
∗ (X,pt) for X a space of type SWF, then ΣV Z =

CCW
∗ (ΣVX,pt).

Proof. This follows from the CW chain complex structure given for suspensions in § 2.2,
and (16). 2
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For V = Hi ⊕ R̃j ⊕ Rk for some constants i, j, k, we define ΣV Z by

ΣV Z = (ΣH)i(ΣR̃)j(ΣR)kZ, (27)

where (ΣH)i denotes applying ΣH i times, and so for R̃ and R. Then

ΣV ΣWZ ' ΣWΣV Z, (28)

for two G-representations V,W , each a direct sum of copies of H,R, R̃.

Definition 2.17. Let Zi be chain complexes of type SWF, mi ∈ Z, ni ∈ Q, for i = 1, 2. We call
(Z1,m1, n1) and (Z2,m2, n2) chain stably equivalent if n1−n2 ∈ Z and there exist M ∈ Z, N ∈ Q
and maps

Σ(N−n1)HΣ(M−m1)R̃Z1→ Σ(N−n2)HΣ(M−m2)R̃Z2, (29)

Σ(N−n1)HΣ(M−m1)R̃Z1← Σ(N−n2)HΣ(M−m2)R̃Z2, (30)

which are chain homotopy equivalences.

Remark 2.18. We do not consider suspensions by R, unlike in the case of stable equivalence for
spaces, since by (26), no new maps are obtained by suspending by R.

Chain stable equivalence is an equivalence relation, and we denote the set of chain stable
equivalence classes by CE.

Lemma 2.19. Associated to an element (X,m, n) ∈ C there is a well-defined element (CCW
∗

(X,pt),m, n) ∈ CE.

Proof. Say that [(X1,m1, n1)] = [(X2,m2, n2)] ∈ C with G-CW decompositions Ci of Xi. We will
show that

[(CCW
∗ (X1, pt),m1, n1)] = [(CCW

∗ (X2,pt),m2, n2)] ∈ CE, (31)

where CCW
∗ (Xi,pt) is the G-chain complex associated to the G-CW decomposition Ci of Xi. (In

the case X1 ' X2, and m1 = m2, n1 = n2, we are showing that the corresponding element in
CE does not depend on the choice of G-CW decomposition.) By hypothesis, there are homotopy
equivalences f and g:

f : Σ(N−n1)HΣ(M−m1)R̃X1→ Σ(N−n2)HΣ(M−m2)R̃X2,

g : Σ(N−n2)HΣ(M−m2)R̃X2→ Σ(N−n1)HΣ(M−m1)R̃X1.

By the equivariant cellular approximation theorem (see [Wan80]), we may homotope f and g to
cellular maps (where the cell structures of suspensions are given as in (24)):

fCW : Σ(N−n1)HΣ(M−m1)R̃C1→ Σ(N−n2)HΣ(M−m2)R̃C2,

gCW : Σ(N−n2)HΣ(M−m2)R̃C2→ Σ(N−n1)HΣ(M−m1)R̃C1.

Since f and g are homotopy equivalences, so are fCW and gCW. The cellular maps fCW and
gCW induce maps f∗ and g∗:

f∗ : Σ(N−n1)HΣ(M−m1)R̃CCW
∗ (X1, pt)→ Σ(N−n2)HΣ(M−m2)R̃CCW

∗ (X2,pt),

g∗ : Σ(N−n2)HΣ(M−m2)R̃CCW
∗ (X2,pt)→ Σ(N−n1)HΣ(M−m1)R̃CCW

∗ (X1,pt).

These are chain homotopy equivalences, by construction, and so we obtain (31), as needed. 2
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Definition 2.20. Let Zi be chain complexes of type SWF, mi ∈ Z, ni ∈ Q, for i = 1, 2. We
call (Z1,m1, n1) and (Z2,m2, n2) chain locally equivalent, written (Z1,m1, n1) ≡cl (Z2,m2, n2),
if there exist M ∈ Z, N ∈ Q and maps

Σ(N−n1)HΣ(M−m1)R̃Z1→ Σ(N−n2)HΣ(M−m2)R̃Z2, (32)

Σ(N−n1)HΣ(M−m1)R̃Z1← Σ(N−n2)HΣ(M−m2)R̃Z2, (33)

which are chain homotopy equivalences on fixed-point sets.

We call a map as in (32) or (33) a chain local equivalence. By the condition ‘is a homotopy
equivalence on fixed-point sets’ we mean that the maps restrict to homotopy equivalences of
〈c0, . . . , cs〉 (in particular, we require that the chain maps in (32)–(33) send fixed-point sets to
fixed-point sets).

Elements Z1, Z2 ∈ CE are chain locally equivalent if and only if there are chain
local equivalences Z1 → Z2 and Z2 → Z1. There are pairs of chain complexes with a
chain local equivalence in one direction but not the other; these are not chain locally equivalent
complexes. Chain local equivalence is an equivalence relation. Denote the set of chain local
equivalence classes by CLE. The set CLE is naturally an abelian group, with multiplication
given by the tensor product (over F, with G-action as above). To discuss inverses in CLE, we
take a brief discursion.

Note that it is not obvious that chain homotopy equivalent complexes of type SWF are chain
locally equivalent, as there may be self-homotopy-equivalences of a complex that do not take
fixed-point sets to fixed-point sets. Note, however, that any two G-chain complexes coming from
a space of type SWF with different G-CW decompositions are necessarily homotopy-equivalent
by a chain map preserving the subcomplex of the fixed point set (coinciding with the notion of
the ‘fixed-point set’ of a chain complex of type SWF), by the equivariant cellular approximation
theorem. For more general G-chain complexes, we have Lemma 2.26 below, which states that the
chain homotopy type determines the chain local equivalence class.

Inverses are given by dual chain complexes. Note that Hom(Z;F) will not usually be a chain
complex of type SWF; however, some suspension of it will be chain homotopy equivalent to a
chain complex of type SWF; see Lemma 2.27. In the case of chain complexes of type SWF arising
as CW-chain complexes, inverses are more readily understood. Here, we recall from [Man16] that
the Spanier–Whitehead dual of a space of type SWF is again a space of type SWF, from which
the existence of group inverses (for chain complexes coming from spaces) follows.

2.4 Calculating the chain local equivalence class
In this section we will obtain a description of CLE more amenable to calculations than the
definition. Throughout this section Z will denote a chain complex of type SWF. The main result
is Lemma 2.24, which allows us to determine if (Z1,m1, n1) and (Z2,m2, n2) are chain locally
equivalent without checking all possible M,N .

For Z a chain complex of type SWF, we will let Z also denote the element (Z, 0, 0) ∈ CE.

Definition 2.21. Let R be the fixed-point set of Z. If deg r < deg x for all nonzero homogeneous
x ∈ (Z/R) and r ∈ R, we say that the chain complex Z is a suspensionlike complex.

Remark 2.22. Let X be a free, finite G-CW complex. Then the reduced G-CW chain complex
of Σ̃X, the unreduced suspension of X, is a suspensionlike chain complex.
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For Z1, Z2 ∈ CLE, we call a local equivalence Z1 → Z2 (without needing to suspend either
complex) an unstable local map.

Lemma 2.23. Let Zi = Ri ⊕̃Fi for i = 1, 2 be suspensionlike chain complexes at level s with
unstable local maps Z1 ↔ Z2. Then there exist suspensionlike chain complexes Z ′i at level 0

with ΣR̃s
Z ′i ' Zi, and unstable local maps Z ′1 ↔ Z ′2.

Proof. We may assume s > 0, as otherwise the statement is vacuous. To construct Z ′i, observe
that the image Im ∂|Fi∩Ri, must be either {(1+j)cs} or empty, and in the latter case the lemma
is trivial, so we assume that the former holds. Then, construct a new complex Z ′i = 〈f〉 ⊕̃Fi[s],
where the boundary map Fi[s]→ 〈f〉 is obtained as the boundary map Fi → 〈(1 + j)cs〉. It is
clear that an unstable local map Z1 → Z2 induces an unstable local map Z ′1 → Z ′2, and we are

left with showing Zi ' ΣR̃s
Z ′i.

To see this, we view ΣR̃s
Z ′i as the mapping cone of

ΣR̃s
Fi[s]→ ΣR̃s〈f〉[−1]. (34)

We claim ΣR̃s
Fi[s] ' Fi. To see this, construct a map Fi→ ΣR̃s

Fi[s] by x→ (1 + j)cs ⊗ x[s]; it
is straightforward to check that this map is a quasi-isomorphism. By [Wei94, Theorem 10.4.8],

and using that ΣR̃s
Fi is free, this map admits a homotopy inverse, establishing the claim. Then,

the mapping cone (34) is homotopy equivalent to the mapping cone of some Fi→ ΣR̃s〈f〉[−1] ∼=
Ri[−1]. In particular, the map Fi → ΣR̃s

Fi[s] constructed above commutes with the boundary

maps in the construction of Z ′i and in (34). Then we have a map φ : Zi → ΣR̃s
Z ′i, which is a

quasi-isomorphism; that is, the mapping cone Cone(φ) is trivial in the derived category. Since
Cone(φ) is homotopy-equivalent to a free complex, it is also trivial in the homotopy category,
and so φ is a homotopy equivalence, as needed. 2

Lemma 2.24. Let Z1 and Z2 be locally equivalent suspensionlike chain complexes of type SWF.
Then there exist unstable local maps

Z1 ↔ Z2, (35)

without needing to suspend Zi.

Proof. By Lemma 2.23, we may assume that Z1 and Z2 are level 0 and suspensionlike. It then
suffices to show that if there are unstable local maps ΣHZ1 ↔ ΣHZ2, then there are unstable
local maps Z1 ↔ Z2.

Let Zi = Ri ⊕̃Fi. That is, Zi is the mapping cone of a map Fi → Ri[−1]. Now, ΣHZi =
ΣHRi ⊕̃ΣHFi. We claim ΣHFi ' Fi[−4]. First, we have a quasi-isomorphism Fi[−4] → ΣHFi
by x[−4] → s(1 + j)3y3 ⊗ x. Further, any free finite G-chain complex F with H(F ) = 0 is
nullhomotopic (the verification of this is similar to the construction of projective resolutions
in abelian categories). It follows that free finite quasi-isomorphic G-chain complexes are in
fact homotopy equivalent, giving the claim. In particular, ΣHZi is homotopy equivalent to the
mapping cone of a map Fi[−4]→ ΣHRi[−1]. However, since Zi is suspensionlike, we have that
Fi[−4] is concentrated in degree at least 5, while s(1 + j)3y3[−1] is the only cycle in degree 5. It
is then readily checked that the map Fi[−4]→ 〈s(1 + j)3y3[−1]〉 defining (a complex homotopy
equivalent to) ΣHZi is identical to the map Fi→ Ri defining Zi.

215

https://doi.org/10.1112/S0010437X19007620 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007620


M. Stoffregen

Now, say we have local equivalences φ : ΣHR1 ⊕̃F1[−4] → ΣHR2 ⊕̃F2[−4]. For grading
reasons, φ must send ΣHR1 → ΣHR2. In particular, there is then a map of exact sequences
as follows.

ΣHR1

��

// ΣHR2

��
ΣH(R1) ⊕̃F1[−4]

��

φ // ΣH(R2) ⊕̃F2[−4]

��
F1[−4] // F2[−4]

Any local map φ sends s(1 + j)3y3 ⊗ c0 ∈ ΣHR1 → s(1 + j)3y3 ⊗ c0 ∈ ΣHR2, as is a
straightforward check. Then we inherit a local map ψ : Z1 → Z2 by defining it separately on
the fixed point set and on F1. That is, set ψ(c0) = c0, and for x ∈ F1, set ψ(x) = φ(x[−4]). The
map ψ commutes with the boundary Fi → Ri[−1] using φ(s(1 + j)3y3 ⊗ c0) = s(1 + j)3y3 ⊗ c0

and the construction of the boundary map Fi[−4]→ 〈s(1 + j)3y3〉[−1]. Then, ψ is a local map,
and we similarly construct a local map going the other direction, completing the proof. 2

Lemma 2.24 states that if Σ(N0−ni)HΣ(M0−mi)R̃Zi are suspensionlike, then if (Z1,m1, n1)
and (Z2,m2, n2) are (stably) locally equivalent, there is a local equivalence realized by genuine
(unstable) chain maps after suspending the complexes Zi by (N0 − ni)H⊕ (M0 −mi)R̃.

Finally, to take advantage of Lemma 2.24, we need to know that many complexes admit
suspensionlike representatives.

Lemma 2.25. Let Z a chain complex of type SWF. Then some suspension ΣV Z is homotopy
equivalent (in fact, locally equivalent) to a suspensionlike chain complex.

Proof. This is much as the proof of Lemma 2.24. We express Z = R ⊕̃F , with fixed point set R.
Then ΣHn

Z is a chain complex homotopy equivalent to ΣHn
R ⊕̃F [−4n], and moreover the chain

homotopy equivalence is the identity on ΣHn
R (whence, a local equivalence). In the case s = 0,

ΣHn
R is a suspensionlike chain complex, and so then is ΣHn

R ⊕̃F [−4n], finishing the proof.
For s > 0, there is a subcomplex, inducing a quasi-isomorphism, Hn ⊂ ΣHn

R given by R along
with generators y4k+1, y4k+2, y4k+3 for 0 6 k 6 n − 1, that satisfy relations as in Example 2.9.
In fact, Hn and ΣHn

R are two different CW chain complexes coming from different G-CW
decompositions of (R̃s ⊕ Hn)+. The cone of Hn → ΣHn

R is zero in the derived category, and
is homotopy equivalent to a free complex, so is nullhomotopic, as in the proof of Lemma 2.24.
Using that Hn is suspensionlike, we obtain that ΣHn

Z is homotopy equivalent to a suspensionlike
chain complex Hn ⊕̃F [−4n]. 2

Similarly, we can show the following result.

Lemma 2.26. Let Z1 = Z2 ∈ CE. Then Z1 = Z2 ∈ CLE.

Proof. We may assume that Z1, Z2 are chain complexes of type SWF (that is, we have already
suspended suitably). By Lemma 2.25, after further suspending, we can assume that Z1, Z2

are chain homotopy equivalent suspensionlike complexes. We have used in this step that the
suspensionlike representatives of the (stable) chain homotopy equivalence class generated by
Lemma 2.25 are locally equivalent to the original complexes. Now, any chain map φ : Z1 → Z2,
for Zi suspensionlike, sends R1 → R2 for grading reasons. In particular, a chain homotopy
equivalence φ : Z1→ Z2 must induce a homotopy equivalence on fixed-point sets, as needed. 2
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We have a result similar to Lemma 2.25 relating to duality.

Lemma 2.27. Let Z be a chain complex of type SWF. Then ΣV Hom(Z;F) is chain-homotopy
equivalent to a complex of type SWF for V sufficiently large.

