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WHAT IS A UNIT
OF CAPACITY WORTH?
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Consider a finite-capacity telecommunications link to which connection requests
arrive in a Poisson procesBach connection carried on the link earns a certain
amount of revenue for the link’s managliow, assume that the manager is offered
the opportunity to buy or sell a unit of the link’s allocated capadigsuming that

the manager has a knowledge of the current number of connections on thedink
demonstrate a method of calculating the buying and selling prices

1. INTRODUCTION

There are many situations in which we might wish to place a value on the amount of
capacity that is allocated to a telecommunications.li&k obvious case occurs
when the manager of the link has the option to purchase extra capalith will
allow more customers to be carriet to sell capacitywhich will restrict the num-
ber of customers that can be carri@tie question arises as to how much the manager
should pay or charge for the resources that can be bought ar sold

Perhaps less obviouslhe issue of the value of capacity is crucial to a class of
schemes which can be used for the management of complex telecommunications
networks Consider the situation where origin—destination pairs are allocated logical
paths(such as virtual paths in ATM networks or label-switched paths in multipro-
tocol label switchingMPLS, networks that share physical resourcd$he number
of connections that can be carried on such a logical path depends or{jgerhaps
notiona) amount of capacity thatis allocated to the pdttogical paths are allowed
to transfer capacity between themselwbsn we have precisely a situation where it
makes sense to allocate a value to capa€ityen though logical paths may not be
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purchasing capacity in any real senséficient management schemes can be de-
signed by assuming that they operate as if they are in such a “capacity rharket

In this short notewe consider the problem of placing a value on capacity in an
M/M/C/C loss systemthat is a C-server loss system where each of eervers
represents the amount of capacity needed to carry one connection onfdrink
can buy or sell capacity so th@tis increased t& + 1 or decreased t6G — 1.

Previous work in this areéncluding that of LanningMasseyRider, and Wang
[6] and the references thereims studied the prices that should be charged to cus-
tomers in a dynamic loss systeirhis work is the closest in spirit to ourdowever
the perspective db] is that of an Internet billing system where arrival rates are user
cost dependenfulp and Reevef3] concentrated more heavily on multimarket
scenarioswhere the price of bandwidth is determined on the basis of current and
future usage

Other proposed models include WALRASee Wellmarj7]) which computes
prices for bandwidth trading in a market-oriented environment by use of the taton-
nement process in a competitive equilibriunmis model was set up as a producer—
consumer problem which requires the simultaneous solution of three constrained
linear programmingLP) problemsWALRAS has since been used in later research
in particular by YamakiWellman and Ishida[8], where bandwidth is traded at
prices computed to reflect current and future capacity requirememgsmain dis-
advantage of the WALRAS model is that the time for computation can exceed the
time in which the underlying market chang&sis problem was overcom® some
degreein Yamaki Yamaauchiand Ishidd 9], where the authors demonstrated that
it is possible to interrupt the WALRAS calculation after some “adequate” time span
and use the interrupted pric8$he model is then restarted with the updated network
information only to be interrupted at some further “adequate” point in time

Inthis article we present an alternative approach to the pricing of cap&ait,
we present a scheme whiajiven certain network parametevall compute the ex-
pected lostrevenue due to blockjiegnditional on the system starting in a given state
We then translate this expected lost revenue into both a buying price and selling price
for capacity in the systepagain relying on knowledge of the state at time zero

The article is organized as followis Section 2we define a model to compute
the expected lost revenue based on the current state of the syst8ection 3a
method for the translation of the expected loss in revenue into buying and selling
prices is givenOur conclusions are given in Section 4

2. MODEL AND ANALYSIS

As is well known(seeg e.g., [5]), the M/M/C/C loss system can be modeled by a
continuous-time Markov chain with state spd€egl,...,C} and transition rates of

the form
A, 0=n<C
Onne1 = {0’ n=C. (1)
Onn1=NK N=C, )
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where andu™! are positive constants denoting the arrival rate and mean holding
time of connectiongespectivelyArrivals to a fully occupied system are loset 0
denote the expected revenue generated per accepted arrival to the $ystesh up
a model to compute the expected loss in revenarditional on a knowledge of the
current number of customers in the syste®m follows

