
Ergod. Th. & Dynam. Sys. (2021), 41, 981–1024
doi:10.1017/etds.2019.115

c© The Author(s) 2020. Published by
Cambridge University Press

Statistical properties for compositions of
standard maps with increasing coefficient

ALEX BLUMENTHAL

University of Maryland, College Park, USA
(e-mail: alexb123@math.umd.edu)

(Received 10 May 2018 and accepted in revised form 22 November 2019)

Abstract. The Chirikov standard map is a prototypical example of a one-parameter family
of volume-preserving maps for which one anticipates chaotic behavior on a non-negligible
(positive-volume) subset of phase space for a large set of parameters. Rigorous analysis
is notoriously difficult and it remains an open question whether this chaotic region, the
stochastic sea, has positive Lebesgue measure for any parameter value. Here we study
a problem of intermediate difficulty: compositions of standard maps with increasing
coefficient. When the coefficients increase to infinity at a sufficiently fast polynomial
rate, we obtain a strong law, a central limit theorem, and quantitative mixing estimates
for Holder observables. The methods used are not specific to the standard map and apply
to a class of compositions of ‘prototypical’ two-dimensional maps with hyperbolicity on
‘most’ of phase space.
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1. Introduction and statement of results
Let f : M→ M be a smooth dynamical system. In many systems of interest, the dynamics
of f does not tend to a stable or periodic equilibrium, as evidenced, e.g., when observables
φ : M→ R of such systems fluctuate indefinitely, i.e., φ ◦ f n(x) fluctuates as n→∞ for a
‘large’ set of x ∈ M . In such cases, the asymptotic dynamics of the system is best described
not by equilibria, but by a ‘physical’ measure µ for f : an f -invariant probability measure
µ on M is called physical if for a positive Lebesgue measure set of x ∈ M (the ‘basin’ of
µ) and any observable φ : M→ R, we have that

lim
n→∞

1
n

n−1∑
i=0

φ ◦ f i (x)=
∫
φ dµ. (1)
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982 A. Blumenthal

Treating the sequence of observations {φ ◦ f i
}i≥0 as a sequence of random variables,

(1) above is a strong law of large numbers. Pursuing this interpretation, it is natural to ask
whether finer statistical properties hold, e.g.:

• central limit theorems (CLTs) pertaining to the convergence in distribution of
(1/
√

n)
∑n−1

i=0 (φ ◦ f i (X)− m), where X is distributed in M with some given law
ν and m ∈ R is a centering constant; and

• decay of correlations, i.e., estimates on the decay of |
∫
φ ◦ f n

· ψ dµ−∫
φ dµ

∫
ψ dµ| as n→∞ for some class of observables φ, ψ on M .

These properties are by now classical for maps f with uniform hyperbolicity, e.g.,
expanding, Anosov, or Axiom A maps (see, e.g., [23]). Outside the ‘uniform’ setting,
an extremely important tool in the exploration of statistical properties of deterministic
dynamical systems is non-uniformly hyperbolic theory, also known as Pesin theory [6, 33].
Assuming some control on the (typically non-uniform) rate of hyperbolicity, techniques
have been developed for use in conjunction with non-uniform hyperbolicity to probe finer
statistical properties of deterministic dynamical systems (e.g., the technique of countable
Markov extensions, also known as Young towers [34]).

1.1. Difficulties and challenges. Use of these tools requires establishing non-uniform
hyperbolicity, which is notoriously difficult to verify even for maps which ‘appear’
to be hyperbolic on most (but not all) of phase space. In the volume-preserving
category, the difficulties involved are exemplified by the Chirikov standard map family
{FL}L>0 of volume-preserving maps on the torus T2 [13]. For large L , the map FL

exhibits strong hyperbolicity (i.e., FL admits a continuous, invariant family of cones
with strong expansion) on a large but non-invariant subset of phase space. A key
difficulty is that typical orbits will enter a set where cone invariance is violated (e.g.,
the vicinity of an elliptic fixed point for FL ), and the previously expanding invariant
cone is potentially ‘twisted’ towards the strongly contracting direction, after which all the
growth accumulated may be destroyed. Thus, the estimation of Lyapunov exponents (i.e.,
verifying non-uniform hyperbolicity) amounts to a delicate cancellation problem between
‘growth phases’, when tangent directions are roughly parallel to expanding directions, and
‘contraction phases’, during which tangent directions experience contraction.

These challenges are real, as the following results illustrate. Duarte [20] showed that
for a residual set of large coefficients L , the set of elliptic periodic points for the standard
map FL is approximately L−1/3-dense in T2. On the other hand, Gorodetski [21] showed
that for a residual set of sufficiently large L , the set of hyperbolic points has full Hausdorff
dimension and is L−1/3-dense. In particular, taking L large does not alleviate the problem
of elliptic dynamics: for all such L , even quite large, chaotic behavior intermingles in a
convoluted way with elliptic-type behavior. It stands to reason, then, that distinguishing
one regime from the other should be extremely challenging. Indeed, it remains an open
question (the standard map conjecture) whether FL is non-uniformly hyperbolic on a
positive-volume subset for any value of L > 0. We remark, however, that it has recently
been proved [8] that the standard map FL is Cr close to non-uniformly hyperbolic maps
for a large subset of L .
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1.2. Results in this paper. In the interest of studying a problem of intermediate
difficulty between the classical uniformly hyperbolic settings and the presently intractable
two-dimensional non-uniformly hyperbolic setting exemplified by the standard map, we
propose to study compositions of standard maps with increasing coefficient. Cone twisting
does occur on a positive-volume subset of phase space at each time step and so we contend
with many of the same problems described above for systems away from the ‘uniform
setting’. Indeed, our hypotheses do not preclude the existence of elliptic fixed points
for our compositions. Important for our analysis, however, is the fact that increasing
the coefficient at each time step both increases the strength of expansion and decreases
the size of phase space committing ‘cone twisting’—a crucial feature of this model is
that a generic trajectory reaches these ‘bad’ regions at most finitely many times when the
increasing coefficients {Ln} are inverse summable (see §2.1).

Our main results pertain to the situation when the sequence of coefficients increases
sufficiently rapidly: we are able to establish a strong law of large numbers, a central limit
theorem, and decay of correlations (Theorems A, B, and C, respectively). Our methods are
quite flexible and only rely on the bulk geometry of hyperbolicity on successively larger-
volume subsets of phase space. As such, our results apply to a class of volume-preserving
maps which are qualitatively similar to the standard map family. For this reason, the
techniques of this paper are able to handle effectively ‘non-autonomous’ dynamics, i.e.,
dynamics whose behavior is allowed to change with time.

Along the way towards proving the main results, certain ‘finite-time’ decay of
correlations estimates are obtained for standard maps with fixed coefficient L , i.e.,
correlation estimates providing sharp bounds at all times n ≤ NL (in our results, NL grows
as a fractional power of L). This result (formulated as Theorem D) is of independent
interest: although it fails to be a true asymptotic result, these estimates demonstrate that
for large L , the standard map FL is strongly mixing on a relatively long time scale.

1.3. Related prior work. The study of non-autonomous dynamical systems is still
in its infancy and many open questions remain. That being said, the statistical
properties explored in this paper are closest to those on memory loss for non-autonomous
compositions of hyperbolic maps [4, 5, 30] (see also [3]), Sinai billiard systems with slowly
moving scatterers [11, 31, 32], and polynomial loss of memory for intermittent-type maps
of the interval with a neutral fixed point at the origin [1, 26]. We have benefited especially
from the techniques in [14], which studies statistical properties of sequential piecewise-
expanding compositions in one dimension.

Pertaining to the Chirikov standard map, there is a large literature on this and related
systems (e.g., Schroedinger cocycles), which we do not include here. See, e.g., the
citations in [10] for a small sampling of such results and some additional discussion.

Random dynamical systems can be thought of as a version of non-autonomous
dynamics with some stationarity properties; see, e.g., [2, 22]. Lyapunov exponents of
random perturbations of the standard map with large coupling coefficient were studied
in [10]. We also note [19], which established quenched (sample-wise) statistical properties
for a large class of stochastic differential equations in both the volume-preserving and
dissipative regimens.
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984 A. Blumenthal

The analysis in this paper bears some qualitative similarities with that used in [9],
which studies Lyapunov exponents and statistical properties of random perturbations of
dissipative two-dimensional maps with qualitatively similar features to the Henon map;
these results apply as well to the standard map. As it turns out, statistical properties of
the corresponding Markov chain can be deduced from finite-time mixing estimates for
the dynamics, very much in keeping with the spirit of the analysis in the present paper
(especially Theorem D).

Lastly, we mention that the techniques in this paper may be useful in future studies of
‘bouncing ball’ models of Fermi acceleration [15, 16, 18]. As it turns out, the static wall
approximation of bouncing ball models in a potential field gives rise to a Poincaré return
map bearing strong qualitative similarities to the standard map (see [15] for a detailed
derivation) and so it is conceivable that the analysis in this paper may shed insight on open
problems related to ‘escaping trajectories’ for such models.

1.4. Statement of results.

1.4.1. Definition of model. Let M0 ∈ N, K0, K1 > 0 be fixed constants. Let L0 > 0,
which should be thought of as sufficiently large, and let {Ln} be a non-decreasing
sequence, i.e.,

L0 ≤ L1 ≤ L2 ≤ · · · ≤ Ln ≤ · · · .

In our results, we will assume that Ln→∞ at a sufficiently fast polynomial rate in n.
For each n ≥ 1, let fn : T1

→ R be a C3 function for which:
(H1) ‖ f ′n‖C1 = ‖ f ′n‖C0 + ‖ f ′′n ‖C0 ≤ K0Ln ;
(H2) Cn := {x̂ ∈ T1

: f ′n(x̂)= 0} is finite, with cardinality ≤ M0; and
(H3) for any n ≥ 1, x ∈ T1, we have | f ′n(x)| ≥ Ln K−1

1 d(x, Cn).
We will consider the non-autonomous composition of the maps Fn : T2

→ T2 defined by
setting

Fn(x, y)=
(

fn(x)− y (mod 1)
x

)
.

Above, (mod 1) refers to the projection R→ T1 defined by x 7→ x − bxc†, having abused
notation somewhat and parametrized T1 by [0, 1). We will continue to use this convention
throughout the paper.

We note that conditions (H1)–(H3) are satisfied by the family fn(x) := Ln sin(2πx)+
2x , in which case Fn is (up to conjugation by a linear toral automorphism) the standard map
with coefficient Ln . These conditions are also satisfied for the family fn(x) := Lnψ(x)+
an , where {an} ⊂ [0, 1) is any subsequence and ψ : T1

→ R is a map satisfying some C3-
generic conditions—details are left to the reader. The hypotheses (H1)–(H3) are similar to
those for [10, Theorem 1].

For n ≥ m ≥ 1, we write Fn
m = Fn ◦ Fn−1 ◦ · · · ◦ Fm , and write Fn

= Fn
1 . We adopt

the conventions Fn−1
n = Id, F0

= Id.

† Here for x ∈ R we define the floor function bxc =max{n ∈ Z : n ≤ x}.

https://doi.org/10.1017/etds.2019.115 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.115


Statistical properties for compositions of standard maps 985

1.4.2. Results. Our first result is a strong law of large numbers, which can be thought
of as an ergodicity-type property for the non-autonomous compositions {Fn

}.

THEOREM A. Let α ∈ (0, 1]. Assume that L0 is sufficiently large, depending on the
system parameters K0, K1, M0 and on α. Let φ : T2

→ R be α-Holder continuous with∫
φ d LebT2 = 0.

(a) If N 2L−α/(3α+4)
N → 0, then (1/N )

∑N
i=0 φ ◦ F i

→ 0 in L2.
(b) If N 4+εL−α/(3α+4)

N → 0 for some arbitrary ε > 0, then (1/N )
∑N

i=0 φ ◦ F i
→ 0

Lebesgue almost everywhere.

Example 1.1. Fix α ∈ (0, 1], p > 0. Define Ln =max{L0, n p
} for some p > 1 and L0

sufficiently large. Then Theorem A(a) holds when p > α−1(6α + 8) and Theorem A(b)
holds when p ≥ α−1(12α + 16). The exponent of n is minimized when α = 1 (i.e., φ is
Lipschitz); here p ≥ 14 suffices for (a) and p ≥ 32 for (b).

Next is a central limit theorem for Holder observables.

THEOREM B. Let α ∈ (0, 1]. Let L0 be as in Theorem A and, additionally, assume that

lim
N→∞

N 8L−α/(3α+4)
N = 0.

Let φ be an α-Holder continuous function on T2 for which
∫
φ d LebT2 = 0. Let X be

a uniformly distributed T2-valued random variable. Then (1/σ
√

N )
∑N

i=0 φ ◦ F i (X)
converges in distribution to a standard Gaussian as N →∞ with

σ 2
=

∫
φ(x, y)2 dx dy + 2

∫
φ(x, z)φ(z, y) dx dy dz,

provided that σ > 0. Moreover, we have σ = 0 if and only if φ(x, y)= ψ(x)− ψ(y) for
some continuous ψ : T1

→ R.

These conditions are satisfied for Ln as in Example 1.2 when p > 8α−1(3α + 4). The
asymptotic variance σ appearing in Theorem B comes from an appropriate interpretation
of the ‘singular’ limit of the maps Fn as n→∞. The condition φ(x, y)= ψ(x)− ψ(y)
has the connotation of a coboundary condition for this singular limit. See the discussion
in §3.1 (in particular Remark 3.2 and Lemma 3.3) for more details. Theorem B is proved
in §5. In the setting of Example 1.2, Theorem B holds when p > 8(3α + 4)/α; the result
is optimal when α = 1, in which case p > 56 suffices.

Finally, we present a decay of correlations estimate for the compositions {Fn
}.

THEOREM C. Fix η ∈ (1/2, 1). Let L0 be sufficiently large in terms of the system
parameters and η. Assume that

∑
n L−(1/2)(1−η)n <∞. Then there is a constant C =

C(K0, K1, M0, η) for which the following holds.
Let α ∈ (0, 1] and let ϕ, ψ be α-Holder continuous functions on T2. Then∣∣∣∣∫ ψ ◦ Fn

· ϕ −

∫
ϕ

∫
ψ

∣∣∣∣≤ C‖ψ‖α‖ϕ‖α max
{

L1−2η
bn/2c,

( ∞∑
i=bn/8c

L−(1/2)(1−η)i

)α/(α+2)}
for all n ≥ 0.
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Above, all integrals
∫

are with respect to LebT2 and we have written

[ϕ]α := sup
p,q∈T2

|ϕ(p)− ϕ(q)|
dT2(p, q)α

and ‖ϕ‖α = ‖ϕ‖C0 + [ϕ]α

for α ∈ (0, 1] the Holder moduli and norms, respectively, and dT2 is the geodesic distance
on T2 endowed with the flat geometry of R2/Z2.

Example 1.2. Fix η ∈ (1/2, 1). Define Ln =max{L0, n p
} for some p > 4 and L0

sufficiently large. In particular,
∑

n L−(1/2)(1−η)n <∞ if and only if p > 2/(1− η). One
obtains that the max{· · · } term on the right-hand side is

≤ Const. ‖ψ‖α‖φ‖αnmax{p(1−2η),(α/(α+2))(1−(1/2)p(1−η))}.

The exponent of n is optimized at η = (3αp + 4p − 2α)/(5αp + 8p) at the value
(4− p)α/(5α + 8) (valid since here p > 2/(1− η) reduces to p > 4, which has been
assumed), leading to the estimate

≤ Const. ‖ψ‖α‖φ‖αn−(α(p−4)/(5α+8)).