Proof. Write Z = R ⊕̃F . Then Hom(Z;F) = R∨ ⊕̃F∨, but where the differential is now from
R∨ to F∨. We identify R∨ with R by sending ((1 + j)ci)

∨
→ ci. Let V = Hn for some

n sufficiently large. Then ΣV Hom(Z;F) is the mapping cone ΣVR∨ → ΣV F∨[−1], which is
homotopy equivalent to a mapping cone ΣVR→ F [−1− 4n]. Then, for n sufficiently large, the
connecting morphism restricted to R ⊂ ΣVR must vanish for grading reasons. The resulting
complex is then of type SWF. 2

Finally, we remark that we could simplify the discussion of duality by defining a variant
of CLE using only chain complexes that are homotopy-equivalent to the CW chain complex
associated to actual G-spaces of type SWF.

2.5 Inessential subcomplexes and connected quotient complexes
In this section, we show how Lemma 2.24 allows for a convenient characterization of chain locally
equivalent complexes. We then define connected S1-homology of spaces of type SWF, which we
will use later to define SWFH conn as in Corollary 1.5.

Definition 2.28. Take Z a chain complex of type SWF, and let R ⊂ Z be the fixed-point
set. For any subcomplex M ⊂ Z such that M ∩ R = {0}, the projection Z → Z/M is a
chain homotopy equivalence on R. If there exists a map of chain complexes Z/M → Z that
is a chain homotopy equivalence on R, we say that M is an inessential subcomplex.

If M is inessential, then Z/M ≡cl Z. We order inessential subcomplexes by inclusion, N 6M
if N ⊆M . We show that there is a unique ‘minimal’ model Z/N locally equivalent to Z.

Lemma 2.29. Let M ⊂ Z be an inessential subcomplex, maximal with respect to inclusion. Then
a map f : Z/M → Z which is a homotopy equivalence on fixed-point sets is injective.

Proof. Indeed, say f : Z/M → Z is a local equivalence with nonzero kernel. Let R1 denote the
fixed-point set of Z/M and R2 denote the fixed-point set of Z. Since f restricts to a homotopy
equivalence on the fixed-point sets, then (ker f)∩R1 = {0}. Let π : Z → Z/M be the projection
map. Then f induces a map Z/(π−1(ker f)) → Z, and by (ker f) ∩ R1 = {0}, this map is a
homotopy-equivalence on fixed-point sets. Additionally, we have π−1(ker f) ∩ R2 = {0}. Then
π−1(ker f) is an inessential submodule, and it (strictly) contains M , contradicting that M was
maximal. Then f was injective, as needed. 2

Lemma 2.30. Let Z be a chain complex of type SWF and let M,N ⊂ Z be inessential
subcomplexes, with M and N maximal with respect to inclusion. Then Z/M ∼= Z/N , where
∼= denotes isomorphism of G-chain complexes.

Proof. Indeed, if there exist maps α : Z/M → Z, and β : Z/N → Z as above, consider the
composition

φ : Z/N → Z → Z/M.
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In particular, we have a map αφ : Z/N → Z, which is injective by Lemma 2.29. It then follows
that φ is injective. We also have

ψ : Z/M → Z → Z/N.

As before, ψ is injective. Then, since we have injective chain maps between Z/N and Z/M ,
finite-dimensional F-complexes, the two chain complexes must have the same dimension. An
injective map between complexes of the same dimension is bijective, and, finally, a bijective
G-chain complex map is a G-chain complex isomorphism. 2

Lemma 2.31. Let Z be a chain complex of type SWF and M a maximal inessential subcomplex
of Z. We have a (noncanonical) decomposition of Z:

Z = (Z/M)⊕M, (36)

where the isomorphism class of Z/M is an invariant of Z, independent of the choice of maximal
inessential subcomplex M ⊆ Z.

Proof. Let β : Z/M → Z be a homotopy equivalence on fixed-point sets. The map β is injective
by Lemma 2.29. Let π be the projection Z → Z/M . We note that βπβ is a map Z/M → Z
which is a homotopy equivalence on the fixed point set, and so by Lemma 2.29, βπβ is injective.
Then πβ is also injective.

We have a map β ⊕ i : (Z/M)⊕M → Z, where i is the inclusion i : M → Z. We check that
β ⊕ i is injective. Indeed, if (β ⊕ i)(z ⊕ m) = 0, we have β(z) = m. By definition, π(m) = 0,
while πβ is injective. It follows that m = z = 0, and β ⊕ i is injective. Then Z/M ⊕M → Z
is an injective map of F-vector spaces of the same dimension, and so is an isomorphism (of
G-chain complexes). Since, by Lemma 2.30, the isomorphism class of Z/M is independent of M ,
we obtain that the isomorphism class of Z/M is a well-defined invariant of Z. 2

Definition 2.32. For Z a chain complex of type SWF, let Zconn denote Z/Ziness, for Ziness ⊆ Z
a maximal inessential subcomplex. We call Zconn the connected complex of Z.

Theorem 2.33. Let Z be a suspensionlike chain complex of type SWF. Then for W another
suspensionlike complex of type SWF, Z ≡cl W if and only if Zconn 'Wconn.

Proof. By Lemma 2.31, we may write Z = Zconn ⊕ Ziness,W = Wconn ⊕ Winess, with Ziness,
Winess maximal inessential subcomplexes. Say we have local equivalences (we need not consider
suspensions, by Lemma 2.24)

φ : Zconn ⊕ Ziness→Wconn ⊕Winess,

ψ : Wconn ⊕Winess→ Zconn ⊕ Ziness.

We restrict φ and ψ to Zconn and Wconn, since it is clear that Zconn ⊕ Ziness is chain locally
equivalent to Zconn, and likewise for Wconn. Further, we project the image of φ and ψ to Wconn

and Zconn, respectively. Call the resulting maps φ0 and ψ0. If φ0 had a nontrivial kernel, then
we would obtain by composition a local equivalence:

ψ0φ0 : Zconn/kerφ0→ Zconn.

Composing with the inclusion ι : Zconn → Z gives a chain local map ιψ0φ0 : Zconn/ker φ0 → Z,
so by Lemma 2.29, ιψ0φ0 is injective. Thus, φ0 is injective. Similarly ψ0 is injective, so we
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obtain an isomorphism of chain complexes Zconn
∼= Wconn. Conversely, a homotopy equivalence

Zconn→Wconn yields a local equivalence Z →W by the composition

Z
π−→ Zconn→Wconn→W,

where π : Z → Zconn is projection to the first summand. 2

The next corollary allows us to view the chain local equivalence type of a space of type SWF
in CE instead of CLE.

Corollary 2.34. In the language of Theorem 2.33, there is an injection B : CLE→ CE given
by [(Z,m, n)] → [(Zconn,m, n)], for (Z,m, n) a representative of the class [(Z,m, n)] with Z
suspensionlike.

Proof. Fix [(Z,m, n)] = [(Z ′,m′, n′)] ∈ CLE with Z and Z ′ suspensionlike; we will show that
[(Zconn,m, n)] = [(Z ′conn,m

′, n′)] in CE. First, we observe that, for V = H, R̃:

ΣV Zconn ' (ΣV Z)conn. (37)

We have, for M,N sufficiently large,

Σ(M−m)R̃Σ(N−n)HZ � Σ(M−m′)R̃Σ(N−n′)HZ ′.

Here the maps in both directions are local equivalences. Choosing M > max{m,m′} and
N > max {n, n′} guarantees that both

Σ(M−m)R̃Σ(N−n)HZ and Σ(M−m′)R̃Σ(N−n′)HZ ′

are suspensionlike. Then, by Theorem 2.33, we have a homotopy equivalence:

(Σ(M−m)R̃Σ(N−n)HZ)conn→ (Σ(M−m′)R̃Σ(N−n′)HZ ′)conn.

However, by (37), we obtain a homotopy equivalence:

Σ(M−m)R̃Σ(N−n)H(Zconn)→ Σ(M−m′)R̃Σ(N−n′)H(Z ′conn).

Then [(Zconn,m, n)] = [(Z ′conn,m
′, n′)] ∈ CE, as needed. Finally, we show B is injective. If

(Zconn,m, n) is stably equivalent to (Z ′conn,m
′, n′), then (Z,m, n) and (Z ′,m′, n′) are locally

equivalent, by Theorem 2.33 and (37). 2

By Corollary 2.34, instead of considering the relation given by chain local equivalence, we
need only consider chain homotopy equivalences.

Definition 2.35. The connected S1-homology of (Z,m, n) ∈ CE, denoted by HS1

conn((Z,m, n)),
for Z a suspensionlike chain complex of type SWF, is the quotient (HS1

∗ (Z)/(HS1

∗ (ZS
1
) +

HS1

∗ (Ziness)))[m+ 4n], where Ziness ⊆ Z is a maximal inessential subcomplex. By Theorem 2.33,
the graded F[U ]-module isomorphism class of HS1

conn((Z,m, n)) is an invariant of the chain local
equivalence class of (Z,m, n).

Remark 2.36. We could have instead considered the quotient (HS1

∗ (Z)/HS1

∗ (Ziness))[m + 4n],
which is isomorphic to HS1

conn((Z,m, n)) ⊕ T +
d , for some d. As defined above, HS1

conn((Z,m, n))
has no infinite F[U ]-tower.
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3. j-split spaces

In this section we introduce j-split spaces of type SWF, and compute their G-Borel homology.
We will see in Lemma 5.3 that the Seiberg–Witten Floer spectra of Seifert spaces are j-split. The
computation of this section will then provide the G-equivariant Seiberg–Witten Floer homology
of Seifert spaces.

Definition 3.1. We call a space X of type SWF j-split if X/XS1
may be written

X/XS1
= X+ ∨X−,

for some S1-space X+, where j acts on the right-hand side by interchanging the factors (that is,
jX+ = X−). Similarly, we call a G-chain complex (Z, ∂) of type SWF j-split if (i)–(iii) below are
satisfied.

(i) There exists fred ∈ Z such that 〈fred〉 is the fixed-point set, ZS
1
, of Z. Furthermore sfred = 0,

jfred = fred. In particular, Z is of type SWF at level 0.

(ii) The fixed-point set ZS
1

is a subcomplex of Z (that is, ∂(fred) = 0).

(iii) We have

Z/ZS
1

= (Z+ ⊕ jZ+),

where Z+ is a CCW
∗ (S1) chain complex, and j acts on the right-hand side by interchanging

the factors.

Recall that ⊕̃ denotes a direct sum of G-modules that is not necessarily a direct sum of chain
complexes. For a j-split chain complex Z we may write, referring to jZ+ by Z−,

Z = (Z+ ⊕ Z−) ⊕̃ 〈fred〉.

In the above, Z is to be thought of as the reduced CW chain complex of a G-space X, and fred

is to be thought of as the chain corresponding to the S1-fixed subset of X. The requirement that
Z be a chain complex of type SWF at level 0 will be used in § 3.2 to calculate the chain local
equivalence class of j-split chain complexes.

A j-split space X with XS1
= S0 admits a CW chain complex which is a j-split chain

complex. For X a j-split space of type SWF at level s, we use the following lemma to relate the
CW chain complex of X to j-split complexes.

Lemma 3.2. Let X be a j-split space of type SWF at level s. Then

[CCW
∗ (X,pt)] = [(Z,−s, 0)] ∈ CE,

for some j-split chain complex Z.

Proof. The chain complex CCW
∗ (X,pt) may be written

CCW
∗ (X,pt) = R ⊕̃F, (38)

where R = CCW
∗ (XS1

,pt) ∼= CCW
∗ ((R̃s)+,pt) is a subcomplex and F is a free G-chain complex.

Since X is j-split, the decomposition (38) may be chosen so that

F = F+ ⊕ jF+, (39)

where F+ is a CCW
∗ (S1)-chain complex, and j acts on F by interchanging F+ and jF+.
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We first show that we may choose F satisfying (38) and (39) and so that, for x ∈ F
homogeneous,

(∂x)|R = 0, (40)

if deg x 6= s+ 1.
Indeed, fix some F satisfying (38) and (39), and let {xi} be a homogeneous basis for F . Let

F (n) denote the G-chain complex generated by xi of degree less than or equal to n. We define new
chain complexes F ′(n) so that R ⊕̃F ′(n) = R ⊕̃F (n), and so that F ′ =

⋃
n F
′(n) satisfies (38)–

(40). Let πn denote projection πn : R ⊕̃F ′(n) → R onto the first factor. Set F ′(0) = F60, the
chain complex generated by all homogeneous elements of F of degree at most 0. Assume we have
defined F ′(n) for n 6 N < s, so that (40) holds for all x ∈ F ′(n).

We define F ′(N + 1) by defining generators x′i of F ′(N + 1)/F ′(N) corresponding to the
generators xi of F (N + 1)/F (N). For each xi of degree N + 1 so that πN (∂xi) = 0, let x′i = xi.
If instead xi is of degree N + 1 and πN (∂xi) 6= 0, then

∂(πN (∂xi)) = πN (∂2(xi)) = 0.

So, πN (∂xi) = (1 + j)cN , since (1 + j)cN is the only nonzero cycle of R in grading N (or, when
N = 0, πN (∂xi) = c0). However, by assumption, N < s, so πN (∂xi) = ∂cN+1. Then, we let
x′i = xi + cN+1.

Let

F ′(N + 1) =

〈
F ′(N),

⋃
{i|deg xi=N+1}

x′i

〉
.

By construction R ⊕̃F ′(N + 1) = R ⊕̃F (N + 1), and (40) holds for all x ∈ F ′(N + 1).
For N > s, define F ′(N + 1) by F ′(N + 1) = 〈F ′(N),

⋃
{i|deg xi=N+1} xi〉.

From the construction, it is clear that F ′ satisfies (38)–(40), as needed.
Take F satisfying (38)–(40). Consider the G-chain complex Z = CCW

∗ (S0, pt) ⊕̃F [s], where
CCW
∗ (S0, pt) = 〈c0〉 is a subcomplex. To define the differentials from F [s] to CCW

∗ (S0,pt) in Z,
we set, for x[s] ∈ F [s],

(∂x[s])|CCW
∗ (S0,pt) = c0, (41)

if (∂x)|R = (1 + j)cs, and
(∂x[s])|CCW

∗ (S0,pt) = 0 (42)

if (∂x)|R = 0.
By the construction of F , (41) and (42) determine the differential on Z.
Finally, consider the suspension

ΣR̃s
Z = ΣR̃s

(CCW
∗ (S0,pt)) ⊕̃ΣR̃s

(F [s]) ' R ⊕̃ΣR̃s
F [s].

