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Abstract. The Ω numbers—the halting probabilities of universal prefix-free machines—are known
to be exactly the Martin-Löf random left-c.e. reals. We show that one cannot uniformly produce, from a
Martin-Löf random left-c.e. real α, a universal prefix-free machine U whose halting probability is α. We
also answer a question of Barmpalias and Lewis-Pye by showing that given a left-c.e. real α, one cannot
uniformly produce a left-c.e. real � such that α – � is neither left-c.e. nor right-c.e.

§1. Introduction. Prefix-free Kolmogorov complexity, which is perhaps the
most prominent version of Kolmogorov complexity in the study of algorithmic
randomness, is defined via prefix-free machines: A prefix-free machine is a partial
computable function M : 2<� → 2<� (2<� being the set of finite binary strings)
such that no two distinct elements of dom(M ) are comparable under the prefix
relation. The prefix-free Kolmogorov complexity of x ∈ 2<� relative to the machine
M is defined to be the quantityKM (x) = min{|p| : M (p) = x}. To get a machine-
independent notion of Kolmogorov complexity, one needs to take an optimal prefix-
free machine, that is, a prefix-free machine U such that for any prefix-free machine
M, one has KU ≤ KM + cM for some constant cM which depends solely on M.
Then one defines the prefix-free Kolmogorov complexity K by setting K = KU .
The resulting function K only depends on the choice of U by an additive constant,
because by definition, if U and V are optimal machines, then |KU – KV | = O(1).
To be complete, one needs to make sure optimal machines exist. One way to build
one is to take a total computable function e �→ �e from N to 2<� whose range
is prefix-free (for example, �e = 0e1), and set U (�e�) =Me(�) where (Me) is an
effective enumeration of all prefix-free machines. It is easy to see that U is prefix-free
and for all e, KU ≤ KMe + |�e |, hence U is optimal. Machines U of this type are
called universal by adjunction and they form a strict subclass of optimal prefix-free
machines.1
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1For example, given a universal prefix-free machine U, we can construct an optimal prefix-free machine

V, which is not universal by adjunction, by defining, for p ∈ dom(U ), V (p0) = V (p1) = U (p) if |p|
odd, and V (p) = U (p) if |p| is even. This is well-defined because U is prefix-free, and the fact that U is
prefix-free and optimal implies that V is. V is not universal by adjunction; one can see this for example
by noting that every string in the domain of V is of even length, but this is not true of any machine that
is universal by adjunction. See, for example, [8, 9].
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Remark. Often no distinction is made between optimal prefix-free machines and
universal prefix-free machines. E.g., in [16] it is said that optimal prefix-free machines
are often called universal prefix-free machines. In this paper, the distinction will be
important. An optimal prefix-free machine is a prefix-free machine U such that
for every prefix-free machine M, there is a constant cM such that KU ≤ KM + cM .
A universal prefix-free machine is one that is universal by adjunction. Thus every
universal machine is optimal, but the converse is not true. Every machine in this
paper will be prefix-free, and so we often omit the term ‘prefix-free’.

1.1. Omega numbers. Given a prefix-free machine M, one can consider the
‘halting probability’ of M, defined by

ΩM =
∑
M (�)↓

2–|�|.

The term ‘halting probability’ is justified by the following observation: a prefix-free
machine M can be naturally extended to a partial functional from 2� , the set of
infinite binary sequences, to 2<� , where for X ∈ 2� ,M (X ) is defined to beM (�) if
some � ∈ dom(M ) is a prefix of X, andM (X ) ↑ otherwise. The prefix-freeness of M
on finite strings ensures that this extension is well-defined. With this point of view,
ΩM is simply �{X ∈ 2� :M (X ) ↓}, where � is the uniform probability measure
(a.k.a. Lebesgue measure) on 2� , that is, the measure where each bit of X is equal
to 0 with probability 1/2 independently of all other bits.

For any machine M, the number ΩM is fairly simple from a computability-
theoretic viewpoint, namely, it is the limit of a computable non-decreasing sequence
of rationals (this is easy to see, because ΩM is the limit of ΩMs =

∑
M (�)[s]↓ 2–|�|).

