
TLP 5 (1 & 2): 207–242, 2005. C© 2005 Cambridge University Press

DOI: 10.1017/S147106840400225X Printed in the United Kingdom

207

A parameterised hierarchy of argumentation
semantics for extended logic programming and
its application to the well-founded semantics

RALF SCHWEIMEIER

Camtec Software GmbH, An den Treptowers 1, 12435 Berlin, Germany

(e-mail: schweimeier@yahoo.com)

MICHAEL SCHROEDER

Department of Computer Science, Technische Universität Dresden

01062 Dresden, Germany

(e-mail: {ralf,msch}@soi.city.ac.uk)

Abstract

Argumentation has proved a useful tool in defining formal semantics for assumption-based

reasoning by viewing a proof as a process in which proponents and opponents attack each

others arguments by undercuts (attack to an argument’s premise) and rebuts (attack to

an argument’s conclusion). In this paper, we formulate a variety of notions of attack for

extended logic programs from combinations of undercuts and rebuts and define a general

hierarchy of argumentation semantics parameterised by the notions of attack chosen by

proponent and opponent. We prove the equivalence and subset relationships between the

semantics and examine some essential properties concerning consistency and the coherence

principle, which relates default negation and explicit negation. Most significantly, we place

existing semantics put forward in the literature in our hierarchy and identify a particular

argumentation semantics for which we prove equivalence to the paraconsistent well-founded

semantics with explicit negation, WFSXp. Finally, we present a general proof theory, based

on dialogue trees, and show that it is sound and complete with respect to the argumentation

semantics.

KEYWORDS: non-monotonic reasoning, extended logic programming, argumentation se-

mantics, well-founded semantics with explicit negation

1 Introduction

Argumentation has attracted much interest in the area of Artificial Intelligence.

On the one hand, argumentation is an important way of human interaction and

reasoning, and is therefore of interest for research into intelligent agents. Application

areas include automated negotiation via argumentation (Parsons et al. 1998; Kraus

et al. 1998; Schroeder 1999) and legal reasoning (Prakken and Sartor 1997). On

the other hand, argumentation provides a formal model for various assumption

based (or non-monotonic, or default) reasoning formalisms (Bondarenko et al.

1997; Chesñevar et al. 2000). In particular, various argumentation based semantics

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


208 R. Schweimeier and M. Schroeder

have been proposed for logic programming with default negation (Bondarenko et al.

1997; Dung 1995).

Argumentation semantics are elegant, since they can be captured in an abstract

framework (Dung 1995; Bondarenko et al. 1997; Vreeswijk 1997; Jakobovits and

Vermeir 1999b), for which an elegant theory of attack, defence, acceptability, and

other notions can be developed, without recourse to the concrete instance of the

reasoning formalism at hand. This framework can then be instantiated to various

assumption based reasoning formalisms. Similarly, a dialectical proof theory, based

on dialogue trees, can be defined for an abstract argumentation framework, and

then applied to any instance of such a framework (Simari et al. 1994; Dung 1995;

Jakobovits and Vermeir 1999a).

In general, an argument A is a proof which may use a set of defeasible

assumptions. Another argument B may have a conclusion which contradicts the

assumptions or the conclusions of A, and thereby B attacks A. There are two

fundamental notions of such attacks: undercut and rebut (Pollock 1987; Prakken

and Sartor 1997) or equivalently ground-attack and reductio-ad-absurdum attack

(Dung 1993). We will use the terminology of undercuts and rebuts. Both attacks

differ in that an undercut attacks a premise of an argument, while a rebut attacks a

conclusion.

Given a logic program we can define an argumentation semantics by iteratively

collecting those arguments which are acceptable to a proponent, i.e. they can be

defended against all opponent attacks. In fact, such a notion of acceptability can be

defined in a number of ways depending on which attacks we allow the proponent

and opponent to use.

Normal logic programs do not have negative conclusions, which means that we

cannot use rebuts. Thus both opponents can only launch undercuts on each other’s

assumptions. Various argumentation semantics have been defined for normal logic

programs (Bondarenko et al. 1997; Dung 1995; Kakas and Toni 1999), some of which

are equivalent to existing semantics such as the stable model semantics (Gelfond

and Lifschitz 1988) or the well-founded semantics (van Gelder et al. 1991).

Extended logic programs (Gelfond and Lifschitz 1990; Alferes and Pereira 1996;

Wagner 1994), on the other hand, introduce explicit negation, which states that

a literal is explicitly false. As a result, both undercuts and rebuts are possible

forms of attack; there are further variations depending on whether any kind of

counter-attack is admitted. A variety of argumentation semantics arise if one allows

one notion of attack as defence for the proponent, and another as attack for

the opponent. Various argumentation semantics have been proposed for extended

logic programs (Dung 1993; Prakken and Sartor 1997; Móra and Alferes 1998).

Dung has shown that a certain argumentation semantics is equivalent to the answer

set semantics (Gelfond and Lifschitz 1990), a generalisation of the stable model

semantics (Gelfond and Lifschitz 1988). For the well-founded semantics with explicit

negation, WFSX (Pereira and Alferes 1992; Alferes and Pereira 1996), there exists

a scenario semantics (Alferes et al. 1993) which is similar to an argumentation

semantics. This semantics applies only to non-contradictory programs; to our

knowledge, no argumentation semantics has yet been found equivalent to the

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 209

paraconsistent well-founded semantics with explicit negation, WFSXp (Damásio

1996; Alferes et al. 1995; Alferes and Pereira 1996).

This paper makes the following contributions: we identify various notions of

attack for extended logic programs. We set up a general framework of argumentation

semantics, parameterised on these notions of attacks. This framework is then used to

classify notions of justified arguments, and to compare them to the argumentation

semantics of Dung (1993) and Prakken and Sartor (1997), among others. We

examine some properties of the different semantics, concerning consistency, and

the coherence principle which relates explicit and implicit negation. One particular

argumentation semantics is then shown to be equivalent to the paraconsistent well-

founded semantics with explicit negation (Damásio 1996). Finally, we develop a

general dialectical proof theory for the notions of justified arguments we introduce,

and show how proof procedures for these proof theories can be derived. This paper

builds upon an earlier conference publication (Schweimeier and Schroeder 2002),

which reports initial findings, while this article provides detailed coverage including

all proofs and detailed examples.

The paper is organised as follows. First we define arguments and notions of attack

and acceptability. Then we set up a framework for classifying different least fixpoint

argumentation semantics, based on different notions of attack. Section 4 examines

some properties (coherence and consistency) of these semantics. In section 5, we

recall the definition of WFSXp, and prove the equivalence of an argumentation

semantics and WFSXp. A general dialectical proof theory for arguments is presented

in section 6; we prove its soundness and completeness and outline how a proof

procedure for the proof theory may be derived.

2 Extended logic programming and argumentation

We introduce extended logic programming and summarise the definitions of ar-

guments associated with extended logic programs. We identify various notions of

attack between arguments, and define a variety of semantics parametrised on these

notions of attack.

Extended logic programming extends logic programming by two kinds of negation:

default negation and explicit negation. The former allows the assumption of the falsity

of a fact if there is no evidence for this fact. Explicit negation, on the other hand,

allows to explicitly assert the falsity of a fact.

The default negation of a literal p, written not p, states the assumption of the

falsity of p. The assumption not p is intended to be true iff there is no evidence of p.

Thus, the truth of not p relies on a lack of knowledge about p. An operational

interpretation of default negation is given by negation as failure (Clark 1978): the

query not p succeeds iff the query p fails. Default negation is usually not allowed in

the head of a rule: the truth value of not p is defined in terms of p, and so there

should not be any other rules that define not p.

Default negation thus gives a way of expressing a kind of negation, based on

a lack of knowledge about a fact. Sometimes, however, it is desirable to express

the explicit knowledge of the falsity of a fact. The explicit negation ¬p of a literal

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


210 R. Schweimeier and M. Schroeder

p states that p is known to be false. In contrast to default negation, an explicit

negation ¬p is allowed in the head of a rule, and there is no other way of deriving

¬p except by finding an applicable rule with ¬p as its consequence.

Consider the following example1: “A school bus may cross the railway tracks

under the condition that there is no approaching train.” It may be expressed using

default negation as

cross← not train

This is a dangerous statement, however: assume that there is no knowledge about an

approaching train, e.g. because the driver’s view is blocked. In this case, the default

negation not train is true, and we conclude that the bus may cross. Instead, it would

be appropriate to demand the explicit knowledge that there is no approaching train,

as expressed using explicit negation:

cross← ¬train

The combination of default and explicit negation also allows for a more cautious

statement of positive facts: while the rule

¬cross← train

states that the driver should not cross if there is a train approaching, the rule

¬cross← not ¬train

states more cautiously that the driver should not cross if it has not been established

that there is no train approaching. In contrast to the former rule, the latter rule

prevents a driver from crossing if there is no knowledge about approaching trains.

A connection between the two kind of negations may be made by asserting the

coherence principle (Pereira and Alferes 1992; Alferes and Pereira 1996): it states

that whenever an explicit negation ¬p is true, then the default negation not p is also

true. This corresponds to the statement that if something is known to be false, then

it should also be assumed to be false.

2.1 Arguments

Definition 1

An objective literal is an atom A or its explicit negation ¬A. We define ¬¬L = L. A

default literal is of the form not L where L is an objective literal. A literal is either

an objective or a default literal.

An extended logic program is a (possibly infinite) set of rules of the form

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Lm+n(m, n � 0),

where each Li is an objective literal (0 � i � m + n). For such a rule r, we call L0

the head of the rule, head(r), and L1, . . . , not Lm+n the body of the rule, body(r). A

rule with an empty body is called a fact, and we write L0 instead of L0 ←.

1 Due to John McCarthy, first published in Gelfond and Lifschitz (1990).

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 211

Our definition of an argument associated with an extended logic program is based

on Prakken and Sartor (1997). Essentially, an argument is a partial proof, resting

on a number of assumptions, i.e. a set of default literals.2 Note that we do not

consider priorities of rules, as used, for example, by numerous authors (Antoniou

2002; Kakas and Moraitis 2002; Prakken and Sartor 1997; Brewka 1996; Garcı́a

et al. 1998; Vreeswijk 1997). Also, we do not distinguish between strict rules, which

may not be attacked, and defeasible rules, which may be attacked (Prakken and

Sartor 1997; Simari and Loui 1992; Garcı́a et al. 1998).

Definition 2

Let P be an extended logic program. An argument associated with P is a finite

sequence A = [r1, . . . rn] of ground instances of rules ri ∈ P such that for every

1 � i � n, for every objective literal Lj in the body of ri there is a k > i such that

head(rk) = Lj .

A subargument of A is a subsequence of A which is an argument. The head of a rule

in A is called a conclusion of A, and a default literal not L in the body of a rule of

A is called an assumption of A. We write assm(A) for the set of assumptions and

conc(A) for the set of conclusions of an argument A.

An argument A with a conclusion L is a minimal argument for L if there is no

subargument of A with conclusion L. An argument is minimal if it is minimal for

some literal L. Given an extended logic program P , we denote the set of minimal

arguments associated with P by ArgsP .