We note, as in the proof of Lemma 2.23, that ΣR̃s
F [s] ' F [0] = F. Then, there is a homotopy

equivalence, constructed exactly as in the proofs of Lemmas 2.23 and 2.24:

ΣR̃s
Z ' R ⊕̃F. (43)

It follows that [(Z,−s, 0)] = [CCW
∗ (X,pt)] ∈ CE, as needed. 2

Note also that any j-split chain complex occurs as the CW chain complex of some j-split
space.

Remark 3.3. j-splitness is not the same as Floer KG-splitness of [Man14].
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3.1 Calculation of H̃G
∗ (X)

In this section we will compute the G-equivariant homology of a j-split space in terms of its
S1-homology.

Let X be a j-split space of type SWF at level m with X/XS1
= X+ ∨ X−. The Puppe

sequence

XS1
→ X → X/XS1

→ ΣXS1

leads to a commutative diagram, where the rows are cofibration sequences.

EG+ ∧S1 XS1

��

// EG+ ∧S1 X

��

// EG+ ∧S1 (X+ ∨X−)

��

// EG+ ∧S1 ΣXS1

��

EG+ ∧G XS1 // EG+ ∧G X // EG+ ∧G X/XS1 // EG+ ∧G ΣXS1

(44)

In (44) the vertical maps are obtained by taking the quotient by the action of j ∈ G. The
diagram (44) itself yields a commutative diagram for Borel homology, where the rows are exact.

H̃S1

∗ (XS1
)

φ1
��

// H̃S1

∗ (X)

φ2
��

// H̃S1

∗ (X+)⊕ H̃S1

∗ (X−)

φ1
��

dS1 [−1]
// H̃S1

∗ (ΣXS1
)

Σφ1
��

H̃G
∗ (XS1

)
ιG // H̃G

∗ (X)
πG // H̃G

∗ (X/XS1
)

dG[−1] // H̃G
∗ (ΣXS1

)

(45)

Specifically, we view (45) as a diagram of F[q, v]/(q3) modules, where v acts on the top row by
U2 and q annihilates the top row. An F[U ]-module M viewed as an F[q, v]/(q3)-module this way

is denoted res
F[U ]
F[q,v]/(q3)

M . More precisely, let φ : F[q, v]/(q3)→ F[U ] be v→ U2, q→ 0, and let

res
F[U ]
F[q,v]/(q3)

be the corresponding restriction functor.

Recall the notation T +(i) = F[U−i+1, U−i+2, . . .]/UF[U ] and V+(i) = F[v−i+1, v−i+2, . . .]/
vF[v], and set T +

d (n) = T +(n)[−d] and V+
d (n) = V+(n)[−d]. The restriction takes the simple

F[U ]-module T +
d (n) to

res
F[U ]
F[q,v]/(q3)

T +
d (n) = V+

d

(⌊
n+ 1

2

⌋)
⊕ V+

d+2

(⌊
n

2

⌋)
. (46)

We define the maps dS1 : H̃S1

∗ (X+)⊕ H̃S1

∗ (X−)→ H̃S1

∗ (XS1
) and dG : H̃G

∗ (X/XS1
)→ H̃G

∗ (XS1
)

by shifting by 1 the degree of the horizontal maps on the right of diagram (45). (So that dS1 and
dG are maps of degree −1.) Write d±

S1 for the restriction of dS1 to the X± components.

Fact 3.4. The map φ1 in (45) is precisely the corestriction map corS
1

G , and is an isomorphism
in degrees congruent to m modulo 4, and vanishes otherwise.

Proof. This follows from the construction of the φi and the dual of Fact 2.1. 2

Fact 3.5. We have that

φ3|H̃S1
∗ (X+)

: H̃S1

∗ (X+)→ H̃G
∗ (X/XS1

) (47)

is an isomorphism (of F[q, v]/(q3)-modules).
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Proof. Since X is j-split, both domain and target are isomorphic, as vector spaces, to
H̃∗(X+/S

1). The map φ3 is a bijection and an F[q, v]/(q3)-module map, and so is an
isomorphism. 2

In particular, Fact 3.5 shows that the q-action on H̃G
∗ (X/XS1

) is trivial. Since φ3|H̃S1 (X+)
is

an isomorphism, we have

res
F[U ]
F[q,v]/(q3)

H̃S1

∗ (X+) = H̃G
∗ (X/XS1

). (48)

Fact 3.6. The maps dS1 and dG are F[U ] and F[q, v]/(q3)-equivariant, respectively.

Proof. The fact follows since the maps dS1 and dG are induced on Borel homology, respectively,
from S1 and G-equivariant maps. 2

By (45),
dGφ3 = φ1dS1 . (49)

Lemma 3.7. We have
H̃S1

∗ (X) = coker dS1 ⊕ ker dS1 . (50)

Proof. Using the top row of (45), we have an exact sequence,

0→ coker dS1 → H̃S1

∗ (X)→ ker dS1 → 0,

so H̃S1

∗ (X) is an extension of ker dS1 by coker dS1 . Note that coker dS1 is isomorphic to T +
d for

some integer d. A calculation shows Ext1
F[U ](T

+
di

(ni), T +
d ) = 0 for all d, di, ni. Thus, any extension

of ker dS1 by coker dS1 is trivial, and we obtain the lemma. 2

We also write (50) as the homology of the complex H̃S1

∗ (XS1
)⊕H̃S1

∗ (X/XS1
) with differential

dS1 .

Lemma 3.8. We have
H̃G
∗ (X) ∼= coker dG ⊕ ker dG, (51)

as F[v]-modules. The subspace coker dG is a F[q, v]/(q3)-submodule, and q acts on x ∈ ker dG by
qx = 0 if x ∈ Imφ2|ker dS1 (using the decomposition of H̃S1

∗ (X) in Lemma 3.7). Also, qx 6= 0 ∈
coker dG if x ∈ ker dG but x 6∈ Imφ2|ker dS1. As there is at most one homogeneous element of each
degree in coker dG, qx is uniquely specified for all x ∈ ker dG in the decomposition (51).

Proof. As in the proof of Lemma 3.7, we see that H̃G
∗ (X) is an extension of

ker dG ⊆ res
F[U ]
F[q,v]/(q3)

H̃S1

∗ (X+)

by coker dG = H̃G
∗ (XS1

)/(Im dG). We will first show that the extension is trivial as an F[v]-
extension.

We construct M ⊂ H̃G
∗ (X) a vector space lift of ker dG ⊂ H̃G

∗ (X/XS1
), so that φ2(ker d+

S1) ⊆
M , using the decomposition of H̃S1

∗ (X) in (50).
Specifically, we define M in each degree i by

Mi =

{
(φ2(ker d+

S1))i for i 6≡ 3 +m mod 4,

H̃G
i (X) for i ≡ 3 +m mod 4.

We next show that πG|M : M → ker dG is an isomorphism.
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We have (coker dG)i = 0 for i ≡ 3 +m mod 4, since H̃G
∗ (XS1

) ∼= H∗(BG)[−m], so

πG : H̃G
i (X)→ (ker dG)i (52)

is an isomorphism for all i ≡ 3 +m mod 4.
We now show that πG : (Imφ2|ker d+

S1
)i→ (ker dG)i is an isomorphism for i 6≡ 3 +m mod 4.

It suffices to show ker dG ⊆ Imφ3|ker d+
S1

in degrees not congruent to 3 + m modulo 4. Indeed,

φ3 is surjective by (47). Furthermore, by Fact 3.4, φ1 is injective in degrees not congruent
to 2 + m modulo 4. By (49), if y ∈ ker dG with deg (y) 6≡ 3 + m mod 4, and y = φ3(x), for

x ∈ H̃S1

∗ (X+) ⊂ H̃S1

∗ (X/XS1
), then φ1(dS1x) = 0. By the injectivity of φ1, we have dS1x = 0,

and we obtain
y ∈ Im (φ3|ker d+

S1
).

That is, (Imφ3|ker d+
S1

)i = (ker dG)i for i 6≡ 3 +m mod 4. Then, πG(Imφ2|ker d+
S1

)i = (ker dG)i, as

needed.
We have then established that H̃G

∗ (X) = coker dG ⊕M as F-vector spaces.
We next determine the F[q, v]/(q3)-action on M ⊂ H̃G

∗ (X). Since ker d+
S1 ⊂ H̃S1

∗ (X) is an

F[q, v]/(q3)-submodule, so is its image in H̃G
∗ (X). Then, for x ∈ M homogeneous of degree not

congruent to 3 + m modulo 4, we have qx, vx ∈ M . In fact, qx = 0, since q acts trivially on
H̃S1

∗ (X). Moreover, for x ∈ M of degree congruent to 3 + m modulo 4, vx ∈ H̃G
∗ (X) is also of

degree congruent to 3 +m, and, in particular, we see vx ∈M . So we need only determine qx for
x ∈M with deg x ≡ 3 +m mod 4.

As in [tDie87, § III.2] there exists a Gysin sequence:

H̃∗G(X) // H̃∗S1(X) // H̃∗G(X)
q∪− // H̃∗+1

G (X) // · · · , (53)

where q ∪ − denotes cup product with q. Dualizing, we obtain an exact sequence:

H̃G
∗ (X)

(1+j)·−// H̃S1

∗ (X)
φ2 // H̃G

∗ (X)
q∩− // H̃G

∗−1(X) // · · · , (54)

where (1 + j) ·− denotes the map obtained from multiplication (on the chain level) by 1 + j ∈ G,
and q ∩ − denotes cap product with q.

From (54), we have that if x ∈M ⊂ H̃G
∗ (X) is not in Imφ2|ker dS1 , then qx 6= 0. We will show

that qx ∈ coker dG.
First, we see

(1 + j) · coker dG ⊂ coker dS1 . (55)

Indeed, (55) follows from the commutativity of the following diagram.

H̃G
∗ (X)

(1+j)· // H̃S1

∗ (X)

H̃G
∗ (XS1

)

OO

(1+j)· // H̃S1

∗ (XS1
)

OO

Additionally, we see that

ker dG
(1+j)·−// ker dS1

is injective by the j-splitness condition (Definition 3.1). Then ker (1 + j) ⊂ H̃G
∗ (X) is, in fact, a

subset of coker dG. Thus, if x 6∈ Im φ2|ker dS1 , qx must be the unique nonzero element in grading
deg x− 1 in coker dG, completing the proof. 2
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Our goal will be to relate (50) and (51), relying on (48) and (49). From this relationship we
will be able to show that the S1-homology (50) determines the G-homology (51). In Lemmas 3.10
and 3.11 we compute H̃S1

∗ (X) from H̃S1

∗ (X/XS1
) and dS1 . In Lemmas 3.12–3.15, we show how to

compute H̃G
∗ (X) from the same information. Then in Theorem 3.16 we compute H̃G

∗ (X) directly
from H̃S1

∗ (X).
We begin by noting that any finite graded F[U ]-module may be written as a direct sum of

copies of T +
di

(ni), as F[U ] is a principal ideal domain. In particular, H̃S1

∗ (X/XS1
), since it has

finite rank as an F-module, is a direct sum of copies of the T +
di

(ni).

Lemma 3.9. On T +
d (n) ⊂ H̃S1

∗ (X/XS1
), the differential dS1 vanishes unless 2n+ d > 3 +m and

d 6 m+ 1.

Proof. Let U−k denote the unique nonzero element of T +
m in degree m+ 2k. Let xd+2n−2 be an

F[U ]-module generator of T +
d (n), with deg(xd+2n−2) = d+ 2n− 2. Then either dS1 vanishes on

T +
d (n) or dS1(xd+2n−2) is nonzero. In this latter case, because of the grading, dS1(xd+2n−2) =

U−(d+2n−m−3)/2. If 2n + d < 3 + m, then T +
d (n) has no elements in degree greater than m,

and so has no nontrivial maps to T +
m . Similarly, for d > m + 1, dS1(T +

d (n)) = 0. Indeed, if
dS1(T +

d (n)) 6= 0, then

dS1xd+2n−2 = U−(d+2n−m−3)/2.

Then, by Fact 3.6, dS1(U (d+2n−m−3)/2xd+2n−2) = U0 6= 0 ∈ T +
m ; however, if d > m + 1, then

U (d+2n−m−3)/2xd+2n−2 = 0, a contradiction. 2

Lemma 3.10. There exists a decomposition

H̃S1

∗ (X+) = J1 ⊕ J2, (56)

as a direct sum of F[U ]-modules J1 and J2, where dS1 vanishes on J2 and

J1 =
N⊕
i=1

T +
di

(ni),

with 2ni+di > 2ni+1+di+1, and di+1 > di, for some N . Moreover, dN 6 1+m, 2nN +dN > 3+m,
and dS1 is nonvanishing on each summand T +

di
(ni).

Proof. To begin, set H̃S1

∗ (X+) = J1⊕J2 for some choices of J1 and J2 so that dS1 |J2 = 0, possibly
by setting J2 = 0. We introduce a partial ordering � of (graded) F[U ]-modules. We say

T +
d1

(n1) � T +
d2

(n2)

if 2n1 + d1 > 2n2 + d2 and d1 > d2. Our goal is to arrange that the summands of J1 are
not comparable under this relation. Suppose we have T +

d1
(n1) ⊕ T +

d2
(n2) a summand of J1, and

T +
d1

(n1) � T +
d2

(n2). If one of the T +
di

(ni) has dS1 |T +
di

(ni)
= 0, we move it to J2. Otherwise, we

have that dS1 is nontrivial on both T +
di

(ni). Let T +
di

(ni) be generated by xi for i = 1, 2. Then

〈x1, U
n1−n2+(d1−d2)/2x1 + x2〉 are new F[U ]-generators for T +

d1
(n1)⊕T +

d2
(n2) ⊂ J1, such that dS1

vanishes on Un1−n2+(d1−d2)/2x1 + x2, i.e. so that dS1 vanishes on the T +
d2

(n2) summand. So we

may choose a new decomposition H̃S1

∗ (X+) = J ′1 ⊕ J ′2, where J ′2
∼= J2 ⊕ T +

d2
(n2). Thus, we may

choose J1 such that there is no summand X ⊕ Y of J1 with X � Y . Say J1 =
⊕N

i=1 T
+
di

(ni) has
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Figure 2. An example of H̃S1

∗ (X) as in Lemma 3.11. The first four (finite) towers are T +
−1(3)⊕2⊕

T +
1 (1)⊕2. Then J1 = T +

−1(3)⊕T +
1 (1) and J2 = T +

−1(1) in (56) (keeping in mind that the action of j

interchanges the pairs of copies T +
di

(ni), so H̃S1

∗ (X/XS1
) ∼= J1⊕J2⊕J1⊕J2 as an F[U ]-module).