We call such a real left-c.e. It turns out that every left-c.e. real α ∈ [0, 1] can be
represented in this way, i.e., for any left-c.e. α ∈ [0, 1], there exists a prefix-free
machine M such that α = ΩM , as consequence of the Kraft–Chaitin theorem (see
[11, Theorem 3.6.1]).

One of the first major results in algorithmic randomness was Chaitin’s theorem
[10] that the halting probability ΩU of an optimal machine U is always an
algorithmically random real, in the sense of Martin-Löf (for background on Martin-
Löf randomness, one can consult [11, 16]). From here on we simply call a real random
if it is random in the sense of Martin-Löf.

This is particularly interesting because this gives “concrete” examples of Martin-
Löf random reals, which furthermore are, as we just saw, left-c.e. Whether the
converse is true, that is, whether every random left-c.e. real α ∈ [0, 1] is equal to ΩU
for some optimal machine U remained open for a long time. The answer turned out
to be positive, a remarkable result with no less remarkable history. Shortly after the
work of Chaitin and Solovay [18] introduced a preorder on left-c.e. reals, which we
now call Solovay reducibility: for α, � left-c.e., we say that α is Solovay-reducible to
� , which we write α �S � , if for some positive integer n, n� – α is left-c.e.2 Solovay
showed that reals of type ΩU for optimal U are maximal with respect to the Solovay

2In fact Solovay gave a more intuitive definition, which in substance states that computable
approximations of � from below converge more slowly than computable approximations of α from
below, but the version we give is equivalent to Solovay’s original definition and easier to manipulate.
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reducibility. While this did not fully settle the above question, Solovay reducibility
turned out to be the pivotal notion towards its solution. Together with Solovay’s
result, subsequent work lead to the following theorem.

Theorem 1.1. For α ∈ [0, 1] left-c.e., the following are equivalent.
(a) α is Martin-Löf random
(b) α = ΩU for some optimal machine U
(c) α is maximal w.r.t Solovay reducibility.

The implication (b) ⇒ (a) is Chaitin’s result and the implication (b) ⇒ (c) is
Solovay’s, as discussed above. Calude et al. [7] showed (c) ⇒ (b), and the last
crucial step (a) ⇒ (c) was made by Kučera and Slaman [14]. We refer the reader to
the survey [6] for an exposition of this result.

Summing up what we know so far, we have for any real α ∈ [0, 1]:

α is left-c.e. ⇔ α = ΩM for some machineM,

α is left-c.e. and random ⇔ α = ΩU for some optimal machine U.

The first equivalence is uniform: Given a prefix-free machine M (represented by
its index in an effective enumeration of all prefix-free machines), we can pass in
a uniform way to a left-c.e. index for ΩM ; and moreover, given a left-c.e. index
for a left-c.e. real α ∈ [0, 1], we can pass uniformly to an index for a prefix-free
machine M with ΩM = α (a consequence of the so-called Kraft–Chaitin theorem,
see [11, Theorem 3.6.1]). By a left-c.e. index, we mean an index for a non-decreasing
sequence of rationals

It was previously open however (see for example [2, p. 11]) whether the second
equivalence was uniform, that is: given an index for a random left-c.e. α ∈ [0, 1],
can we uniformly obtain an index for an optimal machine U such that α = ΩU ? Our
first main result is a negative answer to this question.

Theorem 1.2. There is no partial computable function f such that if e is an index
for a Martin-Löf random left-c.e. real α ∈ [0, 1], then the value of f(e) is defined and
is an index for an optimal Turing machineMf(e) with halting probability α.

Thus one cannot uniformly view a Martin-Löf random left-c.e. real as an Ω
number.

On the other hand, we show that given a left-c.e. random α ∈ [0, 1], one can
uniformly find a universal left-c.e. semi-measure m with

∑
i m(i) = α. An interesting

corollary is that one cannot uniformly turn a universal left-c.e. semi-measure m into
a universal machine whose halting probability is

∑
i m(i).

1.2. Differences of left-c.e. reals. The set of left-c.e. reals is closed under addition
and multiplication, not under subtraction or inverse. However, the set {α – � |
α, � left-c.e.}, of differences of two left-c.e. reals is algebraically much better behaved,
namely it is a real closed field [1, 15, 17]. Barmpalias and Lewis-Pye proved the
following theorem.