The restriction to minimal arguments (cf. Simari and Loui 1992) is not essential,

but convenient, since it rules out arguments constructed from several unrelated

arguments. Generally, one is interested in the conclusions of an argument, and wants

to avoid having rules in an argument which do not contribute to the desired

conclusion. Furthermore, when designing a proof procedure to compute justified

arguments, one generally wants to compute only minimal arguments, for reasons of

efficiency.

Example 1

Consider the following program:

¬cross ← not ¬train
cross ← ¬train
train ← see train

¬train ← not train, wear glasses

wear glasses

The program models the example from the introduction to this section. A bus is

allowed to cross the railway tracks if it is known that there is no train approaching;

otherwise, it is not allowed to cross. A train is approaching if the driver can see the

2 In Bondarenko et al. (1997) and Dung (1993), an argument is a set of assumptions; the two approaches
are equivalent in that there is an argument with a conclusion L iff there is a set of assumptions from
which L can be inferred. See the discussion in Prakken and Sartor (1997).

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


212 R. Schweimeier and M. Schroeder

train, and it is known that there is no train approaching if there is no evidence of a

train approaching, and the driver is wearing glasses.

There is exactly one minimal argument with conclusion cross:

[cross← ¬train;¬train← not train, wear glasses;wear glasses]

It contains as subarguments the only minimal arguments for ¬train and wear glasses:

[¬train← not train, wear glasses]

[wear glasses]

There is also exactly one minimal argument with conclusion ¬cross:

[¬cross← not ¬train]

There is no argument with conclusion train, because there is no rule for see train.

2.2 Notions of attack

There are two fundamental notions of attack: undercut, which invalidates an

assumption of an argument, and rebut, which contradicts a conclusion of an

argument (Dung 1993; Prakken and Sartor 1997). ¿From these, we may define

further notions of attack, by allowing either of the two fundamental kinds of attack,

and considering whether any kind of counter-attack is allowed or not. We will now

formally define these notions of attack.

Definition 3

Let A1 and A2 be arguments.

1. A1 undercuts A2 if there is an objective literal L such that L is a conclusion of

A1 and not L is an assumption of A2.

2. A1 rebuts A2 if there is an objective literal L such that L is a conclusion of A1

and ¬L is a conclusion of A2.

3. A1 attacks A2 if A1 undercuts or rebuts A2.

4. A1 defeats A2 if

• A1 undercuts A2, or

• A1 rebuts A2 and A2 does not undercut A1.

5. A1 strongly attacks A2 if A1 attacks A2 and A2 does not undercut A1.

6. A1 strongly undercuts A2 if A1 undercuts A2 and A2 does not undercut A1.

The notions of undercut and rebut, and hence attack are fundamental for extended

logic programs (Dung 1993; Prakken and Sartor 1997). The notion of defeat is used

in Prakken and Sartor (1997), along with a notion of strict defeat, i.e. a defeat that

is not counter-defeated. For arguments without priorities, rebuts are symmetrical,

and therefore strict defeat coincides with strict undercut, i.e. an undercut that is not

counter-undercut. For this reason, we use the term strong undercut instead of strict

undercut, and similarly define strong attack to be an attack which is not counter-

undercut. We will use the following abbreviations for these notions of attack. r for

rebuts, u for undercuts, a for attacks, d for defeats, sa for strongly attacks, and su

for strongly undercuts.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 213

Example 2

Consider the program of Example 1. There are the following minimal arguments:

A : [cross← ¬train;¬train← not train, wear glasses;wear glasses]

B : [¬cross← not ¬train]
C : [¬train← not train, wear glasses]

D : [wear glasses]

The argument A and B rebut each other. The subargument C of A also undercuts

B, so A also undercuts B. Therefore A strongly attacks B, while B does not strongly

attack or defeat A.

Example 3

The arguments [q ← not p] and [p ← not q] undercut each other. As a result, they

do not strongly undercut each other.

The arguments [p ← not q] and [¬p ← not r] do not undercut each other, but

strongly attack each other.

The argument [¬p ← not r] strongly undercuts [p ← not ¬p] and [p ← not ¬p]
attacks – but does not defeat – the argument [¬p← not r].

These notions of attack define for any extended logic program a binary relation

on the set of arguments associated with that program.

Definition 4

A notion of attack is a function x which assigns to each extended logic program P a

binary relation xP on the set of arguments associated with P , i.e. xP ⊆ ArgsP×ArgsP .

Notions of attack are partially ordered by defining x ⊆ y iff ∀P : xP ⊆ yP

Notation

We will use sans-serif font for the specific notions of attack introduced in Definition 3

and their abbreviations: r, u, a, d, sa, and su. We will use x, y, z, . . . to denote variables

for notions of attacks. Arguments are denoted by A,B, C, . . .

The term “attack” is somewhat overloaded: (1) it is the notion of attack a

consisting of a rebut or an undercut; we use this terminology because it is standard

in the literature (Dung 1993; Prakken and Sartor 1997). (2) in general, an attack is

a binary relation on the set of arguments of a program; we use the term “notion

of attack”. (3) if the argumentation process is viewed as a dialogue between an

proponent who puts forward an argument, and an opponent who tries to dismiss

it, we may choose one notion of attack for the use of the proponent, and another

notion of attack for the opponent. In such a setting, we call the former notion of

attack the “defence”, and refer to the latter as “attack”, in the hope that the meaning

of the term “attack” will be clear from the context.

Definition 5

Let x be a notion of attack. Then the inverse of x, denoted by x−1, is defined as

x−1
P = {(B,A) | (A,B) ∈ xP }.

In this relational notation, Definition 3 can be rewritten as a = u ∪ r, d =

u ∪ (r− u−1), sa = (u ∪ r)− u−1, and su = u− u−1.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


214 R. Schweimeier and M. Schroeder

attacks = a = u ∪ r

defeats = d = u ∪ (r− u−1)

�������������
������������

undercuts = u

������������
strongly attacks = sa = (u ∪ r)− u−1

�����������

strongly undercuts = su = u− u−1

Fig. 1. Notions of Attack.

Proposition 1

The notions of attack of Definition 3 are partially ordered according to the diagram

in Figure 1.

Proof

A simple exercise, using the set-theoretic laws A−B ⊆ A ⊆ A∪C and (A∪B)−C =

(A− C) ∪ (B − C) (for any arbitrary sets A, B, and C). �

As mentioned above, we will work with notions of attack as examined in previous

literature. Therefore Figure 1 contains the notions of undercut (Dung 1993; Prakken

and Sartor 1997), attack (Dung 1993; Prakken and Sartor 1997), defeat (Prakken

and Sartor 1997), strong undercut (Prakken and Sartor 1997), and strong attack

as an intermediate notion between strongly undercuts and defeats. All of these

notions of attack are extensions of undercuts. The reason is that undercuts are

asymmetric, i.e. for two arguments A, B, AuB does not necessarily imply BuA.

Rebuts, on the other hand, are symmetric, i.e. ArB implies BrA. As a consequence,

rebuts on their own always lead to a “draw” between arguments. There is, however,

a lot of work on priorities between arguments (Antoniou 2002; Kakas and Moraitis

2002; Prakken and Sartor 1997; Brewka 1996; Garcı́a et al. 1998; Vreeswijk 1997),

which implies that rebuts become asymmetric and therefore lead to more interesting

semantics. But the original, more basic approach does not consider this extension,

and hence undercuts play the prime role and notions of attack mainly based on

rebuts, such as r or r− u−1, are not considered.

The following example shows that the inclusions in Figure 1 are strict.

Example 4

Consider the following program:

p ← not ¬p
p ← not q

¬p ← not r

q ← not p

¬q ← not s

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 215

It has the minimal arguments {[p ← not ¬p], [p ← not q], [¬p ← not r], [q ←
not p], [¬q ← not s]}. The arguments [p ← not q] and [q ← not p] undercut (and

hence defeat) each other, but they do not strongly undercut or strongly attack each

other. The arguments [q ← not r] and [¬q ← not s] strongly attack (and hence

defeat) each other, but they do not undercut each other. The argument [p← not ¬p]
attacks [¬p ← not r], but it does not defeat it, because [¬p ← not r] (strongly)

undercuts [p← not ¬p].

2.3 Acceptability and justified arguments

Given the above notions of attack, we define acceptability of an argument. Basically,

an argument is acceptable if it can be defended against any attack. Our definition

of acceptability is parametrised on the notions of attack allowed for the proponent

and the opponent.

Acceptability forms the basis for our argumentation semantics, which is defined

as the least fixpoint of a function, which collects all acceptable arguments (Pollock

1987; Simari and Loui 1992; Prakken and Sartor 1997; Dung 1993). The least

fixpoint is of particular interest, because it provides a canonical fixpoint semantics

and it can be constructed inductively.

Because the semantics is based on parametrised acceptability, we obtain a uniform

framework for defining a variety of argumentation semantics for extended logic

programs. It can be instantiated to a particular semantics by choosing one notion

of attack for the opponent, and another notion of attack as a defence for the

proponent. The uniformity of the definition makes it a convenient framework for

comparing different argumentation semantics.

Definition 6

Let x and y be notions of attack. Let A be an argument, and S a set of arguments.

Then A is x/y-acceptable wrt. S if for every argument B such that (B,A) ∈ x there

exists an argument C ∈ S such that (C,B) ∈ y.

Based on the notion of acceptability, we can then define a fixpoint semantics for

arguments.

Definition 7

Let x and y be notions of attack, and P an extended logic program. The operator

FP,x/y : P(ArgsP )→ P(ArgsP ) is defined as

FP,x/y(S) = {A | A is x/y-acceptable wrt. S}

We denote the least fixpoint of FP,x/y by JP ,x/y . If the program P is clear from the

context, we omit the subscript P . An argument A is called x/y-justified if A ∈ Jx/y; an

argument is called x/y-overruled if it is attacked by an x/y-justified argument; and

an argument is called x/y-defensible if it is neither x/y-justified nor x/y-overruled.

Note that this definition implies that the logic associated with justified arguments is

3-valued, with justified arguments corresponding to true literals, overruled arguments

to false literals, and defensible arguments to undefined literals. We could also consider

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


216 R. Schweimeier and M. Schroeder

arguments which are both justified and overruled; these correspond to literals with

the truth value overdetermined of Belnap’s four-valued logic (Belnap 1977).

Proposition 2

For any program P , the operator FP,x/y is monotone. By the Knaster–Tarski fixpoint

theorem (Tarski 1955; Birkhoff 1967), FP,x/y has a least fixpoint. It can be constructed

by transfinite induction as follows:

J0
x/y := ∅
Jα+1
x/y

:= FP,x/y

(
Jα
x/y

)
for α+1 a successor ordinal

Jλ
x/y :=

⋃
α<λ J

α
x/y for λ a limit ordinal

Then there exists a least ordinal λ0 such that Fx/y(J
λ0

x/y
) = Jλ0

x/y
=: Jx/y .