Let R,(t) denote the expected revenue lost in the intef®al] given that there
aren connections at time 0 and IB,(t| x) be the same quantity conditional on the
fact that the first time that the network departs from staie x. Because the link
loses revenue at rafd whenC connections are present and not at all when less than
C connections are presemte see that

0, n<Ct<x

OAt, n=C, t<x
R.(t[x)=1{ n A 3)
) H Ry i(t—X)+ —— R ;1(t—X%), n<C,t=xX

A+ nu A+ np

OAX + Re_1(t — X), n=C,t=x.

When there ara connections on the linket F, be the distribution of the time until
the first transition Then

R“):L Ru(t]X) dFy (). (4)

Due to the Markovian nature of the modE}, is exponential with parametar+ npu
whenn < Cand exponential with paramet€pwhen the link is full Substituting 3)
into (4), we see that there are three cases that we need to cansider

Case 1: n= 0. In this casedFy(x) = Ae”**dx. From(3), we have
t
Ro(t) = [ Rt ) dFe(x)
o]
t
=f Ry (t — x)xe ™ dx. (5)
(0]

Case 2:0< n< C. Inthis casedF,(x) = (A + npe~A""Wxdx and from(3), R,(t)
becomes

Rq(t) = fo R (t[x) dF,(x)
= ft [NUR,_1(t = X) + ARy 4 (t — x)Je” A+ xdx, (6)
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Case 3: n= C. Finally, in the third casgdFc(x) = (Cpe “¥*dxand
t %)
Rc(1) :f Re(t]x) dFc(x) "’f Re(t]x) dFc(x)
0 t
t
= Cuf [Re_1(t — X) + OAx]e (CWxdx
0
+ Cuf Orte” CHx gy
t
which is equivalent to
t OA
Rc(t) = Cuf Re_1(t — x)e W dx + C_Ll (1— e ©uy, (7)
0

Taking the Laplace transforms (8)—(7), we see thaR,(s) = [5° e S'R,(t) dt sat-
isfies the system of equations

Ro(s) = —— Ruls), ®

B9 = ——— Ros(9+ —B R i(s, 0<n<C. (9
S+ nu+ A S+ nu+ A

_ 1 _ oA

Rc(s) = m(CURcﬂS) + :)- (10)

For network parametefS, A, |, andé, the solution and inversion @8)—(10) will
give the expected lost revenue[id t] conditional on there being connections at
time Q

To solve these equationisote that(8) and(9) can be written in the form

Prr1(é) = (£ = (dn+£))Py(£) — n(gn+ h)P,_1(§), n=0, (11)

whered = —p/A, f = —1, g =0, h=p/A, and¢ = s/A. The recurrence relatiofll)
describes the class of Meixner polynomig2s p. 164]. If, as is the case herthe
recurrence relation can further be written as

Por1(€) = (6 —d(n + hd™?))P,(£) — hnR,_; (&),
then the solution is known to be

pe = arcpn (£, (12)

wherea = hd~2 andC?(.) is a Charlier polynomialCharlier polynomials can be
generally expressed in terms of Laguerre polynomials via the relation

Ci¥(é) = niLE " (a).
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Hence
P.(¢) = d"nl L&/4=M(aq). (13)

It follows that the solution t@8) and(9) is

s = AR 5) (14)

whereA(s) is a function osandPR, is given by(13). To find A(s), we usg10), which
gives us

- S 1 S oA
Re(s) = A(S)Pc<x> ~stcu <CuA(s)PC_1<X> + ?>

and therefore

o oA
©= (s) < (5+ CHP (/) — CIRs 4(5/0) >

Thus the general solution faR,(s) can be written as

coo (1 oA p(3 15
n(s)_<S)<(S+CU)PC(S/A)—CHPc—l(S/)\)> n(/\>' )

In order to deriveR,(t), we need to inverR,(s). In our numerical investigations
presented beloywe use the Euler method outlined in Abate and WHitt However
there are a number of methods available in the literaftoe a description of these
alternate methodshe reader is referred to Abate and Whitf and GarbowGiunta
and Lynes$4].