Theorem 1.3 (Barmpalias and Lewis-Pye) [3]. If α is a non-computable left-c.e.
real there exists a left-c.e. real � such that α – � is neither left-c.e. nor right-c.e.

The proof is non-uniform, and considers two separate cases depending on whether
or not α is Martin-Löf random (though it is uniform in each of these cases).
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Barmpalias and Lewis-Pye ask whether there is a uniform construction; we show
that the answer is negative.

Theorem 1.4. There is no partial computable function f such that if e is an index
for a non-computable left-c.e. real α, then f(e) is defined and is an index for a left-c.e.
real � such that α – � is neither left-c.e. nor right-c.e.

Barmpalias and Lewis-Pye note that it follows from [12, Theorem 3.5] that if α
and � are left-c.e. reals and α is Martin-Löf random while � is not, then α – � is a
Martin-Löf random left-c.e. real. In particular, if α in Theorem 1.3 is Martin-Löf
random, then the corresponding � must be Martin-Löf random as well. Thus α and
� are the halting probabilities of universal machines.

Theorem 1.5 (Barmpalias and Lewis-Pye) [3]. For every universal machine U,
there is a universal machine V such that ΩU – ΩV is neither left-c.e. nor right-c.e.

Recall that the construction for Theorem 1.3 was uniform in the Martin-Löf
random case. So it is not too surprising that Theorem 1.5 is uniform; but because
we cannot pass uniformly from an arbitrary Martin-Löf random left-c.e. real to a
universal machine (Theorem 1.2), this requires a new proof.

Theorem 1.6. Theorem 1.5 is uniform in the sense that there is a total computable
function f such that if U =Me is an optimal (respectively universal by adjunction)
machine, then V =Mf(e) is optimal (respectively universal by adjunction) and ΩU –
ΩV is neither left-c.e. nor right-c.e.

§2. Omega numbers.

2.1. No uniform construction of universal machines. We prove Theorem 1.2:

Theorem 1.2. There is no partial computable function f such that if e is an index for
a random left-c.e. real α ∈ [0, 1], then f(e) is defined and is an index for an optimal
prefix-free machineMf(e) with halting probability α.

Proof. First note that we can assume that the partial computable function f
is total. Indeed, define a total function g as follows: for each input e, g(e) is an
index for a machine which on input � waits for f(e) to converge, and then copies
Mf(e)(�).

Fix a partial computable function f taking indices for left-c.e. reals to indices
for prefix-free machines. Using the recursion theorem, we will define a left-c.e.
ML-random α = αe ∈ [0, 1] using, in its definition, the index f(e) of a prefix-free
Turing machine Mf(e). We must define α even if Mf(e) is not optimal or f(e)
does not converge. We can always assume thatMf(e) is prefix-free by not letting it
converge on a string � if it has already converged on a prefix of �; we can also assume
that f(e) converges by having α follow some fixed left-c.e. random � (say the one
chosen below) until f(e) converges. During the construction of α we will also build
an auxiliary machine Q. We will ensure that α is a random left-c.e. real, but that
eitherMf(e) is not optimal (which will happen because for all d, there is � such that
KMf(e)

(�) > KQ(�) + d ), or �(dom(Mf(e))) is not α. This will prove the theorem.
In the construction, we will build α = αe (using the recursion theorem to know

the index e in advance) while watching M =Mf(e). (From now on, we drop the
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index e everywhere; we will write αs for the left-c.e. approximation to α.) We will
try to meet the requirements:

Rd : For some �,KM (�) > KQ(�) + d.

If M is universal, then there must be some d such that, for all �, KM (�) ≤
KQ(�) + d . Thus meeting Rd for every d will ensure that M is not universal. At the
same time, we will be trying to get a global win by having �(dom(M )) �= α.