Proof

Let S1 ⊆ S2, and A ∈ FP,x/y , i.e. A is x/y-acceptable wrt. S1, i.e. every x-attack

against A is y-attacked by an argument in S1. Then A is also x/y-acceptable wrt. S2,

because S1 ⊆ S2, i.e. S2 contains more arguments to defend A. �

Note that our general framework encompasses some well-known argumentation

semantics for extended logic programs: Dung’s grounded semantics (Dung 1993)

is Ja/u. Prakken and Sartor’s argumentation semantics (Prakken and Sartor 1997),

without priorities or strict rules is Jd/su. If we regard explicitly negated literals ¬L
as new atoms, unrelated to the positive literal L, then we can apply the well-founded

argumentation semantics of Bondarenko et al. (1997) and Kakas and Toni (1999)

to extended logic programs, and obtain Ju/u.

Example 5

Consider the following program P :

p ← not q

q ← not p

¬q ← not r

r ← not s

s

¬s ← not s

Table 1 shows the computation of justified arguments associated with P . The

columns show various combinations x/y of attack/defence, and a row n shows

those arguments A that get added at iteration stage n, i.e. A ∈ Jn
P ,x/y and A 	∈ Jn−1

P ,x/y .

The set of arguments associated with P is {[p ← not q], [q ← not p], [¬q ←
not r], [r ← not s], [s], [¬s← not s]}.

All arguments are undercut by another argument, except [s]; the only attack

against [s] is a rebut by [¬s ← not s], which is not a defeat. Thus, [s] is identified

as a justified argument at stage 0 in all semantics, except if attacks is allowed as an

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 217

Table 1. Computing justified arguments – the nth row shows the justified arguments

added at the nth iteration

attack. In the latter case, no argument is justified at stage 0, hence the set of justified

arguments Ja/x is empty.

3 Relationships between notions of justifiability

The definition of justified arguments provides a variety of semantics for extended

logic programs, depending on which notion of attack x is admitted to attack an

argument, and which notion of attack y may be used as a defence.

This section is devoted to an analysis of the relationship between the different

notions of justifiability, leading to a hierarchy of notions of justifiability illustrated

in Figure 2.

3.1 Equivalence of argumentation semantics

We will prove a series of theorems, which show that some of the argumentation

semantics defined above are subsumed by others, and that some of them are actually

equivalent. Thus, we establish a hierarchy of argumentation semantics, which is

illustrated in Figure 2.

First, it is easy to see that the least fixpoint increases if we weaken the attacks or

strengthen the defence.

Theorem 3

Let x′ ⊆ x and y ⊆ y′ be notions of attack, then Jx/y ⊆ Jx′/y′ .

Proof

See Appendix A. �

Theorem 4 states that it does not make a difference if we allow only the strong

version of the defence. This is because an argument need not defend itself on its

own, but it may rely on other arguments to defend it.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


218 R. Schweimeier and M. Schroeder

Theorem 4

Let x and and y be notions of attack such that x ⊇ undercuts, and let sy =

y − undercuts−1. Then Jx/y = Jx/sy .

Proof

Informally, every x-attack B to an x/y-justified argument A is y-defended by some

x/sy-justified argument C (by induction). Now if C is not a sy-attack, then it is

undercut by B, and because x ⊇ undercuts and C is justified, there exists a strong

defence for C against B, which is also a defence of the original argument A against C .

The formal proof is by transfinite induction. By Theorem 3, we have Jx/sy ⊆ Jx/y .

We prove the inverse inclusion by showing that for all ordinals α: Jα
x/y ⊆ Jα

x/sy , by

transfinite induction on α. See Appendix A for the detailed proof. �

In particular, the previous theorem states that undercut and strong undercut are

equivalent as a defence, as are attack and strong attack. This may be useful in an

implementation, where we may use the stronger notion of defence without changing

the semantics, thereby decreasing the number of arguments to be checked. The

following Corollary shows that because defeat lies between attack and strong attack,

it is equivalent to both as a defence.

Corollary 5

Let x be a notion of attack such that x ⊇ undercuts. Then Jx/a = Jx/d = Jx/sa.

Proof

It follows from Theorems 3 and 4 that Jx/sa ⊆ Jx/d ⊆ Jx/a = Jx/sa. �

The following theorem states that defence with undercuts is equally strong as one

with defeats or with attacks, provided the opponent’s permitted attacks include at

least the strong attacks.

Theorem 6

Let x be a notion of attack such that x ⊇ strongly attacks. Then Jx/u = Jx/d = Jx/a.

Proof

It is sufficient to show that Jx/a ⊆ Jx/u. Then by Theorem 3, Jx/u ⊆ Jx/d ⊆ Jx/a = Jx/u.

Informally, every x-attack B to a x/a-justified argument A is attacked by some x/u-

justified argument C (by induction). If C is a rebut, but not an undercut, then because

B strongly attacks C , and because x ⊇ strongly attacks, there must have been an

argument defending C by undercutting B, thereby also defending A against B.

We prove by transfinite induction that for all ordinals α: Jα
x/a ⊆ Jα

x/u. See Appendix A

for the detailed proof. �

In analogy to Theorem 6, strong undercuts are an equivalent defence to strong

attacks if the allowed attacks are strong attacks.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 219

Theorem 7

Jsa/su = Jsa/sa

Proof

The proof is similar to the proof of Theorem 6. See Appendix A. �

Theorem 8

Jsu/a = Jsu/d

Proof

By Theorem 3, Jsu/d ⊆ Jsu/a.

We now show the inverse inclusion. Informally, every strong undercut B to a su/a-

justified argument A is attacked by some su/d-justified argument C (by induction).

If C does not defeat A, then there is some argument D defending C by defeating B,

thereby also defending A against B.

Formally, we show that for all ordinals α: Jα
su/a ⊆ Jα

su/d, by transfinite induction on

α. See Appendix A for the detailed proof. �

These results are summarised in a hierarchy of argumentation semantics in

Theorem 9 and Figure 2.

3.2 Distinguishing argumentation semantics

The previous section showed equality and subset relationships for a host of notions

of justified arguments. In this section we complement these positive findings by

negative findings stating for which semantics there are no subset relationships. We

prove these negative statements by giving counter-examples distinguishing various

notions of justifiability.

The first example shows that, in general, allowing only strong forms of attack

for the opponent leads to a more credulous semantics, because in cases where only

non-strong attacks exist, every argument is justified.

Example 6

Consider the following program:

p ← not q

q ← not p

For any notion of attack x, we have Jsu/x = Jsa/x = {[p ← not q], [q ← not p]},
because there is no strong undercut or strong attack to any of the arguments.

However, Ja/x = Jd/x = Ju/x = ∅, because every argument is undercut (and therefore

defeated and attacked).

Thus, in general, Js/x 	⊆ Jw/y , for s ∈ {su, sa}, w ∈ {a, u, d}, and any notions of

attack x and y.

The following example shows that some interesting properties need not hold for all

argumentation semantics: a fact (i.e. a rule with an empty body) need not necessarily

lead to a justified argument; this property distinguishes Dung’s (1993) and Prakken

and Sartor’s (1997) semantics from most of the others.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


220 R. Schweimeier and M. Schroeder

Example 7

Consider the following program:

p ← not q

q ← not p

¬p

Let x be a notion of attack. Then Jd/x = Ja/x = ∅, because every argument is

defeated (hence attacked). Jsa/su = Jsa/sa = {[q ← not p]}, because [q ← not p] is

the only argument which is not strongly attacked, but it does not strongly attack

any other argument. Ju/su = Ju/u = {[¬p]}, because there is no undercut to [¬p],
but [¬p] does not undercut any other argument. Ju/a = {[¬p], [q ← not p]}, because

there is no undercut to [¬p], and the undercut [p ← not p] to [q ← not p] is

attacked by [¬p]. We also have Jsa/u = {[¬p], [q ← not p]}, because [q ← not p]

is not strongly attacked, and the strong attack [p ← not q] on [¬p] is undercut by

[q ← not p].

Thus, in general, Ju/x 	⊆ Jd/x, Ju/x 	⊆ Ja/x, Jsa/sx 	⊆ Ju/y (where sx ∈ {su, sa} and

y ∈ {u, su}), and Ju/y 	⊆ Jsa/sx (where sx ∈ {su, sa} and y ∈ {u, a, d, su, sa}).

The following example is similar to the previous example, except that all the

undercuts are strong, whereas in the previous example there were only non-strong

undercuts.

Example 8

Consider the following program:

p ← not q

q ← not r

r ← not s

s ← not p

¬p

Let x be a notion of attack. Then Jsa/x = ∅, because every argument is strongly

attacked.

Jsu/u = Jsu/su = {[¬p]}, because all arguments except [¬p] are strongly undercut,

but [¬p] does not undercut any argument. And Ju/a = Jsu/sa = Jsu/a = {[¬p], [q ←
not r], [s ← not p]}, because [¬p] is not undercut, and it defends [s ← not p]

against the strong undercut [p← not q] (by rebut), and in turn, [s← not p] defends

[q ← not r] against the strong undercut [r ← not s] (by strong undercut).

Thus, Ju/a 	⊆ Jsu/y , Jsu/sa 	⊆ Jsu/y , and Jsu/a 	⊆ Jsu/y , for y ∈ {u, su}.

The following example shows that in certain circumstances, non-strong defence

allows for more justified arguments than strong defence.

Example 9

Consider the following program:

p ← not q

q ← not p

r ← not p

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 221

Let x be a notion of attack. Then Ju/x = Jd/x = Ja/x = ∅, because every argument

is undercut. Jsu/su = Jsu/sa = Jsa/su = Jsa/sa = {[p ← not q], [q ← not p]} : In

these cases, the strong attacks are precisely the strong undercuts; the argument

[r ← not p] is not justified, because the strong undercut [p← not q] is undercut, but

not strongly undercut, by [q ← not p]. And finally, Jsu/u = Jsu/a = Jsa/u = Jsa/a =

{[p ← not q], [q ← not p], [r ← not p]} : Again, undercuts and attacks, and strong

undercuts and strong attacks, coincide; but now [r ← not p] is justified, because

non-strong undercuts are allowed as defence.

Thus, in general, Jx/u 	⊆ Jx/su and Jx/a 	⊆ Jx/sa, where x ∈ {su, sa}.

The following example distinguishes the argumentation semantics of Dung (1993)

and Prakken and Sartor (1997).

Example 10

Consider the following program:

p ← not ¬p
¬p

Then Ja/x = ∅, because both arguments attack each other, while Jd/x = {[¬p]},
because [¬p] defeats [p← not ¬p], but not vice versa.

Thus, Jd/x 	⊆ Ja/x.

The final example shows that if we do not allow any rebuts as attacks, then we

obtain a strictly more credulous semantics.

Example 11

Consider the following program:

¬p ← not q

¬q ← not p

p

q

Let x be a notion of attack. Then Jsa/x = Jd/x = Ja/x = ∅, because every argument

is strongly attacked (hence defeated and attacked), while Ju/x = Jsu/x = {[p], [q]}.
Thus, in general, Jv/x 	⊆ Jw/y , where v ∈ {u, su}, w ∈ {a, d, sa}, and x and y are

any notions of attack.