The exponent of n is minimized when α = 1, in which case decay of correlations is
summable if p > 17.

1.4.3. Finite-time decay of correlations estimates for fixed-coefficient standard maps.
Our estimates in this paper can also be used to obtain the following finite-time decay of
correlations estimate for Holder observables.

THEOREM D. Let α ∈ (0, 1] and let L be sufficiently large in terms of α. Let φ, ψ be
α-Holder-continuous functions on T2. Then∣∣∣∣ ∫ φ ◦ Fn

L · ψ −

∫
φ

∫
ψ

∣∣∣∣≤ C‖φ‖α‖ψ‖α · nL−α/(3α+4)

for all n ≥ 2, where C = C(α) > 0 is a constant independent of L , ψ, φ.

For each fixed L > 0, Theorem D provides a non-trivial upper bound on correlations for
times n� Lα/(3α+4), and thus gives information on the mixing properties of the standard
map in the so-called anti-integrable limit. Like before, the result is strongest at α = 1.

1.4.4. Plan for the paper. We collect preliminaries and basic hyperbolicity results in
§2, with an emphasis on the geometry of iterates of curves roughly parallel to the strongly
expanding direction (called horizontal curves) for the dynamics.

In §3 we develop finite-time mixing estimates for the composition {Fn
}; this verifies

Theorem D and also lets us provide a statistical description of the ‘singular’ limit of the
maps Fn as n→∞. In §4 we deduce the strong law (Theorem A) and in §5 we prove the
central limit theorem (Theorem B).

The proof of Theorem C, carried out in §§6 and 7, is logically independent of §§3–5;
indeed, it should not be surprising that the ‘finite-time mixing’ estimates in these sections
do not yield the long-time asymptotic correlation estimate in Theorem C. The proof of the
latter requires a more careful study of the ‘shape’ of iterates of small, sufficiently nice sets
S ⊂ T2. This is carried out in §6 and the proof of Theorem C is completed in §7.
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1.4.5. Notation and conventions. We parametrize T1 as [0, 1) throughout the paper.
The torus T2 carries the flat geometry of R2/Z2 and we identify all tangent spaces with
the same copy of R2. We write dT1 , dT2 for the geodesic metrics on T1, T2 respectively.

We repeatedly use big-O notation: a quantity β ∈ R is said to be O(κ) for some κ > 0,
written β = O(κ), if there is a constant C > 0, depending only on the system parameters
K0, K1, M0, for which |α| ≤ Cκ . Similarly, the letter C is reserved for any positive
constant depending only on the parameters K0, K1, M0.

We write Leb or LebT2 for the Lebesgue measure on T2, although, unless otherwise
stated, any integral

∫
over T2 should be assumed to be with respect to Lebesgue. When

γ ⊂ T2 is a C2 curve, we write Lebγ for the (unnormalized) induced Lebesgue measure
on γ .

If p ∈ T2, we typically write p0 := p and pn := Fn−1 p0; in general, objects with a
subscript n should be thought of as belonging to the ‘domain’ of Fn . Given γ ⊂ T2, we
likewise write γ0 = γ and γn = Fn−1γ .

Lastly, the parameter L0 > 1 is assumed fixed and will be taken sufficiently large in a
finite number of places in the proofs to come. Whenever L0 is enlarged, it is done so in a
way that depends only on the system parameters K0, K1, M0, the Holder exponent α, and
the auxiliary parameter η introduced below in §2.1.1.

From this point forward, we will assume that {Ln}, { fn} are as in (H1)–(H3) and that
{Ln} is a non-decreasing sequence.

2. Predominant hyperbolicity
For all large n, the maps Fn are predominantly hyperbolic, which is to say that the
derivative maps d Fn exhibit strong expansion along roughly horizontal directions on an
increasingly large (but non-invariant) proportion of phase space. Our purpose in this
section is to make this idea precise and collect some preliminary results.

In §2.1 we essentially deal with hyperbolicity on the linear level: when Ln→∞

sufficiently fast, we show that the compositions {Fn
} possess non-zero (in fact, infinite)

Lyapunov exponents at Lebesgue-almost every point. On the other hand, the rate at which
this hyperbolicity is expressed is non-uniform across phase space and so, in analogy with
standard non-uniformly hyperbolic theory in the stationary setting, we develop in §2.1 the
notion of uniformity set to control this non-uniformity.

In §§2.2 and 2.3, we consider the nonlinear picture: the time evolution of curves
roughly parallel to the unstable (horizontal) direction. The basic idea is that sufficiently
long ‘horizontal curves’ proliferate rapidly through phase space: this is precisely the
mixing mechanism one anticipates when working with this model and is used repeatedly
throughout the paper. Standard hyperbolic theory preliminaries are given in §2.2, while in
§2.3 this mixing mechanism is more precisely laid out in the form of a mixing estimate for
Lebesgue measure supported on a sufficiently long horizontal curve.

2.1. Predominant hyperbolicity of the maps Fn . Let us begin by identifying subsets of
phase space where the maps Fn exhibit uniformly strong hyperbolicity. For L > 0 and
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n ≥ 1, define the critical strips

Sn,L = {(x, y) ∈ T2
: d(x, Cn)≤ K1L−1

n L}

and note that by (H3), for (x, y) /∈ Sn,L , we have | f ′n(x)| ≥ L . For each n, outside Sn,L , we
have that Fn is strongly expanding in the horizontal direction: to wit, for any L sufficiently
large (L ≥ 10 will do for our purposes) and any n ≥ 1, p /∈ Sn,L , the cone

Ch = {v = (vx , vy) ∈ R2
: |vy | ≤

1
10 |vx |}

is preserved by (d Fn)p and all vectors in the cone are expanded by a factor ≥ L/4.
In particular, observe that Leb(Sn,L)≈ L/Ln . Thus, for fixed L , the proportion of phase

space T2
\Sn,L on which Fn preserves and expands Ch increases as n increases. When

the sequence Ln increases sufficiently rapidly, this implies an infinite Lyapunov exponent
almost everywhere, as follows.

LEMMA 2.1. Assume that
∑
∞

n=1 L−1
n <∞. Then

lim
n→∞

1
n

log ‖d Fn
p‖ =∞ (2)

for Leb-almost every p ∈ T2.

Proof. For each L > 0, we have

∞∑
n=1

Leb(Fn−1)−1Sn,L =

∞∑
n=1

Leb Sn,L ≤ 2K1 M0L
∞∑

n=1

L−1
n <∞.

The Borel–Cantelli lemma thus applies to the sequence of sets {(Fn−1)−1Sn,L}n≥1 and so
the set SL = {p ∈ T2

: Fn−1 p ∈ Sn,L infinitely often} has zero Lebesgue measure. Taking
S =

⋃
∞

N=1 SN , it is now simple to check that (2) holds for all p ∈ T2
\S. �

Let us emphasize, however, that the limit (2) is highly non-uniform in x , due to the
fact that the critical strips Sn,L have positive mass for all n ≥ 1. We encode this non-
uniformity in a way analogous to that of uniformity sets (alternatively called Pesin sets) for
non-uniformly hyperbolic dynamics.

2.1.1. Construction of uniformity sets for the composition {Fn
}. For our purposes in

this paper, it is expedient to ‘fatten’ the critical strips Sn,L as follows. Let η ∈ (0, 1) and,
for n ≥ 1, define

Bn(η)= {(x, y) ∈ T2
: d(x, Cn)≤ 2K1L−1+η

n }.

For p = (x, y) /∈ Bn(η), we have | f ′n(x)| ≥ 2Lηn . In particular, for such p, we have that
(d Fn)p preserves the cone Ch and expands tangent vectors in Ch by a factor ≥ Lηn . The
parameter η dictates the proportion of expansion we recover in (Bn(η))

c and hence the
tradeoff: the larger η, the more expansion we demand away from the bad sets Bn(η), but
the larger the bad sets Bn(η) become. We note that η appears throughout the paper and is
often fixed in advance; as such, for simplicity we often write Bn = Bn(η).
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For p ∈ T2, define

τ(p) := 1+max{m ≥ 1 : Fm−1 p ∈ Bm}

= min{k ≥ 1 : Fn−1 p /∈ Bn for all n ≥ k};

in particular, for a given orbit {pn = Fn−1 p}, the derivative mapping (d Fn)pn is uniformly
expanding along the horizontal cone Ch for all n ≥ τ(p). In this way, the sets

0N = {τ(p)≤ N }

can be thought of as uniformity sets for the composition {Fn
}n≥1. Repeating the proof of

Lemma 2.1 yields the following.

LEMMA 2.2. Fix η ∈ (0, 1) and assume that
∑
∞

n=1 L−1+η
n <∞. Then τ <∞ almost

surely and
⋃

N 0N has full Lebesgue measure.

Indeed, we have the estimate

Leb{τ > N } ≤
∞∑

n=N

Leb(Fn−1)−1 Bn =

∞∑
n=N

Leb Bn = O
( ∞∑

n=N

L−1+η
n

)
.

2.2. Horizontal curves. Curves roughly parallel to unstable directions, sometimes
called u-curves in the literature, are an effective and well-used tool for describing the
mixing mechanism of hyperbolic dynamical systems: the elongation of such curves under
successive applications of hyperbolic dynamics leads to their proliferation through phase
space, resulting in mixing. These ideas are standard for (autonomous) smooth dynamical
systems exhibiting hyperbolicity; see, e.g., [17, 27, 29].

In the setting of this paper, horizontal curves play the role of u-curves. Although much
of the material in this section is standard for iterates of a single map, we note that the maps
Fn in our compositions become more singular as n increases. So, it is important to ensure
that the necessary estimates (e.g., distortion control) do not worsen with n. For this reason,
we re-prove below in §2.2 what are otherwise standard results in hyperbolic dynamics.

The point of departure is an identification of a class of curves ‘roughly parallel to
unstable (horizontal) directions’.

Definition 2.3. A horizontal curve is a connected C2 curve γ ⊂ T2 with the property
that γ = {(x, hγ (x)) : y ∈ Iγ } for some (open, proper) subarc Iγ ⊂ T1 and some Lipschitz
continuous function hγ : Iγ → T1 with ‖h′γ ‖C0 ≤ 1/10. Note that Iγ = (0, 1) is allowed.

The plan is as follows. In Lemma 2.4 below we describe the evolution of horizontal
curves under successive iterates of our non-autonomous compositions {Fn

m, m ≤ n} when
these curves are assumed to avoid the critical strips Bn for each n. Lemma 2.5 is a
distortion estimate between trajectories evolving on the same horizontal curve. Finally,
Lemma 2.7 considers the time evolution of sufficiently long horizontal curves which are
allowed to meet bad sets.

The following is a description of the geometry of successive images of horizontal curves
which do not meet the bad sets {Bn}.
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LEMMA 2.4. (Forward graph transform) Fix η ∈ (0, 1); then the following holds whenever
L0 is sufficiently large (depending on η). Let N ≥ 1 and let γ ⊂ T2 be a C2 horizontal
curve of the form γ = γN = graph gN = {(x, gN (x)) : x ∈ IN }, where IN ⊂ R and gN :

IN → R is a C2 function for which ‖g′N‖C0 ≤ 1/10 and ‖g′′N‖C0 ≤ 1.
Let n > N and assume that for all N ≤ k ≤ n − 1, we have that

Fk−1
N (γ ) ∩ Bk = ∅.

Then, for each N ≤ k ≤ n, we have that γk = Fk−1
N (γ ) is a horizontal curve of the form

graph gk = {(x, gk(x)) : x ∈ Ik} for an interval Ik ⊂ T1 and a C2 function gk : Ik→ T1

for which:
(a) we have the bounds

‖g′k‖C0 ≤ L−ηk−1 and ‖g′′k ‖C0 ≤ 2K0L−3η+1
k−1 ; and

(b) for any pi
N ∈ γ, i = 1, 2, writing Fk−1

N pi
N = pi

k , we have that

‖p1
k − p2

k‖ ≤ Lηk‖p1
k+1 − p2

k+1‖.

Proof. The proof is a standard graph transform argument, which we recall here. It suffices
to describe the induction step, that is, the procedure for obtaining gk+1 from gk for N ≤
k ≤ n − 1.

To start, define the ‘lifted’ map F̃k : T2
→ R× T1 by setting F̃k(x, y)= ( fk(x)− y, x)

(that is, without the ‘(mod 1)’ in the first coordinate). Projecting F̃k(x, gk(x)) to the first
coordinate results in a function f̃k : Ik→ R of the form f̃k(x)= fk(x)− gk(x).

Since γk ∩ Bk = ∅, we have | f ′k | ≥ 2Lηk on Ik and so | f̃ ′k | ≥ 2Lηk − 1/10> 0 (on taking
L0 > 1). In particular, f̃k : Ik→ R is invertible on its image Ĩk+1. Defining Ik+1 ⊂ T1

to be the projection of Ĩk+1 to T1, we define gk+1 : Ik+1→ T1 to be the (uniquely
determined) mapping for which gk+1( f̃k(x) (mod 1))= x for all x ∈ Ik . This completes
the description of the induction step.

The estimates in item (a) are now derived from the implicit derivatives

g′k(x)=
1

( f ′k−1 − g′k−1)(gk(x))
and g′′k (x)=−

( f ′′k−1 − g′′k−1)

( f ′k−1 − g′k−1)
3 (gk(x)).

The estimate in (b) follows from the bound |( f̃k)
′
| ≥ 2Lηk − 1/10≥ Lηk . All estimates

require taking L0 sufficiently large depending on η. �

Next we obtain distortion estimates along forward iterates of horizontal leaves in the
setting of Lemma 2.4.

LEMMA 2.5. Assume the setting of Lemma 2.4. Let pi
N ∈ γ, i = 1, 2, and write pi

n =

Fn−1
N pi

N . Then ∣∣∣∣log
‖(d Fn−1

N )p1
N
|T γ ‖

‖(d Fn−1
N )p2

N
|T γ ‖

∣∣∣∣= O(L1−2η
N ‖p1

n − p2
n‖).

Remark 2.6. The above bound is quite poor unless η ∈ (1/2, 1), which is why in
Theorem C, and indeed throughout the paper, we will work exclusively in the setting where
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η ∈ (1/2, 1). Of course, the lower the value of η, the stronger the decay of correlations
estimate in Theorem C. It is likely that lowering η is possible: one way to accommodate
the distortion estimate in Lemma 2.5 is to further subdivide images of the curve γ into
pieces of size� L1−2η

n .

Proof of Lemma 2.5. Write pi
k = Fk−1

N (pi
N )= (x

i
k, yi

k). Let γk = Fk−1
N (γ ) and gk : Ik→

T1, Ik ⊂ T1 be as in Lemma 2.4. Then

‖(d Fk)pi
k
|T γk‖ =

√√√√1+ (g′k+1(x
i
k+1))

2

1+ (g′k(x
i
k))

2
| f ′k(x

i
k)− g′k(x

i
k)|

and so

log
‖(d Fn−1

N )p1
N
|T γ ‖

‖(d Fn−1
N )p2

N
|T γ ‖

=
1
2

(
log

1+ (g′N (x
2
N ))

2

1+ (g′N (x
1
N ))

2
+ log

1+ (g′n(x
1
n))

2

1+ (g′n(x2
n))

2

)

+

n−1∑
k=N

log
f ′k(x

1
k )− g′k(x

1
k )

f ′k(x
2
k )− g′k(x

2
k )
. (3)

For the first two terms, observe that for β1, β2 ∈ [0,∞), we have the elementary bound
|log(1+ β1)− log(1+ β2)| ≤ |β1 − β2| and so for k = N , n we have∣∣∣∣log

1+ (g′k(x
1
k ))

2

1+ (g′k(x
2
k ))

2

∣∣∣∣≤ |(g′k(x1
k ))

2
− (g′k(x

2
k ))

2
| ≤ 2|g′k(x

1
k )− g′k(x

2
k )|

≤ 2 Lip(g′′k ) · |x
1
k − x2

k |.