We will define stage-by-stage rationals α0 < α1 < α2 < ··· with α = lims αs .
(Recall that an index for such a sequence is an index for α.) Fix � a left-c.e. random,
3
4 < � < 1. We will have α = q� + l for some q, l ∈ Q, q > 0, so that α will be
random (indeed, multiplying by the denominator of q and subtracting � , we see that
� �S α, and since � is random, by Theorem 1.1, so is α). It is quite possible that
we will have α = � . Let �0 < �1 < �2 < ··· be a computable sequence of rationals
with limit � . At each stage s we will define αs = qs�s + ls for some qs , ls ∈ Q in
such a way that q = lims qs and l = lims ls are reached after finitely many stages.
We think of our opponent as defining the machine M with measure �s at stage s,
with � = lims �s the measure of the domain of M. Our opponent must keep �s ≤ αs ,
as if they ever have �s > αs then we can immediately abandon the construction
and choose q, l such that α = q� + l has αs < α < � and get a global win. Our
opponent also has to (eventually) increase �s whenever we increase αs , or they will
have � < α. However, they may wait to do this. But, intuitively speaking, whenever
we increase αs , we can wait for our opponent to increase �s correspondingly (as
long as, in the meantime, we work towards making α random).

The requirements can be in one of four states: inactive, preparing, waiting, and
restraining. Unless it is injured by a higher priority requirement, in which case
it becomes inactive, a requirement will begin inactive, then be preparing, before
switching back and forth between waiting and restraining.

Before giving the formal construction, we will give an overview. To start, each
requirement will be inactive. When activated, a requirement will be in state preparing.
When entering state preparing, a requirement Rd will have a reserved code � ∈ 2<�

and a restraint rd = 2–(|�|+d ). The reserved code � will be such that Q has not yet
converged on input � nor on any prefix or extension of �, so that we can still use
� as a code for some string � to make KQ(�) ≤ |�|. While in this state, our left-c.e.
approximation to α will copy that of � . The requirement Rd will remain in this
state until the measure of the domain of the machine M is close to our current
approximation to α, namely, within rd . (If our opponent does not increase the
measure of M as we increase the approximation to α, then we win.) At this point,
we will set Q(�) = � for some string � for which KM (�) is currently greater than
|�| + d . The requirement will move into state waiting. From now on, we are trying
to ensure that M can never converge on a string of length ≤ |�| + d , so that KM (�)
will never drop below |�| + d , satisfyingRd . We do this by having the approximation
to αs grow very slowly, so that M can only add a small amount of measure at each
stage.Rd will now move between the states waiting and restraining. The requirement
Rd will remain in state waiting at stages s when the measure of the domain of M is
close (within rd ) to �s , so that Rd is content to have α approximate � . However, at
some stages s, it might be that �s is at least rd greater than �s , the measure of the
domain of M so far. In this case,Rd is in state restraining and has to actively restrain
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αs to not increase too much. Letting l = αs–1 and q = rd – (αs–1 – �s), where s is
the stage when Rd enters the state restraining, Rd has α temporarily approximate
q� + l . Whenever the measure of the domain of M increases by 1

2rd , Rd updates
the values of q and l (recall that � ≥ 3

4 ). Thus, each time the values of q and l are
reset, the measure of the domain of M has increased by at least 1

2rd . (Again, if our
opponent does not increase the measure of M as we increase the approximation to
α, then we win.) This can happen at most finitely many times until the measure of the
domain of M is within rd of the current approximation to � , and so the requirement
re-enters state waiting.3 The requirement may then later re-enter state restraining if
the approximation to �s increases too much faster than the measure of the domain
of M, but since the measure of the domain of M will increase by at least 1

2 rd every
timeRd switches from restraining to waiting,Rd can only switch finitely many times.

Just considering one requirement, the possible outcomes of the construction are
as follows:

• �s > αs at some stage s, in which case we can immediately ensure that α < �
and that α is random.

• � < α; the requirement may get stuck in preparing or restraining. If it gets stuck
in preparing, we have α = � is random. If it gets stuck in restraining, we have
α = q� + l , with q and l rational, and this is random.

• � = α; in this case, the requirement always leaves preparing, and every time it
enters restraining it returns to waiting. After some stage, it is always in waiting
and has α = � , which is random. The requirement is satisfied by having
KQ(�) ≤ |�| but KM (�) > |�| + d .