3.3 A hierarchy of argumentation semantics

We now summarise the results of this section, establishing a complete hierarchy of

argumentation semantics, parametrised on a pair of notions of attack x/y where x

stands for the attacks on an argument, and y for the possible defence. We locate

in this hierarchy the argumentation semantics of Dung (1993) and Prakken and

Sartor (1997), as well as the well-founded semantics for normal logic programs (van

Gelder et al. 1991). In section 5 we will show that the paraconsistent well-founded

semantics with explicit negation, WFSXp (Damásio 1996), can also be found in our

hierarchy. As a corollary, we obtain precise relationships between these well-known

semantics and our argumentation semantics.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


222 R. Schweimeier and M. Schroeder

su/a = su/d

su/u

���������
su/sa

��������

sa/u = sa/d = sa/a

������
su/su

�����������
���������

u/a = u/d = u/sa

					

sa/su = sa/sa







���������

u/su = u/u

��������
�����

d/su = d/u = d/a = d/d = d/sa

�������
�������

a/su = a/u = a/a = a/d = a/sa

Fig. 2. Hierarchy of notions of justifiability.

Theorem 9

The notions of justifiability are ordered (by set inclusion) according to the diagram

in Figure 2, where x/y lies below x′/y′ iff Jx/y � Jx′/y′ .

Proof

All equality and subset relationships (i.e. arcs between notions of justifiability)

depicted in Figure 2 are underpinned by the theorems in section 3.1. Two notions of

justifiability are not subsets of each other iff they are not equal and not connected

by an arc in Figure 2. These findings are underpinned by the counter-examples of

section 3.2. �

By definition, Prakken and Sartor’s semantics (Prakken and Sartor 1997), if

we disregard priorities, amounts to d/su-justifiability. Similarly, Dung’s grounded

argumentation semantics (Dung 1993) is exactly a/u-justifiability; and if we treat

explicitly negated literals as new atoms, we can apply the least fixpoint argumentation

semantics for normal logic programs (Dung 1995; Bondarenko et al. 1997) to

extended logic programs, which is then, by definition, u/u-justifiability.

Note that these latter semantics use a slightly different notation to ours: arguments

are sets of assumptions (i.e. default literals), and a conclusion of an argument is a

literal that can be derived from these assumptions. This approach can be translated

to ours by taking as arguments all those derivations of a conclusion from an

argument. Then the definitions of the notions of attack and the fixpoint semantics

coincide. See also the discussion in Prakken and Sartor (1997).

As corollaries to Theorem 9 we obtain relationships of these semantics to the

other notions of justifiability.

Corollary 10

Let JDung be the set of justified arguments according to Dung’s grounded argumen-

tation semantics (Dung 1993). Then JDung = Ja/su = Ja/u = Ja/a = Ja/d = Ja/sa and

JDung � Jx/y for all notions of attack x 	= a and y. Thus, in Dung’s semantics, it does

not matter which notion of attack, su,u,a,d,sa, is used as a defence, and Dung’s

semantics is more sceptical than the others.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 223

Corollary 11

Let JPS be the set of justified arguments according to Prakken and Sartor’s

argumentation semantics (Prakken and Sartor 1997), where all arguments have

the same priority. Then JPS = Jd/su = Jd/u = Jd/a = Jd/d = Jd/sa, JPS � Jx/y for

all notions of attack x 	∈ {a, d} and y, and JPS � Ja/y for all notions of attack y.

Thus, in Prakken and Sartor’s semantics, it does not matter which notion of attack,

su,u,a,d,sa, is used as a defence, and JPS is more credulous than Dung’s semantics,

but more sceptical than all the others.

Corollary 12

Let JWFS be the set of justified argument according to the well-founded argu-

mentation semantics for normal logic programs (Dung 1995; Bondarenko et al.

1997), where an explicitly negated atom ¬L is treated as unrelated to the positive

atom L. Then JWFS = Ju/u = Ju/su, JWFS � Jd/y � Ja/y , JWFS � Jsu/y , and

JWFS � Ju/a = Ju/d = Ju/sa, for all notions of attack y. Thus, in contrast to Dung’s

and Prakken and Sartor’s semantics, for WFS it makes a difference whether rebuts

are permitted in the defence (a,d,sa) or not (u,su).

Remark 1

1. The notions of a/x-, d/x- and sa/x-justifiability are particularly sceptical in that

even a fact p may not be justified, if there is a rule ¬p← B (where not p 	∈ B) that is

not x-attacked. On the other hand this is useful in terms of avoiding inconsistency.

2. sx/y-justifiability is particularly credulous, because it does not take into account

non-strong attacks, so e.g. the program {p ← not q, q ← not p} has the justified

arguments [p← not q] and [q ← not p].

Remark 2

One might ask whether any of the semantics in Figure 2 are equivalent for non-

contradictory programs, i.e. programs for which there is no literal L such that there

exist justified arguments for both L and ¬L. The answer to this question is no: all

the examples in Section 3.2 distinguishing different notions of justifiability involve

only non-contradictory programs.

In particular, even for non-contradictory programs, Dung’s and Prakken and

Sartor’s semantics differ, and both differ from u/a-justifiability, which will be shown

equivalent to the paraconsistent well-founded semantics WFSXp (Damásio 1996;

Pereira and Alferes 1992; Alferes and Pereira 1996) in Section 5.

4 Properties of argumentation semantics

We will now state some important properties which a semantics for extended logic

programs may have, and examine for which of the argumentation semantics these

properties hold.

4.1 The coherence principle

The coherence principle for extended logic programming (Alferes and Pereira 1996)

states that “explicit negation implies implicit negation”. If the intended meaning of

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


224 R. Schweimeier and M. Schroeder

not L is “if there is no evidence for L, assume that L is false”, and the intended

meaning of ¬L is “there is evidence for the falsity of L”, then the coherence principle

states that explicit evidence is preferred over assumption of the lack of evidence.

Formally, this can be stated as: if ¬L is in the semantics, then not L is also in the

semantics. In an argumentation semantics, we have not defined what it means for

a default literal to be “in the semantics”. This can easily be remedied, though, and

for convenience we introduce the following transformation.3

Definition 8

Let P be an extended logic program, and x and y notions of attack, and let L be

an objective literal. Then L is x/y-justified if there exists a x/y-justified argument

for L.

Let nL be a fresh atom, and P ′ = P ∪ {nL ← not L}. Then not L is x/y-justified

if [nL← not L] is a x/y-justified argument associated with P ′.

Note that because nL is fresh, then either Jx/y(P
′) = Jx/y(P ) or Jx/y(P

′) =

Jx/y(P ) ∪ {[nL← not L]}.

Definition 9

A least fixpoint semantics Jx/y satisfies the coherence principle if for every objective

literal L, if ¬L is x/y-justified, then not L is x/y-justified.

The following result states that a least fixpoint semantics satisfies the coherence

principle exactly in those cases where we allow any attack for the defence. Informally,

this is because the only way of attacking a default literal not L is by undercut, i.e.

an argument for L, and in general, such an argument can only be attacked by an

argument for ¬L by a rebut.

Theorem 13

Let x, y ∈ {a, u, d, su, sa}. Then Jx/y satisfies the coherence principle iff Jx/y = Jx/a.

Proof

• For the “only if” direction, we show that for those notions of justifiability

x/y 	= x/a, the coherence principle does not hold.

— Consider the program P :
p ← not q

q ← not r

r ← not s

s ← not p

¬p
Then Ju/u(P

′) = Jsu/u(P
′) = Jsu/su(P

′) = {[¬p]}, where P ′ = P ∪ {np ←
not p}. In these cases, the coherence principle is not satisfied, because ¬p
is justified, but not p is not justified.

3 The purpose of the transformation could be equally achieved by defining that not L is x/y-justified if
all arguments for L are overruled.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 225

— Now consider the program Q:
p ← not ¬p
¬p ← not p

Then Jsu/sa(Q
′) = Jsa/sa(Q

′) = {[p ← not ¬p], [¬p ← not p]}, where

Q′ = Q ∪ {np ← not p}. Again, the coherence principle is not satisfied,

because ¬p is justified, but not p is not justified.

• For the “if” direction, let x be any notion of attack. Let P be an extended

logic program, and ¬L a x/a-justified literal, i.e. there is an argument A =

[¬L← Body, . . .] and an ordinal α s.t. A ∈ Jα
x/a.

Let A′ = [nL← not L], and (B,A′) ∈ x. Because nL is fresh, the only possible

attack on A′ is a strong undercut, i.e. L is a conclusion of B. Then A attacks

B, and so [nL← not L] ∈ Jα+1
x/a .

�

4.2 Consistency

Consistency is an important property of a logical system. It states that the system

does not support contradictory conclusions. In classical logic “ex falso quodlibet”, i.e.

if both A and ¬A hold, then any formula holds. In paraconsistent systems (Damásio

and Pereira 1998), this property does not hold, thus allowing both A and ¬A to

hold for a particular formula A, while not supporting any other contradictions.

A set of arguments is consistent, or conflict-free (Prakken and Sartor 1997; Dung

1995), if it does not contain two arguments such that one attacks the other. There

are several notions of consistency, depending on which notion of attack is considered

undesirable.

Definition 10

Let x be a notion of attack, and P an extended logic program. Then a set of

arguments associated with P is called x-consistent if it does not contain arguments

A and B such that (A,B) ∈ xP .

The argumentation semantics of an extended logic program need not necessarily

be consistent; because of explicit negation, there exist contradictory programs such

as {p,¬p}, for which there exist sensible, but inconsistent arguments ([p] and [¬p]
in this case).

A general result identifies cases in which the set of justified arguments for a

program is consistent. It states that if we allow the attack to be at least as strong as

the defence, i.e. if we are sceptical, then the set of justified arguments is consistent.

Theorem 14

Let x and y be notions of attack such that x⊇ y, and let P be an extended logic

program. Then the set of x/y-justified arguments is x-consistent.

Proof

We show that Jα
x/y is x-consistent for all ordinals α, by transfinite induction on α.

Base case α = 0: Trivial.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


226 R. Schweimeier and M. Schroeder

Successor ordinal α � α + 1: Assume A,B ∈ Jα+1
x/y

and (A,B) ∈ x. Then there exists

C ∈ Jα
x/y such that (C,A) ∈ y ⊆ x. Then by induction hypothesis, because C ∈ Jα

x/y ,

then A 	∈ Jα
x/y . Because A ∈ Jα+1

x/y
, there exists D ∈ Jα

x/y such that (D,C) ∈ y ⊆ x.

This contradicts the induction hypothesis, so we have to retract the assumption and

conclude that Jα+1
x/y

is x-consistent.

Limit ordinal λ: Assume A,B ∈ Jλ
x/y and (A,B) ∈ x. Then there exist α, β < λ

s.t. A ∈ Jα
x/y and B ∈ J

β
x/y

. W.l.o.g. assume that α � β. Then because Jα
x/y ⊆ J

β
x/y

, we

have A ∈ J
β
x/y

, contradicting the induction hypothesis that Jβ
x/y

is x-consistent. �

The following example shows that, in general, the set of justified arguments may

well be inconsistent.

Example 12

Consider the following program:

q ← not p

p

¬p

Then Ju/a = {[q ← not p], [p], [¬p]}, and [p] and [¬p] rebut each other, and [p]

strongly undercuts [q ← not p].

5 Argumentation semantics and WFSX

In this section we will prove that the argumentation semantics Ju/a is equivalent to

the paraconsistent well-founded semantics with explicit negation WFSXp (Damásio

1996; Alferes and Pereira 1996). First, we summarise the definition of WFSXp.