Applying the expansion estimate along images of horizontal curves as in Lemma 2.4(a),

|x1
k − x2

k | ≤ L−ηk |x
1
k+1 − x2

k+1| ≤ · · · ≤ L−ηk · · · L
−η

n−1|x
1
n − x2

n | (4)

and the estimate Lip(g′′k )≤ 2K0L1−3η
k coming from Lemma 2.4, we obtain the following

upper bound for the first two terms in (3):

Lip(g′′N ) · |x
1
N − x2

N | + Lip(g′′n ) · |x
1
n − x2

n | ≤ 2K0L1−3η
N (1+ L−(n−N )η

N )|x1
n − x2

n |.

Thus, these terms are O(L1−3η
N ).

We now estimate the summation term in (3). With f̃k = fk − gk : Ik→ R as in the
proof of Lemma 2.4, we have that

|log f̃ ′k(x
1
k )− log f̃ ′k(x

2
k )| ≤

supζ∈Ik
| f̃ ′′k (ζ )|

infζ∈Ik | f̃ ′n(ζ )|
· |x1

k − x2
k | ≤ 2K0L1−η

k |x1
k − x2

k |.

Applying (4) and collecting,∣∣∣∣log
( f̃ n−1

N )′(x1
N )

( f̃ n−1
N )′(x2

N )

∣∣∣∣≤ 2K0

( n−1∑
k=N

L1−η
k

Lηk Lηk+1 · · · L
η

n−1

)
|x1

n − x2
n |

≤ 2K0L1−2η
N

( n−1∑
k=N

L−(n−1−k)η
N

)
|x1

n − x2
n |

≤ 3K0L1−2η
N ‖p1

n − p2
n‖

when L0 is taken suitably large. This completes the estimate. �
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The above results describe the dynamics of a horizontal curve γ which ‘avoids’ the
bad sets {Bn} for some amount of time. On the other hand, if a given horizontal curve is
allowed to meet the bad sets along its trajectory, then we lose control over the geometry
where these iterates meet bad sets. Below, we describe an algorithm for excising those
parts of a curve which fall into the bad set and describe the geometry of the parts of γ with
a ‘good’ trajectory.

We say that a horizontal curve γ is fully crossing if Iγ = (0, 1) (all notation here and
below is as in Definition 2.3).

LEMMA 2.7. Fix η ∈ (1/2, 1). Let γ be a horizontal curve. Then, for any m ≥ 1, k ≥ m,
there are a set Bk

m(γ )⊆ γ and a partition (possibly empty) 0̄k
m(γ ) of Fk

m(γ \Bk
m(γ )) into

fully crossing curves with the following properties.
(a) For any γ̄ ∈ 0̄k

m(γ ), we have ‖h′γ̄ ‖C0 ≤ L−ηk .
(b) We have the estimate†

Lebγ (Bk
m(γ ))= O

( k∑
i=m

L−1+η
i

)
.

(c) For any γ̄ ∈ 0̄k
m(γ ) and any p, p′ ∈ (Fk

m)
−1γ̄ , we have

‖(d Fk
m)p|T γ ‖

‖(d Fk
m)p′ |T γ ‖

= 1+ O(L1−2η
m ).

When k = m, we write 0̄m(γ )= 0̄
m
m (γ ), Bm(γ )= Bm

m (γ ) for short.
Observe that Lemma 2.7 is inherently limited in two ways: (i) it is a finite-time result:

for a given curve γ and fixed m ≥ 1, we have Bk
m(γ )= γ for all k sufficiently large; and

(ii) if γ is too short, then we may even have γ = Bm(γ ).

Proof of Lemma 2.7. Below, F̃m : T2
→ R× T1 is as defined in the proof of Lemma 2.4.

To start, we define 0̄m(γ ), Bm(γ ) as follows.
For each connected component γi , 1≤ i ≤ K , of γ \Bm , the image γ̃i = F̃m(γi ) is of

the form graph h̃i , where h̃i : Ĩi → T1 for an interval Ĩi ⊂ R of the form (ai − ri , bi + si ),
where ai , bi ∈ Z, ri , si ∈ [0, 1).

If ai = bi , i.e., F̃m(γi )⊂ [a, a + 1)× T1 for some a ∈ Z, then we set 0̄m(γ )= ∅ and
Bm(γ )= γ , checking that if this is indeed the case, then Lebγ (γ )= O(L−1+η

m ) follows.
When ai < bi , we define 0̄m(γ ) to be the collection of curves of the form graph

h̃i (· + l) (projected to T2) for l = ai , . . . , bi − 1. We set

Bm(γ )= (γ ∩ Bm) ∪

K⋃
i=1

(F̃m)
−1 graph(h̃i |(ai−ri ,ai )∪(bi ,bi+si )).

For each curve of the form γ̂ = (F̃m)
−1(graph h̃i |(ai−ri ,ai )), we have

Lebγ (γ̂ )= O(L−ηm )

† Recall that Lebγ is the unnormalized arc length along γ .
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since γi ∩ Bm = ∅ and similarly for curves of the form γ̂ = (F̃m)
−1(graph h̃i |(bi ,bi+si )).

Combining this with the bound Lebγ (γ ∩ Bm)= O(L−1+η
m ), we conclude that

Lebγ (Bm(γ ))= O(L−1+η
m ).

Lastly, item (c) holds for k = m by Lemma 2.5.
Let us now describe the induction procedure for obtaining 0̄l+1

m (γ ), Bl+1
m (γ ) l < k,

assuming that 0̄l
m(γ ) and Bl

m(γ ) have been defined and that item (c) holds for k = l. We
define

0̄l+1
m (γ ) :=

⋃
γ̄∈0̄l

m (γ )

0̄l+1(γ̄ ),

Bl+1
m (γ )= Bl

m(γ ) ∪ (F
l
m)
−1

⋃
γ̄∈0̄l

m (γ )

Bl+1(γ̄ ).

Repeating the above steps until step l = k, we have that 0̄k
m(γ ) is composed of fully

crossing horizontal curves γ̄ for which ‖h′γ̄ ‖C0 ≤ L−ηk . Item (c) similarly follows by the
distortion estimate in Lemma 2.5.

It remains to estimate the size of Bk
m(γ ). We have for each m ≤ l < k that

Lebγ (Bl+1
m (γ ))= Lebγ (Bl

m(γ ))+ Lebγ (F l
m)
−1

⋃
γ̄∈0̄l

m (γ )

Bl+1(γ̄ ).

For each γ̄ ∈ 0̄l
m(γ ), we have Lebγ̄ Bl+1(γ̄ )= O(L−1+η

l+1 ) and so

Lebγ (F l
m)
−1

⋃
γ̄∈0̄l

m (γ )

Bl+1(γ̄ )=
∑

γ̄∈0̄l
m (γ )

Lebγ̄ (F l
m)
−1(Bl+1(γ̄ ))

= (1+ O(L1−2η
m ))

∑
γ̄∈0̄l

m (γ )

Lebγ ((F l
m)
−1γ̄ )

·
Lebγ̄ (Bl+1(γ̄ ))

Lebγ̄ (γ̄ )

= O(L−1+η
l+1 ),

having applied the distortion estimate in item (c) with k = l. This completes the estimate.
�

2.3. Decay of correlations for curves. The proliferation of horizontal curves throughout
phase space is a mixing mechanism for our system. The estimates below justify this in the
following sense: the Lebesgue mass along a given fully crossing horizontal curve spreads
around throughout phase space in such a way as to approximate Lebesgue measure very
closely for Holder-continuous observables.

PROPOSITION 2.8. Let η ∈ (1/2, 1). Assume that L1 ≥ L̄0, where L̄0 =

L̄0(M0, K0, K1, η). Let γ be a fully crossing horizontal curve and let ψ : T2
→ R

be α-Holder continuous. For 1≤ m ≤ n, we have∣∣∣∣∫
γ

ψ ◦ Fn
md Lebγ − Len(γ ) ·

∫
ψ

∣∣∣∣≤ C‖ψ‖α

(
L−α(1−η)/(α+2)

n + L1−2η
m +

n−1∑
k=m

L−1+η
k

)
.
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Note that Proposition 2.8 does not require any conditions on the summability of the tail
of {Ln}.

Remark 2.9. As one can see in the following proof, Proposition 2.8 boils down to the case
m = n, i.e., that for fully crossing horizontal curves γ , the image curve Fm(γ ) is relatively
dense in phase space. Informally, observe that Lemma 2.7 implies that Fm(γ ) consists
(mostly, up to O(L−1+η

m ) error) of fully crossing branches γ̌i stacked on top of each other,
ordered so that F−1

m (γ̌i ) is situated to the left of F−1
m (γ̌i+1). Since the x-coordinates of

F−1
m (γ̌i ) are smaller than those of F−1

m (γ̌i+1), it follows from the form of our maps Fm that
γ̌i is situated below γ̌i+1. The vertical distance between γ̌i , γ̌i+1 is O(L−min{η,1−η}

m )=

O(L−(1−η)m ) since (i) the approximate length of the subarcs F−1
m (γ̌i ), F−1

m (γ̌i+1)⊂ γ is
O(L−ηm ) and (ii) the ‘gaps’ due to the critical set Bm are of width at most O(L−(1−η)m ).
Since the original curve γ is fully crossing, all x-coordinates are realized on γ and hence
all y-coordinates are realized by F(γ ). It follows from this argument that the image F(γ )
is approximately O(L−(1−η)m )-dense in all of T2.

Proof of Proposition 2.8. With ψ fixed and γ a fully crossing horizontal curve, let K ∈ N,
to be specified shortly, and `= K−1.

Let I1, . . . , IK denote the partition of [0, 1) into K intervals of length ` each. For
1≤ i, j ≤ K , let Ri, j = Ii × I j . Note that with ψi, j = inf{ψ(p) : p ∈ Ri, j }, we have∥∥∥∥ψ − ∑

1≤i, j≤K

ψi, jχRi, j

∥∥∥∥
L∞
= O(`α‖ψ‖α).

Thus,

(∗) :=

∫
γ

ψ ◦ Fn
md Lebγ = O(`α‖ψ‖α)+

∑
1≤i, j≤K

ψi, j

∫
γ

χRi, j ◦ Fn
m d Lebγ .

Form 0̄n−1
m (γ ), Bn−1

m (γ ) as in Lemma 2.7, so that for each (i, j)-summand, we have∫
γ

χRi, j ◦ Fn
m d Lebγ = O

( n−1∑
k=m

L−1+η
k

)
+

∑
γ̄∈0̄n−1

m (γ )

∫
γ̄

χRi, j ◦ Fn
d Lebγ̄

‖d Fn−1
m ‖ ◦ (Fn−1

m )−1
,

so that

(∗)= ‖ψ‖α · O
(
`α +

n−1∑
k=m

L−1+η
k

)
+

∑
1≤i, j≤K

ψi, j
∑

γ̄∈0̄n−1
m (γ )

∫
γ̄

d Lebγ̄
‖d Fn−1

m ‖ ◦ (Fn−1
m )−1

χRi, j ◦ Fn .

By the distortion estimate in Lemma 2.7(c), the (i, j, γ̄ )-summand equals

(1+ O(L1−2η
m )) · Lebγ ((Fn−1

m )−1γ̄ )

∫
γ̄

χRi, j ◦ Fn d Lebγ̄︸ ︷︷ ︸
(∗∗)

.
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To estimate (∗∗), observe that γ̄ ∩ F−1
n Ri, j = γ̄ | j , where for a set S ⊂ T2 we write

S|i = S ∩ (Ii × [0, 1)). Form now the collection 0̄n(γ̄ | j ) and the set Bn(γ̄ | j ). We obtain

(∗∗)=

∫
γ̄

χRi, j ◦ Fnd Lebγ̄ = O(Bn(γ̄ | j ))+
∑

γ̄ ′∈0̄n(γ̄ | j )

∫
γ̄ ′

d Lebγ̄ ′

‖d Fn|T γ̄ ‖ ◦ F−1
n
χRi, j

= O(L−1+η
n )+ (1+ O(L1−2η

n )) ·
∑

γ̄ ′∈0̄n(γ̄ | j )

Lebγ̄ ′(γ̄ ′|i ) · Lebγ̄ (F−1
n γ̄ ′)

by the distortion estimate in Lemma 2.7(c). Since ‖h′
γ̄ ′
‖C0 ≤ L−ηn for each γ̄ ′ ∈ 0̄n(γ̄ | j ),

we easily estimate Lebγ̄ ′(γ̄ ′|i )= (1+ O(L−ηn ))`, so that

(∗∗)= O(L−1+η
n )+ (1+ O(L1−2η

n ))(1+ O(L−ηn )) · ` · Lebγ̄ (γ̄ | j\Bn(γ̄ | j ))

= O(L−1+η
n )+ (1+ O(L1−2η

n )) · ` · Lebγ̄ (γ̄ | j\Bn(γ̄ | j )).

Now, Lebγ̄ (Bn(γ̄ | j ))= O(L−1+η
n ), so

Lebγ̄ (γ̄ | j\Bn(γ̄ | j ))= Lebγ̄ (γ̄ | j )+ O(L−1+η
n )= (1+ O(L−ηn−1))`+ O(L−1+η

n )

= (1+ O(L−ηn−1 + `
−1L−1+η

n ))`,

having used the estimate ‖h′γ̄ ‖C0 ≤ L−ηn−1. Consolidating our estimates,

(∗∗)= O(L−1+η
n )+ (1+ O(L1−2η

n )) · (1+ O(L−ηn−1 + `
−1L−1+η

n )) · `2

= (1+ O(L1−2η
n + L−ηn−1 + `

−2L−1+η
n ))`2.

This establishes the constraint `−2L−1+η
n � 1. Inserting the above estimate back into

the expression for (∗) and using this constraint gives

(∗)= ‖ψ‖α · O
(
`α +

n−1∑
k=m

L−1+η
k

)
+ (1+ O(L1−2η

m + L−ηn−1 + `
−2L−1+η

n )) Lebγ (γ \Bn−1
m (γ )) ·

∑
1≤i, j≤K

ψi, j`
2

= ‖ψ‖α · O
(
`α +

n−1∑
k=m

L−1+η
k

)

+ (1+ O(L1−2η
m + `−2L−1+η

n ))

(
Len(γ )+ O

( n−1∑
k=m

L−1+η
k

))
·

∫
ψ

= ‖ψ‖α · O
(
`α +

n−1∑
k=m

L−1+η
k

)
+ (1+ O(L1−2η

m + `−2L−1+η
n )) Len(γ ) ·

∫
ψ

= Len(γ ) ·
∫
ψ + ‖ψ‖α · O

(
`α +

n−1∑
k=m

L−1+η
k + L1−2η

m + `−2L−1+η
n

)
.

On setting K = `−1
= dL(1−η)/(α+2)

n e, the proof is complete. �
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3. Singular limit of {Fn}; finite-time mixing estimates
Although the compositions {Fn

} consist of maps becoming increasingly singular by
design, we argue in this section that the individual maps Fn do converge, in a sense to be
made precise, to some stationary process. This we formulate in a precise way in §3.1. As
we argue below, these considerations naturally follow from finite-time mixing properties
of the partial compositions Fn

m for m, n very large, m ≤ n; we state and prove these mixing
estimates in §3.2, verifying the convergence mode described in §3.1.