With multiple requirements, there is injury. A requirement only allows lower priority
requirements to be active while it is waiting. Every stage at which a requirement is
preparing or restraining, it injures all lower priority requirements. So, at any stage,
there is at most one requirement—the lowest priority active requirement—which
can be in a state other than waiting.

Construction.

Stage 0. Begin with α0 = 0, all the requirements other than R0 inactive, and Q0

not converged on any input.
Set αs = �s . Activate R0 and put it in state preparing. Choose a reserved code �0

such that Qs(�0) ↑ and set the restraint r1 = 2–|�0|.
Stage s > 0. Let �s = �(dom(Ms)) be the measure of the domain of M

at stage s. If �s > αs–1, we can immediately end the construction, letting
αt = αs–1 + (�s – αs–1)�t for t ≥ s , so that

α = lim
t→∞

αt = αs–1 + (�s – αs–1)� < �s ≤ �(dom(Ms)).

So for the rest of this stage, we may assume that �s ≤ αs–1.
Find the highest-priority active requirementRd , if it exists, such that �s – �s ≥ rd .

Cancel every lower priority requirement. Let Rd be the lowest priority active
requirement. (Every higher priority requirement is in state waiting.)

3Of course, the requirement does not have to re-enter state waiting, but in this case the values of q
and l are eventually fixed.
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Case 1. Rd is preparing.

Set αs = �s . Rd has a reserved code �d and restraint rd . If �s – �s > rd ,
Rd remains preparing. Otherwise, if �s – �s < rd , find a string �d such that
KM (�d )[s] > |�d | + d . Put Q(�d ) = �d . Rd is now waiting.

Case 2. Rd is waiting and �s – �s < rd .

Set αs = �s . Requirement Rd remains in state waiting. Activate Rd+1 and put it
in state preparing. Choose a reserved code �d+1 such that Qs(�d+1) ↑ and set the
restraint rd+1 = 2–|�d+1|–d–1.

Case 3. Rd is waiting and �s – �s ≥ rd .

Set the reference values ld = αs–1 and qd = rd – (αs–1 – �s). (In Claim 1 we will
show that qd > 0.) Put Rd in state restraining. Set αs = qd�s + ld .

Case 4. Rd is in state restraining.

Rd has a restraint rd and reference values qd and ld . If �s ≤ ld + 1
2qd , keep

the same reference values, and set αs = qd�s + ld . If �s > ld + 1
2qd , then what

we do depends on whether �s – �s < rd or �s – �s ≥ rd . In either case, we call
stage s incremental for Rd . If �s – �s < rd , then set αs = �s and put Rd into state
waiting. If �s – �s ≥ rd , change the reference values ld and qd to ld = αs–1 and
qd = rd – (αs–1 – �s), and set αs = qd�s + ld . Rd remains restraining.

End construction.

Verification.

Claim 1. At every stage s > 0, αs–1 ≤ αs ≤ �s , and for every requirement Rd
which is active at stage s, either Rd is preparing or αs – �s < rd .

Proof. Assume the result holds for all t < s . Let d be the lowest priority active
requirement at stage s (after the cancellation). By choice of d, for d ′ < d we have
�s – �s < rd ′ . We now check that no matter which case of the construction was used
to define αs , the result holds. In all cases we will have αs – �s ≤ �s – �s < rd ′ , so it
is really αs – �s < rd that we must check.

(1) At stage s the construction was in Case 1 or Case 2. We set αs =
�s ≥ �s–1 ≥ αs–1. Either we are in Case 1 and Rd remains preparing, or
αs – �s = �s – �s < rd .

(2) At stage s the construction was in Case 3. We set αs = qd�s + ld . Now in
Case 3, ld = αs–1 and qd = (rd – (αs–1 – �s)). Note that αs–1 – �s ≤ αs–1 –
�s–1 < rd by induction, so αs ≥ αs–1. Also

αs = (rd – (αs–1 – �s))�s + αs–1

= rd�s – (αs–1 – �s)�s + (αs–1 – �s) + �s
= rd�s + (1 – �s)(αs–1 – �s) + �s
< rd�s + (1 – �s)rd + �s
= rd + �s
≤ �s .

