
WHAT IS A UNIT
OF CAPACITY WORTH?

B. A. CHHHIIIEEERRRAAA AAANNNDDD P. G. TAAAYYYLLLOOORRR
Department of Applied Mathematics

University of Adelaide
Adelaide, South Australia

E-mail: {bchiera,ptaylor}@maths.adelaide.edu.au

Consider a finite-capacity telecommunications link to which connection requests
arrive in a Poisson process+ Each connection carried on the link earns a certain
amount of revenue for the link’s manager+ Now, assume that the manager is offered
the opportunity to buy or sell a unit of the link’s allocated capacity+ Assuming that
the manager has a knowledge of the current number of connections on the link, we
demonstrate a method of calculating the buying and selling prices+

1. INTRODUCTION

There are many situations in which we might wish to place a value on the amount of
capacity that is allocated to a telecommunications link+ An obvious case occurs
when the manager of the link has the option to purchase extra capacity, which will
allow more customers to be carried, or to sell capacity, which will restrict the num-
ber of customers that can be carried+The question arises as to how much the manager
should pay or charge for the resources that can be bought or sold+

Perhaps less obviously, the issue of the value of capacity is crucial to a class of
schemes which can be used for the management of complex telecommunications
networks+Consider the situation where origin–destination pairs are allocated logical
paths~such as virtual paths in ATM networks or label-switched paths in multipro-
tocol label switching, MPLS, networks! that share physical resources+ The number
of connections that can be carried on such a logical path depends on some~perhaps
notional! amount of capacity that is allocated to the path+ If logical paths are allowed
to transfer capacity between themselves, then we have precisely a situation where it
makes sense to allocate a value to capacity+ Even though logical paths may not be
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purchasing capacity in any real sense, efficient management schemes can be de-
signed by assuming that they operate as if they are in such a “capacity market+”

In this short note, we consider the problem of placing a value on capacity in an
M0M0C0C loss system; that is, a C-server loss system where each of theC servers
represents the amount of capacity needed to carry one connection on a link+ The link
can buy or sell capacity so thatC is increased toC 1 1 or decreased toC 2 1+

Previous work in this area, including that of Lanning,Massey,Rider, and Wang
@6# and the references therein, has studied the prices that should be charged to cus-
tomers in a dynamic loss system+ This work is the closest in spirit to ours+ However,
the perspective of@6# is that of an Internet billing system where arrival rates are user
cost dependent+ Fulp and Reeves@3# concentrated more heavily on multimarket
scenarios, where the price of bandwidth is determined on the basis of current and
future usage+

Other proposed models include WALRAS~see Wellman@7# ! which computes
prices for bandwidth trading in a market-oriented environment by use of the taton-
nement process in a competitive equilibrium+ This model was set up as a producer–
consumer problem which requires the simultaneous solution of three constrained
linear programming~LP! problems+WALRAS has since been used in later research,
in particular by Yamaki, Wellman, and Ishida@8# , where bandwidth is traded at
prices computed to reflect current and future capacity requirements+ The main dis-
advantage of the WALRAS model is that the time for computation can exceed the
time in which the underlying market changes+ This problem was overcome, to some
degree, in Yamaki, Yamaauchi, and Ishida@9# , where the authors demonstrated that
it is possible to interrupt the WALRAS calculation after some “adequate” time span
and use the interrupted prices+ The model is then restarted with the updated network
information, only to be interrupted at some further “adequate” point in time+

In this article,we present an alternative approach to the pricing of capacity+First,
we present a scheme which, given certain network parameters,will compute the ex-
pected lost revenue due to blocking, conditional on the system starting in a given state+
We then translate this expected lost revenue into both a buying price and selling price
for capacity in the system, again relying on knowledge of the state at time zero+

The article is organized as follows+ In Section 2, we define a model to compute
the expected lost revenue based on the current state of the system+ In Section 3, a
method for the translation of the expected loss in revenue into buying and selling
prices is given+ Our conclusions are given in Section 4+