In particular, d1 = −1, n1 = 3, d2 = 1, n2 = 1. Here m = 0. The shaded-head arrows denote
differentials while the open-head arrows denote U -actions.

been chosen so that all its summands are incomparable under � (and so that dS1 is nonvanishing
on each T +

di
(ni)). Perhaps by reordering, let di+1 > di. If di+1 = di, T +

di
(ni) and T +

di+1
(ni+1) would

be comparable, contradicting our choice of J1. Thus di+1 > di. Again using that the T +
di

(ni) are
incomparable, we obtain 2ni+di > 2ni+1 +di+1. Finally, we saw in Lemma 3.9 that dS1 vanishes
on any summand T +

d (n) with d > 1 + m or 2n + d < 3 + m, so by the condition that dS1 is
nonvanishing, we have dN 6 1 +m, 2nN + dN > 3 +m. 2

Lemma 3.11. Let H̃S1

∗ (X+) = J1 ⊕ J2, with J1 as in Lemma 3.10. Then

H̃S1

∗ (X) = T +
d1+2n1−1 ⊕

N⊕
i=1

T +
di

(
di+1 + 2ni+1 − di

2

)
⊕

N⊕
i=1

T +
di

(ni)⊕ J⊕2
2 . (57)

We interpret dN+1 = m + 1, nN+1 = 0. The expression (dN+1 + 2nN+1 − dN )/2 may vanish, in
which case T +

dN
((dN+1 + 2nN+1 − dN )/2) is the zero module.

Proof. In the decomposition of Lemma 3.10, we write xi for the generator of T +
di

(ni). We choose

a basis for ker dS1 , given by {yi}i for yi = xi+1 +Uni−ni+1+(di−di+1)/2xi for i = 1, . . . , N − 1, and
yN = U (dN+2nN−m−1)/2xN . Note that yN may be zero.

We have seen that J2 ⊂ ker dS1 , and also jJ2 ⊂ ker dS1 , giving the two copies of the
J2 summand in (57). We see that F[U ]U−(d1+2n1−m−3)/2 = Im dS1 ⊂ T +

m , by Lemma 3.10.
Then T +

d1+2n1−1 = coker dS1 . Further, (1 + j)J1 contributes the summand
⊕N

i=1 T
+
di

(ni), since
dS1 is j-invariant, and so vanishes on multiples of (1 + j). Finally, the set {yi} generates the⊕N

i=1 T
+
di

((di+1 + 2ni+1 − di)/2) summand.
For an example of how the new basis gives the lemma, see Figures 2 and 3. 2

We now compute H̃G
∗ (X/XS1

). To find ker dG, we write H̃G
∗ (X/XS1

) = J ′1 ⊕ J ′2, where dG
vanishes on J ′2 (J ′2 need not be maximal, currently). To find J ′1 and J ′2 in terms of J1 and J2, we
use the following lemma.
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Figure 3. Using the basis in the proof of Lemma 3.11 for the complex of Figure 2. Here the
generator of J2 is written z−1. The xi are generators of T +

di
(ni) for i = 1, 2.

Lemma 3.12. Let J1, J2 and di, ni be as in Lemma 3.10. Then we may set H̃G
∗ (X/XS1

) = J ′1⊕J ′2,
where

J ′1 =
⊕

{i|di≡m+1 mod 4}

V+
di

(⌊
ni + 1

2

⌋)
⊕

⊕
{i|di≡m+3 mod 4}

V+
di+2

(⌊
ni
2

⌋)
,

J ′2 = res
F[U ]
F[v] J2 ⊕

⊕
{i|di≡m+1 mod 4}

V+
di+2

(⌊
ni
2

⌋)
⊕

⊕
{i|di≡m+3 mod 4}

V+
di

(⌊
ni + 1

2

⌋)
.

Moreover, dG is nonvanishing on each nontrivial summand of J ′1, and dG(J ′2) = 0.

Proof. We use (46) and (48) to conclude that

φ3J1 =
N⊕
i=1

V+
di

(⌊
ni + 1

2

⌋)
⊕

N⊕
i=1

V+
di+2

(⌊
ni
2

⌋)
.

We also use
corS

1

G dS1 = dGφ3,

as in (49) to obtain that dG is nonvanishing on each of V+
di

(b(ni + 1)/2c), with di ≡m+ 1 mod 4

and V+
di+2(bni/2c) with di ≡m+ 3 mod 4. To find J ′2 we apply (48) again, to J2, and we observe

that dG is vanishing on each of V+
di

(b(ni + 1)/2c), with di ≡m+ 3 mod 4 and V+
di+2(bni/2c) with

di ≡ m+ 1 mod 4. 2

Fact 3.13. The generators of the F[v]-submodule⊕
{i|di≡m+1 mod 4}

V+
di+2

(⌊
ni
2

⌋)
⊕

⊕
{i|di≡m+3 mod 4}

V+
di

(⌊
ni + 1

2

⌋)

described in Lemma 3.12 are not in the image of φ2|ker dS1 , while res
F[U ]
F[v] J2 is in the image of

φ2|ker dS1 .

For an example of Lemma 3.12, see Figure 4. We define a partial order � on modules V+
d (n)

with d ≡ m + 1 mod 4. Note that all simple submodules V+
d (n) of J ′1 in Lemma 3.12 have

d ≡ m + 1 mod 4. Let V+
d1

(n1) � V+
d2

(n2) if d1 > d2 and d1 + 4n1 > d2 + 4n2. Let J denote the
set of distinct pairs (a, b) for which V+

a (b) is a maximal summand of J ′1 as in Lemma 3.12. If
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Figure 4. Computing H̃G
∗ (X/XS1

) for the complex of Figures 2 and 3. Here J ′1 = V+
1(1)⊕2,

and J ′2 = V+
−1(2)⊕ V+

−1(1).

(a, b) ∈ J , set m(a, b) + 1 to be the multiplicity with which V+
a (b) occurs as a summand of J ′1.

If (a, b) 6∈ J , set m(a, b) to be the multiplicity with which V+
a (b) occurs in J ′1. Then we define

Jrep =
⊕
(a,b)

V+
a (b)⊕m(a,b), (58)

where summands of multiplicity 0,−1 do not contribute to the sum. That is, Jrep counts the
repeated summands (whence the ‘rep’) in J ′1, as well as those which are not contributing ‘new’
differentials targeting the reducible. In the example of Figure 4, Jrep = V+

1 (1).
Arguing as in Lemma 3.10, we obtain the following result.

Lemma 3.14. Let H̃S1

∗ (X+) be decomposed as in Lemma 3.10, and let J be as in the preceding
paragraphs. Then we may set H̃G

∗ (X/XS1
) = J ′′1 ⊕ J ′′2 with

J ′′1
∼=

⊕
(ai,bi)∈J

V+
ai(bi),

J ′′2
∼= res

F[U ]
F[v] J2 ⊕

⊕
{i|di≡m+1 mod 4}

V+
di+2

(⌊
ni
2

⌋)
⊕

⊕
{i|di≡m+3 mod 4}

V+
di

(⌊
ni + 1

2

⌋)
⊕ Jrep.

Moreover, dG is nonvanishing on each nontrivial summand of J ′′1 , and dG(J ′′2 ) = 0. Further,
ai < ai+1 and ai + 4bi > ai+1 + 4bi+1 for i = 1, . . . , N0 − 1, where N0 = |J |.

Proof. We argue as in Lemma 3.10, starting with the decomposition

H̃G
∗ (X/XS1

) = J ′1 ⊕ J ′2

given in Lemma 3.12. We will show that we may choose J ′′1 =
⊕

(ai,bi)∈J V
+
ai(bi), so that

H̃G
∗ (X/XS1

) = J ′′1 ⊕J ′′2 with dGJ
′′
2 = 0. Fix a direct sum decomposition J ′1 =

⊕
i V+

ai(bi), for some
ai, bi. Say that V+

e1(f1) ⊆ J ′1, where (e1, f1) 6∈ J and choose (e2, f2) ∈ J , with V+
e2(f2) � V+

e1(f1)
and V+

e1(f1) ⊕ V+
e2(f2) ⊆ J ′2. Further, assume that dG is nontrivial on V+

e1(f1); if it were trivial,
then we enlarge J ′2 by setting J ′′2 = J ′2 ⊕ V+

e1(f1). Let xi be the generator of V+
ei (fi). We choose

new F[v]-generators, x2 of V+
e2(f2) and vf2−f1+(e2−e1)/4x2 + x1 of V+

e1(f1) so that dG vanishes on
V+
e1(f1). Again, then we may enlarge J ′2 by adding the V+

e1(f1) factor. This shows that we can
remove all summands T +

a (b) with (a, b) 6∈ J from J ′1. Similarly, if V+
a (b) ⊕ V+

a (b) ⊆ J ′1, with
(a, b) ∈ J and with generators x1 and x2 such that dG(x1) = dG(x2) 6= 0, we choose the new
basis 〈x1, x2 + x1〉. The differential dG is nonzero on the copy of V+

a (b) generated by x1, while
dG vanishes on the copy of V+

a (b) generated by x1 + x2, and J ′2 may be enlarged. Then we may
choose J ′′1

∼=
⊕

(a,b)∈J V+
a (b). The formula for J ′′2 also follows once J ′′1 is specified. 2
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Figure 5. An example F[U ]-module H̃S1

∗ (XS1
)⊕H̃S1

∗ (X/XS1
) for X with m = 0. Here d1 = −5,

n1 = 7 and d2 = −3, n2 = 5, and J2 = 0.

In Figures 5 and 6, we provide an example illustrating the proof of Lemma 3.14. We may
now compute H̃G

∗ (X) in terms of H̃S1

∗ (X/XS1
) and the map dS1 .

Lemma 3.15. Let H̃S1

∗ (X+) be decomposed as in Lemma 3.10 and let J ′′1 , J
′′
2 be as in Lemma 3.14.

Then

H̃G
∗ (X) = V+

a1+4b1−1 ⊕ V
+
1+m ⊕ V

+
2+m ⊕

N0⊕
i=1

V+
ai

(
ai+1 + 4bi+1 − ai

4

)
⊕ J ′′2 , (59)

as an F[v]-module. The q-action is given by the isomorphism q : V+
2+m → V

+
1+m and the map

V+
1+m→ V

+
a1+4b1−1, which is an F-vector space isomorphism in all degrees at least a1 + 4b1 − 1.

The action of q annihilates
⊕N0

i=1 V+
ai((ai+1 + 4bi+1 − ai)/4) and res

F[U ]
F[v] J2 ⊕ Jrep ⊆ J ′′2 .

To finish specifying the q-action, let xi be a generator of V+
di+2(bni/2c) for i such that

di ≡ m+ 1 mod 4 (respectively, let xi be a generator of V+
di

(b(ni + 1)/2c) if di ≡ m+ 3 mod 4).

Then qxi is the unique nonzero element of coker(dG) ⊂ HG
∗ (X/XS1

) in grading deg xi − 1, for
all i. In particular, H̃S1

∗ (X/XS1
) and dS1 determine H̃G

∗ (X). Here aN0+1 = m+ 1, bN0+1 = 0.

Proof. The proof is analogous to that of Lemma 3.11. We choose a basis for ker dG as follows.
Write the generator of V+

ai(bi) as xi. Then set yi = xi+1+vbi−bi+1+(ai−ai+1)/4xi for i= 1, . . . , N0−1,

and yN0 = v(aN0
+4bN0

−m−1)/4xN0 . It is clear that yi ∈ ker dG for all i, and it is straightforward to
check that {yi} generates ker dG ∩ J ′′1 . The yi generate the term

⊕N0
i=1 V+

ai((ai+1 + 4bi+1 − ai)/4)

in (59). Since dG is q-equivariant and q annihilates H̃G
∗ (X/XS1

), the modules V+
1+m and V+

2+m ⊂
H∗(BG) are disjoint from the image of dG. Moreover, v−(a1+4b1−5−m)/4 = dG(x1), where v−k is
the unique element x of H∗(BG)[−m] with vkx an F-generator of H0(BG)[−m]. Since there are
no elements x ∈ J ′′1 with grading greater than a1 +4b1−4, the maximal k for which v−k ∈ Im dG
is (a1 + 4b1 − 5−m)/4. It follows that

coker dG = V+
a1+4b1−1 ⊕ V

+
1+m ⊕ V

+
2+m.
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Figure 6. Here we show how to compute (H̃G
∗ (XS1

) ⊕ H̃G
∗ (X/XS1

), dG), given (H̃S1

∗ (XS1
) ⊕

H̃S1

∗ (X/XS1
), dS1), for the example complex given in Figure 5. The curved arrows denote the

v-action. Here, Jrep is V+
−3(3), and J ′′1 = V+

−3(3). Then we have also J ′′2 = V+
−3(3)⊕V+

−1(2)⊕V+
−5(4).

If we have a basis of corS
1

G Ux1, corS
1

G x2 for J ′1, then corS
1

G Ux1 + corS
1

G x2 would be a basis for Jrep

produced by Lemma 3.14.

Furthermore, J ′′2 ⊆ ker dG by definition, contributing the J ′′2 term of (59). To determine the

q-action on ker dG, we use Lemma 3.8. Indeed, q takes elements not in the image of φ2|ker dS1 to

nontrivial elements of coker dG, and q vanishes on Imφ2|ker dS1 . Using Fact 3.13, we obtain the

q-action on J ′′2 as in the Lemma. The q-action on coker dG is given by that on H∗(BG). 2

We combine Lemmas 3.10–3.15 to determine H̃G
∗ (X) from H̃S1

∗ (X). We record this as the

following theorem.

Theorem 3.16. Let X = (X ′, p, h/4) ∈ E and X ′ be a j-split space of type SWF. Then

H̃S1

∗ (X) = T +
s+d′1+2n1−1

⊕
N⊕
i=1

T +
s+d′i

(
d′i+1 + 2ni+1 − d′i

2

)
⊕

N⊕
i=1

T +
s+d′i

(ni)⊕ J⊕2[−s], (60)

for some constants s, d′i, ni, N and some F[U ]-module J , where 2ni + d′i > 2ni+1 + d′i+1 and
d′i < d′i+1 for all i, 2nN + d′N > 3, d′N 6 1, and d′N+1 = 1, nN+1 = 0. Let J0 = {(ak, bk)}k be
the collection of pairs consisting of all (d′i, b(ni + 1)/2c) for d′i ≡ 1 mod 4 and all (d′i + 2, bni/2c)
for d′i ≡ 3 mod 4, counting multiplicity. Let (a, b) � (c, d) if a + 4b > c + 4d and a > c, and let
J be the subset of J0 consisting of pairs maximal under � (not counted with multiplicity). If
(a, b) ∈ J , set m(a, b) + 1 to be the multiplicity of (a, b) in J0. If (a, b) 6∈ J , set m(a, b) to be the
multiplicity of (a, b) in J0. Let |J | = N0 and order the elements of J so that J = {(ai, bi)}i,
with ai + 4bi > ai+1 + 4bi+1. We interpret aN0+1 = 1, bN0+1 = 0. Then
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H̃G
∗ (X) =

(
V+

4b(d′1+2n1+1)/4c ⊕ V
+
1 ⊕ V

+
2

⊕
N0⊕
i=1

V+
ai

(
ai+1 + 4bi+1 − ai

4

)
⊕

⊕
(a,b)∈J0

V+
a (b)⊕m(a,b) ⊕ res

F[U ]
F[v] J

⊕
⊕

{i|d′i≡1 mod 4}

V+
d′i+2

(⌊
ni
2

⌋)
⊕

⊕
{i|d′i≡3 mod 4}

V+
d′i

(⌊
ni + 1

2

⌋))
[−s]. (61)

The q-action is given by the isomorphism q : V+
2 [−s]→ V+

1 [−s] and the map q : V+
1 [−s]→

V+
4b(d′1+2n1+1)/4c[−s] which is an F-vector space isomorphism in all degrees (in V+

1 [−s]) greater

than or equal to 4b(d′1 + 2n1 + 1)/4c+ s+ 1, and vanishes on elements of V+
1 [−s] of degree less

than 4b(d′1 + 2n1 + 1)/4c+ s+ 1.