Finally, since we’ve just seen that αs < rd + �s , we have that αs – �s < rd .
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(3) At stage s the construction was in Case 4. We set αs = qd�s + ld . Then since
Rd was in state restraining at stage s, we must have defined αs–1 = qd�s–1 + ld
unless s was an incremental stage, in which case qd and ld were reset at
stage s before defining αs . If s was not incremental, then αs = qd (�s –
�s–1) + qd�s–1 + ld = qd (�s – �s–1) + αs–1 ≤ qd (�s – �s–1) + �s–1 ≤ �s . Also
αs–1 = qd�s–1 + ld ≤ qd�s + ld = αs . Finally, if we let s̃ < s be the stage
where qd and ld were last defined, then we see that

αs – �s = qd�s + ld – �s
= (rd – (αs̃–1 – �s̃))�s + αs̃–1 – �s
≤ (rd – (αs̃–1 – �s̃))�s + αs̃–1 – �s̃
= rd�s + (1 – �s)(αs̃–1 – �s̃)

< rd .

Now suppose stage s was incremental for Rd . If �s – �s < rd , then the result
follows as in (1), and if �s – �s ≥ rd , then the result follows as in (3). 


Claim 2. Suppose that the requirement Rd is activated at stage s and never injured
after stage s. Then Rd has only finitely many incremental stages.

Proof. The restraint rd is defined when Rd is activated, and never changes after
stage s. Suppose to the contrary that there are incremental stages s0 < s1 < s2 < ···
after stage s. We claim that �si+1 ≥ 1

2rd + �si . From this it follows that there are
at most 2/rd incremental stages for Rd , as if there were that many incremental
stages, for some sufficiently large stage t we would have �t greater than 1 and hence
greater than αt–1—and so the construction could immediately end, with finitely
many incremental stages.

Fix i for which we will show that �si+1 ≥ 1
2rd + �si . Since stage si is incremental,

at the start of that stage Rd is in stage restraining. There are two cases, depending
on whether �si – �si < rd or �si – �si ≥ rd .

Case 1. �si – �si < rd . During stage si , the requirement Rd enters state waiting.
Since stage si+1 is the next incremental stage, there must be some unique stage t,
si < t < si+1, where Rd enters state restraining again and stays in that state until
at least stage si+1. At stage t we define ld = αt–1 and qd = rd – (αt–1 – �t). These
values cannot be redefined until the next incremental stage, si+1, where we have
�si+1 > ld + 1

2qd . Then:

�si+1 > ld +
1
2
qd

= αt–1 +
1
2

(rd – (αt–1 – �t))

=
1
2
rd +

1
2

(αt–1 + �t)

≥ 1
2
rd + �t

≥ 1
2
rd + �si .
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Case 2. �si – �si ≥ rd . During stage si , the requirement Rd remains in state
restraining, defining 	d = αsi –1 and qd = rd – (αsi–1 – �si–1). It stays in that state,
with the same reference values qd and ld , until the next incremental stage si+1, where
we have �si+1 > ld + 1

2qd . We get a similar computation to the previous case:

�si+1 > ld +
1
2
qd

= αsi –1 +
1
2

(rd – (αsi –1 – �si ))

=
1
2
rd +

1
2

(αsi –1 + �si )

≥ 1
2
rd + �si .

Thus for each i we have �si+1 ≥ 1
2rd + �si , completing the proof of the claim. 


Claim 3. Each requirement is injured only finitely many times.

Proof. We argue by induction on the priority of the requirements. Suppose that
each requirement of higher priority than Rd is only injured finitely many times. Fix
a stage s after which none of them are injured. By the previous claim, by increasing
s we may assume that no higher priority requirement has an incremental stage after
stage s.

First of all, Rd can only be activated at stages when every higher priority
requirement is waiting. If Rd is never activated after stage s, then it cannot be
injured. Increasing s further, assume that Rd is activated at stage s. If Rd is injured
after stage s, it is at the first stage t > s such that a requirementRe of higher priority
thanRd has �t – �t > re . Moreover, the requirementRe remains in the state waiting
until such a stage. Suppose that t > s is the first such stage, if one exists. At the
beginning of stage t, Re is waiting, and so Re enters the state restraining. Then
Re can only leave state restraining, and re-enter state waiting, at a stage which is
incremental forRe ; since there are no such stages after stage s,Re can never re-enter
stage waiting. So evenRd is never again re-activated, and so cannot be injured. Thus
Rd can be injured only once after stage s, proving the claim. 