5.1 Well-founded semantics with explicit negation

We recollect the definition of the paraconsistent well-founded semantics for extended

logic programs, WFSXp. We use the definition of Alferes et al. (1995), because it is

closer to our definition of argumentation semantics than the original definition of

Pereira and Alferes (1992).

Definition 11

The set of all objective literals of a program P is called the Herbrand base of

P and denoted by H(P ). A paraconsistent interpretation of a program P is a set

T ∪ not F where T and F are subsets ofH(P ). An interpretation is a paraconsistent

interpretation where the sets T and F are disjoint. An interpretation is called

two-valued if T ∪ F =H(P ).

Definition 12

Let P be an extended logic program, I an interpretation, and let P ′ (resp. I ′) be

obtained from P (resp. I) by replacing every literal ¬A by a new atom, say ¬ A.

The GL-transformation P ′

I ′ is the program obtained from P ′ by removing all rules

containing a default literal not A such that A ∈ I ′, and then removing all remaining

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 227

default literals from P ′, obtaining a definite program P ′′. Let J be the least model

of P ′′, i.e. J is the least fixpoint of TP ′′(I) := {A | ∃A← B1, . . . , Bn ∈ P ′′ s.t. Bi ∈ I}.
Then ΓP I is obtained from J by replacing the introduced atoms ¬ A by ¬A.

Definition 13

The semi-normal version of a program P is the program Ps obtained from P by

replacing every rule L ← Body in P by the rule L ← not ¬L,Body. If the program

P is clear from the context, we write ΓI for ΓP I and ΓsI for ΓPs
I .

Note that the set ΓP I is just a set of literals; we will now use it to define the

semantics of P as a (paraconsistent) interpretation.

Definition 14

Let P be a program whose least fixpoint of ΓΓs is T . Then the paraconsistent well-

founded model of P is the paraconsistent interpretation WFMp(P ) = T ∪ not (H(P )−
ΓsT ). If WFMp(P ) is an interpretation, then P is called non-contradictory, and

WFMp(P ) is the well-founded model of P , denoted by WFM(P ).

The paraconsistent well-founded model can be defined iteratively by the transfinite

sequence {Iα}:
I0 := ∅
Iα+1 := ΓΓsIα for successor ordinal α + 1

Iλ :=
⋃

α<λ Iα for limit ordinal λ

There exists a smallest ordinal λ0 such that Iλ0
is the least fixpoint of ΓΓs, and

WFMp(P ) := Iλ0
∪ not (H(P )− ΓsIλ0

).

5.2 Equivalence of argumentation semantics and WFSXp

In this section, we will show that the argumentation semantics Ju/a and the well-

founded model coincide. That is, the conclusions of justified arguments are exactly

the objective literals which are true in the well-founded model; and those objective

literals all of whose arguments are overruled are exactly the literals which are false

in the well-founded model. The result holds also for contradictory programs under

the paraconsistent well-founded semantics. This is important, because it shows that

contradictions in the argumentation semantics are precisely the contradictions under

the well-founded semantics, and allows the application of contradiction removal

(or avoidance) methods to the argumentation semantics (Damásio et al. 1997).

For non-contradictory programs, the well-founded semantics coincides with the

paraconsistent well-founded semantics (Alferes and Pereira 1996; Damásio 1996);

consequently, we obtain as a corollary that argumentation semantics and well-

founded semantics coincide for non-contradictory programs.

Before we come to the main theorem, we need the following Lemma, which shows

a precise connection between arguments and consequences of a program P
I
.

Lemma 15

Let I be a two-valued interpretation.

1. L ∈ Γ(I) iff ∃ argument A with conclusion L such that assm(A) ⊆ I .

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


228 R. Schweimeier and M. Schroeder

2. L ∈ Γs(I) iff ∃ argument A with conclusion L such that assm(A) ⊆ I and

¬conc(A) ∩ I = ∅.
3. L 	∈ Γ(I) iff ∀ arguments A with conclusion L, assm(A) ∩ I 	⊆ ∅.
4. L 	∈ Γs(I) iff ∀ arguments A with conclusion L, assm(A) ∩ I 	⊆ ∅ or ¬conc(A) ∩

I 	= ∅.

Proof

See Appendix A. �

To compare the argumentation semantics with the well-founded semantics, we

extend the definition conc(A) of the conclusions of a single argument A to work on

a set of arguments A. The extended definition conc(A) includes all positive and

negative conclusions of arguments in A; i.e. those literals L ∈ conc(A), as well as

the default literals not L where all arguments for L are overruled by some argument

A ∈ A. We will use this definition of conc for the set of justified arguments Ju/a

to compare the “argumentation model” conc(Ju/a) to WFMp(P ), the well-founded

model.

Definition 15

Let A be a set of arguments. Then

conc(A) =
⋃

A∈A
conc(A) ∪ {not L | all arguments for L are overruled

by an argument A ∈ A}

With the above definition, we can formulate the main theorem that u/a-justified

arguments coincide with the well-founded semantics.

Theorem 16

Let P be an extended logic program. Then WFMp(P ) = conc(Ju/a).

Proof

First, note that A undercuts B iff ∃ L s.t. L ∈ conc(A) and not L ∈ assm(B); and A

rebuts B iff ∃ L ∈ conc(A) ∩ ¬conc(B).

We show that for all ordinals α, Iα = conc(Jα
u/a), by transfinite induction on α. The

proof proceeds in two stages. First, we show that all objective literals L in WFMp(P )

are conclusions of u/a-justified arguments and second, that for all default negated

literals not L in WFMp(P ), all arguments for L are overruled.

Base case α = 0: Iα = ∅ = conc(Jα
u/a)

Successor ordinal α� α + 1:

L ∈ Iα+1

iff (Def. of Iα+1)

L ∈ ΓΓsIα
iff (Lemma 15(1))

∃ argument A for L such that assm(A) ⊆ ΓsIα
iff (Def. of ⊆, and ΓsIα is two-valued)

∃ argument A for L such that ∀ not L ∈ assm(A), L 	∈ ΓsIα
iff (Lemma 15(4))

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 229

∃ argument A for L such that ∀ not L ∈ assm(A), for any argument B for L,

(∃ not L′ ∈ assm(B) s.t. L′ ∈ Iα or ∃ L′′ ∈ conc(B) s.t. ¬L′′ ∈ Iα )

iff (Induction hypothesis)

∃ argument A for L such that ∀ not L ∈ assm(A), for any argument B for L,

(∃ not L′ ∈ assm(B) s.t. ∃ argument C ∈ Jα
u/a for L′, or ∃ L′′ ∈ conc(B) s.t. ∃ argument

C ∈ Jα
u/a for ¬L′′)

iff (Def. of undercut and rebut)

∃ argument A for L such that for any undercut B to A, (∃ argument C ∈ Jα
u/a s.t. C

undercuts B, or ∃ argument C ∈ Jα
u/a s.t. C rebuts B)

iff

∃ argument A for L such that for any undercut B to A, ∃ argument C ∈ Jα
u/a s.t.

C attacks B

iff (Def. of Jα+1
u/a )

∃ argument A ∈ Jα+1
u/a for L

iff (Def. of conc)

L ∈ conc(Jα+1
u/a )

Limit ordinal λ:

Iλ =
⋃

α<λ Iα and Jλ
u/a =

⋃
α<λ J

α
u/a, so by induction hypothesis (Iα = conc(Jα

u/a) for

all α < λ), Iλ = conc(Jλ
u/a).

Next we will show that a literal not L is in the well-founded semantics iff every

argument for L is overruled, i.e. not L ∈ WFMp(P ) implies not L ∈ conc(Ju/a).

not L ∈WFMp(P )

iff (Def. of WFMp(P ))

L 	∈ ΓsIλ
iff (Lemma 15(4)

for all arguments A for L, (∃ not L′ ∈ assm(A) s.t. L′ ∈ Iλ, or ∃ L′′ ∈ conc(A) s.t. ¬L′′ ∈
Iλ)

iff
(
Iλ = conc

(
Jλ

u/a

))

for all arguments A for L, (∃ not L′ ∈ assm(A) s.t. ∃ argument B ∈ Jλ
u/a for L′, or

∃ L′′ ∈ conc(A) s.t. ∃ argument B ∈ Jλ
u/a for ¬L′′)

iff (Def. of undercut and rebut)

for all arguments A for L, (∃ argument B ∈ Jλ
u/a s.t. B undercuts A, or ∃ argument

B ∈ Jλ
u/a s.t. B rebuts A)

iff

every argument for L is attacked by a justified argument in Jλ
u/a

iff (Def. of overruled)

every argument for L is overruled

iff (Def. of conc(Ju/a))

not L ∈ conc(Ju/a) �

Corollary 17

Let P be a non-contradictory program. Then WFM(P ) = conc(Ju/a).

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


230 R. Schweimeier and M. Schroeder

su/a = su/d

su/u

��������
su/sa

���������

sa/u = sa/d = sa/a

�������
su/su










�����������

u/a = u/d = u/sa =WFSXp

���������

sa/su = sa/sa








�������

u/su = u/u =WFS

���������
��������

d/su = d/u = d/a = d/d = d/sa = JPS








��������

a/su = a/u = a/a = a/d = a/sa = JDung

Fig. 3. Hierarchy of notions of justifiability and existing semantics.

Remark 3

In a similar way, one can show that the Γ operator corresponds to undercuts, while

the Γs operator corresponds to attacks, and so the least fixpoints of ΓΓ, ΓsΓ, and

ΓsΓs correspond to Ju/u, Ja/u, and Ja/a, respectively. In Alferes et al. (1995), the least

fixpoints of these operators are shown to be ordered as lfp(ΓsΓ) ⊆ lfp(ΓsΓs) ⊆
lfp(ΓΓs), and lfp(ΓsΓ) ⊆ lfp(ΓΓ) ⊆ lfp(ΓΓs). Because Ja/u = Ja/a ⊆ Ju/u ⊆ Ju/a by

Theorem 9, we can strengthen this statement to lfp(ΓsΓ) = lfp(ΓsΓs) ⊆ lfp(ΓΓ) ⊆
lfp(ΓΓs).

The following corollary summarises the results so far.

Corollary 18

The least fixpoint argumentation semantics of Dung (1993), denoted JDung, of

Prakken and Sartor (1997), denoted JPS, and the well-founded semantics for normal

logic programs WFS (Bondarenko et al. 1997; van Gelder et al. 1991) and for

logic programs with explicit negation WFSXp (Pereira and Alferes 1992; Alferes

and Pereira 1996) are related to the other least fixpoint argumentation semantics as

illustrated in Figure 3.

6 Proof theory

One of the benefits of relating the argumentation semantics Ju/a to WFSXp is

the existence of an efficient top-down proof procedure for WFSXp (Alferes et al.

1995), which we can use to compute justified arguments in Ju/a. On the other hand,

dialectical proof theories, based on dialogue trees, have been defined for a variety of

argumentation semantics (Simari et al. 1994; Prakken and Sartor 1997; Jakobovits

and Vermeir 1999a; Kakas and Toni 1999). In this section we present a sound and

complete dialectical proof theory for the least fixpoint argumentation semantics Jx/y
for any notions of attack x and y.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 231

6.1 Dialogue trees

We adapt the dialectical proof theory of Prakken and Sartor (1997) to develop a

general sound and complete proof theory for x/y-justified arguments.