As they are of independent interest, these finite-time mixing estimates are re-formulated
for the standard maps FL , L > 0, as Theorem D.

3.1. Singular limit of {Fn}. As n increases, the maps Fn(x, y)= ( fn(x)−
y (mod 1), x) become more and more singular due to the fact that Ln→∞; in particular,
limn→∞ Fn does not exist in any meaningful topology on diffeomorphisms of T2. To
motivate a meaningful convergence notion, let us consider the action in the x-coordinate
given by the map fn : T1

→ T1.
Observe that for n extremely large, fn : T1

→ T1 is predominantly an expanding map
and so in one time iterate the value of fn(x), x ∈ T1 is increasingly sensitive to x ∈ T1.
Cast in a different light, fn is increasingly ‘randomizing’ on T1, to the point where x and
fn(x) are increasingly decorrelated as n→∞. One might expect, then, that in the limit,
fn(x) can be modeled by a random variable independent of x . A step towards a precise
formulation might be as follows: for some class of continuous observables φ, ψ : T1

→ R,
we should expect that

lim
n→∞

∫
T1
φ ◦ fn(x) · ψ(x)=

∫
φ

∫
ψ.

Morally speaking, we expect that when X is a random variable distributed in a ‘nice’ way
on T1, we have that the joint law of the pair (X, fn(X)) converges, in a weak sense, to the
joint law of a pair (X, Z) for which Z is independent of X .

Let us now return to the implications for the full maps Fn : T2
→ T2 and make things

more precise. The above discussion motivates modeling Fn for n large by a Markov
chain {Zn = (Xn, Yn)} defined as follows. Let β1, β2, . . . be independent and identically
distributed random variables uniformly distributed on T1. Given an initial condition
Z0 = (X0, Y0) ∈ T2, we iteratively define

Zn+1 = (Xn+1, Yn+1)= (βn+1, Xn)

for n ≥ 0. The form of this Markov chain agrees with the idea, argued above, that X, fn(X)
are ‘roughly independent’ for large n. Note that Zn+2 = (βn+2, βn+1) is independent of
Zn = (βn, βn−1) for all n ≥ 1.

Let P denote the transition operator associated with Zn , so that

P((x, y), A × B)= Leb(A) · δx (B)

for Borel A, B ⊂ T2, where δx denotes the Dirac mass at x . Write Pk for the
kth iterate of P . For φ : T2

→ R, k ≥ 1, we define Pkφ : T2
→ R by Pkφ(x, y)=∫

Pk((x, y), dx̄ d ȳ)φ(x̄, ȳ).
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PROPOSITION 3.1. Fix k ≥ 1 and let φ, ψ : T2
→ R be continuous. Assume that Lm→

∞ as m→∞. Then

lim
m→∞

∫
ψ ◦ Fm+k−1

m · φ =

∫
Pkψ · φ.

That is, the maps Fn converge to the Markov chain (Zn)n in the sense that the associated
Koopman operators converge to the transition operator P for Holder observables in a way
reminiscent of the weak operator topology. Proposition 3.1 is proved in §3.2 below.

Remark 3.2. The convergence described in Proposition 3.1 suggests that the asymptotic
variance of sums (1/

√
N )
∑N−1

i=0 φ ◦ F i as in the central limit theorem (Theorem B)
should coincide with the asymptotic variance σ̂ 2(φ) of (1/

√
N )
∑N−1

i=0 φ(Zi ), Z0 ∼

LebT2 . Developing the Green–Kubo formula for σ̂ 2(φ), we obtain

σ̂ 2(φ)=E(φ(Z0)
2)+ 2

∞∑
l=1

E(φ(Z0)φ(Zl))

=E(φ(Z0)
2)+ 2E(φ(Z0)φ(Z1))

=

∫
φ2
+ 2

∫
φ(x, y)φ(y, z) dx dy dz,

where we have used the fact that Zk, Z0 are independent when k ≥ 2. This is precisely the
form of σ 2 given in Theorem B. Here E refers to the expectation where Z0 ∼ LebT2 .

This perspective also explains the ‘coboundary condition’ φ(x, y)= ψ(x)− ψ(y) for
some bounded ψ : T1

→ R. If φ has this form, then the sums in the CLT for this
Markov chain telescope: φ(Z0)+ φ(Z1)+ · · · + φ(Zn−1)=−ψ(Y0)+ ψ(Xn) and so
the asymptotic variance is zero. Let us now check that this is also a necessary condition
for the asymptotic variance σ̂ 2(φ) to be zero.

LEMMA 3.3. Let φ : T2
→ R be a Holder continuous function with

∫
φ dxdy = 0. Then

σ̂ 2(φ)= 0 if and only if φ(x, y)= ψ(x)− ψ(y), where ψ : T1
→ R is some Holder

continuous function.

Proof. We have the identity

σ̂ 2(φ)=

∫ (
φ(x, y)+

∫
φ(z, x) dz −

∫
φ(w, y) dw

)2

dx dy,

the verification of which is a straightforward (albeit tedious) computation omitted for
brevity. Now, σ̂ 2(φ)= 0 implies that φ(x, y)= ψ(x)− ψ(y) pointwise (since φ is
continuous), where ψ(x) := −

∫
φ(z, x) dx . �

3.2. Finite-time mixing estimates. The limiting notion described in Proposition 3.1 has
at its core the statement that finite compositions Fn

m, m ≤ n are ‘mixing’ in the limit
m, n→∞. We will, in fact, prove something much stronger: a concrete estimate on
the correlation of (x, y) to Fn

m(x, y) for m, n large with respect to Cα observables.

PROPOSITION 3.4. Fix η ∈ (1/2, 1) and α ∈ (0, 1]. Let L0 be sufficiently large, depending
on α, η. Let m ≥ 1 and let φ1, φ2 : T2

→ R be α-Holder continuous functions. Then there
exists a constant C > 0, depending only on K0, K1, M0, such that the following hold.

https://doi.org/10.1017/etds.2019.115 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.115


998 A. Blumenthal

(a) We have ∣∣∣∣ ∫ φ1 ◦ Fm · φ2 −

∫
φ1(x, z)φ2(z, y) dx dy dz

∣∣∣∣
≤ C‖φ1‖α‖φ2‖αL−min{2η−1,α(1−η)/(2+α)}

m .

(b) Let n > m. Then∣∣∣∣ ∫ φ1 ◦ Fn
m · φ2 −

∫
φ1

∫
φ2

∣∣∣∣
≤ C‖φ1‖α‖φ2‖α

(
L−min{α(1−η)/(2+α),2η−1}

m +

n−1∑
k=m+1

L−1+η
k

)
.

Observe that Proposition 3.1 follows easily from Proposition 3.4. Moreover, as we leave
to the reader to check, the proof of Proposition 3.4 requires only that the sequence {Ln} be
non-decreasing and so applies equally well in the case when Lm = Lm+1 = · · · = Ln = L
for some fixed L > 0. Thus, Theorem D follows.

Items (a) and (b) are proved separately in §§3.2.1 and 3.2.2 below, respectively.

3.2.1. Proof of Proposition 3.4(a). Throughout §§3.2.1 and 3.2.2, we let Ii , Ri, j be as
in the proof of Proposition 2.8, where `= K−1 and K ∈ N will be specified at the end
(twice, once for part (a) and again for part (b)).

With α ∈ (0, 1] and φ1, φ2 fixed, for l = 1, 2, we define φl
i, j = infRi, j φl , so that∥∥∥∥φl −

∑
i, j

φl
i, jχRi, j

∥∥∥∥
L∞
= O(‖φ‖α`α).

To begin, we estimate∫
φ1 ◦ Fm · φ2 = O(‖φ1‖α‖φ2‖α`

α)+
∑

1≤i, j,i ′, j ′≤K

φ1
i, jφ

2
i ′, j ′

∫
χRi, j ◦ Fm · χRi ′, j ′

= O(‖φ1‖α‖φ2‖α`
α)+

∑
1≤i0,i1,i2≤K

φ1
i2i1
φ2

i1i0

∫
χRi1i0

χRi2i1
◦ Fm,

where in passing from the first line to the second we have used that Fm(Ri, j )⊂ [0, 1)× Ii .
Fixing i0, i1, i2, let y0 ∈ Ii0 and set H = Ii1 × {y0}. Applying Lemma 2.7,

(∗)=

∫
H
χRi2i1

◦ Fmd LebH = O(LebH (Bm(H)))

+

∑
γ̄∈0̄m (H)

∫
γ̄

d Lebγ̄
‖d Fm |T H‖ ◦ F−1

m
χRi2i1

d Lebγ̄

= O(L−1+η
m )+

∑
γ̄∈0̄m (H)

(1+ O(L1−2η
m )) LebH (F−1

m γ̄ ) ·

∫
γ̄

χIi2×[0,1)
d Lebγ̄ ,

having used again that Fm(Ii × [0, 1))⊂ [0, 1)× Ii to develop the integrand on the far
right. Estimating Lebγ̄ (γ̄ ∩ Ii2 × [0, 1))= (1+ O(L−ηm ))` (having used that ‖h′γ̄ ‖C0 =
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O(L−ηm )), we obtain

(∗)= O(L−1+η
m )+ (1+ O(L1−2η

m ))(1+ O(L−ηm )) LebH (H\Bm(H)) · `

= O(L−1+η
m )+ (1+ O(L1−2η

m ))(1+ O(L−ηm ))(`+ O(L−1+η
m )) · `

= `2(1+ O(L1−2η
m + `−2L−1+η

m ).

Integrating over y0 ∈ Ii0 , we conclude that

Leb(Ri0i1 ∩ F−1
m Ri2i1)= `

3(1+ O(`−2L−1+η
m + L1−2η

m )).

Summing now over 1≤ i0, i1, i2 ≤ K gives∫
φ1 ◦ Fm · φ2 = O(‖φ1‖α‖φ2‖α(`

α
+ `−2L−1+η

m + L1−2η
m ))+

∑
1≤i0,i1,i2≤K

φ1
i2i1
φ2

i1i0
`3

= O(‖φ1‖α‖φ2‖α(`
α
+ `−2L−1+η

m + L1−2η
m ))

+

∫
φ1(x, z)φ2(z, y) dx dy dz.

The proof is complete on setting K = `−1
= dL(1−η)/(2+α)m e.

3.2.2. Proof of Proposition 3.4(b). All notation is as in the beginning of §3.2.1. We
estimate

(∗∗)=

∫
φ1 ◦ Fn

m · φ2 = O(‖φ1‖α‖φ2‖α`
α)+

∑
1≤i, j≤K

φ2
i, j

∫
Ri, j

φ1 ◦ Fn
m .

Fix 1≤ i, j ≤ K . For y0 ∈ I j , write H = H(y0)= Ii × {y0}. Then∫
Ri, j

φ1 ◦ Fn
m =

∫
y∈I j

∫
H(y0)

φ1 ◦ Fn
md LebH(y0) dy0.

Developing the inner integral and applying Lemma 2.7,∫
H(y0)

φ2 ◦ Fn
md LebH(y0) = O(‖φ1‖0 LebH(y0) Bm(H(y0)))

+

∑
γ̄∈0̄m (γ (y0))

∫
γ̄

d Lebγ̄
‖d Fm |T H(y0)‖ ◦ F−1

m
φ1 ◦ Fn

m+1

= O(‖φ1‖C0 L−1+η
m )+ (1+ O(L1−2η

m ))

×

∑
γ̄∈0̄m (H(y0))

LebH(y0)(F
−1
m γ̄ )

∫
γ̄

φ1 ◦ Fn
m+1d Lebγ̄ .

The curves γ̄ cross the full horizontal extent of T2 and so fall under the purview of
Proposition 2.8. Applying the estimate there, we obtain∫

γ̄

φ1 ◦ Fn
m+1d Lebγ̄

= Len(γ̄ )
∫
φ1 + O

(
‖φ1‖α

(
L−α(1−η)/(2+α)n + L1−2η

m+1 +

n−1∑
k=m+1

L−1+η
k

))

=

∫
φ1 + O

(
‖φ1‖α

(
L−α(1−η)/(2+α)n + L1−2η

m+1 +

n−1∑
k=m+1

L−1+η
k

))
.
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Summing over γ̄ , we obtain that
∫

H(y0)
φ1 ◦ Fn

md LebH(y0) equals

O(‖φ1‖C0 L−1+η
m )+ (1+ O(L1−2η

m ))
∑

γ̄∈0̄m (H(y0))

LebH(y0)(F
−1
m γ̄ )

·

( ∫
φ1 + O

(
‖φ1‖α

(
L−α(1−η)/(2+α)n + L1−2η

m+1 +

n−1∑
k=m+1

L−1+η
k

)))

= O
(
‖φ1‖α

(
L−1+η

m + `

(
L−α(1−η)/(2+α)n + L1−2η

m+1 +

n−1∑
k=m+1

L−1+η
k

)))
+ (1+ O(L1−2η

m )) LebH(y0)(H(y0)\Bm(H(y0)))

∫
φ1

= O
(
‖φ1‖α

(
L−1+η

m + `

(
L−α(1−η)/(2+α)n + L1−2η

m+1 +

n−1∑
k=m+1

L−1+η
k

)))
+ (1+ O(L1−2η

m ))(1+ O(`−1L−1+η
m )) · `

∫
φ1

= ` ·

{
O
(
‖φ1‖α

(
`−1L−1+η

m + L−α(1−η)/(2+α)n + L1−2η
m +

n−1∑
k=m+1

L−1+η
k

))

+

∫
φ1

}
.

Integrating over y0 ∈ I j yields the same estimate for
∫
χRi, jφ1 ◦ Fn

m with an additional
factor of `. Summing over 1≤ i, j ≤ K , we have that

∫
φ1 ◦ Fn

m · φ2 equals

O
(
‖φ1‖α‖φ2‖α

(
`α + `−1L−1+η

m + L−α(1−η)/(2+α)n + L1−2η
m +

n−1∑
k=m+1

L−1+η
k

))

+

K∑
i, j=1

`2φ2
i, j

∫
φ1

= O
(
‖φ1‖α‖φ2‖α

(
`α + `−1L−1+η

m + L−α(1−η)/(2+α)n + L1−2η
m +

n−1∑
k=m+1

L−1+η
k

))
+

∫
φ1

∫
φ2.

The proof is complete on setting K = dL(1−η)/(1+α)m e.

4. Law of large numbers
We continue our study of the statistical properties of the composition {Fn

} by proving
Theorem A, a pair of formulations of a ‘law of large numbers’ for time averages of
observables.

In this section α ∈ (0, 1] is fixed, as is a sequence of α-Holder continuous observables
φi : T2

→ R, i ≥ 0 with
∫
φi = 0 for all i and supi≥0 ‖φi‖α ≤ C0 for a constant C0 > 0.
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For 0≤ M ≤ N , we define

ŜM,N = φM ◦ F M
+ · · · + φN ◦ F N

and set ŜN = Ŝ0,N . Noting that the simple estimate

|ŜN − ŜM,N | =

∣∣∣∣ M−1∑
i=0

φi ◦ F i
∣∣∣∣≤ C0 M

holds pointwise on T2, it follows that to prove a strong law for ŜN , it suffices to prove a
strong law for ŜM,N , where M = M(N )= b

√
Nc. Similarly, a weak law for ŜN follows

from a weak law for ŜM,N . More precisely, to prove Theorem A, it suffices to prove the
following.

