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A note on the appearance of wave-packets in
steady-state triple-deck solutions of supersonic
flow past a compression corner
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This study is an attempt at solving steady-state triple-deck equations using the method of
Bos & Ruban (Phil. Trans. R. Soc. Lond. A, vol. 358, issue 1777, 2000, pp. 3063-3073)
for supersonic flow past a compression corner. This was motivated by the fact that in their
above paper, they show solutions for scale angles up to 8, the highest obtained so far in
the literature. However, we encountered a stationary wave-packet at the corner for scale
angles 1.82 and 1.96, depending on the values of stretching factors. Our solutions are then
compared with the steady-state solutions produced using the method of Logue, Gajjar &
Ruban (Phil. Trans. R. Soc. A, vol. 372, issue 2020, 2014, 20130342), which do not show
such wave-packets. These wave-packets do not appear to be the result of flow instability,
as flow instabilities should only appear with unsteady equations (Cassel, Ruban & Walker,
J. Fluid Mech., vol. 300, 1995, pp. 265-285). It is therefore suggested that the method of
Bos & Ruban (Phil. Trans. R. Soc. Lond. A, vol. 358, issue 1777, 2000, pp. 3063-3073)
produces these spurious wave-packets as a consequence of their numerical method. This
has important implications in the interpretation of triple-deck solutions.
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1. Introduction

Since the development of the triple-deck theory by Stewartson & Williams (1969), Neiland
(1969) and Messiter (1970), many advances have been made in its application to various
flow problems, particularly shock-wave—boundary layer interaction in both supersonic and
hypersonic regimes (for example, Neiland 1970; Stewartson 1970; Brown, Stewartson
& Williams 1975; Burggraf 1975; Smith 1988a; Brown, Cheng & Lee 1990; Smith &
Khorrami 1991). Notable advances in triple-deck theory include boundary layer transition
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and Rayleigh-type instability triggered by wall-mounted disturbances of scale smaller
than the lower deck (Smith 1979; Smith & Bodonyi 1985; Tutty & Cowley 1986). Smith
(1988a,b) has discussed finite-time boundary layer break-up due to localised nonlinear
singularities as well as steady-state singularities induced by large flow reversals. During
this period, there have also been some controversial issues such as the existence and
possibility of reverse flow singularity in large separated flows as suggested by Smith
(1988b) and Smith & Khorrami (1991), which was disputed by Korolev, Gajjar & Ruban
(2002). This issue still remains unresolved.

Another problem that has attracted the particular attention of researchers in recent years
is the occurrence of wave-packets in the solutions of unsteady triple-deck equations at
moderate scale angles in supersonic and hypersonic flows. Such an instability feature was
first noted and discussed by Cassel, Ruban & Walker (1995) and subsequently explored
by Fletcher, Ruban & Walker (2004), Logue, Gajjar & Ruban (2014) and also Exposito,
Gai & Neely (2021). Despite these investigations, the precise nature of the breakdown in
the solutions of unsteady triple-deck equations, whether they are physical or numerical,
still remains unclear. What prompted the present investigation is our somewhat surprising
finding that such wave-packets were encountered at fairly small scale angles in supersonic
steady-state triple-deck equations when we attempted to reproduce the solutions of
steady-state triple-deck equations by Bos & Ruban (2000), who show solutions up to scale
angle as high as 8 without encountering any wave-packets.

In considering the supersonic flow over a compression corner, Ruban (1978) and
Rizzetta, Burggraf & Jenson (1978) solved the unsteady triple-deck equations. Rizzetta
et al. (1978) showed that the scale angle for incipient separation was «; ~ 1.57. The range
of scale angles considered by Rizzetta et al. (1978) was limited to 3.5. The method of
Ruban (1978) would later be used by Cassel et al. (1995) to obtain solutions for scale
angles up to 3.9. For scale angles greater than 3.9, they found that a wave-packet appears
at the corner, which grows unbounded for larger scale angles. According to Tutty & Cowley
(1986), a Rayleigh physical instability can spontaneously develop in the numerical solution
of supersonic triple-deck equations, provided that the following condition is met:

/o o—op (1)

where uq is the streamwise velocity in the profile of the unperturbed triple-deck solution,
and c is the complex wave speed of the disturbance. Tutty & Cowley, in their paper, also
make the point that to obtain steady solutions, all ‘unsteady’ instabilities are suppressed.
Cassel et al. (1995), using unsteady solutions, showed that both Fjgrtoft’s and Rayleigh’s
velocity profile inflection conditions for the appearance of an instability were met.
However, these are necessary but not sufficient conditions. Fletcher et al. (2004) then
considered this instability more rigorously. They found that the flow was convectively
unstable in the range 3.2 < « < 3.7, and absolutely unstable when o > 3.7. The amplitude
of the wave-packet was found to remain bounded for ¢ = 3.7, but to become unbounded
for o > 4.2.

This wave-packet has important implications for the triple-deck theory. Once it appears,
it distorts the solution and does not permit a clear interpretation of the results for larger
scale angles. The wave-packet has also appeared in the solution of hypersonic flow over
a cooled wall, as shown by Cassel, Ruban & Walker (1996). Steady-state solutions to the
triple-deck equations have also been used to analyse the flow for large scale angles. Smith
& Khorrami (1991) showed steady-state solutions to supersonic triple-deck equations for
scale angles up to 6.6. These results were later questioned by Korolev er al. (2002),
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Figure 1. Triple-deck structure of a boundary layer facing a compression corner of physical angle a*.

who argued that the results were not independent of domain height. Using two different
numerical methods, they obtained steady-state solutions to the supersonic triple-deck
equations for scale angles up to 7.5. Logue et al. (2014) also obtained similar solutions
using a spectral method and studied the stability of the steady-state solutions to externally
imposed disturbances.

The study of Bos & Ruban (2000) considered steady-state solutions for supersonic and
subsonic flow over a compression corner. With regard to the supersonic case, wherein
they show results up to a scale angle of 8, it is important to point out that their results
are significantly different, with respect to several features, from those reported by other
authors. Our attempt, therefore, to reproduce their results, outlined in this study, shows that
a stationary wave-packet appears at the corner discontinuity when solving the triple-deck
equations. These results show that wave-packets can appear with steady-state equations in
contrast to restrictions as outlined by Tutty & Cowley (1986).

2. Formulation

The problem being considered is supersonic flow past a compression corner, as sketched
in figure 1. The figure shows the triple-deck structure with a ramp angle o™ which induces
separation if its strength is large enough.

The steady-state triple-deck equations to be considered are those of the incompressible
lower deck as usual,

ou au p  d%u

- — == — 2.1
“ox Uay dx + 9y? (2.1a)
ou n v 0 2.1b)

ax  dy '

with boundary conditions

u=v=0, aty=0, (2.2a)
u—y+AKx,t)+..., asy— oo, (2.2b)
u—y,as x - —oo, (2.2¢)
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where A(x, 1) is the displacement thickness of the lower deck. For supersonic flow over an
adiabatic wall, the interaction law is

=—— 4 =. 2.3
P ax + dx 23)
Variables have been scaled using the triple-deck scalings as outlined by Bos & Ruban
(2000).
The equations can be expressed in terms of the shear-stress (see Cassel et al. 1995; Bos
& Ruban 2000). Differentiation of (2.1a) with respect to y leads to

9 9 92
AR 2.4)
dx dy  9y?

The velocities can be recovered from the streamfunction, defined as u = dvr/dy, v =
—0dr/0x and

82
v =rT. (2.5)
9y?
The boundary conditions are now
d
- oy =0, aty=0, (2.6a)
dy
T — 1,as — *o00, (2.6b)
T — l,asy — oo. (2.6¢)

The displacement thickness in terms of the shear-stress is expressed as

y
A(x,t) = lim (u—y) = lim / (r — 1) dy, 2.7)
so that the interaction law is now expressed as
at d?f
— T—1)d 2.8
e 8x2/( Yy + 5 2.8)

The wall shape function used in this study is the same as those used by Cassel et al.
(1995) and Bos & Ruban (2000),

flo) = Q+ ﬁ+ﬂ) (2.9)

where r is the rounding parameter, taken as 0.5.