2. MODEL AND ANALYSIS

As is well known~see, e+g+, @5# !, the M0M0C0C loss system can be modeled by a
continuous-time Markov chain with state space$0,1, + + + ,C% and transition rates of
the form

qn, n11 5 Hl, 0 # n , C

0, n 5 C,
(1)

qn, n21 5 nµ, n # C, (2)
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wherel andµ21 are positive constants denoting the arrival rate and mean holding
time of connections, respectively+Arrivals to a fully occupied system are lost+ Let u
denote the expected revenue generated per accepted arrival to the system+We set up
a model to compute the expected loss in revenue, conditional on a knowledge of the
current number of customers in the system, as follows+

Let Rn~t ! denote the expected revenue lost in the interval@0, t # given that there
aren connections at time 0 and letRn~t 6x! be the same quantity conditional on the
fact that the first time that the network departs from staten is x+ Because the link
loses revenue at rateul whenC connections are present and not at all when less than
C connections are present, we see that

Rn~t 6x! 5 5
0, n , C, t , x

ult, n 5 C, t , x

nµ

l 1 nµ
Rn21~t 2 x! 1

l

l 1 nµ
Rn11~t 2 x!, n , C, t $ x

ulx 1 RC21~t 2 x!, n 5 C, t $ x+

(3)

When there aren connections on the link, let Fn be the distribution of the time until
the first transition+ Then,

Rn~t ! 5E
0

`

Rn~t 6x! dFn~x!+ (4)

Due to the Markovian nature of the model, Fn is exponential with parameterl 1 nµ
whenn, Cand exponential with parameterCµwhen the link is full+Substituting~3!
into ~4!, we see that there are three cases that we need to consider:

Case 1: n5 0+ In this case, dF0~x! 5 le2lx dx+ From ~3!, we have

R0~t ! 5E
0

t

R0~t 6x! dF0~x!

5E
0

t

R1~t 2 x!le2lx dx+ (5)

Case 2: 0 , n , C+ In this case, dFn~x! 5 ~l 1 nµ!e2~l1nµ!x dx, and from~3!,Rn~t !
becomes

Rn~t ! 5E
0

t

Rn~t 6x! dFn~x!

5E
0

t

@nµRn21~t 2 x! 1 lRn11~t 2 x!#e2~l1nµ!x dx+ (6)

WHAT IS A UNIT OF CAPACITY WORTH? 515

https://doi.org/10.1017/S0269964802164084 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964802164084


Case 3: n5 C+ Finally, in the third case, dFC~x! 5 ~Cµ!e2~Cµ!x dx and

RC~t ! 5E
0

t

RC~t 6x! dFC~x! 1E
t

`

RC~t 6x! dFC~x!

5 CµE
0

t

@RC21~t 2 x! 1 ulx#e2~Cµ!x dx

1 CµE
t

`

ulte2~Cµ!x dx,

which is equivalent to

RC~t ! 5 CµE
0

t

RC21~t 2 x!e2Cµx dx1
ul

Cµ
~12 e2Cµt!+ (7)

Taking the Laplace transforms of~5!–~7!, we see that ERn~s! 5 *0
` e2stRn~t ! dt sat-

isfies the system of equations

ER0~s! 5
l

s1 l
ER1~s!, (8)

ERn~s! 5
l

s1 nµ1 l
ERn11~s! 1

nµ

s1 nµ1 l
ERn21~s!, 0 , n , C, (9)

ERC~s! 5
1

s1 Cµ
SCµ ERC21~s! 1

ul

s
D+ (10)

For network parametersC, l, µ, andu, the solution and inversion of~8!–~10! will
give the expected lost revenue in@0, t # conditional on there beingn connections at
time 0+

To solve these equations, note that~8! and~9! can be written in the form

Pn11~j! 5 ~j 2 ~dn1 f !!Pn~j! 2 n~gn1 h!Pn21~j!, n $ 0, (11)

whered5 2µ0l, f 5 21, g5 0, h5 µ0l, andj 5 s0l+ The recurrence relation~11!
describes the class of Meixner polynomials@2, p+ 164# + If , as is the case here, the
recurrence relation can further be written as

Pn11~j! 5 ~j 2 d~n 1 hd22!!Pn~j! 2 hnPn21~j!,

then the solution is known to be

Pn~j! 5 dnCn
~a!S j

d
D, (12)

wherea 5 hd22 andCn
~a!~{! is a Charlier polynomial+ Charlier polynomials can be

generally expressed in terms of Laguerre polynomials via the relation

Cn
~a!~j! 5 n! Ln

~j2n!~a!+
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Hence,

Pn~j! 5 dnn! Ln
~j0d2n!~a!+ (13)