The action of q annihilates
⊕N0

i=1V+
ai((ai+1 + 4bi+1 − ai)/4)[−s] and (

⊕
(a,b)∈J0V

+
a (b)⊕m(a,b)⊕

res
F[U ]
F[v] J)[−s].
To finish specifying the q-action, let xi be a generator of V+

d′i+2
(bni/2c)[−s] for i such that

d′i ≡ 1 mod 4 (respectively, let xi be a generator of V+
d′i

(b(ni + 1)/2c)[−s] if d′i ≡ 3 mod 4). Then

qxi is the unique nonzero element of (V+
4b(d′1+2n1+1)/4c ⊕ V

+
1 ⊕ V

+
2 )[−s] in grading deg xi − 1,

for all i.

Proof. We show that for M an F[U ]-module of the form (57), the sets {ni}, {d′i}, and the module

J2, are determined by the (graded) isomorphism type of M , to establish that all the constants

in (60) are well defined (independent of the choice of direct sum decomposition of H̃S1

∗ (X)). For a

fixed d, there are at most two distinct isomorphism classes T +
d (x), each appearing as summands

of M that occur an odd number of times in the decomposition of M into simple submodules

(not including the infinite tower). Such a submodule T +
d (x) will be called a submodule occurring

with odd multiplicity. For any d such that there is at least one isomorphism class T +
d (x) with

odd multiplicity, then d = s+ d′i for some i, using (57). Consider the case that there are exactly

two such isomorphism classes T +
d (x1) and T +

d (x2) with, say, x1 < x2. Setting d = s + d′i for a

fixed i, and using (57), we see that x2 = ni, since ni > ni+1 + (d′i+1 − d′i)/2 for all i. If instead

there is one (graded) isomorphism class Td(x) with odd multiplicity, Lemma 3.11 shows x = nN .

If, for a fixed d, there are no isomorphism classes T +
d (x) occurring with odd multiplicity, then

d 6∈ {s+ d′i}. Thus, we see that {d′i} and {ni} are determined by the isomorphism type of M as

a graded F[U ]-module. It is then easy to see that J2 is also determined by the isomorphism type

of M .

In addition, we find that s in (60) exists and is uniquely determined. First, we check that

there is an s so that (60) holds. Observe that H̃S1

∗ (X) = H̃S1

∗ (X ′)[p+ h]. Say that X ′ is a space

of type SWF at level m, and set d′i = di −m, where di is as in (57). Then Lemma 3.11 shows

that (60) holds for this choice of d′i, and s = m− p− h. We next show that there is a unique s

so that (60) holds. To see this, observe that H̃S1

∗,red(X), as in (60), is an F-module of odd rank in

degrees d such that d ≡ s+ 1 mod 2, with s < d < s+ d′1 + 2n1, and of even rank (possibly zero)

in all other degrees (recall from (8) the definition of H̃S1

∗,red). Then, for M an F[U ]-module that

is the homology of (X ′, p, h/4) with X ′ j-split, we have that s = m− p− h is determined by M .

As in (50),

H̃S1

∗ (X) = coker dS1 ⊕ ker dS1 .
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Figure 7. The S1-Borel homology of (X, p, h/4) ∈ E. The variables ti stand for entries of the
infinite tower in grading i.

Additionally, given M , we have determined the sets {d′i}, {ni} appearing in Lemma 3.10. Then
Lemmas 3.12 and 3.14 show that J ′′1 =

⊕
(ai,bi)∈J V

+
ai(bi), for ai, bi as in the statement of the

theorem, and that

J ′′2 = res
F[U ]
F[v] J ⊕

⊕
{i|di≡1 mod 4}

V+
di+2

(⌊
ni
2

⌋)
⊕

⊕
{i|di≡3 mod 4}

V+
di

(⌊
ni + 1

2

⌋)
⊕

⊕
(a,b)∈J0

V+
a (b)⊕m(a,b).

(62)

Here we have replaced the notation res
F[U ]
F[q,v]/(q3)

by res
F[U ]
F[v] since q acts by 0. Finally, Lemma 3.15

determines H̃G
∗ (X) given J ′′1 and J ′′2 . This completes the proof of the theorem. 2

Remark 3.17. Since every j-split chain complex of type SWF is the cellular chain complex of
some space of type SWF, Theorem 3.16 also applies to j-split chain complexes.

We give an example illustrating the steps of the proof of Theorem 3.16. Let X be a j-split
space, and say that H̃S1

∗ ((X, p, h/4)) is given as in Figure 7; that is,

H̃S1

∗ ((X, p, h/4)) ∼= T +
6 ⊕ T

+
−5(6)⊕ T +

−5(5)⊕ T +
−3(4)⊕ T +

−3(3)⊕ T +
−1(2)⊕ T +

−1(1).

We calculate d′i, ni. As specified in the proof of Theorem 3.16, we see {d′i+m−p−h} = {−5,

−3,−1}, and {ni} = {6, 4, 2}. We see that m − p − h = 0 because H̃S1

−1,red((X, p, h/4)) (i.e. the

contribution in degree −1 not coming from the tower) is of even rank, while H̃S1

1,red((X, p, h/4))
has odd rank. So s = 0 in Theorem 3.16. Then {d′i} = {−5,−3,−1}. Furthermore, we see J2 = 0.

Then we recover (H̃S1

∗ ((X/XS1
, p, h/4))⊕ H̃S1

∗ ((XS1
, p, h/4)), dS1), as in Figure 8.

Using Lemma 3.12, we have J ′1 = V+
−3(3)⊕V+

−3(2)⊕V+
1 (1) and J ′2 = V+

−5(3)⊕V+
−1(2)⊕V+

−1(1),
as in Figure 9. We see that V+

−3(2) is not maximal in J ′1, som(−3, 2) = 1, whilem(−3, 3) = 0, since
V+
−3(3) is maximal under �. Similarly, V+

1 (1) is maximal, so m(1, 1) = 0. Then Jrep = V+
−3(2),

using (58).
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Figure 8. The complex (H̃S1

∗ (X/XS1
)[p + h] ⊕ H̃S1

∗ ((XS1
, p, h/4)), dS1) corresponding to

Figure 7.

Figure 9. The complex (H̃G
∗ (X/XS1

)[p+h]⊕H̃G
∗ ((XS1

, p, h/4)), dG) corresponding to Figure 7.

In Figure 9, J ′′1 = V+
−3(3) ⊕ V+

1 (1). Then Lemma 3.15 allows us to compute H̃G
∗ (X), as in

Figure 10.

We find H̃G
∗ (X) = V+

8 ⊕V
+
1 ⊕V

+
2 ⊕V

+
−5(3)⊕V+

−3(2)⊕2⊕V+
−1(2)⊕V+

−1(1), in accordance with

Theorem 3.16.
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Figure 10. Finishing the calculation of H̃G
∗ (X) for the example of Figure 7. The curved arrows

again represent the v-action. The straight arrows indicate a nontrivial q-action.

3.2 Chain local equivalence and j-split spaces
Using Theorem 3.16, we can determine the chain local equivalence class of j-split spaces. We
start with some results on j-split chain complexes. First, write Sd(n) for the free G-module
generated by

〈xd, xd+2, . . . , xd+2n−2〉,
with xi of degree i and ∂(xi) = s(1 + j2)xi−2. A quick computation gives HS1

∗ (Sd(n)) =
T +
d (n)⊕2 as F[U ]-modules, where HS1

∗ (Z) is defined as in (20). Moreover, for an F[U ]-module
J =

⊕
i T +

ei (mi), let S(J) =
⊕

i Sei(mi).

Proposition 3.18. Let C = 〈fred〉 ⊕̃ (C+ ⊕ C−) be a j-split chain complex and

HS1

∗ (C) = T +
d1+2n1−1 ⊕

N⊕
i=1

T +
di

(
di+1 + 2ni+1 − di

2

)
⊕

N⊕
i=1

T +
di

(ni)⊕ J⊕2, (63)

where di+1 > di and 2ni +di > 2ni+1 +di+1, 2nN +dN > 3, and dN 6 1. We interpret dN+1 = 1,
nN+1 = 0. Then C is homotopy equivalent to the chain complex(

〈fred〉 ⊕̃
(⊕

i

Sdi(ni)
))
⊕ S(J), (64)

where ∂(fred) = 0, jfred = fred, sfred = 0, and deg (fred) = 0. Furthermore, let each factor Sdi(ni)
have generators xij , with deg xij = j. Then ∂xi1 = fred + s(1 + j2)xi−1 for all i.

Remark 3.19. By Lemma 3.10, for C any j-split chain complex, a decomposition as in (63) is
possible.

Before giving the proof we establish a lemma.

Lemma 3.20. Let F1, F2 be two free, finite CCW
∗ (S1)-complexes such that HS1

∗ (F1) ∼= HS1

∗ (F2)
as F[U ]-modules. Then F1 ' F2, where ' denotes homotopy equivalence.
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Proof. First, we note that CCW
∗ (S1) is quasi-isomorphic to the algebra F[s̄]/(s̄2) where deg(s̄) = 1

and ∂(s̄) = 0. Koszul duality (see [GKM98, Theorem 8.4]; there it is stated with Z-coefficients,
but also holds over F) is an equivalence of categories t from the derived category of bounded-
below F[s]/(s2)-dgmodules to the derived category of bounded-below F[U ]-dgmodules, so that
H∗S1(X) = H∗(t(X)) for X a F[s]/(s2)-dgmodule. Then F1 and F2 are quasi-isomorphic as
F[s̄]/(s̄2) modules if and only if their Koszul duals t(F1) and t(F2) are quasi-isomorphic. However,
t(Fi) are, by construction, free, finitely-generated bounded-below F[U ]-dgmodules; such are
quasi-isomorphic if and only if they have the same homology (as may be checked directly).
By our original hypothesis, HS1

∗ (F1) and HS1

∗ (F2) are isomorphic as F[U ]-modules which also
implies H∗S1(F1) ∼= H∗S1(F2), so we see that F1 and F2 are quasi-isomorphic. Finally, by [Wei94,
Theorem 10.4.8], quasi-isomorphic free chain complexes are chain homotopy equivalent, and so
F1 and F2 are chain homotopy equivalent. This establishes the lemma. 2

Proof of Proposition 3.18. The proof is in two steps: first, we show that C+ is chain homotopy
equivalent to a chain complex of a certain form, and then we investigate differentials from C+

to 〈fred〉.
Note that the complex C+ is a CCW

∗ (S1)-complex. Let SS1

d (n) be the CCW
∗ (S1)-submodule

of Sd(n) generated (as a CCW
∗ (S1)-module) by 〈xd, xd+2, . . . , xd+2n−2〉. As for Sd(n), a quick

calculation shows HS1

∗ (SS1

d (n)) = T +
d (n). Similarly, for an F[U ]-module J =

⊕
i T +

ei (mi), let

SS
1
(J) =

⊕
i SS

1

ei (ni). We see

S(J) ∼= SS
1
(J)⊕ SS1

(J), (65)

as G-complexes, for all F[U ]-modules J , where the action of j on the right is given by
interchanging the factors.

Recall, by the proof of Theorem 3.16, that HS1

∗ (C+ ⊕C−) is determined by HS1

∗ (C) for C a
j-split chain complex (see Remark 3.17). That is, from (63),

HS1

∗ (C+) =
N⊕
i=1

T +
di

(ni)⊕ J.

Lemma 3.20 then implies C+ =
⊕N

i=1 SS
1

di
(ni)⊕SS

1
(J) as a CCW

∗ (S1)-complex. Since j : C+→

C− is an isomorphism, we have, from (65),

C+ ⊕ C− ∼=
⊕
i

Sdi(ni)⊕ S(J). (66)

Moreover,HS1

∗ (C) determines the map dS1 :HS1

∗ (C+)→HS1

∗ (〈fred〉). We compute dS1 a different
way, by using the differential from C+ to 〈fred〉, and the form of C+ determined by (66). Fix
a pair of integers (d, n). If xi is the generator of a copy of Sd(n) in degree i and xi ∈ C+,
then dS1 : HS1

∗ (Sd(n)) ∼= T +
d (n)→ T + is nontrivial if and only if ∂(x1) = fred + s(1 + j2)x−1.

Thus, since dS1 is nonvanishing on the factors T +
di

(ni) ⊂ HS1

∗ (C+) and vanishing elsewhere, each

generator xi1, with deg xi1 = 1 of Sdi(ni) in (66) must have ∂(xi1) = fred + s(1 + j2)xi−1, and all
other differentials C+→ 〈fred〉 vanish. Thus, in particular, ∂(S(J)) ⊂ S(J). The decomposition
(64) follows. 2

Proposition 3.21. Let (X, p, h/4) ∈ E with X a j-split space of type SWF at level m, and

H̃S1

∗ ((X, p, h/4)) = T +
s+d1+2n1+1⊕

N⊕
i=1

T +
s+di

(
di+1 + 2ni+1 − di

2

)
⊕

N⊕
i=1

T +
s+di

(ni)⊕ J⊕2[−s], (67)
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where di+1 > di and 2ni + di > 2ni+1 + di+1, as well as 2nN + dN > 3, and dN 6 1. Then the
chain local equivalence type [(CCW

∗ (X,pt), p, h/4)]cl ∈ CLE is the equivalence class of

C(p−m,h/4, {di}i, {ni}i) :=

((
〈fred〉 ⊕̃

(⊕
i

Sdi(ni)
))

, p−m,h/4
)
∈ CLE. (68)

The connected S1-homology of (X, p, h/4) is given by

HS1

conn((X, p, h/4)) =

N⊕
i=1

T +
s+di

(
di+1 + 2ni+1 − di

2

)
⊕

N⊕
i=1

T +
s+di

(ni). (69)

Further, s in (67) is m − p − h. Moreover, C(p, h/4, {di}, {ni}) is chain locally equivalent to
C(p′, h′/4, {d′i}, {n′i}) if and only if p = p′, h = h′, {di} = {d′i}, and {ni} = {n′i}.