3. Numerical methods
3.1. The Bos—Ruban (BR) method

The BR method (Bos & Ruban 2000) is almost identical to that of Ruban (1978) and
Cassel et al. (1995), but with the following differences. The time derivative does not exist;
the term du/dx of the convective term udu/dx is solved implicitly and with a first-order
upwind method. A first-order approximation of the derivative dt/dy is employed as
in (2.8). As done by Cassel et al. (1995), second-order finite-differences are used for
the wall-normal derivatives. The domain is divided into i = 1, ..., [ in the streamwise

953 A8-4


https://doi.org/10.1017/jfm.2022.955

https://doi.org/10.1017/jfm.2022.955 Published online by Cambridge University Press

Wave-packets in steady-state triple-deck solutions

direction, and j = 1, ..., J in the wall-normal direction. Denoting the vector of unknowns
at streamwise station i as T; = (7, 1, . . ., 7;s), the BR method then leads to a tridiagonal
system,

A,'T,'_1+B,'Ti+C,'T,'+1=Di fori=2,...,I—1. (3.1)

As discussed therein, matrices A; and C; contain zero elements except along the main
diagonal due to the momentum equation, and along the first row due to the interaction
law. Matrix B; has non-zero elements in the three main diagonals and the first row.
Vector D; has two non-zero elements; the first is due to the interaction law, the last due
to the boundary condition at y — o0o. Once the solution T7; is known, u;; and v;; are
recovered through the streamfunction. Again, as done by Cassel et al. (1995), the following
coordinate transformation is applied

A 2 X N 2 y
X = — arctan <—> , y= —arctan (—) , (3.2a,b)
T a T b

which clips the region (—o0, 0) < (x,y) < (00, yo) to a rectangular domain (—1,0) <
(x,9) < (1, Yoo). The grid is clustured towards points x = 0, y = 0, where the refinement
is controlled by stretching parameters a and b. The height domain y., has been chosen as
50 in this study.

3.2. The Logue method

The method of Logue ef al. (2014) is described in Logue (2008). Here, the equations in
primitive variables (2.1) are considered. Second-order finite differences are applied in the
streamwise direction. Transformation (3.2a,b) is used in the streamwise direction only. In
the wall-normal direction, Chebyshev collocation points are employed, defined as

yj = yio(zj' +1) and gz = —cosﬂ, j=0,1,...,N,, (3.3a,b)
2 Ny
where N, is the number of points in the wall-normal direction. Derivatives in the
wall-normal direction are calculated with Chebyshev differentiation matrices. With this
arrangement, a Newton linearisation leads to a pentadiagonal system of equations, which
is solved at every iteration until convergence. For the small scale angles considered in the
present study, the calculations could start from the initial condition u = y.

4. Results and discussion
4.1. Results free of wave-packets

We note that Bos & Ruban (2000) did not specify their stretching factors a and b. In this
study, scale angles in the range of o = 1.0-3.0 were calculated with a = b = 10 for the
BR method and @ = 5 for the Logue method (see Cassel ef al. 1995). At scale angles that
give a solution free of wave-packets, the calculations converged within a few iterations.
Convergence is here defined as the iteration at which the L, norm of the wall shear-stress,
normalised by the first value, is lower than 5 x 1074,

Figure 2 shows the shear-stress results for scale angle 1.5 with the BR method, and
for 3.0 with the Logue method. Three levels of grid refinement were employed with each
method, to show that grid independence has been achieved with meshes I = 201, J = 101
(for the BR method) and N, = 401, Ny, = 51 (for the Logue method). Results with the
BR method were independent of further mesh refinement in the wall-normal direction.
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Figure 2. (a) Shear stress for scale angle 1.5 by the BR method with three grids (blue, / = 101,J=51;red, / =
201, J = 101; green, [ = 401, J = 201). (b) Shear-stress for scale angle 3.0 by the method of Logue with three
grids (blue, Ny = 201, Ny = 31; red, N, = 401, Ny = 51; green, N, = 601, N, = 101). Results are identical for
all grids, thus only the last (green) colour is visible.

(@)

1.0 1

Figure 3. (a) Shear stress and (b) pressure distributions for scale angles « = 1.0, ..., 3.0 in 0.5 increments
from blue to red. Present calculations with the BR method (continuous lines, / = 201, J = 101, a = b = 10)
and solutions obtained with the Logue method (discontinuous lines, Ny = 401, N = 51, a = 5).