It follows that the solution to~8! and~9! is

ERn~s! 5 A~s!PnS s

l
D, (14)

whereA~s! is a function ofsandPn is given by~13!+To findA~s!,we use~10!,which
gives us

ERC~s! 5 A~s!PCS s

l
D5

1

s1 Cµ
SCµA~s!PC21S s

l
D1

ul

s
D

and, therefore,

A~s! 5 S1

sDS ul

~s1 Cµ!PC~s0l! 2 CµPC21~s0l!D+
Thus, the general solution forERn~s! can be written as

ERn~s! 5 S1

sDS ul

~s1 Cµ!PC~s0l! 2 CµPC21~s0l!DPnS s

lD+ (15)

In order to deriveRn~t !, we need to invert ERn~s!+ In our numerical investigations
presented below,we use the Euler method outlined inAbate and Whitt@1# +However,
there are a number of methods available in the literature+ For a description of these
alternate methods, the reader is referred to Abate and Whitt@1# and Garbow,Giunta,
and Lyness@4# +

We now present an example of the computation ofRn~t ! for a small system with
C 5 6+

Example 1: M0M0606 Loss System+ Let C 5 6, u 5 1, l 5 3, andµ21 5 0+5+ The
values ofRn~t ! for n5 $0, + + + ,6% andt [ @0,10! are given in Figure 1+ The function
R0~t ! is the lowest curve and the functionR6~t ! is the highest curve+

As we would expect, we observe that, for all t, Rn~t ! increases withn+We also
observe that, with increasingt, Rn~t ! is well approximated by a linear function with
a slope that is independent ofn+ This slope is, in fact, equal toulE~1+5,6!, where
Erlang’s function

E~ r,C! [
rC0c!

(
i50

C

r i0i!

(16)

gives the equilibrium probability that the link is full when the traffic isr 5 l0µ and
the capacity isC+ This observation makes sense, becauseulE~1+5,6! is the equilib-
rium rate of losing revenue+ The difference in the height of the linear part of the
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functionsRn11~t ! andRn~t ! reflects the difference in expected lost revenue incurred
before equilibrium is reached when the system starts withn 1 1 customers rather
thann customers+

In Figure 1, we presented the lost revenue functions for a system with low
blocking~E~1+5,6! 5 0+00353!+ Figure 2 gives the lost revenue functions for a sys-
tem with high blocking+This has been achieved by increasing the mean holding time
µ21 to 2+ The blocking probabilityE~6,6! is equal to 0+26492+

The traffic, and hence the equilibrium slope of the curves, is much greater in
Figure 2 than in Figure 1+ However, the latter is still given byulE~ r,C!+ The dif-

Figure 1. Lost revenue functions forn50, + + + ,6 whenC56, l53, andµ2150+5+

Figure 2. Lost revenue functions forn5 0, + + + ,6 whenC5 6, l 5 3, andµ21 5 2+
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ference in the equilibrium height of the functionsRn11~t ! andRn~t ! does not vary as
much betweenn5 0 andn5 5 as for the low blocking system+ This reflects the fact
that, in the low blocking system, states with high occupancy are unlikely to be vis-
ited in the short term if the link does not start with a high occupancy+ Thus, the
penalty associated with starting in states with a high occupancy is high compared to
the penalty associated with starting in states with low occupancy+ In the high block-
ing system, the probability of moving to states with high occupancy in the short term
is relatively higher even if the starting state has a low occupancy+

Example 2: M0M01000100 Loss System+ In this example, we consider a larger sys-
tem with parametersC5100, u51, l585, andµ21 51+The values ofRn~t ! for n [
$0,25,50,75,90,100% and fort [ @0,10! are shown in Figure 3+

As with the smaller loss system, we immediately observe that after an initial
period in which the starting state has an effect, theRn~t ! increase linearly at the same
rate+ They are also increasing inn, with more pronounced increases asn becomes
large+