PROPOSITION 4.1. For N ≥ 1, let M = M(N )= b
√

Nc.
(a) If N 2L−α/(3α+4)

N → 0, then (1/(N − M))ŜM,N converges in L2 to 0.
(b) If N 4+εL−α/(3α+4)

b
√

Nc
→ 0 as N →∞ for some ε > 0, then (1/(N − M))ŜM,N

converges almost surely to 0.

Proof of Proposition 4.1. To start, we expand∫
Ŝ2

M,N =

N∑
n=M

∫
φ2

n ◦ Fn
M + 2

∑
M≤m<n≤N

∫
φn ◦ Fn

m+1 · φm .

For the first term, each summand is precisely
∫
φ2

n ≤ C2
0 . For the second term, the (m, n)-

summand is bounded

‖φn‖α‖φm‖α · O
(

L−min{α(1−η)/(2+α),2η−1}
m+1 +

n−1∑
k=m+2

L−1+η
k

)
by Proposition 3.4(b) and so the entire summation is bounded

C2
0(N − M)2 O

(
L−min{α(1−η)/(2+α),2η−1}

M +

N∑
k=M

L−1+η
k

)
= C2

0(N − M)3 O(L−min{α(1−η)/(2+α),2η−1}
M ).

Optimizing in η, the function η 7→min{α(1− η)/(2+ α), 2η − 1} is maximized at the
value α/(3α + 4) at the point η = (2α + 2)/(3α + 4). Hereafter this value of η is fixed.

Setting M = M(N )= b
√

Nc, we obtain that N−2 ∫ Ŝ2
M,N → 0 as N →∞ so long

as N L−α/(3α+4)
b
√

Nc
→ 0, as we have in the hypotheses of item (a). For (b), our estimates

imply that the sequence {N−2 ∫ Ŝ2
M,N }N≥1 is summable whenever N 2+εL−α/(3α+4)

b
√

Nc
→ 0

for some ε > 0 (which we have from the condition in (b)). Summability implies fast
convergence in probability, which implies almost sure convergence (using the Borel–
Cantelli lemma). This completes the proof. �
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5. Central limit theorem
Here we carry out the proof of the central limit theorem in Theorem B. A standard
technique, attributed to Gordin, for proving the central limit theorem for a deterministic
dynamical system is to look for reverse martingale difference approximations for sums of
observables and then to use probability theory tools for proving the central limit theorem
for sums of reverse martingale differences (see, e.g., [24] for an exposition).

For expediency, we pursue a slightly different method: we construct here an array of
forward martingale difference approximations. The corresponding forward filtrations are
composed (mostly) of fully crossing horizontal curves. The filtration is constructed in
§5.1.1. Our martingale difference approximation is constructed in §5.1.2 and in §5.1.3 we
show how the CLT for our approximation implies the CLT as in Theorem B. The CLT for
our martingale difference approximation is proved in §5.2.

Throughout this section α ∈ (0, 1] is fixed and φ : T2
→ R is assumed to be an α-Holder

continuous observable with
∫
φ = 0. The value η ∈ (1/2, 1) is assumed fixed; as we did

in the previous section, in §5.1.3 we will specialize to a particular value of η depending
on α.

Notation. We write E below for the expectation with respect to Lebesgue measure on
T2. When G is a sub-sigma-algebra of the Borel sigma-algebra, we write E(·|G) for the
conditional expectation with respect to G.

5.1. Preliminaries for CLT: construction of a martingale approximation.

5.1.1. Construction of the increasing filtrations {ĜM,k, k ≥ M}. We will produce an
increasing filtration of (most of) T2 by horizontal curves with a small and controlled
exceptional set. Below, M ∈ N should be thought of as large.

First, we will construct a sequence of partitions ζM,M , ζM,M+1, . . . , ζM,k, . . . of T2

with the following properties for each M ≤ k ≤ N :
(A) the partition ζM,k is ‘mostly’ composed of fully crossing horizontal curves; and
(B) ζM,k ≤ F−1

k ζM,k+1†.
Once the ζM,k are constructed, we define GM,k to be the sigma-algebra of measurable
unions of elements in ζM,k and, finally,

ĜM,k = (Fk
M )
−1GM,k+1,

so that {ĜM,k}k≥M is an increasing filtration on T2. This is the filtration we will use in the
following to construct our forward martingale difference approximation.

Construction of {ζM,k, k ≥ M} satisfying (A) and (B). Set ζM,M to be the partition of
T2
\{x = 0} into horizontal line segments. Applying Lemma 2.7, for each ζ ∈ ζM,M , form

BM (ζ ) and 0̄M (ζ ), writing

G M,M+1 =
⋃

ζ∈ζM,M
ζ̄∈0̄M (ζ )

ζ̄ , BM,M+1 =
⋃

ζ∈ζM,M

FM (BM (ζ )).

† Here ‘≤’ refers to the partial order on partitions: two partitions ζ, ζ ′ satisfy ζ ≤ ζ ′ if any atom of ζ is a union
of ζ ′ atoms.
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Defining the partition HM,M+1 = {G M,M+1, BM,M+1}, we now define the partition
ζM,M+1 ≥HM,M+1 as follows:

ζM,M+1|G M,M+1 = {ζ̄ : ζ̄ ∈ 0̄M (ζ ), ζ ∈ ζM,M },

ζM,M+1|BM,M+1 = {FM (ζ ) ∩ BM,M+1 : ζ ∈ ζM,M }.

Iterating, assume that ζM,k has been formed, where k ≥ M + 2, along with the partition
HM,k = {G M,k, BM,k} for which ζM,k ≥HM,k . For each ζ ∈ ζM,k |G M,k , form 0̄k(ζ ) and
define

G M,k+1 =
⋃

ζ∈ζM,k
ζ̄∈0̄k (ζ )

ζ̄ , BM,k+1 =
⋃

ζ∈ζM,k

Fk(Bk(ζ ))

and define ζM,k+1 by

ζM,k+1|G M,k+1 = {ζ̄ : ζ̄ ∈ 0̄k(ζ ), ζ ∈ ζM,k |G M,k },

ζM,k+1|BM,k+1 = {Fk(ζ ) ∩ BM,k+1 : ζ ∈ ζM,k}.

Below, we formulate and verify properties (A) and (B) above for the sequence ζM,k, k ≥ M
constructed above.

LEMMA 5.1. The partitions {ζM,k}k≥M ,HM,k = {G M,k, BM,k} are measurable and have
the following properties for each k ≥ M.
(a) Every atom ζ ∈ ζM,k |G M,k is a fully crossing horizontal curve for which ‖h′ζ‖C0 ≤

L−ηk−1.
(b) We have ζM,k ≤ F−1

k ζM,k+1.
(c) We have the estimate

Leb(BM,k)= O
( k−1∑

i=M

L−1+η
i

)
.

Proof. Measurability is not hard to check. Items (a) and (b) follow from the construction.
For the estimate in item (c), observe that for each k ≥ M , ζ ∈ ζM,k |G M,k , we have
Lebζ (Bk(ζ ))= O(L−1+η

k ) and hence (LebT2)ζ (Bk(ζ ))≤ (1+ O(L−ηk−1)) · O(L
−1+η
k )=

O(L−1+η
k ), where here (LebT2)ζ is the disintegration measure of LebT2 |G M,k with respect

to ζ ∈ ζM,k |G M,k . We conclude that

Leb(G M,k+1)= (1+ O(L−1+η
k )) Leb(G M,k)

and hence

Leb(G M,m)=

m−1∏
k=M

(1+ O(L−1+η
k ))≥ 1+ O

( m−1∑
k=M

L−1+η
k

)
. �

The choice of ĜM,k is made so that Fk−1
M ĜM,k = F−1

k GM,k+1 is a very ‘fine’ sigma-
algebra. Before proceeding, we record the following estimate.
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LEMMA 5.2. Let φ be α-Holder continuous, k ≥ M. Then

|φ − E(φ|F−1
k GM,k+1)| = O(‖φ‖αL−ηαk )

on F−1
k G M,k+1.

Proof. Let ζ ∈ GM,k+1|G M,k+1 . Then F−1
k ζ is, by our construction, a subsegment of a fully

crossing curve ζ ′ ∈ ζM,k |G M,k with diameter O(L−ηk ). So, for any points p, p′ ∈ F−1
k ζ , we

have |φ(p)− φ(p′)| = O(‖φ‖αL−ηαk ). �

5.1.2. Approximation by sum of martingale differences. For a bounded observable φ :
T2
→ R, convergence in distribution of (1/

√
N )SN (X), X ∼ LebT2 , where

SN =

N∑
n=1

φ ◦ Fn−1,

is equivalent to convergence in distribution of (1/
√

N )SM,N (X), X ∼ LebT2 , where

SM,N =

N∑
n=M

φ ◦ Fn−1
M

and M = M(N ) is a sequence satisfying M(N )�
√

N . Here ‘X ∼ LebT2 ’ means that X
is a T2-valued random variable with law LebT2 .

Thus, for Theorem B, it suffices to prove convergence in distribution of
(1/
√

N )SM,N (X); for this, we approximate SM,N by a sum of martingale differences with
respect to the increasing filtrations ĜM,k, k ≥ M .

PROPOSITION 5.3. Let M ≤ N. Define

S̃M,N =

N∑
n=M

E(φ|(Fn)
−1GM,n+1) ◦ Fn−1

M =

N∑
n=M

E(φ ◦ Fn−1
M |ĜM,n).

(a) The sum S̃M,N admits the representation S̃M,N =
∑N

n=M UM,N ,n , where

UM,N ,n =

N−1∑
m=n−1

(E(φ ◦ Fm
M |ĜM,n)− E(φ ◦ Fm

M |ĜM,n−1)).

The sequence {UM,N ,n, M ≤ n ≤ N } is a forward martingale difference
adapted to (ĜM,n, M ≤ n ≤ N ). Precisely, E(UM,N ,n|ĜM,n)=UM,N ,n and
E(UM,N ,n|ĜM,n−1)= 0.

(b) We have

|SM,N − S̃M,N | = O
(
(N − M)‖φ‖α

N∑
m=M

L−ηαm

)
on G M,N .

Above, we use the convention that ĜM,M−1 = {∅, T2
} is the trivial sigma-algebra on T2.

For notational simplicity, when M, N are fixed, we write Un =UM,N ,n .
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Proof. Item (b) is a simple consequence of Lemma 5.2. For item (a), the relation S̃M,N =∑
M≤n≤N UM,N ,n can be verified by a direct computation.
Alternatively, following the analogue of the derivation of a reverse martingale difference

approximation given in [14] for forward martingale differences, one can look for a
martingale difference Un = E(φ ◦ Fn

M |ĜM,n)+ hn − hn+1, where (hn)M≤n≤N+1 is some
sequence of ‘coboundary’ functions to be determined. Making the ansatz hN+1 = 0 and
‘solving’ the conditions E(Un|ĜM,n)=Un, E(Un|ĜM,n−1)= 0 for each n, we deduce
formally that

hn =−

N−1∑
m=n−1

E(φ ◦ Fm
M |ĜM,n−1).

Inserting this formula into the relation Un = E(φ ◦ Fn
M |ĜM,n)+ hn − hn+1 yields the form

of Un given above. The choice ĜM,M−1 = {∅, T2
} ensures that hM = 0 and hence S̃M,N =∑

M≤n≤N Un + hM − hN+1 =
∑

M≤n≤N Un holds. �

5.1.3. Deducing Theorem B from the martingale approximation. We will deduce
Theorem B from the following.

PROPOSITION 5.4. Assume that N 8L−α/(3α+4)
N → 0 as N →∞. For N > 0, let M =

M(N )= b 4√Nc. Then

1√∑N
n=M EU 2

M,N ,n

N∑
n=M

UM,N ,n(X), X ∼ LebT2

converges weakly to a standard Gaussian as N →∞.

Proposition 5.4 is proved in the next section. Let us first complete the proof of
Theorem B.

Throughout, M = b 4√Nc. For the remainder of §5, we specialize to the value η =
(2α + 2)/(3α + 4), noting that this value maximizes the function η 7→min{2η − 1, α(1−
η)(α + 2)}. In particular, N 8L−min{2η−1,α(1−η)/(α+2)}

N → 0 as N →∞ under the
conditions of Proposition 5.4.

As we noted at the beginning of §5.1.2, it suffices to prove the CLT for (1/
√

N )SM,N

since here M ≈ N 1/4
�
√

N . Thus, to prove Theorem B, it suffices to check that:
(I) ‖SM,N − S̃M,N‖L2 → 0 as N →∞; and
(II) (1/N )

∑N
n=M EU 2

M,N ,n→ σ 2 as N →∞, where σ 2 is as in Theorem B.
For (I), we estimate ‖SM,N − S̃M,N‖L2 as follows:

‖SM,N − S̃M,N‖L2 ≤C(N − M)‖φ‖0 Leb(BM,N )+ C(N − M)‖φ‖α
N∑

m=M

L−ηαm

≤C(N − M)‖φ‖α
N∑

m=M

L−min{αη,1−η}
m ,

applying first Proposition 5.3(b) and then Lemma 5.1. The above converges to 0 as N →
∞ by the hypotheses of Proposition 5.4.
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For (II), we observe that

N∑
n=M

EU 2
M,N ,n = E

( N∑
n=M

UM,N ,n

)2

=

∫
T2

S̃2
M,N d LebT2

=

∫
T2

S2
M,N d LebT2 +O(‖SM,N − S̃M,N‖

2
L2).

From (I), it follows that limN→∞(‖S̃M,N‖
2
L2 − ‖SM,N‖

2
L2)= 0. It remains to compute

‖SM,N‖
2
L2 , which we do below.

LEMMA 5.5. Assume the setting of Proposition 5.4. With M = M(N )= b 4√Nc, we have

lim
N→∞

1
N

∫
S2

M,N d Leb= σ 2
=

∫
φ2
+ 2

∫
φ(x, z)φ(z, y) dx dy dz.

Proof. We have∫
S2

M,N

= (N − M + 1)
∫
φ2
+ 2

∑
M≤m<n≤N

∫
φ ◦ Fm

M · φ ◦ Fn
M

= (N − M + 1)
∫
φ2
+ 2

N∑
n=M+1

∫
φ · φ ◦ Fn + 2

∑
M≤m<n≤N

m<n−1

∫
φ · φ ◦ Fn

m+1d Leb.

Applying Proposition 3.4(a) to the middle summation, we obtain the estimate

2(N − M)
∫
φ(x, z)φ(z, y) dx dy dz + O(‖φ‖2α(N − M)L−min{2η−1,α(1−η)/(2+α)}

M ).

Applying Proposition 3.4(b) to the (m, n)-summand in the third term,∫
φ · φ ◦ Fn

m+1d Leb= O
(
‖φ‖2α

(
L−min{α(1−η)/(2+α),2η−1}

m+1 +

n−1∑
k=m+2

L−1+η
k

))
= O(‖φ‖2α(N − M)L−min{α(1−η)/(2+α),2η−1}

M ),

and applying the summation, the third term is bounded

O(‖φ‖2α(N − M)2L−min{α(1−η)/(2+α),2η−1}
M ).

All error terms go to 0 under the hypothesis of Proposition 5.4. �

5.2. Proof of Proposition 5.4. We use the following criterion for the CLT for arrays of
martingale differences.

THEOREM 5.6. (McLeish) Let (�, F , P) be a probability space. Let {kn}n≥1 be
an increasing sequence of whole numbers tending to infinity and, for each n ≥ 1, let
F1,n ⊂ F2,n ⊂ · · · ⊂ Fkn ,n ⊂ F be an increasing sequence of sub-σ -algebras. For each
such n, i , let X i,n be a random variable, measurable with respect to Fi,n , for which
E(X i,n|Fi−1,n)= 0 and write Zn =

∑
1≤i≤kn

X i,n . Assume that:
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(a) maxi≤kn |X i,n| is uniformly bounded, in n, in the L2 norm;
(b) maxi≤kn |X i,n| → 0 in probability as n→∞; and
(c)

∑
i X2

i,n→ 1 in probability as n→∞.
Then Zn converges weakly to a standard Gaussian.