We now present an example of the computatioRgt) for a small system with
C=6.

Example 1: MM/6/6 Loss SystemLetC=6,60 =1, A = 3, andu ! = 0.5. The
values ofR,(t) forn={0,...,6} andt € [0,10) are given in Figure IThe function
Ro(t) is the lowest curve and the functié®(t) is the highest curve

As we would expectwe observe thafor all t, R,(t) increases witm. We also
observe thatwith increasing, R,(t) is well approximated by a linear function with
a slope that is independent of This slope isin fact, equal todAE(1.5,6), where
Erlang’s function

/el
E(p,C)= -~

> P
i=0

(16)

gives the equilibrium probability that the link is full when the traffigis= A/pand
the capacity i<. This observation makes senbecaus@AE(1.5,6) is the equilib-
rium rate of losing revenud he difference in the height of the linear part of the
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FIGURE 1. Lostrevenue functions far=0,...,6 whenC=6, A =3, andu ! =0.5.

functionsR, 1(t) andR,(t) reflects the difference in expected lost revenue incurred
before equilibrium is reached when the system starts withl customers rather
thann customers

In Figure 1 we presented the lost revenue functions for a system with low
blocking (E(1.5,6) = 0.00353. Figure 2 gives the lost revenue functions for a sys-
tem with high blockingThis has been achieved by increasing the mean holding time
u~t to 2 The blocking probabilitye(6,6) is equal to (26492

The traffic and hence the equilibrium slope of the curvissmuch greater in
Figure 2 than in Figure.lHowever the latter is still given by AE( p,C). The dif-

R ()

[ w - (S o) -3 [e o]
I
|

e 1 1 1 1 1 i 1 | | 1 | 1 I | | |

051152253 354455556657 7588599510
Time (2)

FIGURE 2. Lostrevenue functions for=0,...,6 whenC=6, A =3, andu™* = 2.
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ference in the equilibrium height of the functioRgs, ,(t) andR,(t) does not vary as
much betweem = 0 andn = 5 as for the low blocking systenihis reflects the fact

that in the low blocking systenrstates with high occupancy are unlikely to be vis-
ited in the short term if the link does not start with a high occupaitys the
penalty associated with starting in states with a high occupancy is high compared to
the penalty associated with starting in states with low occupantige high block-

ing systemthe probability of moving to states with high occupancy in the shortterm
is relatively higher even if the starting state has a low occupancy

Example 2: MM/100/100 Loss Systenin this examplewe consider a larger sys-
tem with parameter§ =100, =1, A = 85 andu™* = 1. The values oR,(t) forn €
{0,25,50,75,90,100} and fort € [0,10) are shown in Figure.3

As with the smaller loss systenwe immediately observe that after an initial
period in which the starting state has an effd¢ R, (t) increase linearly at the same
rate They are also increasing im with more pronounced increasesrabecomes
large

3. SETTING THE PRICE OF BANDWIDTH

Having determined the expected lost revenue in the time intgdyg], we are left

with the problem of converting this into prices at which one unit of extra capacity
should be “bought” or “sold Let us assume that the network manager is making
buying and selling decisions for a planning horizormdfme units The selection of

T is a decision for the network managérthe link is such that opportunities for
capacity trading occur everytime units one possibility would be to make= u.