3. SETTING THE PRICE OF BANDWIDTH

Having determined the expected lost revenue in the time interval@0, t # , we are left
with the problem of converting this into prices at which one unit of extra capacity
should be “bought” or “sold+” Let us assume that the network manager is making
buying and selling decisions for a planning horizon ofT time units+ The selection of
T is a decision for the network manager+ If the link is such that opportunities for
capacity trading occur everyu time units, one possibility would be to makeT 5 u+
Such a choice would be myopic in the sense that it does not take into account the

Figure 3. Lost revenue functions forn5 0, 25, 50, 75, 90, and 100 whenC5100,
l 5 85, andµ21 5 1+

WHAT IS A UNIT OF CAPACITY WORTH? 519

https://doi.org/10.1017/S0269964802164084 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964802164084


number of connections on the link at the end of the time period nor, indeed, the
residual value of having extra capacity at timeu+

Once the manager has chosenT, we can regard the value of an extra unit of
capacity as the difference in the total expected lost revenue over time@0,T # if the
system were to increase its capacity by one unit at time zero+ Conversely, we can
calculate the selling price of a unit of capacity as the difference in the total expected
lost revenue over time@0,T # if the system were to decrease its capacity by one unit+

The buying and selling prices, Bn~T ! and Sn~T !, respectively, of bandwidth
when the initial state isn and the planning horizon isT can thus be written as

Bn~T ! 5 Rn,C~T ! 2 Rn,C11~T !, (17)

Sn~T ! 5 Rn,C21~T ! 2 Rn,C~T ! (18)

where the extra subscript inRn,C~T ! indicates the initial capacity+We expect that, for
all nandT,Sn~T ! . Bn~T !+We give some examples of the computation ofBn~T ! and
Sn~T !+

Example 3: M0M0606 Loss System+ For the low blocking system withC5 6, u 51,
l 5 3, andµ21 5 0+5, the buying and selling prices of bandwidth, Bn~T ! ~dotted
lines! andSn~T ! ~continuous lines! for n54, 5, 6 are displayed in Figure 4+The same
data for the high blocking system withC5 6, u 51, l 5 3, andµ21 5 2 is shown in
Figure 5+

From Figures 4 and 5, we immediately observe thatSn~T ! is greater thanBn~T !
for all n andT in both systems+ We see that asn approaches link capacityC, the
system places an increasingly higher value on the available capacity, both from
buying and selling points of view+ Also, both Sn~T ! andBn~T ! are steeper for the

Figure 4. Buying and selling price functions forn54, 5, 6 whenC56, l53, and
µ21 5 0+5+
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link with greater load, but the distancesSn11~T !2Sn~T ! andBn11~T !2Bn~T ! show
less variation asn varies+

As with the lost revenue functions, it is useful to note that for largeT, Sn~T ! and
Bn~T ! are well approximated by linear functions+ More preciselySn~T ! can be ap-
proximated by a function of the formZSn~T ! 5 sn 1 ul~E~ r,7! 2 E~ r,6!!T and
Bn~T ! can be approximated by a function of the formZBn~T ! 5 bn 1 ul~E~ r,6! 2
E~ r,5!!T+ The values ofsn andbn reflect the total contributions to the buying and
selling prices of capacity that are accumulated when the system is in its transient
stage+

Example 4: M0M01000100 Loss System+ The values ofBn~T ! andSn~T ! for n [
$50,75,90,100% are given in Figure 6+ Similar observations can be made as for the
smaller system+ The buying prices are always lower than the selling prices, and both
increase markedly as the link nears full occupancy+

4. CONCLUSIONS

In this article,we have presented a model which, given the current state of aC-server
loss system, computes the expected loss in revenue due to blocking+ Assuming a
given planning horizon, we then translated these expected losses into buying and
selling prices of one unit of bandwidth+ The main motivation for considering the
model presented in this article is that it could be implemented in future work as an
integral part of a network management scheme in which logical paths trade capacity
between themselves+

We formulated a model on the basis of a system of renewal equations and then
derived a system of recurrence relations satisfied by the Laplace transform ofRn~t !+
It was shown that this system of recurrence relations was of Meixner type, for which

Figure 5. Buying and selling price functions forn54, 5, 6 whenC56, l53, and
µ21 5 2+
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a solution could be determined in terms of Laguerre polynomials+We inverted these
Laplace transforms numerically using the Euler method+

We demonstrated the computation of these prices for both a small system with
C 5 6 and a more realistically sized system withC 5 100+
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