We apply this to the array

1√∑N
m=M(N ) EU 2

M(N ),N ,m

UM(N ),N ,n(X), M(N )≤ n ≤ N , X ∼ LebT2 ,

where as before M(N )= b 4√Nc.
A preliminary asymptotic estimate for Un is given in §5.2.1. The verification of (a)–(c)

as in Theorem 5.6 is given in §5.2.2.

5.2.1. An asymptotic estimate for Un . The following approximation is extremely useful
in the coming arguments.

LEMMA 5.7. Set Ûn =Un ◦ (Fn−1
M )−1. Then

Ûn = φ − ψ + ψ ◦ Fn+1 + O(N 2
‖φ‖αL−min{α(1−η)/(2+α),2η−1}

M )

with uniform constants on F−1
n G M,n+1, independently of n, where ψ(y)=

∫
φ(x̄, y) dx̄.

Proof. We have

Ûn =E(φ|F−1
n GM,n+1)− E(φ|GM,n)+ E(φ|GM,n+1) ◦ Fn

+

N−1∑
m=n+1

E(φ ◦ Fm
n+1|GM,n+1) ◦ Fn +

N−1∑
m=n

E(φ ◦ Fm
n |GM,n). (5)

As we will show, the terms in the top line approximate to φ − ψ + ψ ◦ Fn+1, while the
terms in the second line are small.

For the first term in (5), we have from Lemma 5.2 that |E(φ|F−1
n GM,n+1)− φ| =

O(‖φ‖αL−αηn ) on F−1
n G M,n+1.

For the second term in (5), we have that

E(φ|GM,n)=
1

Len(γ )

∫
γ

φ d Lebγ

on G M,n , where γ is a fully crossing horizontal curve with ‖h′γ ‖C0 ≤ L−ηn−1. Let now
p ∈ γ , p = (x0, y0). Noting that |φ(x, hγ (x))− φ(x, y0)| ≤ ‖φ‖α|hγ (x)− hγ (x0)|

α
≤

C‖φ‖αL−αηn−1 , we have

1
Len(γ )

∫
γ

φd Lebγ = (1+ O(‖φ‖αL−ηn−1))

∫ 1

0
φ(x, hγ (x)) dx

= (1+ O(‖φ‖αL−αηn−1 ))

∫ 1

0
φ(x, y0) dx;

we therefore conclude that

|E(φ|GM,n)− ψ | ≤ C‖φ‖αL−αηn−1
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on G M,n . Similarly, for the third term in (5), we obtain the bound

|E(φ|GM,n+1) ◦ Fn − ψ ◦ Fn| ≤ C‖φ‖αL−αηn

on F−1
n G M,n+1.

For the fourth term in (5), we estimate from Proposition 2.8 that on G M,n ,

E(φ ◦ Fm
n |GM,n)=

1
Len(γ )

∫
γ

φ ◦ Fm
n d Lebγ

= O
(
‖φ‖α ·

(
L−α(1−η)/(2+α)m + L1−2η

n +

m−1∑
k=n

L−1+η
k

))
= O(‖φ‖α(N − M)L−min{α(1−η)/(2+α),2η−1}

M )

for some γ ∈ ζM,n . Estimating similarly the fifth term in (5), we deduce that on
F−1

n G M,n+1, the contribution of the fourth and fifth terms combined is

O(‖φ‖α(N − M)2L−min{α(1−η)/(2+α),2η−1}
M ). �

5.2.2. Verifying properties (a)–(c) in Theorem 5.6.

Properties (a) and (b). By Lemma 5.7, we have that on (F N−1
M )−1G M,N ,

|Un| = O(‖φ‖C0 + ‖φ‖αN 2L−min{α(1−η)/(2+α),2η−1}
M )

= O(‖φ‖αN 2L−min{α(1−η)/(2+α),2η−1}
M ),

which is uniformly bounded in n, N . Property (b) is now immediate since Leb(G M,N )→ 1
as N →∞.

For property (a), off (F N−1
M )−1G M,N , we have

|Un| ≤ C N‖φ‖α,

so ∥∥∥∥ max
M≤n≤N

|UM,N ,n|

∥∥∥∥
L2
≤ C‖φ‖α · N

√
Leb(Gc

M,N )+ C‖φ‖α.

Property (a) follows from the estimate Leb(Gc
M,N )= O(

∑N−1
M L−1+η

k )= O((N −

M)L−1+η
M ) in Lemma 5.1. �

Below is a formulation of property (c).

PROPOSITION 5.8. (Strong law for {U 2
n }) We have

lim
N→∞

∑N
n=M U 2

M,N ,n

E
∑N

n=M U 2
M,N ,n

= 1

in probability.
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Proof. We prove the stronger property of convergence in L2. To start, we evaluate∫ ( N∑
M

U 2
n −

N∑
M

E(U 2
n )

)2

d Leb

=

∑
M≤m,n≤N

∫
(U 2

n − E(U 2
n ))(U

2
m − E(U 2

m)) d Leb

=

N∑
n=M

(E(U 4
n )− E(U 2

n )
2)+ 2

∑
M≤m<n≤N

∫
(Û 2

m − E(U 2
m))(Û

2
n − E(U 2

n )) ◦ Fn−1
m d Leb.

We start with bounding E(U 2
n ), E(U 4

n ). For N sufficiently large, we have on
(F N−1

M )−1G M,N that |Un| = O(‖φ‖α) by Lemma 5.7, while on the complement we have
|Un| = O(N‖φ‖α) and so, applying the estimate on Leb(Gc

M,N ), we obtain

E(U 2
n )= O(‖φ‖2α(N

3L−1+η
M + 1)) and E(U 4

n )= O(‖φ‖4α(N
5L−1+η

M + 1)).

Thus, the first summation is bounded like

O(‖φ‖4αN (N 5L−1+η
M + 1)).

For the second summation, let us write φ∗(x, y) := φ(x, y)− ψ(y)+ ψ(x) in the
notation of Lemma 5.7. Since this quantity appears repeatedly, let us also use the shorthand
c = α/(3α + 4), noting that under the hypotheses of Theorem B we have that N 2L−c

M → 0
as N →∞. We estimate

Û 2
n − φ

2
∗ = (Ûn + φ∗)(Ûn − φ∗)= O(‖φ‖2αN 2L−c

M (1+ N 2L−c
M ))= O(‖φ‖2αN 2L−c

M )

on (F N−1
n )−1G M,N and so

|E(Û 2
n )− E(φ2

∗)| ≤ C N 3
‖φ‖2αL−1+η

M + C‖φ‖2αN 2L−c
M = O(‖φ‖2α(N

3L−1+η
M + N 2L−c

M );

hence,

|E(Û 2
n )E(Û

2
m)− E(φ2

∗)
2
| ≤ E(Û 2

n )|E(Û
2
m)− E(φ2

∗)| + E(φ2
∗)|E(Û

2
n )− E(φ2

∗)|

= O(‖φ‖4α(1+ N 3L−1+η
M )(N 3L−1+η

M + N 2L−c
M )).

On (F N−1
m )−1G M,N , we have

|Û 2
m · Û

2
n ◦ Fn−1

m − φ2
∗ · φ

2
∗ ◦ Fn−1

m |

≤ Û 2
m |Û

2
n ◦ Fn−1

m − φ2
∗ ◦ Fn−1

m | + φ2
∗ ◦ Fn−1

m · |Û 2
m − φ

2
∗|

= O(‖φ‖4α(1+ N 2L−c
M )N 2L−c

M )= O(‖φ‖4αN 2L−c
M ).

Collecting,∫
Û 2

mÛ 2
n ◦ Fn−1

m − E(U 2
m)E(U

2
n )−

( ∫
φ2
∗ · φ

2
∗ ◦ Fn−1

m − E(φ2
∗)

2
)

= O(‖φ‖4α(1+ N 3L−1+η
M )(N 3L−1+η

M + N 2L−c
M )).

Applying now Proposition 3.4(b), we obtain the estimate∣∣∣∣ ∫ φ2
∗ · φ

2
∗ ◦ Fn−1

m −

( ∫
φ2
∗

)2∣∣∣∣= O(‖φ‖4α(N L−1+η
M + L−c

M )),
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so we conclude that∫
Û 2

mÛ 2
n ◦ Fn−1

m − E(U 2
m)E(U

2
n )= O(‖φ‖4α(1+ N 3L−1+η

M )(N 3L−1+η
M + N 2L−c

M )).

Summing over the ≈ N 2 terms and noting that (
∑N

M E(U 2
n ))

2
≈ σ 4 N 2 for N large, we

obtain

1
‖φ‖4α

∥∥∥∥ ∑N
M U 2

n∑N
M EU 2

n

− 1
∥∥∥∥2

L2

= O((1+ N 3L−1+η
M )(N 3L−1+η

M + N 2L−c
M )+ N−1

+ N 4L−1+η
M ).

The proof goes through if all terms on the right-hand side go to 0 as N →∞. For this, it
suffices that N 2L−c

M → 0 as N →∞: to see this, observe that N 4L−1+η
M ≤ N 4L−2c

M holds
for any η ∈ (1/2, 1), α ∈ (0, 1). The latter clearly goes to 0 when N 2L−c

M → 0. �

6. Hyperbolicity and the shape of successive iterates of a set
We close this paper with the proof of Theorem C, given in §§6 and 7.

We argued in §2 (see Remark 2.9) that fully crossing horizontal curves proliferate
throughout phase space in a roughly uniform way and that this proliferation is the mixing
mechanism for the compositions {Fn

}. In this section we flesh out this picture by showing
the following: given a set S ⊂ T2 with a suitably nice boundary and n large enough, the
nth image Fn(S) is ‘mostly’ foliated by disjoint fully crossing horizontal curves.

The plan is as follows. In §6.1 we construct for each n a foliation of Sn = Fn−1S by
horizontal curves. It is shown in §6.2 that for n sufficiently large, a large proportion of the
curves in the foliation of Sn are ‘sufficiently long’, in the sense that in one time step such
curves become fully crossing. In §6.3 we show that on disintegrating Lebesgue measure
restricted to Sn , the disintegration densities on the leaves of our horizontal foliation are
controlled. These results are synthesized in Proposition 6.11 in §6.4, the main result of
this section.

This last result is a primary ingredient in the proof of Theorem C, the proof of which
will be completed in §7.

6.1. Construction of foliations by horizontal curves. Let S ⊂ T2 be an open subset and
write νS for normalized Lebesgue measure on S. Our aim is to build a foliation of the nth
image Fn(S) by horizontal curves with the property that for n sufficiently large, ‘most’ of
the foliating curves are sufficiently long.

6.1.1. Standing assumptions for §6. The parameter η ∈ (1/2, 1) is fixed. The open set
S ⊂ T2 is such that the topological boundary ∂S = S̄\S is the finite union of smooth curves
and, moreover, is assumed to have the following property: for any l > 0,

νS{p ∈ S : d(p, ∂S)≤ l} ≤ CSl, (6)

where CS > 0 is a constant independent of l. Let us write S1 = S and Fn−1S1 = Sn for
n ≥ 1, noting that ∂Sn = Fn−1∂S1 since each Fn is a diffeomorphism.

For n ≥ 1, we write Bn for the partition of T2 into the connected components of Bn and
Bc

n , noting that each is a partition of T2 into vertical cylinders (sets of the form I × T1 for
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a proper connected subinterval I ⊂ T1). We also abuse notation somewhat and write ∂Bn

for the union of the boundaries of each atom of Bn ; that is, ∂Bn is the union of circles of
the form {x̂n ± 2K1L−1+η

n } × T1 as x̂n varies over Cn .
Define the sequence of partitions {Pn}n≥1 of T2 as follows:

P1 = B1 ∨ {S1, Sc
1}

and, for n ≥ 2,
Pn = Bn ∨ Fn−1(Pn−1).

Above, ∨ refers to the join of partitions. Hereafter for q ∈ T2, we write Pn(q) for the atom
of Pn containing q . Again we abuse notation somewhat and write ∂Pn for the union over
the collection of boundaries of each atom comprising Pn .

Additional notation. For q = (x, y) ∈ T2, let us write Hq = T1
× {y} for the horizontal

circle containing q. When P is a partition of T2 and p ∈ T2, we write P(p) for the atom
of P containing p. We write ‘≤’ for the partial order on partitions: for partitions P,Q, we
write P ≤Q if each atom in P is a union of Q atoms.

6.1.2. Algorithm for foliating Sn by horizontal curves. We now define, for each n ≥ 1,
a foliation (partition) γ̂n of Sn by horizontal curves.

For n = 1, we define γ̂1 to be the partition of S1 consisting of atoms of the form

γ̂1(p)= Hp ∩ P1(p)

for p ∈ S1. Clearly γ̂1 is a measurable partition of S1 and γ̂1 ≤ P1|S1 (here ≤ indicates the
partial order on partitions in terms of refinement and P1|S1 denotes the restriction of P1

to S1). Inductively, assume that γ̂1, . . . , γ̂n have been constructed and that γ̂n ≥ Pn|Sn .
To define γ̂n+1(pn+1) for pn+1 ∈ Sn+1, we distinguish two cases. Below, we write pn =

F−1
n (pn+1).

Case 1. pn /∈ Bn . By construction, γ̂n(pn) ∩ Bn = ∅ and so Fn(γ̂n(pn)) is a horizontal
curve (Lemma 2.4). In preparation for the next iterate, we cut this image curve by Pn+1;
that is,

γ̂n+1(pn+1)= Fn(γ̂n(pn)) ∩ Pn+1(pn+1).

Equivalently, γ̂n+1|Fn(Bc
n∩Sn) = Fn(γ̂n ∩ Bc

n) ∨ Pn+1|Fn(Bc
n∩Sn).

Case 2. pn ∈ Bn . In this case γ̂n(pn)⊂ Bn and so we lose our control on the image curve
Fn(γ̂n(pn)). The procedure here is to repartition the entire image of Bn by horizontal line
segments cut by Pn+1 in preparation for the next iterate. Precisely, we define

γ̂n+1(pn+1)= Hpn+1 ∩ Pn+1(pn+1).

Equivalently, γ̂n+1|Fn(Bn∩Sn) is the join of Pn+1|Fn(Bn∩Sn) with the partition of Fn(Bn) into
horizontal circles (sets of the form T1

× {y} ⊂ T2 for y ∈ T1).
This induction procedure bootstraps because γ̂n+1 is a partition of Sn+1 into horizontal

curves for which γ̂n+1 ≥ Pn+1|Sn+1 . All partitions mentioned are measurable [28] and so
we have the following.

LEMMA 6.1. For each n ≥ 1, the partition γ̂n of Sn as above is defined and is a measurable
partition of Sn into connected, smooth horizontal curves for which γ̂n ≥ Pn|Sn .
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6.2. Estimating time to curve length growth. As indicated in the procedure laid out
above, the curves of γ̂n+1 coming from γ̂n|Sn∩Bc

n have been elongated by the strong
expansion of Fn along horizontal directions. However, this elongation of curves competes
with the ‘cutting’ of curves near bad sets (case 1) and the occasional ‘repartitioning’ of
the images of the bad sets Sn ∩ Bn by horizontal line segments (case 2). Our aim now is
to show that for large n, the expansion wins out and ‘most’ of the curves comprising the
foliation γ̂n are of sufficiently long horizontal extent.