In triple-deck theory, wall-normal gradients are generally assumed to be negligible
compared to streamwise gradients, and therefore the solution is more sensitive to grid
refinement in the streamwise direction than in the wall-normal direction.

Figure 3 shows the shear stress and pressure distributions over the wall for scale angles
1.0 and 1.5 with the BR method, and up to 3.0 with the Logue method. The results compare
well with those of Cassel er al. (1995) and Bos & Ruban (2000), which validates the
numerical method for low scale angles.

Incipient separation occurs at a scale angle of 1.82 with a = b = 10. This compares
well with the 1.9 value of Cassel et al. (1995), but much higher than the value reported by
Rizzetta et al. (1978) (« = 1.57). Bos & Ruban (2000) report an incipient separation angle
as o = 1.62. In fact, closer inspection of shear stress distributions in figure 2(a) of their
paper appears to show incipient separation to be nearer to « = 2.0 than o = 1.62.

4.2. Existence of wave-packets

For stretching factors a = b = 5, a stationary wave-packet first appears at the corner
with o = 1.82, as shown in figure 4. With a = b = 10, it appears at 1.96 (figure 5). The
difference is due to the lower resolution of the wave-packet at the corner for a = b = 10.
Once the wave-packet appears, the properties of the wave packet seem identical for both
values of grid stretching. The wave-packet stays at the corner, its amplitude bounded.
The amplitude grows with the increase in scale angle, however. Two Supplementary
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Figure 4. (a) Shear stress and (b) pressure distributions for scale angle o = 1.82, showing a steady
wave-packet at the corner. Present calculations with the BR method (blue line, / = 201, J = 101, a = b =)
and solutions obtained with the Logue method (red line, Ny = 401, N, = 51, a = 5).
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Figure 5. (a) Shear stress and (b) pressure distributions for scale angle o = 1.96, showing a steady
wave-packet at the corner. Present calculations with the BR method (blue line, / = 201, J = 101, a = b =5)
and solutions obtained with the Logue method (red line, Ny = 401, N, = 51, a = 5).
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Figure 6. (a) Shear stress and (b) pressure distributions for scale angle o = 3.0. Present calculations with the
BR method (blue line, / = 201, J = 101, a = b = 10) and solutions obtained with the Logue method (red line,
Ny =401,N, =51,a =5).

Movies available at https://doi.org/10.1017/jfm.2022.955 have been attached to this paper
to facilitate the visualisation of the results. Figure 6 shows the shear-stress and pressure
distribution for scale angle 3.0 with a = b = 10, showing a large wave-packet located at
the corner that we obtained with the BR method. With the Logue method, no wave-packets
are seen.
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Figure 7. Shear-stress at the corner for scale angle 2 and mesh / = 201, J = 101 (blue), and mesh / = 401,
J =201 (red).

It is possible that wave-packets could potentially represent an alternative solution to
the triple-deck equations as a result of bifurcation. In unsteady Navier—Stokes equations
and subsonic flow, Nagata (1990) showed that different solutions can exist besides the
well-known pure Couette flow. This seems to be also the case with triple-deck equations.
Ruban & Gajjar (2015) showed a bifurcation diagram for subsonic corner flow. They do
not comment on the possibility of bifurcation of triple-deck solutions when discussing
supersonic flow at the corner (p. 302). However, such wave-packets must be independent
of mesh refinement to represent a true solution to these equations.

The frequency and amplitude of the wave-packet were found to be dependent on
grid-refinement. Figure 7 shows the shear-stress at the corner for scale angle 2 and two
values of grid refinement, / = 201 and / = 401. As the number of points in the streamwise
direction increases, the frequency and amplitude of the wave-packet increase.