Proof. Write [(A, b, c)]cl for the chain local equivalence class of (A, b, c) ∈ CE. Let [(Z,−m, 0)]
= [CCW

∗ (X,pt)] ∈ CE where Z is a j-split chain complex, as allowed by Lemma 3.2. Using
Proposition 3.18, we see

[(Z, p, h/4)]cl =
((
〈fred〉 ⊕̃

⊕
Sdi(ni)

)
, p, h/4

)
.

We have then

C(p−m,h/4, {di}, {ni}) = [(Z, p−m,h/4)]cl = [(CCW
∗ (X,pt), p, h/4)]cl,

as in (68).

To prove (69) we consider the complex ΣHb(−d1+3)/4c
C(0, 0, {di}, {ni})[4b(−d1 + 3)/4c] (we

include the grading shift for convenience). We will see that it is homotopy equivalent to a
suspensionlike complex, so we may apply the results of § 2.5. First, recall that ΣHN 〈fred〉 ' Hn,
as in the proof of Lemma 2.25, for a complex Hn on generators f, y4k+i for 0 6 k 6 N − 1,
i = 1, 2, 3. Also, recall that for a free G-module M , ΣHN

M ' M [−4N ]. Putting this together,
there is then a homotopy equivalence:

ΣHb(−d1+3)/4c
C(0, 0, {di}, {ni})

[
4

⌊
−d1 + 3

4

⌋]
' 〈fred〉 ⊕̃

⊕
k

〈yk〉 ⊕̃
N⊕
i=1

⊕
{k≡1 mod 2, di6k6di+2ni−2}

〈zik〉, (70)

where
〈fred〉 ⊕̃

⊕
k

〈yk〉 ' ΣHb(−d1+3)/4c〈fred〉, (71)

and deg zik = deg yk = k. Additionally, ∂(zik) = s(1 + j2)zik−2 if k 6= 1, and ∂(zi1) = s(1 + j2)zi−1 +
s(1+ j)3y−1. The yk are defined for k such that k 6≡ 0 mod 4 and −4b(−d1 + 3)/4c+1 6 k 6 −1.
Also,

∂(y4k+1) = s(1 + j)3y4k−1, k 6= −
⌊
−d1 + 3

4

⌋
, (72)

∂(y4k+2) = (1 + j)y4k+1, (73)

∂(y4k+3) = (1 + j)y4k+2 + sy4k+1, (74)

∂(y−4b(−d1+3)/4c+1) = fred. (75)
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According to (71), the first two terms on the right of (70) account for the suspension of the
reducible tower, and the zik correspond to the suspension of the free part. The zik are suspensions
of xik ∈ Sdi(ni) ⊂ C(0, 0, {di}, {ni}). From this presentation, it is clear that the chain complex

ΣHb(−d1+3)/4c
C(0, 0, {di}, {ni})[4b(−d1 + 3)/4c] is irreducible (that is, it may not be written as a

nontrivial direct sum of G-chain complexes). Then by Lemma 2.31 and Definition 2.32,(
ΣHb(−d1+3)/4c

C(0, 0, {di}, {ni})
[
4

⌊
−d1 + 3

4

⌋])
conn

= ΣHb(−d1+3)/4c
C(0, 0, {di}, {ni})

[
4

⌊
−d1 + 3

4

⌋]
. (76)

Then (69) follows from the definition of HS1

conn, applied to C(0, 0, {di}, {ni}). The calculation of
HS1

conn((X, p, h/4)) for nonzero m, p, h follows, since

C(p−m,h/4, {di}, {ni}) = Σ(m−p)R̃Σ−(h/4)HC(0, 0, {di}, {ni}).

The assertion that s = m− p− h follows from the homology calculation of Theorem 3.16.
Recall that HS1

conn is a chain local equivalence invariant. Hence, if [C(p, h/4, {di}, {ni})]cl =
[C(p′, h′/4, {d′i}, {n′i})]cl, we see from (69) that {di} = {d′i}, {ni} = {n′i}, and p + h = p′ + h′.
Furthermore, if C(p, h/4, {di}, {ni}) and C(p′, h′/4, {d′i}, {n′i}) are chain locally equivalent, they
must have chain homotopy equivalent fixed-point sets. That is, p = p′ and so also h = h′,
completing the proof. 2

4. Seiberg–Witten Floer spectra and Floer homologies

4.1 Finite-dimensional approximation
In this section we review the finite-dimensional approximation to the Seiberg–Witten equations
from Manolescu [Man03, Man16].

Let S be the spinor bundle of the three-manifold with spin structure (Y, s), and Γ(S) its space
of sections. Let D denote the Dirac operator. Let W = ker d∗⊕Γ(S) be the global Coulomb slice,
a vector subspace of an appropriate Sobolev completion of Ω1(Y, iR) ⊕ Γ(S). For λ ∈ (0,∞),

the Seiberg–Witten equations of (Y, s, g) determine a sequence of vector fields X gC
λ on finite-

dimensional vector spaces W λ. Here W λ is the span of eigenvectors of the elliptic operator ` =
∗d+D acting on W , with eigenvalue in (−λ, λ). The vector field X gC

λ on W λ is an approximation
of the Seiberg–Witten equations restricted to W λ. The action of G = Pin(2) on Γ(S) restricts to

a smooth action on W λ that commutes with the flow defined by X gC
λ , and we define an action of

G on Ω1 by letting j act by −1 and S1 act trivially. There is a distinguished subspace W (−λ, 0)
⊂ W λ consisting of the span of the eigenvectors with eigenvalue in (−λ, 0). Following [Man03],
we will use the sequence of flows on the spaces W λ to define an invariant of (Y, s).

We next recall a few properties of the Conley Index. For a one-parameter family φt of
diffeomorphisms of a manifold M and a compact subset A ⊂M , we define

Inv(A, φ) = {x ∈ A | φt(x) ∈ A for all t ∈ R}.

Then we say that a set S ⊂ M is an isolated invariant set if there is some A as above
such that S = Inv(A, φ) ⊂ int(A). Conley proved in [Con78] that one may associate to any
isolated invariant set S a pointed homotopy type I(S), an invariant of the triple (M,φt, S).
Floer [Flo87] and Pruszko [Pru99] defined an equivariant version, so that if a compact Lie group
K acts smoothly on M preserving the flow φt, then we may associate a pointed K-equivariant
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homotopy type IK(S). The Conley Index, as well as its equivariant refinement, are invariant
under continuous changes of the flow, if S is isolated in an appropriate sense.

For λ sufficiently large, Manolescu showed in [Man16] that Sλ, the set of all critical points of

X gC
λ , along with all trajectories of finite type between them contained in a certain sufficiently large

ball in W λ, is an isolated invariant set, and that the flow X gC
λ is G-equivariant. We then write

Iλ(Y, s, g) = IG(Sλ). To make this construction independent of λ, we desuspend by W (−λ, 0).
Then we can define a pointed stable homotopy type associated to a tuple (Y, s, g):

SWF (Y, s, g) = Σ−W (−λ,0)Iλ(Y, s, g). (77)

The desuspension in (77) is interpreted in E. That is,

SWF (Y, s, g) = (Iλ(Y, s, g), dimR W (−λ, 0)(R̃),dimH W (−λ, 0)(H)),

where W (−λ, 0) ∼= W (−λ, 0)(R̃) ⊕W (−λ, 0)(H), and W (−λ, 0)(R̃) is a direct sum of copies of
R̃. Similarly, W (−λ, 0)(H) is a direct sum of copies of H.

Manolescu showed in [Man16] that SWF (Y, s, g) is well defined, for λ sufficiently large.
Further, we must remove the dependence on the choice of metric g. We use n(Y, s, g), a rational
number which controls the spectral flow of the Dirac operator and may be expressed as a sum
of eta invariants; for its definition, see [Man03]. We have

SWF (Y, s) = Σ−(1/2)n(Y,s,g)HSWF (Y, s, g). (78)

Interpreted in E, if SWF (Y, s, g) = (X,m, n), then SWF (Y, s) = (X,m, n+ 1
2n(Y, s, g)).

In addition to the approximate flow above, we may also consider perturbations of the flow
as in [KM07].

For fixed k > 1, we call

C(Y, s) = L2
kΩ

1(Y, iR)⊕ L2
k(Y ;S)

the configuration space for the Seiberg–Witten equations, where L2
kΩ

1(Y, iR) is the space of
L2
k 1-forms. We write L for the Chern–Simons–Dirac functional and G for the L2

k+1-gauge
transformations. Let X be the L2-gradient of L on C(Y, s). A map

q : C(Y, s)→ T0, (79)

where Tj denotes the L2
j completion of the tangent bundle to C(Y, s), is called a perturbation;

we will only deal with very tame perturbations, in the sense of [LM18]. Write

Xq = X + q : C(Y, s)→ T0.

Let W denote the global Coulomb slice in C(Y, s) and T gC
k the L2

k completion of the tangent
bundle to W . Lidman and Manolescu also consider a version of Xq, obtained by projecting
trajectories of Xq to W :

X gC
q : W → T gC

0 .

Lidman and Manolescu [LM18] prove that there is a bijective correspondence between finite-

energy trajectories of X gC
q and those of Xq, modulo the appropriate gauges, for q a very tame

perturbation.
We write X gC

q,λ for the finite-dimensional approximation of X gC
q in W λ (recalling that W λ are

finite-dimensional subspaces of W ). For very tame perturbations, we may define Iλ(Y, s, g, q) as
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above using X gC
q,λ in place of X gC

λ . Furthermore, from Iλ(Y, s, g, q) we may also define SWF (Y, s,
g, q) analogously to the unperturbed case. Proposition 6.1.6 of [LM18] shows that the spectrum
is independent of q. That is,

SWF (Y, s, g, q) = SWF (Y, s, g).

We also have the attractor-repeller sequence of [Man16]. For a generic perturbation q we may
arrange that the reducible critical point of Xq, call it Θ, is unique and nondegenerate and that
there are no irreducible critical points x with Lq(x) ∈ (0, ε) for some ε > 0, where Lq is the
perturbed Chern–Simons–Dirac functional, and where we have imposed that Lq(Θ) = 0. Let

T = T λ be the set of all critical points of X gC
q,λ and points on flows of finite type between them.

Then, for all ω > 0, we have the following isolated invariant sets:
• T irr

>ω, the set of irreducible critical points x with Lq(x) > ω, together with all points on the
flows between critical points of this type;

• T6ω, the same, but with Lq(x) 6 ω, and allowing x to be reducible.
Then we have the coexact sequence

I(T6ω)→ I(T )→ I(T irr
>ω)→ ΣI(T6ω)→ · · · (80)

We record a theorem of [Man16].

Theorem 4.1 (Manolescu [Man16], [Man14]). Associated to a three-manifold with b1 = 0 and a
choice of spin structure (Y, s) there is an invariant SWF (Y, s), the Seiberg–Witten Floer spectrum
class, in E. A spin cobordism (W, t) from Y1 to Y2, with b2(W ) = 0, induces a map SWF (Y1,
t|Y1)→ SWF (Y2, t|Y2). The induced map is a homotopy-equivalence on the S1-fixed-point set.

Remark 4.2. The three-manifold Y in Theorem 4.1 may be disconnected.

Definition 4.3. For [(X,m, n)] ∈ E, we set

α((X,m, n)) =
a(X)

2
− m

2
− 2n, β((X,m, n)) =

b(X)

2
− m

2
− 2n,

γ((X,m, n)) =
c(X)

2
− m

2
− 2n.

(81)

The invariants α, β and γ do not depend on the choice of representative of the class [(X,m, n)].

The Manolescu invariants α(Y, s), β(Y, s), γ(Y, s) of a pair (Y, s) are then given by α(SWF
(Y, s)), β(SWF (Y, s)), and γ(SWF (Y, s)), respectively.

From Theorem 4.1, the local and chain local equivalence classes of SWF (Y, s), [SWF (Y, s)]l
and [SWF (Y, s)]cl, respectively, are homology cobordism invariants of the pair (Y, s). Since a
chain local equivalence induces a map of Borel homology which is an isomorphism in sufficiently
high degrees, it is straightforward to check that α(Y, s), β(Y, s), and γ(Y, s) depend only on the
chain local equivalence class [SWF (Y, s)]cl.

Fact 4.4. Let Y1, Y2 be rational homology three-spheres with spin structures t1, t2 and
(Xi,mi, ni) = SWF (Yi, ti) for i = 1, 2. Then

SWF (Y1#Y2, t1#t2) ≡l (X1 ∧X2,m1 +m2, n1 + n2).
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Proof. According to [Man16], the Seiberg–Witten Floer spectrum class of the disjoint union
Y1 q Y2 is given by

SWF (Y1 q Y2) ≡l (X1 ∧X2,m1 +m2, n1 + n2).

On the other hand Y1 q Y2 is homology cobordant to the connected sum Y1#Y2. Since the local
equivalence class is a homology cobordism invariant, we obtain the claim. 2

By Theorem 4.1 and Fact 4.4, we have a sequence of homomorphisms:

θH3
SWF−−−→ LE

C∗−→ CLE. (82)

4.2 Approximate trajectories
Fix q a very tame admissible perturbation, as in Definitions 4.9 and 4.19 of [LM18]. Here we will
record several results of Lidman and Manolescu [LM18] for use in § 5. First, choose a sequence
of real numbers λi, none an eigenvalue of `, as in [LM18, § 3.4]. The first result is a corollary of
Proposition 9.11 of [LM18].

Proposition 4.5 [LM18]. For R > 0 large and fixed, and for λ = λi sufficiently large, there
is a grading-preserving isomorphism between the set of irreducible critical points of the finite-
dimensional approximation X gC

q,λ/S
1 in (B(R)∩W λ)/S1 and the set of irreducible critical points

of Xq on C(Y, s)/G.

For x, y critical points of X gC
q,λ , let Mλ([x], [y]) denote the set of unparameterized trajectories

of X gC
q,λ/S

1 from [x] to [y] contained in the ball used to define Sλ. Similarly, we let M([x], [y]) be
the set of unparameterized trajectories between critical points of Xq on C(Y, s)/G.

Proposition 4.6 [LM18, Proposition 13.1]. For λ = λi sufficiently large, there is a correspon-
dence of degree 1 trajectories compatible with Proposition 4.5. That is, if [xλ], [yλ] are irreducible

critical points, with gr(xλ) = gr(yλ)+1, of X gC
q,λ corresponding to irreducible critical points [x], [y]

of Xq, respectively, then there is an identification

M([x], [y]) = Mλ([xλ], [yλ]).

The condition gr(x) = gr(y) + 1 allows the application of an inverse function theorem.
However, without the grading assumption, a compactness result still holds. That is, [LM18,
Proposition 12.17] implies the following.