Definition 16

Let P be an extended logic program. An x/y-dialogue is a finite nonempty sequence

of moves movei = (Player i, Argi)(i > 0), such that P layeri ∈ {P ,O}, Argi ∈ ArgsP ,

and

1. Player i = P iff i is odd; and Player i = O iff i is even.

2. If Player i = Player j = P and i 	= j, then Argi 	= Argj .

3. If Player i =P and i > 1, then Argi is a minimal argument such that (Argi,

Argi−1) ∈ y.

4. If Player i = O, then (Argi, Argi−1) ∈ x.

The first condition states that the players P (Proponent) and O (Opponent) take

turns, and P starts. The second condition prevents the proponent from repeating a

move. The third and fourth conditions state that both players have to attack the

other player’s last move, where the opponent is allowed to use the notion of attack

x, while the proponent may use y to defend its arguments. Note that the minimality

condition in 3 is redundant, because all arguments in ArgsP are required to be

minimal by Definition 2. We have explicitly repeated this condition, because it is

important in that it prevents the proponent from repeating an argument by adding

irrelevant rules to it.

Definition 17

An x/y-dialogue tree is a tree of moves such that every branch is a x/y-dialogue, and

for all moves movei = (P , Argi), the children of movei are all those moves (O,Argj)

such that (Argj , Argi) ∈ x.

The height of a dialogue tree is 0 if it consists only of the root, and otherwise

height(t) = sup{height(ti)}+ 1 where ti are the trees rooted at the grandchildren of t.

Example 13

Consider the following program:

p ← q, not r

q ← not s

¬q ← u

r ← not t

s ← not t

t ← not w

u ← not v

v ← not r

¬v ← not t

A a/u-dialogue tree rooted at the argument [p ← q, not r; q ← not s] is given by

Figure 4. Each node is marked with P for proponent or O for opponent, and an edge

A
x �� B denotes that A attacks B with the notion of attack x, i.e. (A,B) ∈ x.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


232 R. Schweimeier and M. Schroeder

P : [p← q, not r; q ← not s]

O : [r ← not t]

u

������������������
O : [¬q ← u; u← not v]

r

��

O : [s← not t]

u

������������������

P : [t← not w]

u

��

P : [v ← not r]

u

��

P : [t← not w]

u

��

O : [r ← not t]

u

��

O : [¬v ← not t]

r

������������������

P : [t← not w]

u

��

P : [t← not w]

u

��

Fig. 4. An a/u-dialogue tree.

Note that although dialogues are required to be finite, dialogue trees may be

infinitely branching. Therefore, dialogue trees need not be finite, nor need their

height be finite.

Example 14

Consider the following program P 4:

p(0)

p(s(X)) ← not q(X)

q(X) ← not p(X)

r ← q(X)

s ← not r

For each n ∈ �, there is exactly one minimal argument An with conclusion p(sn(0)),

namely [p(0)] for n = 0, and [p(sn(0)) ← not q(sn−1(0))] for n > 0. Similarly, there

is exactly one minimal argument Bn with conclusion q(sn(0)), namely [q(sn(0)) ←
not p(sn(0))].

Therefore, a u/u-dialogue tree rooted at An+1 consists of just one dialogue Tn+1

of the form ((P , An+1), (O,Bn), Tn). A u/u-dialogue tree rooted at A0 consists only of

the root, because there are no undercuts to A0. Thus, the height of the dialogue tree

Tn is n.

Now consider the u/u-dialogue tree rooted at the argument C = [s← not r]. The

argument C is undercut by infinitely many arguments Dn = [r ← q(sn(0)); q(sn(0))←
not p(sn(0))]; each Dn is undercut by exactly one argument: An. A dialogue in the u/u-

dialogue tree TC rooted at argument C is therefore a sequence ((P , C), (O,Bn), Tn).

Because height(Tn) = n, then by Definition 17: height(TC) = sup{height(Tn) | n ∈
�}+ 1 = ω + 1.

4 Note that by definition, programs are not allowed to contain variables. Here, X denotes a variable,
and P is an abbreviation for the (infinite) program obtained by substituting the terms sn(0) for the
variable X, in all the rules.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 233

Definition 18

A player wins an x/y-dialogue iff the other player cannot move. A player wins an

x/y-dialogue tree iff it wins all branches of the tree. An x/y-dialogue tree which is

won by the proponent is called a winning x/y-dialogue tree.

We show that the proof theory of x/y-dialogue trees is sound and complete for

any notions of attack x and y.

Theorem 19

An argument A is x/y-justified iff there exists a x/y-dialogue tree with A as its root,

and won by the proponent.

Proof

We show by transfinite induction that for all arguments A, for all ordinals α:

A ∈ Jα
x/y if and only if there exists a winning x/y-dialogue tree of height � α for A.

See Appendix A for the detailed proof. �

7 Related work

There has been much work on argument-theoretic semantics for normal logic

programs, i.e. logic programs with default negation (Bondarenko et al. 1997; Dung

1995; Kakas and Toni 1999). Because there is no explicit negation, there is only

one form of attack, the undercut in our terminology. An abstract argumentation

framework has been defined, which captures other default reasoning mechanisms

besides normal logic programming. Within this framework, a variety of semantics

may be defined, such as preferred extensions; stable extensions, which are equivalent

to stable models (Gelfond and Lifschitz 1988); and a least fixpoint semantics

based on the acceptability of arguments, which is equivalent to the well-founded

semantics (van Gelder et al. 1991). The latter fixpoint semantics forms the basis of

our argumentation semantics. Proof theories and proof procedures for some of these

argumentation semantics have been developed in Kakas and Toni (1999).

There has been some work extending this argumentation semantics to logic

programs with explicit negation. Dung (1993) adapts the earlier framework (Dung

1995) by distinguishing between ground attacks and reductio-ad-absurdum-attacks,

in our terminology undercuts and rebuts. Argumentation semantics analogous to

those of normal logic programs are defined, and the stable extension semantics is

shown to be equivalent to the answer set semantics (Gelfond and Lifschitz 1990),

an adaptation of the stable model semantics to extended logic programs. A least

fixpoint semantics (called grounded semantics) based on a notion of acceptability

is defined, and related to the well-founded semantics of (van Gelder et al. 1991),

although only for the case of programs without explicit negation.

Prakken and Sartor (1997) define an argumentation semantics for extended logic

programs similar to that of Dung. Their language is more expressive in that it

distinguishes between strict rules, which may not be attacked, and defeasible rules,

which may be attacked. Furthermore, rules have priorities, and rebuts are only

permitted against a rule of equal or lower priority. Thus, rebuts are not necessarily

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


234 R. Schweimeier and M. Schroeder

symmetric, as in our setting. Our language corresponds to Prakken and Sartor’s

without strict rules, and either without priorities, or, equivalently, if all rules have

the same priority. The semantics is given as a least fixpoint of an acceptability

operator, analogous to Dung’s grounded semantics. A proof theory, similar to those

of Kakas and Toni (1999) is developed. This proof theory formed the basis of our

general proof theory for justified arguments.

In Móra and Alferes (1998), an argumentation semantics for extended logic

programs, similar to Prakken and Sartor’s, is proposed; it is influenced by WFSX,

and distinguishes between sceptical and credulous conclusions of an argument. It

also provides a proof theory based on dialogue trees, similar to Prakken and Sartor’s.

Defeasible Logic Programming (Garcı́a and Simari 2004; Simari et al. 1994;

Garcı́a et al. 1998) is a formalism very similar to Prakken and Sartor’s, based

on the first order logic argumentation framework of Simari and Loui (1992). It

includes logic programming with two kinds of negation, distinction between strict

and defeasible rules, and allowing for various criteria for comparing arguments.

Its semantics is given operationally, by proof procedures based on dialectical trees

(Garcı́a and Simari 2004; Simari et al. 1994). In Chesñevar et al. (2002), the semantics

of Defeasible Logic Programming is related to the well-founded semantics, albeit

only for the restricted language corresponding to normal logic programs (van Gelder

et al. 1991).

The answer set semantics for extended logic programs (Gelfond and Lifschitz 1990)

is defined via extensions which are stable under a certain program transformation.

While this semantics is a natural extension of stable models (Gelfond and Lifschitz

1988) and provides an elegant model-theoretic semantics, there are several drawbacks

which the answer set semantics inherits from the stable models. In particular, there

is no efficient top-down proof procedure for the answer set semantics, because the

truth value of a literal L may depend on the truth value of a literal L′ which does

not occur in the proof tree below L5. The well-founded semantics (van Gelder et al.

1991) is an approximation of the stable model semantics, for which an efficient top-

down proof procedure exists. In Przymusinski (1990), the well-founded semantics is

adapted to extended logic programs. However, this semantics does not comply with

the coherence principle, which states that explicit negation implies implicit negation.

In order to overcome this, Pereira and Alferes (1992) (Alferes and Pereira 1996)

developed WFSX, a well-founded semantics for extended logic programs, which

satisfies the coherence principle. It has several desirable properties not enjoyed by

the answer set semantics; in particular, an efficient goal-oriented top-down proof

procedure for WFSX is presented in Alferes et al. (1995). WFSX is well established

and is widely available through Prolog implementations such as XSB Prolog (Freire

et al. 1997).

Our own work is complementary to these approaches, in that we fill a gap

by bringing argumentation and WFSX together in our definition of u/a-justified

arguments, which are equivalent to WFSXp (Damásio 1996; Alferes and Pereira

5 See the extensive discussion in Alferes and Pereira (1996) for details.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 235

1996; Alferes et al. 1995), the paraconsistent version of WFSX. Furthermore, the

generality of our framework allows us to relate existing argumentation semantics

such as Dung’s and Prakken and Sartor’s approach and thus provide a concise

characterisation of all the existing semantics mentioned above.

A number of authors (Kraus et al. 1998; Parsons and Jennings 1996; Sierra et al.

1997; Parsons et al. 1998; Sadri et al. 2001; Torroni 2002; Schroeder 1999; Móra

and Alferes 1998) work on argumentation for negotiating agents. Of these, the

approaches of Sadri et al. (2001), Torroni (2002) and Schroeder (1999) are based on

logic programming. The advantage of the logic programming approach for arguing

agents is the availability of goal-directed, top-down proof procedures. This is vital

when implementing systems which need to react in real-time and therefore cannot

afford to compute all justified arguments, as would be required when a bottom-up

argumentation semantics would be used.

In Sadri et al. (2001) and Torroni (2002), abduction is used to define agent

negotiation focusing on the generation of negotiation dialogues using abduction.

This work is relevant in that it shows how to embed an argumentation proof

procedure into a dialogue protocol, which is needed to apply proof procedures

of argumentation semantics as defined in this paper into agent communication

languages such as KQML (Finin et al. 1994) or FIPA ACL (Chiariglione et al.

1997).

With a variety of argument-based approaches being pursued to define negotiating

agents, the problem of how these agents may inter-operate arises. This paper could

serve as a first step towards inter-operation as existing approaches can be placed in

our framework, thus making it easier to compare them.

8 Conclusion and further work

We have identified various notions of attack for extended logic programs. Based

on these notions of attack, we defined notions of acceptability and least fixpoint

semantics. The contributions of this paper are five-fold.