To further examine the effect of mesh refinement on the frequency of the wave-packet,
we produced the spectrum of the shear-stress for scale angles 2 and 3 and different
levels of mesh refinement. This data are shown in figure 8. This figure illustrates the
spectrum on X for N values in the range of —20 < x < 20 to focus exclusively on the
wave-packet. The values of N increase with increasing mesh refinement in the streamwise
direction. The absolute value of the resulting Fourier transform is denoted by |F;|.
This parameter is obtained with the BR method for meshes 101 x 51, 201 x 101 and
301 x 151. The spectrum corresponding to the wave-packet free solution, produced with
the Logue method, is also included for comparison. For both scale angles 2 and 3, one
mode is identified at low wavenumber (k) values, which corresponds to the wave-packet
free solution as indicated by the Logue solution. A second mode appears for higher
wavenumbers and BR solutions. This mode is absent in the spectrum corresponding to
the Logue solution, and thus must correspond to the wave-packet. It moves towards larger
wavenumbers with mesh refinement, the amplitude increasing with increasing number of
cells for scale angle 2 and remaining constant for scale angle 3.

These wave-packets therefore do not appear to be the consequence of bifurcation.
Moreover, the Rayleigh inflection point theorem, which is a necessary condition for the
appearance of instability, is not met for scale angles up to 3.9 as per Cassel et al. (1995).
Since wave-packets have never been observed in other solutions of steady-state triple-deck
equations (Smith & Khorrami 1991; Korolev et al. 2002; Logue et al. 2014), we believe
that such wave-packets are a numerical artefact produced by the algorithm. The possibility
of bifurcation raised by Prof. Ruban (private communication) seems characteristic of
subsonic triple-deck solutions at the corner, as discussed by Ruban & Gajjar (2015).
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Figure 8. Spectrum of the shear-stress for scale angles (a) 2 and (b) 3. Black, Logue method with N, = 401,
Ny = 51; blue, BS method with I = 101, J = 51; red, BR method with I = 201, J = 101; green, BR method
with I = 301, J = 151. Here, N is the number of elements within the region x € [—20, 20].

4.3. Further observations

The method of Cassel er al. (1995) is similar to that of Bos & Ruban (2000), and it
is therefore possible that the wave-packets shown by Cassel et al. (1995) and Fletcher
et al. (2004) are also a product of the numerical scheme employed by these authors.
This has been discussed in an earlier study (Exposito et al. 2021). Unfortunately, the
numerical scheme adopted by Cassel et al. (1995) and Fletcher et al. (2004) is the only
method that has been used to produce unsteady solutions to the triple-deck equations.
Unsteady solutions obtained with a new numerical scheme would be helpful to determine
if wave-packets appear in triple-deck solutions.

Several claims outlined by Bos & Ruban (2000) also seem to contradict the existing
literature, particularly Logue et al. (2014). First, the secondary separation bubble seems
significantly smaller for a scale angle of 8. Second, no clear secondary separation is seen in
the shear-stress distribution, compared to the results of Smith & Khorrami (1991), Korolev
et al. (2002) and Logue et al. (2014). Korolev et al. (2002) and Logue et al. (2014) reported
the highest scale angle was 7.5. Third, the second shear stress minimum of Bos & Ruban
(2000) moves upstream towards the corner (for scale angles 4 to 8, their figure 2¢), unlike
the shift downstream of the corner according to Logue et al. (2014) (for scale angles 4.5
to 7.5, their figure 1b). Finally, no secondary pressure plateau is seen, in contrast to what
is shown in figure 6(b) of Korolev et al. (2002). In our private communication with Prof.
Ruban to elicit his response to our results, his comment was that provided our results were
mesh independent, then these wave-packets might be some sort of coherent structure. His
other comments were that the main focus of their paper was to test their numerical method
and also that the ramp geometry was slightly distorted (without specifying how).

To facilitate the reproduction of our results, the MATLAB files with which our results
were obtained have been uploaded to a public repository (Exposito 2022).

5. Conclusions

Our attempt at reproducing the data of Bos & Ruban (2000) using their numerical
methodology has shown significantly different results. Our calculations have shown that a
stationary wave-packet appears at the corner in a steady-state solution at a scale angle as
low as 1.82 and grows stronger with an increase in scale angle. Such an unexpected feature
in a steady-state solution does not seem to have been reported in the triple-deck literature
before. We believe this is a numerical artefact specific to their numerical scheme and
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should be of interest to researchers studying triple-deck theory and numerical interactive
problems.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.955.
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