Proposition 4.7 [LM18]. For λ = λi sufficiently large, let [x] and [y] be critical points of Xq

corresponding to critical points [xλ], [yλ] of X gC
q,λ . If M([x], [y]) = ∅, then Mλ([xλ], [yλ]) = ∅.

We will also need the following Theorem from [LM18].

Theorem 4.8 [LM18]. Let (Y, s) be a rational homology three-sphere with spinc structure. Then

~HM(Y, s) = SWFH S1
(Y, s),

as absolutely graded F[U ]-modules, where ~HM(Y, s) denotes the ‘to’ version of monopole Floer
homology defined in [KM07].
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4.3 Connected Seiberg–Witten Floer homology

Definition 4.9. Let (Y, s) be a rational homology three-sphere with spin structure, and

[SWF (Y, s)] = (Z,m, n) ∈ CE,

with Z suspensionlike. The connected Seiberg–Witten Floer homology of (Y, s), SWFH conn(Y, s),

is the quotient (HS1

∗ (Z)/(HS1

∗ (ZS
1
) + HS1

∗ (Ziness)))[m + 4n], where Ziness ⊂ Z is a maximal

inessential subcomplex. By Theorems 2.33 and 4.1, the isomorphism class of SWFH conn(Y, s) is

a homology cobordism invariant.

Remark 4.10. We could have instead considered the quotient (HS1

∗ (Z)/HS1

∗ (Ziness))[m + 4n],

which is isomorphic to SWFH conn(Y, s)⊕ T +
d where d is the Heegaard Floer correction term of

(Y, s). As defined above, SWFH conn(Y, s) has no infinite F[U ]-tower, because of the quotient by

HS1

∗ (ZS
1
). Further, let Zconn denote the connected complex (Definition 2.32) of Z. It is clear

from the construction that

SWFH conn(Y, s) = (HS1

∗ (Zconn)/HS1

∗ (ZS
1
))[m+ 4n].

Remark 4.11. Using Theorem 4.8 and ~HM(Y, s) ∼= HF +(Y, s), as is shown by [CGH11]

and [KLT10], we have that SWFH conn(Y, s) can be viewed as an F[U ]-summand of HFred(Y, s).

5. Floer spectra of Seifert fiber spaces

5.1 The Seiberg–Witten equations on Seifert spaces

In this section we record some results of [MOY97] to describe explicitly the monopole moduli

space on Seifert fiber spaces. First we recall some notation associated with Seifert fiber spaces.

The standard fibered torus corresponding to a pair of integers (a, b), for a > 0, is the mapping

torus of the automorphism of the disk D2 given by rotation by 2πb/a. Let D2
a be the standard

disk, given an orbifold structure by letting Z/a act by rotation by 2π/a; the origin is then an

orbifold point, with multiplicity a. The standard fibered torus is naturally a circle bundle over

the orbifold D2
a.

Let f : Y → P be a circle bundle over an orbifold P , and x ∈ P an orbifold point with

multiplicity a. If a neighborhood of the fiber over x is equivalent, as an orbifold circle bundle, to

the standard fibered torus corresponding to (a, b), we say that Y has local invariant b at x.

For ai ∈ Z>1, let S(a1, . . . , ak) denote the orbifold with underlying space S2 and k orbifold

points, with corresponding multiplicities a1, . . . , ak. Fix bi ∈ Z with gcd(ai, bi) = 1 for all i. We

let Σ(b, (b1, a1), . . . , (bk, ak)) denote the circle bundle over S(a1, . . . , ak) with first Chern class

b and local invariants bi. We define the degree of the Seifert space Σ(b, (b1, a1), . . . , (bk, ak))

by b +
∑

(bi/ai). Finally, we call a space Σ(b, (b1, a1), . . . , (bk, ak)) negative (positive) if

b +
∑

(bi/ai) is negative (positive). The spaces Σ(b, (b1, a1), . . . , (bk, ak)) of nonzero degree are

rational homology spheres. As orbifold circle bundles, the orientation reversal −Σ(b, (b1, a1), . . . ,

(bk, ak)) is isomorphic to Σ(−b, (−b1, a1), . . . , (−bk, ak)). We write Σ(a1, . . . , ak) for the unique

negative Seifert integral homology sphere fibering over S2(a1, . . . , ak).

Let Y be a negative Seifert rational homology three-sphere fibering over a base orbifold P with

underlying space S2. Equipping Y with the metric for which Y has the Seifert geometry, Mrowka,

Ozsváth and Yu [MOY97] show that the Seiberg–Witten moduli space M(Y ) is composed of

the following:
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• a finite set of points forming the reducible critical set, in bijection with Hom(H1(Y ), S1);
and

• for each (k + 1)-tuple of nonnegative integers e = (e, ε1, . . . , εk), such that 0 6 εi < ai and

e+
k∑
i=1

εi
ai
6

(
k

2
− 1

)
−

k∑
i=1

1

2ai
,

two components, labeled C+(e) and C−(e), in M(Y ).
Here we work with the configuration space W/S1, with W as in § 4. The critical sets lying

upstairs in W , which we denote by Ĉ±(e), come with an S1-action whose quotient is the moduli
space as identified in [MOY97]. Each component C+(e), C−(e) is a copy of Syme(|Σ|), where Σ
is the base orbifold and |Σ| its underlying manifold. Furthermore, C+(e) and C−(e) are related
by the action of j ∈ Pin(2). That is, the restriction of j to C+(e) acts as a diffeomorphism
C+(e)→ C−(e), and vice versa.

Fact 5.1. All reducible critical points x have L(x) = 0, where L is the Chern–Simons–Dirac
functional. All irreducible critical points have L > 0.

Mrowka, Ozsváth and Yu do not use the Seiberg–Witten equations as in [KM07]. Instead,
they replace the Dirac operator D̂ associated to the Seifert metric in the equations with D =
D̂− 1

2ξ for ξ some constant depending on the Seifert fibration. It is then clear that the Seiberg–
Witten equations they consider differ from the usual equations by a very tame perturbation q0

in the sense of [KM07]. Abusing notation somewhat, we call the Seiberg–Witten equations as
in [MOY97] simply the Seiberg–Witten equations, or the unperturbed Seiberg–Witten equations
subsequently.

We will further need the following.

Fact 5.2. There are no trajectories between C+(e) and C−(f) for any e, f. The Seiberg–Witten
equations on Y is Morse-Bott, and if Y has four or fewer singular fibers, the critical points are
isolated.

Combining Propositions 4.5, 4.6, and Fact 5.2, we have the following result.

Lemma 5.3. Let Y = Σ(b, (b1, a1), . . . , (bk, ak)) be a negative Seifert rational homology three-
sphere. Then SWF (Y, s) has a representative (X,m, n) ∈ E with X a j-split space.

Proof. Throughout the proof, we work with the moduli spaces in W , so that the critical sets
admit an S1-action.

We first treat the case where Y has at most four singular fibers. Then the S1 orbits of
irreducibles are isolated, by Fact 5.2, and we make a perturbation away from the critical points
to obtain that the flow lines are cut out transversely (in the case of five or more singular fibers
to follow, we will explain how such a perturbation may be chosen, preserving the first property
of Fact 5.2).

We recall the attractor–repeller sequence (80), which shows that SWF (Y, s) is obtained by
successively attaching stable cells G×DindC+(e), corresponding to the irreducible critical point
C+(e), to the union of cells of lower L, and where the initial cell is that corresponding to the
reducible (which has lowest L). Let S be set of all critical points and finite-energy trajectories
between them, let Sirr be the subset consisting of irreducible critical points and finite-energy
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trajectories between them, and let Sred be the set of reducible critical points and trajectories
between them. In particular, I(S) is obtained by attaching I(Sirr) to I(Sred). To show that I(S)
has a j-split representative, we need only show that I(Sirr) is homotopy equivalent to a wedge
of free S1-CW complexes X+ ∨X−, so that j interchanges X+ and X−. For this, we may choose
an equivariant isolating neighborhood N of Sirr so that N is a disjoint union N+ q N− with j
interchanging N+ and N−. Then I(Sirr) = N+/L+ ∨N−/jL+ for (N+, L+) some choice of index
pair. Then I(S) is homotopy-equivalent to a CW complex obtained by attaching X+ ∨ X− to
I(S)S

1
, and in particular SWF (Y, s) = (X,m, n) with X a j-split space.

In the case of five or more singular fibers, we perturb the Seiberg–Witten equations to
be nondegenerate. We can arrange that for a small perturbation q the analogue of Fact 5.2
continues to hold. That is, there exists some very tame admissible perturbation q such that the
set of irreducible critical points of Xq may be partitioned into two sets C+ and C−, interchanged
by the action of j, so that for all x ∈ C+, y ∈ C−, we have M(x, y) = ∅.

We show the existence of such a j-equivariant perturbation q. Choose a sequence of small
j-equivariant very tame admissible perturbations qi, converging to 0 in C∞, so that for each
i the perturbed Seiberg–Witten equations have nondegenerate irreducible critical points. Lin
establishes the existence of such perturbations in [Lin18]. Choose disjoint neighbourhoods U±(e)
of C±(e) such that for i sufficiently large all irreducible critical points of Lqi lie in⋃

e

(U+(e) ∪ U−(e)).

Let C+
i denote the set of irreducible critical points of Lqi in

⋃
e U+(e) and let C−i denote the set

of irreducible critical points of Lqi in
⋃

e U−(e). Let C± denote the union
⋃

eC
±(e).

Say, to obtain a contradiction, that for all i there exists some pair of critical points xi ∈ C+
i ,

yi ∈ C−i , such that M(xi, yi) is nonempty. The sequences xi, yi have limit points x ∈ C+(e) and
y ∈ C−(f), by Proposition 11.6.4 of [KM07]. Theorem 16.1.3 of [KM07] shows that the moduli
space of unparameterized broken trajectories (for a fixed perturbation) is compact. The proof of
Theorem 16.1.3 can be applied to a sequence of trajectories γ̆i for perturbations qi with qi→ 0.
That is, the sequence γ̆i has a limit point a broken trajectory (τ̆1, . . . , τ̆n) from x to y, for the
perturbation q = 0. Since x ∈ C+, y ∈ C−, there exists a trajectory τ̆k from C+ to C−, or there
exists a trajectory τ̆k from C+ to the reducible and a trajectory τ̆l from the reducible to C−. The
first case contradicts Fact 5.2. The second case contradicts the minimality of L on the reducible
(Fact 5.1). Thus, for some perturbation q as above we have the desired partition.

The lemma then follows as in the case of three or four singular fibers. 2

By Lemma 5.3, Theorem 3.16 applies to SWF (Y, s) for Y a Seifert rational homology sphere,
and we obtain the following corollary, from which Theorems 1.1 and 1.4 of the Introduction
follow.

Corollary 5.4. Let Y = Σ(b, (β1, α1), . . . , (βk, αk)) be a negative Seifert rational homology
sphere with a choice of spin structure s. Then

HF +(Y, s) = T +
s+d1+2n1−1 ⊕

N⊕
i=1

T +
s+di

(
di+1 + 2ni+1 − di

2

)
⊕

N⊕
i=1

T +
s+di

(ni)⊕ J⊕2[−s], (83)

for some constants s, di, ni, N and some F[U ]-module J , all determined by (Y, s). Furthermore,
2ni + di > 2ni+1 + di+1 for all i, 2nN + dN > 3, dN 6 1, and dN+1 = 1, nN+1 = 0. Let
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J0 = {(ak, bk)}k be the collection of pairs consisting of all (di, b(ni + 1)/2c) for di ≡ 1 mod 4 and
all (di + 2, bni/2c) for di ≡ 3 mod 4, counting multiplicity. Let (a, b) � (c, d) if a + 4b > c + 4d
and a > c, and let J be the subset of J0 consisting of pairs maximal under � (not counted with
multiplicity). If (a, b) ∈ J , set m(a, b) + 1 to be the multiplicity of (a, b) in J0. If (a, b) 6∈ J , set
m(a, b) to be the multiplicity of (a, b) in J0. Let |J | = N0 and order the elements of J so that
J = {(ai, bi)}i, with ai + 4bi > ai+1 + 4bi+1. Then

SWFHG
∗ (Y, s) =

(
V+

4b(d1+2n1+1)/4c ⊕ V
+
1 ⊕ V

+
2

⊕
N0⊕
i=1

V+
ai

(
ai+1 + 4bi+1 − ai

4

)
⊕

⊕
(a,b)∈J0

V+
a (b)⊕m(a,b) ⊕ res

F[U ]
F[v] J

⊕
⊕

{i|di≡1 mod 4}

V+
di+2

(⌊
ni
2

⌋)
⊕

⊕
{i|di≡3 mod 4}

V+
di

(⌊
ni + 1

2

⌋))
[−s]. (84)

The q-action is given by the isomorphism V+
2 [−s] → V+

1 [−s] and the map V+
1 [−s] →

V+
4b(d1+2n1+1)/4c[−s] which is an F-vector space isomorphism in all degrees (in V+

1 [−s]) greater

than or equal to 4b(d1 + 2n1 + 1)/4c+ s+ 1, and vanishes on elements of V+
1 [−s] of degree less

than 4b(d1 + 2n1 + 1)/4c+ s+ 1. We interpret aN0+1 = 1, bN0+1 = 0.
The action of q annihilates

⊕N0
i=1V+

ai((ai+1 + 4bi+1 − ai)/4)[−s] and (
⊕

(a,b)∈J0V
+
a (b)⊕m(a,b)⊕

res
F[U ]
F[v] J)[−s].
To finish specifying the q-action, let xi be a generator of V+

di+2(bni/2c)[−s] for i such that

di ≡ 1 mod 4 (respectively, let xi be a generator of V+
di

(b(ni + 1)/2c)[−s] if di ≡ 3 mod 4). Then

qxi is the unique nonzero element of (V+
4b(d1+2n1+1)/4c ⊕ V

+
1 ⊕ V

+
2 )[−s] in grading deg xi − 1, for

all i.

Theorem 1.4 follows by settingN = 1 and d1 = 1; these conditions imply that d2+2n2−d1 = 0,
and so the term

⊕N
i=1 T

+
s+di

((di+1 + 2ni+1 − di)/2) in (83) is the zero module in this case.
The constant s is the grading of the reducible critical point, where the metric on Y is that

associated to the Seifert geometry on Y .

Proof. Let (X ′, p, h/4) be a j-split representative for SWF (Y, s) at level m, and let s = m−p−h.
We may choose such a representative for SWF (Y, s) by Lemma 5.3. Then, using Lemma 3.11,
we have

SWFH S1

∗ (Y, s) = H̃S1

∗ (X ′)[−p− h]

=

( N⊕
i=1

T +
di

(
di+1 + 2ni+1 − di

2

)
⊕

N⊕
i=1

T +
di

(ni)⊕ J⊕2
2 ⊕ T +

d1+2n1−1

)
[−s].