• First, we defined a parameterised hierarchy of argumentation semantics by

establishing a lattice of justified arguments based on set inclusion. We showed

which argumentation semantics are equal, which are subsets of one another

and which are neither.

• Second, we examined some properties of the different semantics, and gave

a necessary and sufficient condition for a semantics to satisfy the coherence

principle (Alferes and Pereira 1996), and a sufficient criterion for a semantics

to be consistent.

• Third, we identified an argumentation semantics Ju/a equal to the para-

consistent well-founded semantics for logic programs with explicit negation,

WFSXp (Damásio 1996; Alferes and Pereira 1996) and proved this equivalence.

• Fourth, we established relationships between existing semantics, in particular

that JDung � JPS � Ju/u = WFS � Ju/a = WFSXp, where JDung and JPS

are the least fixpoint argumentation semantics of Dung (1993) and Prakken

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


236 R. Schweimeier and M. Schroeder

and Sartor (1997), and WFS is the well-founded semantics without explicit

negation (van Gelder et al. 1991).

• Fifth, we have defined a dialectical proof theory for argumentation. For all

notions of justified arguments introduced, we prove that the proof theory is

sound and complete wrt. the corresponding fixpoint argumentation semantics.

It remains to be seen whether a variation in the notion of attack yields interesting

variations of alternative argumentation semantics for extended logic programs such

as preferred extensions or stable extensions (Dung 1993). It is also an open question

how the hierarchy changes when priorities are added as defined in Antoniou (2002),

Kakas and Moraitis (2002), Prakken and Sartor (1997), Brewka (1996), Garcı́a et al.

(1998) and Vreeswijk (1997).

Appendix A Proofs of Theorems

Theorem 3

Let x′ ⊆ x and y ⊆ y′ be notions of attack, then Jx/y ⊆ Jx′/y′ .

Proof

We show by transfinite induction that Jα
x/y ⊆ Jα

x′/y′ , for all α.

Base case: α = 0: Then Jx/y = ∅ = Jx′/y′ .

Successor ordinal: α� α + 1:

Let A ∈ Jα+1
x/y

, and (B,A) ∈ x′. Then also (B,A) ∈ x, and so there exists C ∈ Jα
x/y

such that (C,B) ∈ y, so also (C,B) ∈ y′. By induction hypothesis, C ∈ Jα
x′/y′ , and so

A ∈ Jα+1
x′/y′ .

Limit ordinal λ:

Assume Jα
x/y ⊆ Jα

x′/y for all α < λ. Then

Jλ
x/y =

⋃
α<λ J

α
x/y ⊆

⋃
α<λ J

α
x′/y′ = Jλ

x′/y′ �

Theorem 4

Let x and and y be notions of attack such that x ⊇ undercuts, and let sy =

y − undercuts−1. Then Jx/y = Jx/sy .

Proof

By Theorem 3, we have Jx/sy ⊆ Jx/y . We prove the inverse inclusion by showing that

for all ordinals α: Jα
x/y ⊆ Jα

x/sy , by transfinite induction on α.

Base case α = 0: Jx/y = ∅ = Jx/sy .

Successor ordinal α� α+1: Let A ∈ Jα+1
x/y

, and (B,A) ∈ x. By definition, there exists

C ∈ Jα
x/y such that (C,B) ∈ y. By induction hypothesis, C ∈ Jα

x/sy .

If B does not undercut C , then we are done. If, however, B undercuts C ,

then because C ∈ Jα
x/sy , and undercuts⊆ x, there exists D∈ Jα0

x/sy
(α0 <α) such that

(D,B) ∈ sy. It follows that A ∈ Jα+1
x/sy

.

Limit ordinal λ: Assume Jα
x/y ⊆ Jα

x/sy for all α<λ. Then Jλ
x/y =

⋃
α<λ J

α
x/y ⊆⋃

α<λ J
α
x/sy = Jλ

x/sy �

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 237

Theorem 6

Let x be a notion of attack such that x ⊇ strongly attacks. Then Jx/u = Jx/d = Jx/a.

Proof

It is sufficient to show that Jx/a ⊆ Jx/u. Then by Theorem 3, Jx/u ⊆ Jx/d ⊆ Jx/a = Jx/u.

We prove by transfinite induction that for all ordinals α: Jα
x/a ⊆ Jα

x/u.

Base case: α = 0

Jα
x/a = ∅ = Jα

x/u.

Successor ordinal: α� α + 1

Let A ∈ Jα+1
x/a , and (B,A) ∈ x. By definition, there exists C ∈ Jα

x/a such that C

undercuts or rebuts B. By induction hypothesis, C ∈ Jα
x/u.

If C undercuts B, then we are done. If, however, C does not undercut B, then C

rebuts B, and so B also rebuts C , i.e. B strongly attacks C . Because strongly attacks

⊆ x and C ∈ Jα
x/u, there exists D ∈ Jα0

x/u ⊆ Jα
x/u (α0 < α) such that D undercuts B. It

follows that A ∈ Jα+1
x/u .

Limit ordinal λ:

Assume Jα
x/a ⊆ Jα

x/u for all α < λ. Then Jλ
x/a =

⋃
α<λ J

α
x/a ⊆

⋃
α<λ J

α
x/u = Jλ

x/u. �

Theorem 7

Jsa/su = Jsa/sa

Proof

By Theorem 3, Jsa/su ⊆ Jsa/sa.

We prove the inverse inclusion by showing that for all ordinals α: Jα
sa/sa ⊆ Jα

sa/su,

by transfinite induction on α.

Base case: n = 0

J0
sa/sa = ∅ = J0

sa/su

Successor ordinal: α� α + 1

Let A ∈ Jα+1
sa/sa, and B strongly attacks A. By definition, there exists C ∈ Jα

sa/sa such

that C attacks B and B does not undercut C . By induction hypothesis, C ∈ Jα
sa/su.

If C undercuts B, then we are done. If, however, C rebuts B and C does not

undercut B, then B also rebuts C , i.e. B strongly attacks C , and so because C ∈ Jα
sa/su

there exists D ∈ Jα0

sa/su ⊆ Jα
sa/su (α0 < α) such that D strongly undercuts B. It follows

that A ∈ Jα+1
sa/su(∅).

Limit ordinal λ:

Assume Jα
sa/sa ⊆ Jα

sa/su for all α < λ. Then Jλ
sa/sa =

⋃
α<λ J

α
sa/sa ⊆

⋃
α<λ J

α
sa/su =

Jλ
sa/su. �

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


238 R. Schweimeier and M. Schroeder

Theorem 8

Jsu/a = Jsu/d

Proof

By Theorem 3, Jsu/d ⊆ Jsu/a.

For the inverse inclusion, we show that for all ordinals α: Jα
su/a ⊆ Jα

su/d, by transfinite

induction on α.

Base case: α = 0

J0
su/a = ∅ = J0

su/d

Successor ordinal: α� α + 1

Let A ∈ Jα+1
su/a, and B strongly undercuts A. By definition, there exists C ∈ Jα

su/a such

that C undercuts or rebuts B. By induction hypothesis, C ∈ Jα
su/d.

If C undercuts B, or B does not undercut C , then we are done.

Otherwise, B strongly undercuts C , and so there exists D ∈ Jα0

su/d ⊆ Jα
su/d (α0 < α)

such that D defeats B. It follows that A ∈ Jα+1
su/d.

Limit ordinal λ:

Assume Jα
su/a ⊆ Jα

su/d for all α < λ. Then

Jλ
su/a =

⋃

α<λ

Jα
su/a ⊆

⋃

α<λ

Jα
su/d = Jλ

su/d

�

Lemma 15

Let I be a two-valued interpretation.

1. L ∈ Γ(I) iff ∃ argument A with conclusion L such that assm(A) ⊆ I .

2. L ∈ Γs(I) iff ∃ argument A with conclusion L such that assm(A) ⊆ I and

¬conc(A) ∩ I = ∅.
3. L 	∈ Γ(I) iff ∀ arguments A with conclusion L, assm(A) ∩ I 	= ∅.
4. L 	∈ Γs(I) iff ∀ arguments A with conclusion L, assm(A)∩ I 	= ∅ or ¬conc(A)∩

I 	= ∅.

Proof

1. “Only If”-direction: Induction on the length n of the derivation of L ∈ Γ(I).

Base case: n = 1:

Then there exists a rule L ← not L1, . . . , not Ln in P s.t. L1, . . . , Ln 	∈ I , and

[L← not L1, . . . , not Ln] is an argument for L whose assumptions are contained

in I .

Induction step: n� n + 1:

Let L ∈ Γn+1(I). Then there exists a rule r = L ← L1, . . . , Ln, not L
′
1, . . . , L

′
m in

P s.t. Li ∈ Γn(I), and L′i 	∈ I . By induction hypothesis, there exists arguments

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 239

A1, . . . , An for L1, . . . , Ln with assm(Ai) ⊆ I . Then A = [r] · A1 · · ·An is an

argument for L such that assm(A) ⊆ I .

“If” direction: Induction on the length of the argument.

Base case: n = 1:

Then A = [L ← not L1, . . . , not Ln], and L1, . . . , Ln 	∈ I . Then L←∈ P
I
, and

L ∈ Γ1(I).

Induction step: n� n + 1:

Let A = [L ← L1, . . . , Ln, not L′1, . . . , not L′m; r2, . . . , rn] be an argument s.t.

assm(A) ⊆ I . A contains subarguments A1, . . . , An for L1, . . . , Ln, with assm(Ai) ⊆
I . Because L′1, . . . , L

′
m 	∈ I , then L ← L1, . . . , Ln ∈ P

I
. By induction hypothesis,

Li ∈ Γ(I). so also L ∈ Γ(I).

2. “Only If”-direction: Induction on the length n of the derivation of L ∈ Γs(I).

Base case: n = 1:

Then there exists a rule L← not L1, . . . , not Ln in P s.t. ¬L,L1, . . . , Ln 	∈ I , and

[L← not L1, . . . , not Ln] is an argument for L whose assumptions are contained

in I , and ¬L 	∈ I .Induction step: n� n + 1:

Let L ∈ Γn+1(I). Then there exists a rule r = L ← L1, . . . , Ln, not L′1, . . . , L
′m

in P s.t. Li ∈ Γn(I), L′i 	∈ I , and ¬L 	∈ I . By induction hypothesis, there exists

arguments A1, . . . , An for L1, . . . , Ln with assm(Ai) ⊆ I and ¬conc(Ai) ∩ I = ∅.
Then A = [r] · A1 · · ·An is an argument for L such that assm(A) ⊆ I , and

¬conc(A) ∩ I = ∅.
“If” direction: Induction on the length of the argument.

Base case: n = 1:

Then A = [L← not L1, . . . , not Ln], and ¬L,L1, . . . , Ln 	∈ I . Then L←∈ Ps

I
, and

L ∈ Γ1(I).