6.2.1. Preparations. For a connected C1 curve γ ⊂ T2 and a point q = (x, y) ∈ γ , we
define

Radq(γ )= dγ (q, ∂γ ).

Here dγ denotes the Euclidean distance on γ and ∂γ denotes the end points of γ ; that is,
if γ = graph hγ for hγ : Iγ → T1, then ∂γ = {(x̂, hγ (x̂)) : x̂ ∈ ∂ Iγ }. Recall that Iγ ⊂ T1

is always a proper connected subarc, so ∂ Iγ , and hence ∂γ , consists of exactly two points.
Additionally, let us define the following alternative of the time τ defined in §2.1: for

p ∈ T2, we define

τ̄ (p)= 1+max{m ≥ 1 : d(Fm−1(x, y), Bm) < K1L−1+η′
m }

=min{k ≥ 1 : d(Fn−1(p), Bn)≥ K1L−1+η′
n for all n ≥ k}.

Here we have set
η′ =

η + 1
2

.

Clearly τ ≤ τ̄ . A straightforward variation of the argument for Lemma 2.2 implies that
τ̄ is almost surely finite and satisfies an analogous tail estimate to that of τ whenever∑

n L−1+η′
n <∞. Precisely, we have

Leb{τ̄ > N } ≤
∞∑

n=N

6K1L−1+η′
n = O

( ∑
n≥N

L−1+η′
n

)
. (7)

For the remainder of §6, we shall assume that the sequence {Ln} is such that the right-hand
side of (7) is finite.

6.2.2. The curve growth time σS .

Definition 6.2. Given p ∈ S1, we define the curve growth time σS(p) by

σS(p)=min{k ≥ τ̄ (p) : Radpk (γ̂k(pk))≥ K1L−1+η′
k },

where above we write pk = Fk−1(p).

In this section we write σ = σS for short.
Our definition of σ is motivated by the following consideration. Let p ∈ S1, pn =

Fn−1(p) and assume that σ(p)= n. Then γ̂n(pn) ∩ Bn = ∅ and |Iγ̂n(pn)| ≥ 2K1L−1+η′
n :

this implies that Fn(γ̂n(pn)) is a union of approximately L2η−1
n � 1 fully crossing

horizontal curves. Thus, σ has the connotation of a mixing time: the set {σ ≤ n} ⊂ S
is a region of S which has proliferated throughout T2.
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A possible obstruction to mixing is that once this mass has proliferated, it could become
‘trapped’ again by the bad sets Bn . This is not possible, however, due to the way that σ is
defined. Precisely, we have the following.

LEMMA 6.3. Let p ∈ S and assume that σ(p)= n for some n ≥ 1. Then Radpk (γ̂k(pk))≥

K1L−1+η′
k for all k ≥ n.

Proof. It suffices to show that for any k ≥ τ̄ (p), we have that Radpk (γ̂k(pk))≥ K1L−1+η′
k

implies that Radpk+1(γ̂k(pk))≥ K1L−1+η′
k . This is implied directly by Lemma 2.7. �

The main result of §6.2 is the following estimate on the tail of σ .

PROPOSITION 6.4. There is a constant C, depending only on K1, M0, such that the
following holds. Let L0 be sufficiently large. Then, for any n ≥ 1, we have that

ν{σ(p) > 4n} ≤
(

C
Leb(S)

+ CS

) ∞∑
i=n

L−1+η′
i .

Proposition 6.4 bears a strong resemblance to the volume lemma in billiard dynamics,
used to control the lengths of unstable manifolds; see, e.g., [12].

Remark 6.5. Let us draw a comparison between the present situation and that of a typical
non-uniformly hyperbolic system for which correlation decay and statistical properties are
known, e.g., systems admitting Young towers with controllable ‘good’ return times to their
bases [34]. Roughly speaking, the typical situation is that a given ‘lump’ of mass can fail to
proliferate: for example, nice hyperbolic geometry can be spoiled (as happens for Henon
maps; see, e.g., [7]) or mass may become ‘trapped’ somewhere (as happens for intermittent
maps; see, e.g., [25]). In a typical situation admitting a Young tower, a given ‘lump’ of
mass experiences infinitely many ‘proliferations’ (returns to the base), followed by some
possibly unbounded ‘reset’ time (sojourn up the tower) before the next proliferation takes
place. Thus, correlation decay estimates depend critically on the delicate balance between
these two behaviors.

In contrast, the situation for our composition {Fn
} is simpler: at any time, some positive

proportion of νn is ‘trapped’ in a bad region, but, as time evolves, an increasingly larger
proportion of the mass of νn has ‘permanently proliferated’ throughout T2.

6.2.3. Proof of Proposition 6.4. We require two estimates:
(A) for any pn ∈ Sn, n ≥ 1, a ‘bad’ a priori estimate on Radpn (γ̂n(pn)); and
(B) for Leb-almost every p ∈ S1, a ‘good’ estimate for Radpn (γ̂n(pn)) for n� τ̄ (p)

(where pn = Fn−1(p).
Afterwards, we will (C) synthesize these estimates to obtain the desired estimate on the
tail of σ .

Let us briefly elaborate on this strategy. Before time τ̄ (p), we have no control
whatsoever on the orbit of p and so our procedure may indeed produce very short curves
γ̂n(pn), pn = Fn−1(p) for such n. As a result, we have access to only the ‘worst possible’
estimates for Radpn (γ̂n(pn)). We carry these estimates out in (A) below. Once τ̄ (p) has
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elapsed, we will leverage our control on the orbit of p after time τ̄ (p) to grow the curves
γ̂n(pn) to sufficient horizontal extent—this is carried out in part (B).

(A) ‘Bad’ a priori length estimate for γ̂n(pn) for all n. Here we prove the following
estimate.

LEMMA 6.6. Let p1 ∈ S1 and write pk = Fk−1 p1 for k > 1. Then, for any n ≥ 1,

Radpn (γ̂n(pn))≥min
{

min
1≤i≤n

{( n−1∏
j=i

2K0L j

)−1

d(pi , ∂Bi )

}
,

( n−1∏
j=1

2K0L j

)−1

d(p1, ∂S1)

}
.

Lemma 6.6 will be obtained from the corresponding identical estimate for d(pn, ∂Pn).

LEMMA 6.7. In the setting of Lemma 6.6, we have

d(pn, ∂Pn)≥min
{

min
1≤i≤n

{( n−1∏
j=i

2K0L j

)−1

d(pi , ∂Bi )

}
,

( n−1∏
j=1

2K0L j

)−1

d(p1, ∂S1)

}
.

In both of Lemmas 6.6 and 6.7, the empty product
∏n−1

j=n is to interpreted as equal to 1.

Proof of Lemma 6.7. To prove this estimate, recall that for k ≥ 1, we have ∂Pk = ∂Bk ∪

Fk−1(∂Pk−1); thus,

d(pk, ∂Pk)=min{d(pk, ∂Bk), d(pk, Fk−1(∂Pk−1)}.

Noting that Lip(F−1
k−1)≤ 2K0Lk−1, we obtain

d(pk, Fk−1(∂Pk−1))≥ (2K0Lk−1)
−1d(pk−1, ∂Pk−1).

Thus, for all n ≥ 2, we obtain the following. Below, we write a ∧ b =min{a, b} for short.

d(pn, ∂Pn)≥min{d(pn, ∂Bn), (2K0Ln−1)
−1d(pn−1, ∂Pn−1)}

≥min{d(pn, ∂Bn), (2K0Ln−1)
−1d(pn−1, ∂Bn−1),

(2K0Ln−1)
−1(2K0Ln−2)

−1d(pn−2, ∂Pn−2)}

≥ · · · ≥ d(pn, ∂Bn) ∧ min
2≤i≤n−1

{( n−1∏
j=i

2K0L j

)−1

d(pi , ∂Bi )

}

∧

( n−1∏
j=1

2K0L j

)−1

d(p1, ∂P1).

The desired estimate now follows from the fact that ∂P1 = ∂S1 ∪ ∂B1. �

Proof of Lemma 6.6. With n ∈ N fixed, define

n1 =max{1≤ k ≤ n − 1 : pk ∈ Bk},
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where we use the ad hoc convention n1 = 1 if pk /∈ Bk for all 1≤ k ≤ n − 1. Observe that
γ̂n1+1(pn1+1) is formed by using Case 2 in the algorithm and that γ̂k(pk) is formed by
using Case 1 for every k ≥ n1 + 2. In particular,

Radpn1+1(γ̂n1+1(pn1+1))≥ d(pn1+1, ∂Pn1+1)

and, for every n1 + 2≤ k ≤ n, we have

Radpk (γ̂k(pk))≥min{d(pk, ∂Pk), Radpk (Fk−1(γ̂k−1(pk−1))}.

To prove Lemma 6.6, it suffices to show that

Radpn (γ̂n(pn))≥ min
n1+1≤k≤n

{d(pk, ∂Pk)}. (8)

Once (8) is proved, Lemma 6.6 follows on inserting the estimates for d(pk, ∂Pk) for 1≤
k ≤ n.

Turning to (8): if n1 = n − 1, then there is nothing left to show. If n1 < n − 1, then we
estimate

Radpn (γ̂n)≥ d(pn, ∂Pn) ∧ Lηn−1 Radpn−1(γ̂n−1(p)),

≥ d(pn, ∂Pn) ∧ Lηn−1d(pn−1, ∂Pn−1) ∧ Lηn−1Lη
′

n−2 Radpn−2(γ̂n−2)≥ · · ·

≥ d(pn, ∂Pn) ∧ min
n1+2≤i≤n−1

{( n−1∏
j=i

Lηj

)
d(pi , ∂Pi )

}
∧ Radpn1+1(γ̂n1+1(pn1+1)).

Here we have used the simple estimate

Radp j+1 F j (γ̂ j (p j ))≥ Lηj Radp j (γ̂ j (p j )), (9)

which follows from the expansion estimate along horizontal curves in Lemma 2.4.
Replacing all Lηj terms with 1, we obtain (8). �

(B) Good length estimate for γ̂n(pn) for n� τ(p). Here we prove the following.

LEMMA 6.8. Let N ≥ 1 and let p ∈ S1 be such that τ̄ (p)≤ N <∞. Then, for any n ≥ N,

Radpn (γ̂n(pn))≥min
{

d(pn, ∂Bn),

( n−1∏
k=N

Lηk

)
RadpN (γ̂N (pN )))

}
. (10)

Proof of Lemma 6.8. The proof leans on the following claim.

CLAIM 6.9. Let p ∈ S1 be such that τ̄ (p)≤ N <∞. Then, for all n ≥ N, we have

Radpn+1(γ̂n+1(pn+1))≥min{d(pn+1, ∂Bn+1), Radpn (Fn(γ̂n(pn)))}.

Proof of Claim. Observe that since n ≥ τ̄ (p)≥ τ(p), we always use Case 1 in the
construction of γ̂n+1(pn+1), i.e., γ̂n+1(pn+1)= Fn(γ̂n(pn)) ∩ ∂Pn+1(pn+1). Moreover,
γ̂n(pn)⊂ Pn(pn) by construction and hence Fn(γ̂n(pn))⊂ Fn(Pn(pn)) and so we arrive
at

γ̂n+1(pn+1)= Fn(γ̂n(pn)) ∩ Bn+1(pn+1).

The desired estimate now follows. �
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Fixing n ≥ N , we now estimate

Radpn (γ̂n(pn))≥min{d(pn, ∂Bn), Radpn (Fn−1(γ̂n−1(pn−1)))}.

Observe that since d(pn−1, ∂Bn−1)≥ K1L−1+η
n−1 , it follows that

Radpn (Fn−1(γ̂n−1(pn−1)))≥ Lηn−1 Radpn−1(γ̂n−1(pn−1)),

on applying (9). Iterating,

Radpn (γ̂n(pn))≥ d(pn, Bn) ∧ min
N≤k≤n−1

{( n−1∏
i=k

Lηk

)
d(pk, ∂Bk)

}

∧

( n−1∏
i=N

Lηi

)
RadpN (γ̂N (pN )).

Note however that for N ≤ k ≤ n − 1, we have that

d(pk, ∂Bk)≥ K1L−1+η′
k

and hence Lηk · d(pk, ∂Bk)≥ K1L2(η+η′)−1
� 1 (recall that η > 1/2, so η + η′ − 1>

2η − 1> 0) when L0 is sufficiently large in terms of K1, η. This yields the desired
estimate. �

(C) Final estimates on the tail of σ . We are now in position to prove our estimate on
Leb{p ∈ S1 : σ(p) > 4n}. Assume that p ∈ S1 and τ̄ (p)≤ n <∞; finally, assume that
σ(p) > 4n. From Lemma 6.8, it follows that

Radpn (γ̂n(pn)) < K1L−1+η′
4n ·

( 4n−1∏
k=n

Lηk

)−1

≤

( 4n−1∏
k=n

Lηk

)−1

for L0 sufficiently large since here we always have d(p4n, ∂B4n)≥ K1L−1+η′
4n by

definition of τ̄ , σ . Inserting our estimate from Lemma 6.6, there are two cases to consider.

Case (a). For some 1≤ k ≤ n, we have

d(pk, ∂Bk) <

∏n−1
i=k 2K0L i∏4n−1

i=n Lηi

(again the empty product
∏n−1

i=n is taken to equal 1).

Case (b). We have

d(p1, ∂S1) <

∏n−1
i=1 2K0L i∏4n−1

i=n Lηi
.

By volume preservation, it follows that for each 1≤ k ≤ n − 1,

Leb
{

p ∈ S1 : τ(p)≤ n, σ (p) > 4n,
and Case (a) holds for value k

}
≤ 2#(Ck) ·

∏n−1
i=k 2K0L i∏4n−1

i=n Lηi
.
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Additionally, using the estimate (6), we have

Leb
{

p ∈ S1 : τ(p)≤ n, σ (p) > 4n,
and Case (b) holds

}
≤ Leb

{
p ∈ S1 : d(p, ∂S1)≤

∏n−1
i=1 2K0L i∏4n−1

i=n Lηi

}

≤CS Leb(S)
∏n−1

i=1 2K0L i∏4n−1
i=n Lηi

.

Thus,

Leb{p ∈ S1 : τ(p)≤ n, σ (p) > 4n} ≤ (2nM0 + CS Leb(S))
∏n−1

i=1 2K0L i∏4n−1
i=n Lηi

. (11)

To develop the right-hand side, observe that∏n−1
i=1 2K0L i∏3n−1

i=n Lηi
≤

n∏
i=1

2K0L1−2η
i ≤ 1,

using that {L i } is a non-decreasing sequence, on taking L0 sufficiently large so that
2K0L1−2η

0 ≤ 1. For the terms i = 3n, . . . , 4n − 1, we estimate
4n−1∏
i=3n

2L−ηi =

( 4n−1∏
i=3n

L−ηn
i

)1/n

≤
1
n

4n−1∑
i=3n

L−ηn
i ≤

1
n

4n−1∑
i=3n

L−1+η
i

by arithmetic mean-geometric mean inequality, on noting that L−ηn
n < L−1+η

n for all n ≥ 1.
Thus,

(11)≤ (2M0 + CS Leb(S))
4n−1∑
i=3n

L−1+η
i .

For the final estimate, observe that

Leb{p ∈ S1 : σ(p) > 4n} ≤ Leb{p ∈ S1 : τ̄ (p)≤ n, σ (p) > 4n} + Leb{p ∈ S1 : τ̄ (p) > n}

≤ (2M0 + CS)

4n−1∑
i=3n

L−1+η
i + 6K1 M0

∞∑
i=n

L−1+η′
i

≤ (2M0 + CS Leb(S)+ 6K1 M0)

∞∑
i=n

L−1+η′
i

on using (7) and that {L i } is non-decreasing. This completes the proof of Proposition 6.4.