Applying the equivalence of ~HM and SWFH S1
of [LM18], and the equivalence of ~HM and HF +

of [CGH11] and [KLT10], we obtain the expression (83). Then we apply Theorem 3.16 to obtain
the calculation of SWFHG

∗ of the corollary. 2

Further, using the results of § 3.2, we prove the results of the Introduction on homology
cobordisms of Seifert spaces. Corollaries 1.6 and 1.7 of the Introduction follow from
Proposition 5.5 below.
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Proposition 5.5. Let Y = Σ(b, (b1, a1), . . . , (bk, ak)) be a negative Seifert rational homology
three-sphere with a choice of spin structure s, and

HF +(Y, s) = T +
s+d1+2n1−1 ⊕

N⊕
i=1

T +
s+di

(
di+1 + 2ni+1 − di

2

)
⊕

N⊕
i=1

T +
s+di

(ni)⊕ J⊕2[−s], (85)

where di+1 > di and 2ni + di > 2ni+1 + di+1, as well as 2nN + dN > 3 and dN 6 1. Then the
chain local equivalence type [SWF (Y, s)]cl ∈ CLE is the equivalence class of

C(s, {di}i, {ni}i) =

((
〈fred〉 ⊕̃

(⊕
i

Sdi(ni)
))

, 0,−s/4
)
∈ CLE. (86)

Further, the connected Seiberg–Witten Floer homology of (Y, s) is

SWFH conn(Y, s) =
N⊕
i=1

T +
s+di

(
di+1 + 2ni+1 − di

2

)
⊕

N⊕
i=1

T +
s+di

(ni). (87)

Moreover, if s 6= t, or {di}i 6= {ei}i, or {ni}i 6= {mi}i, the complexes C(s, {di}i, {ni}i) and
C(t, {ei}i, {mi}i) are not locally equivalent.

Proof. Let SWF (Y, s) = (X, p, h/4) ∈ E with X a j-split space of type SWF. By the construction
of SWF (Y, s), XS1 ' (R̃p)+. By Lemma 3.2, [(X, p, h/4)] ∈ CE admits a representative (Z, p′,
h′/4) with Z a j-split chain complex, for some p′, h′. Since [(X, p, h/4)] ∈ CE and (Z, p′, h′/4)
must have chain homotopy equivalent fixed-point sets, we have

Σ−R̃
p
((R̃p)+) = [(XS1

, p, 0)] = (ZS
1
, p′, 0) ∈ CE.

However, by the requirement that Z is j-split, ZS
1 ' 〈fred〉, where jfred = sfred = ∂(fred) = 0.

Thus, p′ = 0. Furthermore, by the proof of Corollary 5.4, −p′ − h′ = −h′ = s. Proposition 3.21
applied to (Z, 0,−s/4) yields (86) from (68) and (87) from (69). 2

5.2 Spaces of projective type
Let Y = Σ(b, (b1, a1), . . . , (bk, ak)) be a negative Seifert rational homology three-sphere. Consider
the case that HF +(Y, s) is given by

HF +(Y, s) = T +
2δ ⊕ T

+
d (n)⊕ J⊕2, (88)

for some F[U ]-module J , where possibly n = 0. In particular, by Corollary 5.4, this implies
d+ 2n− 1 = 2δ. Let (Z, 0,−s/4) = SWF (Y, s) ∈ CE. Then by Proposition 3.18, we may write

Z = (〈fred〉 ⊕̃ S1(n))⊕ S(J) (89)

as a direct sum of CCW
∗ (S1)-chain complexes, with ∂(x1) = fred, ∂(x2i+1) = s(1 + j2)x2i−1 for

i = 1, . . . , n − 1. Here d = s + 1, by Corollary 5.4. The complex Z is evidently chain locally
equivalent to 〈fred〉 ⊕̃ S1(n). For X a G-space, let Σ̃X denote the unreduced suspension of X.
The complex (89) with J = 0, for δ > 0, may be realized as the G-CW complex associated to

(Σ̃(S2n−1 q S2n−1), 0,−s/4),

where S1 acts by complex multiplication on each of the two factors, and j interchanges the
factors. Then

[SWF (Y, s)]cl ≡ [(Σ̃(S2n−1 q S2n−1), 0,−s/4)]cl. (90)
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Figure 11. Three graded roots. The roots (a) and (b) are of projective type, while (c) is not.

We call a negative Seifert rational homology sphere with spin structure (Y, s) of projective type

if (90) holds or if the chain local equivalence class of SWF (Y, s) is [〈fred〉]cl. Indeed, we have

established that (Y, s) is of projective type if and only if HF +(Y, s) takes the form (88) (where

perhaps n = 0). The term of projective type refers to the fact

(S2n−1 q S2n−1)/G ' CPn−1.

We can rephrase the projective type condition (88) in terms of the graded roots of [Ném05].

A graded root (Γ, χ) is an infinite tree Γ with an action of F[U ], together with a grading function

χ : Γ → Z. Associated to any positive Seifert rational homology sphere with spin structure

there is a graded root, which, additionally, has an involution ι : Γ → Γ that preserves the

grading.

We have the following characterization of spaces of projective type in terms of graded roots

as a consequence of Corollary 5.4.

Fact 5.6. Let Y = Σ(b, (b1, a1), . . . , (bk, ak)) be a negative Seifert rational homology sphere with

spin structure s. Let (ΓY , χ) be the graded root associated to (−Y, s), and let ι be the associated

involution of ΓY . Let v ∈ ΓY be the vertex of minimal grading which is invariant under ι.

The space (Y, s) is of projective type if and only if there exists a vertex w, and a path from

v to w in ΓY which is grading-decreasing at each step, with χ(w) = minx∈ΓY
χ(x). Moreover,

δ(Y, s)− β(Y, s) = χ(v)− χ(w).

For instance, we refer to Figure 11. We call a graded root of projective type if its homology

is of the form (88), so that a Seifert integral homology sphere is of projective type if and only if

its graded root is.

More generally, the sets {di} and {ni} may be read from the graded root, in terms of the

minimal grading elements w that are leaves of vertices v that are invariant under ι.

For spaces Y of projective type, the homology cobordism invariants (di, ni) are determined

by d(Y ), µ̄(Y ). The nice topological description of the Seiberg–Witten Floer spectrum of spaces

of projective type simplifies calculations.

The spaces Σ(p, q, pqn + 1) and Σ(p, q, pqn − 1) are of projective type for all p, q, n, as

shown by Némethi [Ném07] and Tweedy [Twe13], respectively, building on work of Borodzik and

Némethi [BN13].

However, not all Seifert fiber spaces are of projective type. The Brieskorn sphere Σ(5, 8, 13)

is a Seifert space not of projective type, for instance,as one may confirm using graded roots.
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Indeed, SWFH conn(Σ(5, 8, 13)) = T +
1 (2)⊕ T +

1 (1). By Corollary 1.6, any space not of projective

type is not homology cobordant to a space of projective type. In particular, Σ(5, 8, 13) is not

homology cobordant to any Σ(p, q, pqn± 1).

5.3 Calculation of beta

By the construction of SWF (Y, s), the grading of the reducible element is −2n(Y, s, g). We also

saw that the constant s (depending on (Y, s)) in Corollary 5.4 is the grading of the reducible

(with respect to the Seifert metric). Also in Corollary 5.4, we saw s/2 = β(Y, s) for Seifert rational

homology spheres. We then obtain the following result.

Corollary 5.7. Let Y = Σ(b, (b1, a1), . . . , (bk, ak)) be a negative Seifert rational homology

sphere and s a spin structure on Y . Then β(Y, s) = −n(Y, s, g), where g is a metric for which Y

has the Seifert geometry.

Ruberman and Saveliev [RS11] show n(Y, g) = µ̄(Y ) for Seifert integral homology spheres

for the Seifert metric, from which we establish Theorem 1.3.

We have established that µ̄ restricted to Seifert integral homology three-spheres extends to

a homology cobordism invariant, but not necessarily that µ̄ extends to a homology cobordism

invariant. In [Man13] it is shown that β is not additive; on the other hand, µ̄ is additive. Similarly,

β does not agree with the Saveliev ν invariant of [Sav98, Sav99], although the two agree on Seifert

fiber spaces.

6. Applications and examples

First, we see that Corollary 1.2 follows from Corollary 5.4 and Theorem 1.3. Indeed, the negative

fibration case follows immediately, and the positive fibration statement follows by using the

properties of α, β, γ, µ̄, and d under orientation reversal.

We also obtain the following result.

Theorem 6.1. Let Y be a Seifert integral homology sphere. If µ̄(Y ) 6= −d(Y )/2, then Y is not

homology cobordant to any Seifert integral homology sphere with fibration of sign opposite that

of Y .

Proof. If Y is a negative Seifert fibration, and µ̄(Y ) 6= −d(Y )/2, then α(Y ) 6= β(Y ), but for all

positive fibrations α = β. One performs a similar check for positive fibrations. 2

This statement is expressed only in terms of µ̄ and d, but the proof comes from the properties

of α, β, γ. As a particular example, we have Σ(2, 3, 12k − 5) and Σ(2, 3, 12k − 1), for all k > 1,

have α 6= β and so are not homology cobordant to any positive Seifert fibration.

We remark that Némethi’s algorithm [Ném05] for Heegaard Floer homology of Seifert fiber

spaces makes SWFHG
∗ of Seifert spaces computable. Using Tweedy’s computations in [Twe13],

we provide calculations of SWFHG
∗ for the following infinite families as an example. In Tables 1

and 2, there are nontrivial q-actions between infinite towers. The only other nontrivial q-actions

are for Σ(2, 7, 28k−1) and Σ(2, 7, 28k+15), where q sends each summand of V+
3 (1)⊕k (respectively

V+
−1(1)⊕k+1) to V+

2 (respectively V+
−2).
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Table 1. The Seiberg–Witten Floer homology for some families of Brieskorn spheres Y .

Y SWFHG
∗ (Y ) α β γ δ

Σ(2, 5, 20k + 11) V+
2 ⊕ V

+
−1 ⊕ V

+
0 ⊕ V

+
−1(1)⊕k ⊕

⊕2k+1
i=1 V

+
−1−2i(1) 1 −1 −1 0

Σ(2, 5, 20k + 1) V+
0 ⊕ V

+
1 ⊕ V

+
2 ⊕ V

+
−1(1)⊕k ⊕

⊕2k
i=1V

+
−1−2i(1) 0 0 0 0

Σ(2, 5, 20k − 11) V+
2 ⊕ V

+
3 ⊕ V

+
4 ⊕ V

+
1 (1)⊕k−1 ⊕

⊕2k−2
i=0 V

+
−1−2i(1) 1 1 1 1

Σ(2, 5, 20k − 1) V+
4 ⊕ V

+
1 ⊕ V

+
2 ⊕ V

+
1 (1)⊕k−1 ⊕

⊕2k−1
i=0 V

+
−1−2i(1) 2 0 0 1

Σ(2, 5, 20k − 13) V+
0 ⊕ V

+
1 ⊕ V

+
2 ⊕ V

+
−1(1)⊕k−1 ⊕

⊕2k−2
i=0 V

+
−1−2i(1) 0 0 0 0

Σ(2, 5, 20k − 3) V+
2 ⊕ V

+
−1 ⊕ V

+
0 ⊕ V

+
−1(1)⊕k−1 ⊕

⊕2k−1
i=0 V

+
−1−2i(1) 1 −1 −1 0

Σ(2, 5, 20k + 3) V+
2 ⊕ V

+
3 ⊕ V

+
4 ⊕ V

+
1 (1)⊕k ⊕

⊕2k−1
i=0 V

+
−1−2i(1) 1 1 1 1

Σ(2, 5, 20k + 13) V+
4 ⊕ V

+
1 ⊕ V

+
2 ⊕ V

+
1 (1)⊕k ⊕

⊕2k
i=0V

+
−1−2i(1) 2 0 0 1

Table 2. The Seiberg–Witten Floer homology for additional families of Brieskorn spheres.

Y SWFHG
∗ (Y ) α β γ δ

Σ(2, 7, 28k − 1) V+
4 ⊕ V

+
1 ⊕ V

+
2 ⊕ V

+
3 (1)⊕k ⊕ V+

1 (1)⊕k−1 ⊕
⊕2k−1

i=0 V
+
−1−2i(1)⊕

⊕2k−1
i=0 V

+
−1−4k−4i(1) 2 0 0 2

Σ(2, 7, 28k − 15) V+
4 ⊕ V

+
5 ⊕ V

+
6 ⊕ V

+
3 (1)⊕k−1 ⊕ V+

1 (1)⊕k−1 ⊕
⊕2k−2

i=0 V
+
−1−2i(1)⊕

⊕2k−2
i=0 V

+
1−4k−4i(1) 2 2 2 2

Σ(2, 7, 28k + 1) V+
0 ⊕ V

+
1 ⊕ V

+
2 ⊕ V

+
−3(1)⊕k ⊕ V+

−1(1)⊕k ⊕
⊕2k

i=1V
+
−1−2i(1)⊕

⊕2k
i=1V

+
−1−4k−4i(1) 0 0 0 0

Σ(2, 7, 28k + 15) V+
0 ⊕ V

+
−3 ⊕ V

+
−2 ⊕ V

+
−3(1)⊕k ⊕ V+

−1(1)⊕k+1 ⊕
⊕2k+1

i=1 V
+
−1−2i(1)⊕

⊕2k+1
i=1 V

+
−3−4k−4i(1) 0 −2 −2 0

Σ(2, 7, 14k − 3) V+
2 ⊕ V

+
3 ⊕ V

+
4 ⊕ V

+
1 (1)⊕k−1 ⊕

⊕k−1
i=0 V

+
1−2i(1)⊕

⊕k−1
i=0 V

+
1−2k−4i(1) 1 1 1 1

Σ(2, 7, 14k + 3) V+
2 ⊕ V

+
−1 ⊕ V

+
0 ⊕ V

+
−1(1)⊕k ⊕

⊕k
i=1V

+
−1−2i(1)⊕

⊕k
i=1V

+
−1−2k−4i(1) 1 −1 −1 0

Σ(2, 7, 14k − 5) V+
4 ⊕ V

+
1 ⊕ V

+
2 ⊕ V

+
1 (1)⊕k−2 ⊕

⊕k−1
i=0 V

+
1−2i(1)⊕

⊕k−1
i=0 V

+
1−2k−4i(1) 2 0 0 1

Σ(2, 7, 14k + 5) V+
0 ⊕ V

+
1 ⊕ V

+
2 ⊕ V

+
−1(1)⊕k+1 ⊕

⊕k
i=1V

+
−1−2i(1)⊕

⊕k
i=1V

+
−1−2k−4i(1) 0 0 0 0
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