Induction step: n� n + 1:

Let A = [L ← L1, . . . , Ln, not L′1, . . . , not L′m; r2, . . . , rn] be an argument s.t.

assm(A) ⊆ I , and ¬conc(A) ∩ I = ∅. A contains subarguments A1, . . . , An for

L1, . . . , Ln, with assm(Ai) ⊆ I , and ¬conc(Ai) ∩ I = ∅. Because L′1, . . . , L
′
m 	∈ I ,

and ¬L 	∈ I , then L ← L1, . . . , Ln ∈ P
I
. By induction hypothesis, Li ∈ Γ(I), so

also L ∈ Γ(I).

3. and 4. follow immediately from 1. and 2. because I is two-valued.

�

Theorem 19

An argument A is x/y-justified iff there exists a x/y-dialogue tree with A as its root,

and won by the proponent.

Proof

“If”-direction. We show by transfinite induction: If A ∈ Jα
x/y , then there exists a

winning x/y-dialogue tree of height � α for A.

Base case α = 0:

Then there exists no argument B such that (B,A) ∈ x, and so A is a winning

x/y-dialogue tree for A of height 0.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


240 R. Schweimeier and M. Schroeder

Successor ordinal α + 1:

If A ∈ Jα+1
x/y

, then for any Bi such that (Bi, A) ∈ x there exists a Ci ∈ Jα
x/y such that

(Ci, Bi) ∈ y. By induction hypothesis, there exist winning x/y-dialogue trees for the

Ci. Furthermore, if any of the Ci contains a move m = (P , A), then it also contains a

winning subtree for A rooted at m and we are done. Otherwise, we have a winning

tree rooted at A, with children Bi, whose children are the winning trees for Ci.

Limit ordinal λ:

If A ∈ Jλ
x/y , then there exists an α < λ such that A ∈ Jα

x/y; by induction hypothesis,

there exists a winning x/y-dialogue tree of height α for A.

“Only-if”-direction. We prove by transfinite induction: If there exists a winning tree

of height α for A, then A ∈ Jα
x/y .

Note that by definition, the height of a dialogue tree is either 0 or a successor

ordinal α + 1. So we prove the base case 0, and for the induction step, we assume

that the induction hypothesis holds for all β < α + 1.

Base case α = 0:

Then there are no arguments B such that (B,A) ∈ x, and so A ∈ J0
x/y .

Successor ordinal α + 1:

Let T be a tree with root A, whose children are Bi, and the children of Bi are

winning trees rooted at Ci. By induction hypothesis, Ci ∈ Jα
x/y . Because the Bi are

all those arguments such that (Bi, A) ∈ x, then A is defended against each Bi by Ci,

and so A ∈ Jα+1
x/y

. �

Acknowledgements

Thanks to Iara Carnevale de Almeida and José Júlio Alferes for fruitful discussions

on credulous and sceptical argumentation semantics for extended logic programming.

This work has been supported by EPSRC grant GRM88433.

References

Alferes, J. J., Damásio, C. V. and Pereira, L. M. 1995. A logic programming system for

non-monotonic reasoning. Journal of Automated Reasoning 14, 1, 93–147.

Alferes, J. J., Dung, P. M. and Pereira, L. M. 1993. Scenario semantics for extended logic

programming. In Proceedings of the Second International Workshop on Logic Programming

and Non-monotonic Reasoning (LPNMR’93). MIT Press, 334–348.

Alferes, J. J. and Pereira, L. M. 1996. Reasoning with Logic Programming. LNAI 1111,

Springer-Verlag.

Antoniou, G. 2002. Defeasible logic with dynamic priorities. In Proceedings of the 15th

European Conference on Artificial Intelligence. IOS Press, Lyon, France, 521–525.

Belnap, N. D. 1977. A useful four-valued logic. In Modern Uses of Many-valued Logic,

G. Epstein and J. M. Dunn, Eds. Reidel Publishing Company, 8–37.

Birkhoff, G. 1967. Lattice Theory , 3rd ed. American Mathematical Society.

Bondarenko, A., Dung, P., Kowalski, R. and Toni, F. 1997. An abstract, argumentation-

theoretic approach to default reasoning. Artificial Intelligence 93, 1–2, 63–101.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


A hierarchy of argumentation semantics 241

Brewka, G. 1996. Well-founded semantics for extended logic programs with dynamic

preferences. Journal of Artificial Intelligence Research 4, 19–36.

Chesñevar, C. I., Dix, J., Stolzenburg, F. and Simari, G. R. 2002. Relating defeasible

and normal logic programming through transformation properties. Theoretical Computer

Science 290, 1, 499–529.

Chesñevar, C. I., Maguitman, A. G. and Loui, R. P. 2000. Logical models of argument.

ACM Computing Surveys 32, 4 (December), 337–383.

Chiariglione, L. et al. 1997. Specification version 2.0. Tech. rep., Foundations of Intelligent

Physical Agents. http://www.fipa.org.

Clark, K. L. 1978. Negation as failure. In Logic and Databases, Gallaire and Minker, Eds.

Plenum Press, New York, 293–322.

Damásio, C. V. 1996. Paraconsistent extended logic programming with constraints. Ph.D.

thesis, Universidade Nova de Lisboa.

Damásio, C. V. and Pereira, L. M. 1998. A survey on paraconsistent semantics for extended

logic programs. In Handbook of Defeasible Reasoning and Uncertainty Management, D. M.

Gabbay and P. Smets, Eds. Vol. 2. Kluwer Academic Publishers, 241–320.

Damásio, C. V., Pereira, L. M. and Schroeder, M. 1997. REVISE: Logic programming

and diagnosis. In Proceedings of the Conference on Logic Programming and Non-monotonic

Reasoning LPNMR97. LNAI 1265, Springer–Verlag, 353–362.

Dung, P. M. 1993. An argumentation semantics for logic programming with explicit negation.

In Proc. of the 10th International Conference on Logic Programming ICLP’93. MIT Press,

616–630.

Dung, P. M. 1995. On the acceptability of arguments and its fundamental role in

nonmonotonic reasoning, logic programming and n-person games. Artificial Intelli-

gence 77, 2, 321–357.

Finin, T., Fritzson, R., McKay, D. and McEntire, R. 1994. KQML as an agent

communication lanugage. In Proceedings of the Third International Conference on

Information and Knowledge Management (CIKM’94). ACM Press, 456–463.

Freire, J., Rao, P., Sagonas, K., Switft, T. and Warren, D. S. 1997. XSB: A system

for efficiently computing the well-founded semantics. In International Workshop on Logic

Programming and Non-monotonic Reasoning. 431–441.

Garcı́a, A. J. and Simari, G. R. 2004. Defeasible logic programming: An argumentative

approach. Theory and Practice of Logic Programming 4, 1.

Garcı́a, A. J., Simari, G. R. and Chesñevar, C. I. 1998. An argumentative framework for

reasoning with inconsistent and incomplete information. In ECAI’98 Workshop on Practical

Reasoning and Rationality. Brighton, UK.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In

Proceedings of the 5th International Conference on Logic Programming, R. A. Kowalski and

K. A. Bowen, Eds. MIT Press, 1070–1080.

Gelfond, M. and Lifschitz, V. 1990. Logic programs with classical negation. In Proceedings

of the 7th International Conference on Logic Programming. MIT Press, 579–597.

Jakobovits, H. and Vermeir, D. 1999a. Dialectic semantics for argumentation frameworks.

In Proceedings of the Seventh International Conference on Artificial Intelligence and Law

(ICAIL ’99). 53–62.

Jakobovits, H. and Vermeir, D. 1999b. Robust semantics for argumentation frameworks.

Journal of Logic and Computation 9, 2, 215–261.

Kakas, A. and Toni, F. 1999. Computing argumentation in logic programming. Journal of

Logic and Computation 9, 4, 515–562.

Kakas, A. C. and Moraitis, P. 2002. Argumentative agent deliberation, roles and context. In

Proceedings of the ICLP-Workshop Computational Logic in Multi-Agent Systems.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X


242 R. Schweimeier and M. Schroeder

Kraus, S., Sycara, K. and Evenchik, A. 1998. Reaching agreements through argumentation:

a logical model and implementation. Artificial Intelligence 104, 1–2, 1–69.

Móra, I. A. and Alferes, J. J. 1998. Argumentative and cooperative multi-agent system for

extended logic programming. In Proceedings of the 14th Brazilian Symposium on Artificial

Intelligence (SBIA’98). 161–170.

Parsons, S. and Jennings, N. 1996. Negotiation through argumentation-a preliminary report.

In Proceedings of the Second International Conference on Multi-Agent Systems. Kyoto, Japan,

267–274.

Parsons, S., Sierra, C. and Jennings, N. 1998. Agents that reason and negotiate by arguing.

Journal of Logic and Computation 8, 3, 261–292.

Pereira, L. M. and Alferes, J. J. 1992. Well founded semantics for logic programs with

explicit negation. In B. Neumann (Ed.), European Conference on Artificial Intelligence. Wiley,

102–106.

Pollock, J. L. 1987. Defeasible reasoning. Cognitive Science 11, 481–518.

Prakken, H. and Sartor, G. 1997. Argument-based extended logic programming with

defeasible priorities. Journal of Applied Non-Classical Logics 7, 1, 25–75.

Przymusinski, T. 1990. Extended stable semantics for normal and disjunctive programs. In

Proceedings of the 7th International Conference on Logic Programming. MIT Press, 459–477.

Sadri, F., Toni, F. and Torroni, P. 2001. Logic agents, dialogue, negotiation – an abductive

approach. In Proceedings of the AISB Symposium on Information Agents for E-commerce.

Schroeder, M. 1999. An efficient argumentation framework for negotiating autonomous

agents. In Proceedings of Modelling Autonomous Agents in a Multi-Agent World

MAAMAW99. LNAI1647, Springer-Verlag.

Schweimeier, R. and Schroeder, M. 2002. Notions of attack and justified arguments for

extended logic programs. In Proceedings of the 15th European Conference on Artificial

Intelligence. IOS Press, Lyon, France, 536–540.

Sierra, C., Jennings, N., Noriega, P. and Parsons, S. 1997. A framework for argumentation-

based negotiation. In Proc. Fourth Int. Workshop on Agent Theories, Architectures and

Languages (ATAL-97). Springer-Verlag, 167–182.

Simari, G. R., Chesñevar, C. I. and Garcı́a, A. J. 1994. The role of dialectics in defeasible

argumentation. In Anales de la XIV Conferencia Internacional de la Sociedad Chilena para

Ciencias de la Computación. Universidad de Concepción, Concepción (Chile).

Simari, G. R. and Loui, R. P. 1992. A mathematical treatment of defeasible reasoning and

its implementation. Artificial Intelligence 53, 125–157.

Tarski, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of

Mathematics 5, 285–309.

Torroni, P. 2002. A study on the termination of negotiation dialogues. In Proceedings of

Autonomous Agents and Multi Agent Systems 2002. ACM Press, 1223–1230.

van Gelder, A., Ross, K. A. and Schlipf, J. S. 1991. The well-founded semantics for general

logic programs. Journal of the ACM 38, 3 (July), 620–650.

Vreeswijk, G. A. W. 1997. Abstract argumentation systems. Artificial Intelligence 90, 1–2,

225–279.

Wagner, G. 1994. Vivid Logic – Knowledge-Based Reasoning with Two Kinds of Negation.

Vol. LNAI 764. Springer–Verlag.

https://doi.org/10.1017/S147106840400225X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840400225X