Such a choice would be myopic in the sense that it does not take into account the

1 | 1 | 1 I 1 [ i | | 1 {

0
0051152253354455556¢657758859 9510

Time (¢)

Fi1GURE 3. Lost revenue functions far= 0, 25, 50, 75, 90, and 100 wher€ =100,
A=85andu =1
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number of connections on the link at the end of the time periodindeed the
residual value of having extra capacity at timne

Once the manager has choseEnwe can regard the value of an extra unit of
capacity as the difference in the total expected lost revenue ovef @img if the
system were to increase its capacity by one unit at time. Z&oaverselywe can
calculate the selling price of a unit of capacity as the difference in the total expected
lost revenue over timd, T | if the system were to decrease its capacity by one unit

The buying and selling price8,(T) and S,(T), respectively of bandwidth
when the initial state is and the planning horizon is can thus be written as

Bn(T) = Rn,C(T) - Rn,C+1(T)’ (17)
S(T) = Rn,Cfl(T) - Rn,c(T) (18)

where the extra subscript Ry, ¢ (T) indicates the initial capacityVe expect thafor
allnandT, S,(T) > B,(T). We give some examples of the computatioBg(fT ) and

Si(T).

Example 3: MM/6/6 Loss Systentor the low blocking systemwitG = 6,60 =1,
A =3, andp ! = 0.5, the buying and selling prices of bandwigd®,(T) (dotted
lines) andS,(T) (continuous linesfor n=4, 5, 6 are displayed in Figure Zhe same
data for the high blocking system with= 6,6 =1, A = 3, andu™! = 2 is shown in
Figure 5

From Figures 4 and,5ve immediately observe th&(T) is greater thal,(T)
for all nandT in both systemsWe see that as approaches link capacii@, the
system places an increasingly higher value on the available caphotty from
buying and selling points of viewAlso, both S,(T) andB,(T) are steeper for the

1.6 T T T T T T T T T I T T T T T T T T T

14
1 —

0.8 - _

Prices

051152253354455556657 7588599510
Planning horizon (T)

FiGURE 4. Buying and selling price functions for= 4, 5, 6 whenC = 6, A = 3, and
ul=0.5.

https://doi.org/10.1017/50269964802164084 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964802164084

WHAT IS A UNIT OF CAPACITY WORTH? 521

Y T N YO U S SN WU TR S S N SR S A S S T

05115225335445555665 77588599510
Planning horizon (T)

Ficure 5. Buying and selling price functions for= 4, 5, 6 whenC =6, A = 3, and
=2

link with greater loadbut the distanceS,. 1(T) — S,(T) andB,,. 1(T) — B,(T) show
less variation as varies

As with the lost revenue functionis is useful to note that for larg€ S,(T) and
B,(T) are well approximated by linear functiaridore preciselys,(T) can be ap-
proximated by a function of the for,(T) = s, + OA(E(p,7) — E(p,6))T and
B,(T) can be approximated by a function of the foBx(T) = b, + OA(E(p,6) —
E(p,5))T. The values of, andb, reflect the total contributions to the buying and
selling prices of capacity that are accumulated when the system is in its transient
stage

Example 4: MM/100/100 Loss SysteniThe values oB,(T) andS,(T) forn €
{50,75,90,100} are given in Figure 6Similar observations can be made as for the
smaller systemilhe buying prices are always lower than the selling ptiaad both
increase markedly as the link nears full occupancy

4. CONCLUSIONS

In this article we have presented a model whiglven the current state of@server
loss systemcomputes the expected loss in revenue due to bloclkisguming a
given planning horizonwe then translated these expected losses into buying and
selling prices of one unit of bandwidtifthe main motivation for considering the
model presented in this article is that it could be implemented in future work as an
integral part of a network management scheme in which logical paths trade capacity
between themselves

We formulated a model on the basis of a system of renewal equations and then
derived a system of recurrence relations satisfied by the Laplace transf@&tt of
It was shown that this system of recurrence relations was of Meixneyfiypehich
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FiGURE 6. Buying and selling price functions for= 50, 75, 90, 100 whernC =100
A=85anduy =1

a solution could be determined in terms of Laguerre polynomigésinverted these
Laplace transforms numerically using the Euler method

We demonstrated the computation of these prices for both a small system with
C = 6 and a more realistically sized system wi@h= 100,
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