6.3. Disintegration of Lebesgue measure along horizontal foliation γ̂n . To complete
our description of the foliation γ̂n of Sn , we describe here how γ̂n disintegrates Lebesgue
measure νn = Fn−1

∗ νS = (1/ LebT2(Sn)) LebT2 |Sn on Sn .
Below, for n ≥ 1 and an atom γ ∈ γ̂n , we write (νn)γ for the disintegration measure

of νn on γ ; the disintegration measures (νn)γ are the (almost surely) unique family of
probability measures, supported on the γ ∈ γ̂n , which satisfy

νn(K )=
∫
γ∈Sn/γ̂n

(νn)γ (γ ∩ K ) dνT
n (γ )

for Borel K ⊂ T2; here νT
n is the pushforward of νn onto the quotient space of equivalence

classes Sn/γ̂n .
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LEMMA 6.10. Let n ≥ 1 and fix γ ∈ γ̂n . Let ρn
γ denote the density of (νn)γ with respect to

Lebγ . Then, for any p, q ∈ γ , we have that

ρn
γ (p)

ρn
γ (q)

=
det(d Fn−1

n1+1|T γn1+1) ◦ (F
n−1
n1+1)

−1(q)

det(d Fn−1
n1+1|T γn1+1) ◦ (F

n−1
n1+1)

−1(p)
.

Here n1 =max({0} ∪ {1≤ k ≤ n − 1 : pk ∈ Bk}), pn ∈ γ is an (arbitrary) representative,
pk ∈ Sk is such that Fn−1

k pk = pn for each k ≤ n, and γn1+1 is the atom in γ̂n1+1 for which
Fn−1

n1+1(γn1+1)⊃ γ .

Proof. To start, let us describe the disintegration measures (ν1)γ̂1(p1) for p1 ∈ S1. It is
clear that

(ν1)γ̂1(p) =
1

LebHp1
(γ̂1(p1))

LebHp1
|γ̂1(p1), (12)

where Hp1 is as in §6.1 and Len(γ ) denotes the arc length of a smooth connected curve
γ ⊂ T2. Thus, Lemma 6.10 holds trivially in this case with n1 = 1.

Inductively, let us express the disintegration νn+1 in terms of that for νn . Observe that

νn+1 = (Fn)∗νn|Sn∩Bn + (Fn)∗νn|Sn\Bn ;

since Sn ∩ Bn, Sn\Bn ∈ Pn , it suffices to consider these separately in working out the
disintegration measures (νn+1)γ , γ ∈ γ̂n+1.

On Fn(Sn ∩ Bn), Case 2 is applied in constructing γ̂n+1|Fn(Sn∩Bn) and so disintegration
measures are obtained using the analogue of (12) with n + 1 replacing 1.

On Fn(Sn\Bn), we apply Case 1 in the construction of γ̂n+1, i.e., γ̂n+1 =

Pn+1|Fn(Sn∩Bn) ∨ Fn(γ̂n|Sn∩Bn ). In particular, the disintegration (νn+1|Fn(Sn\Bn))γ , γ ∈

γ̂n+1 can be obtained by disintegrating, for each γ̌ ∈ γ̂n , the measures (Fn)∗((νn)γ̌ ) against
the (finite) partition Pn+1|Fn(γ̌ ). To wit, if γ ∈ γ̂n+1|Fn(Sn\Bn) has γ ⊂ Fn(γ̌ ) for γ̌ ∈ γ̂n+1,
then

(νn+1)γ =
1

(νn)γ̌ (F
−1
n γ )

(Fn)∗((νn)γ̌ )|γ .

In particular, we have shown that for any p, q ∈ γ , we have that

ρn+1
γ (p)

ρn+1
γ (q)

=
det(d Fn|T γ̌ ) ◦ F−1

n (q)

det(d Fn|T γ̌ ) ◦ F−1
n (p)

·

ρn
γ̌
◦ F−1

n (p)

ρn
γ̌
◦ F−1

n (q)
.

Lemma 6.10 follows by iterating the above relations from n1 + 1 to n − 1. �

6.4. Description of (Fn)∗νS . Here we synthesize the results of §§6.1–6.3 into our main
result, a precise description of the bulk of (Fn)∗νS as foliated by a collection of fully
crossing horizontal curves with controlled disintegration densities.

PROPOSITION 6.11. Let n ≥ 2. Then there are a measurable set G ⊂ Fn S and a
measurable partition G of G with the following properties.
(a) Each atom γ ∈ G is of the form graph hγ , where hγ : (0, 1)→ T1 is a C2, fully

crossing horizontal curve with ‖h′γ ‖C0 = O(L−ηn ).
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(b) We have the estimate

νn+1(G)≥ 1− O(L−(1/2)(1−η)n )− νS{σ > n}

≥ 1−
(

O(1)+ CS +
C

Leb(S)

) ∞∑
i=bn/4c

L−(1/2)(1−η)i (13)

on inserting the estimate in Proposition 6.4.
(c) Let νG denote the restriction νn+1|G and let {(νG)γ }γ∈G denote the canonical

disintegration of νG with respect to G by probability measures supported on each
γ ∈ G. Let ργ : γ → [0,∞) denote the density of (νG)γ with respect to Lebγ . Then,
for any p1, p2 ∈ γ , we have

ρ(p1)

ρ(p2)
≤ eC L1−2η

n .

Proof. To start, define

Ĝn = {γ̂ ∈ γ̂n : (νn)γ̂ Fn−1
{σ ≤ n}> 0} and Ĝn =

⋃
γ̂∈Ĝn

γ̂ .

By Lemma A.1 in the appendix, we have

νn(Ĝn)= ν
T
n {γ̂ ∈ Ĝn} ≥ ν1{σ ≤ n}.

Recalling the notation in Lemma 2.7, we define G by

G =
⋃
γ̂∈Ĝn

0̄n(γ̂ ) and G =
⋃
γ∈G

γ =
⋃
γ̂∈Ĝn

Fn(γ̂ \Bn(γ̂ )),

noting that G partitions G into horizontal curves γ which satisfy item (a) by construction.
To check item (b), for each γ̂ ∈ γ̂n and subset K ⊂ γ̂ , we have that

(νn)γ̂ (K )≤
C

Len(γ̂ )
Lebγ̂ (K )

on applying the distortion estimate in Lemma 2.5 to the density ρn
γ̂

derived in Lemma 6.10.

Since Len(γ̂ )−1
= O(L1−η′

n ) from the fact that γ̂ ∩ Fn−1
{σ ≤ n} 6= ∅, we obtain the

estimate

(νn)γ̂ (Bn(γ̂ ))= O
(

L−1+η
n

L−1+η′
n

)
= O(L−(1/2)(1−η)n )

on inserting K = Bn(γ̂ ). Thus, (13) follows on noting that −1+ η′ =−1+ (1+ η)/2=
(η − 1)/2.

For item (c), let p1, p2 ∈ γ for some γ ∈ G and assume that γ ∈ 0̄n(γ̂ ) for γ̂ ∈ γ̂n . Then

ργ (p1)

ργ (p2)
=

det(d Fn|T γ̂ ) ◦ F−1
n (p2)

det(d Fn|T γ̂ ) ◦ F−1
n (p1)

·

ρn
γ̂
◦ F−1

n (p1)

ρn
γ̂
◦ F−1

n (p2)

in the notation of §6.3. The first factor is bounded ≤ eC L1−2η
n ‖p1−p2‖ by Lemma 2.5. For

the second factor, note that ‖F−1
n (p1)− F−1

n (p2)‖ ≤ L−ηn ‖p1 − p2‖ by Lemma 2.4 and

so Lemma 6.10 yields the estimate ≤ eC L1−2η
n1 ·L−ηn ‖p1−p2‖ ≤ eC L−ηn . The estimate in item

(c) follows. �
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7. Decay of correlation estimates
Leaning on the mixing mechanism explored in the previous section, we complete here the
proof of Theorem C.

In §7.1 we will show how to reduce Theorem C to the case when ϕ is the characteristic
function of a small square (Proposition 7.1). In §7.2 we apply the results of §6 when S is
a small square and give the proof of Proposition 7.1.

We assume throughout §7 that η ∈ (1/2, 1) has been fixed and that {Ln} has the property
that

∑
n L−1+η′

n <∞, where η′ = (η + 1)/2 is as in §6.2.1. These assumptions are
consistent with the hypotheses of Theorem C.

7.1. Reduction. We will show here that to prove Theorem C, it suffices to prove the
following.

PROPOSITION 7.1. Let R be a square in T2 of side length ` and let ν denote the normalized
Lebesgue measure restricted to R. Let ψ : T2

→ R be α-Holder continuous. Then∣∣∣∣ ∫ ψ ◦ Fn dν −
∫
ψ

∣∣∣∣
≤ C‖ψ‖α max

{
L−min{2η−1,α(1−η)/(α+2)}
bn/2c , `−2

∞∑
i=bn/8c

L−(1/2)(1−η)i

}
.

Proof of Theorem C assuming Proposition 7.1. Below, n ≥ 2 is fixed, as are α-Holder
continuous ϕ, ψ : T2

→ R. Let us write Sn for the first element in the max{· · · } in
Proposition 7.1 and write Tn for the summation in the second term, so that the bound
on the right-hand side reads as ≤ C‖ψ‖α max{Sn, `

−2Tn}.
With K ∈ N to be specified later, subdivide T2 into rectangles Ri, j , 1≤ i, j ≤ K of side

length `= 1/K each. We set
ϕi, j = inf

p∈Ri, j
ϕ(p).

Define ϕ̂ :=
∑K

i, j=1 ϕi, jχRi, j , so that∫
(ϕ − ϕ̂) d Leb= O(‖ϕ‖α · `α).

Let νi, j denote normalized Lebesgue measure on Ri, j . Then∫
ψ ◦ Fn

· ϕ =

∫
ψ ◦ Fn

· (ϕ − ϕ̂)+

K∑
i, j=1

`2ϕi, j

∫
ψ d Fn

∗ ν
i, j .

For the first term, ∫
ψ ◦ Fn

· (ϕ − ϕ̂)= O(‖ψ‖α‖ϕ‖α`α).

Similarly, we estimate∫
ψ ·

∫
ϕ =

∫
(ϕ − ϕk) ·

∫
ψ +

K∑
i, j=1

`2ϕi, j

∫
ψ

= O(‖ψ‖α‖ϕ‖α`α)+
K∑

i, j=1

`2ϕi, j

∫
ψ;
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hence, ∣∣∣∣ ∫ ψ ◦ Fn
· ψ −

∫
ψ

∫
ϕ

∣∣∣∣≤ K∑
i, j=1

`2ϕi, j

∣∣∣∣ ∫ ψ d Fn
∗ ν

i, j
−

∫
ψ

∣∣∣∣
+ O(‖ψ‖C0 [ϕ]α`

α)

= ‖ψ‖α‖ϕ‖α · O(Sn + `
−2Tn + [ϕ]α`

α).

Setting

K =
⌊(
[ϕ]α

Tn

)1/(2+α)⌋
,

we obtain the estimate∣∣∣∣ ∫ ψ ◦ Fn
· ϕ −

∫
ϕ

∫
ψ

∣∣∣∣≤ C‖ψ‖α‖ϕ‖(4+α)/(2+α)α (T α/(2+α)
n + Sn).

The only difference between this and our desired estimate is the exponent of ‖ϕ‖α on the
right-hand side. To fix this, define ϕ̌ = ϕ/‖ϕ‖α and note that ‖ϕ̌‖α = 1; for this function,
we have ∣∣∣∣ ∫ ψ ◦ Fn

· ϕ̌ −

∫
ϕ̌

∫
ψ

∣∣∣∣≤ C‖ψ‖α(T α/(2+α)
n + Sn)

and so the desired estimate follows on multiplying both sides by ‖ϕ‖α . To complete the
proof, observe that

max{Sn, T α/(α+2)
n } ≤max

{
L1−2η
bn/2c,

( ∑
i=bn/8c

L−(1/2)(1−η)i

)α/(α+2)}

since T α/(α+2)
n always dominates L−α(1−η)/(α+2)

bn/2c . �

7.2. Proof of Proposition 7.1. To complete the proof of Theorem C, it remains to
prove Proposition 7.1. We combine the description in Proposition 6.11 of the foliation by
long horizontal curves with the mixing estimate in Proposition 2.8 along those horizontal
curves.

To wit: let ψ : T2
→ R be α-Holder continuous and let R be a square of side length `

as in the statement of Proposition 7.1. With ν denoting the Lebesgue measure restricted to
R and (for notational convenience) applying the substitution n 7→ 2n, we will estimate∫

ψ ◦ F2n dν =
∫
ψ ◦ F2n

n+1 d(Fn
∗ ν). (14)

For each k ≥ 1, define νk = Fk−1
∗ ν1, where ν1 = ν. Applying Proposition 6.11 to S =

R, we obtain the collection G of horizontal curves foliating the set G ⊂ Fn R. In the
notation of Proposition 6.4, we have CR = O(`−1) and so

νn+1(Gc)= O
(
`−2

∞∑
i=bn/4c

L−(1/2)(1+η)i

)
.
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Returning to the estimate of (14),

(14)= O(‖ψ‖α νn+1(Gc))+

∫
ψ ◦ F2n

n+1 dνG

= O(‖ψ‖α νn+1(Gc))+

∫
G/G

( ∫
γ

ψ ◦ F2n
n+1 d(νG)γ

)
dνT

G ,

where the transversal measure νT
G is the pushforward of νG onto G/G.

Fixing γ ∈ G, we have by the density estimate in Proposition 6.11 that∫
γ

ψ ◦ F2n
n+1 d(νG)γ = (1+ O(L1−2η

n ))

∫
γ

ψ ◦ F2n
n+1 d Lebγ

and so applying Proposition 2.8 with m 7→ n + 1, n 7→ 2n, we have∫
γ

ψ ◦ F2n
n+1 d(νG)γ

= (1+ O(L1−2η
n )) Len(γ ) ·

∫
ψ + (1+ O(L1−2η

n ))‖ψ‖α

· O
(

L−α(1−η)/(2+α)2n + L1−2η
n+1 +

2n−1∑
k=n+1

L−1+η
k

)

=

∫
ψ + ‖ψ‖α · O

(
L−α(1−η)/(2+α)2n + L1−2η

n +

2n−1∑
k=n+1

L−1+η
k

)
.

Collecting these estimates, we conclude that∣∣∣∣∫ ψ ◦ F2n dν −
∫
ψ

∣∣∣∣≤ C‖ψ‖α

(
L−min{2η−1,α(1−η)/(2+α)}

n + `−2
∞∑

i=bn/4c

L−(1/2)(1−η)i

)
.

This completes the proof.
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A. Appendix.
LEMMA A.1. (Partition saturation) Let X be a compact metric space, Bor(X) the Borel
σ -algebra on X, and µ a probability on (X, Bor(X)). Let ξ be a measurable partition
of X and denote by (µC )C∈ξ the canonical disintegration of µ with respect to ξ . Let µT

denote the transverse measure on X/η.
Let Y ∈ Bor(X). Then µT

{C ∈ X/η : µC (Y ) > 0} ≥ µ(Y ).

Proof. We estimate

µ(Y )=
∫

X/η
µC (Y ) dµT (C)=

∫
C∈X/η:µC (Y )>0

µC (Y ) dµT (C)

≤ µT
{C ∈ X/η : µC (Y ) > 0}.

�
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