Claim 4. α = lims αs is random.

Proof. There are three possibilities.
(1) Some requirement enters state preparing at stage s, and is never injured nor

leaves state preparing after stage s.
The requirement Rd is the lowest priority requirement which is active at

any point after stage s. In this case, at each stage t ≥ s , we set αt = �t and so
α = � is random.

(2) Some requirement enters state restraining at stage s, and is never injured nor
leaves state restraining after stage s.

The requirement Rd is the lowest priority requirement which is active at
any point after stage s. Increasing s, we may assume that this requirementRd
never has an incremental stage after stage s. Then the target value qd� + ld at
stage s is also the target value at all stages t ≥ s . At each such stage t ≥ s , we
set αt+1 = qd�t + ld . Thus α = qd� + ld , with qd , ld ∈ Q, and so is random.
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(3) For each requirement there is a stage s after which the requirement is never
injured and is always in state waiting.

There are infinitely many stages s at which we are in Case 2 of the
construction. At every stage, all requirements except possibly for the lowest
priority requirement are in state waiting. For requirements R1, ... , Rn, there
is some first stage t at which the lowest priority requirement is in state waiting
and never again leaves state waiting. At stage t, we must be in Case 2 of the
construction. Indeed, in Case 3 the requirement Rd leaves state waiting. In
Case 2, we set αt = �t . Moreover, we activate the next requirement, and the
next requirement is never injured. So there is a greater corresponding first
stage t at which that requirement is in state waiting and never again leaves that
state. Continuing, there are infinitely many stages at which we set αt = �t . It
follows that α = � , which is random. 


Claim 5. Suppose that�(dom(M )) = α. For each requirementRd , there is a stage
s after which the requirement is active, never injured, and is always in state waiting.

Proof. We argue inductively that for each requirement Rd , there is a stage s
after which the requirement is never injured and is always waiting.

By Claim 3 there is a stage s after which Rd is never injured, and (inductively)
every higher priority requirement is always waiting after stage s. By Claim 2, by
increasing s we may assume that Rd has no incremental stages after stage s.

ThenRd is activated at the least such stage s since each higher priority requirement
is always waiting. Note that Rd can never be injured after stage s, as if Rd is injured
by Re , then Re enters state restraining.

Now we claim that, if Rd is preparing, it leaves that state after stage s.
Indeed, if Rd never left state preparing, we would have α = � . By assumption,
α = �(dom(M )) = lims �s . Thus for some stage t we must have that �t – �t < rd .
At this stage t, Rd leaves state preparing.

Now we claim thatRd can never enter state restraining after stage s. SinceRd has
no incremental stages after stage s, if Rd did enter state restraining, it would never
be able to leave that state. Moreover, qd and ld can never change their values. So
we end up with α = qd� + ld . Moreover, for all t ≥ s , �t < ld + 1

2qd , as there are
no more incremental stages. Then � ≤ ld + 1

2qd < ld + qd� = α, contradicting the
hypotheses of the claim. Thus Rd can never enter state restraining after stage s.

Thus we have shown that for sufficiently large stages, Rd is in state waiting. 

Claim 6. Suppose that �(dom(M )) = α. Then every requirement Rd is satisfied.

Proof. Since �(dom(M )) = α, at all stages s, �s ≤ αs–1. As argued in the
previous claim, there is a stage s at which Rd is activated, and after which Rd is
never injured. At this stage s, Rd enters state preparing and we choose �d such that
Q(�d ) ↑ and set rd = 2–(|�d |+d ).

By the previous claim, Rd exits state preparing at some stage t > s . At this point,
we have �t – �t < rd . We choose a string � such that KM (�) > |�d | + d and put
Q(�d ) = �. Thus KQ(�) ≤ |�d |. Rd enters state waiting, and αs = �s .

Since, at stage t, KM (�) > |�|d + d , for every string 
 with |
| ≤ |�d | + d ,
M (
) �= �. For each stage t′ ≥ t the requirement Rd is no longer in state preparing
and so by Claim 1 we have �t′+1 – �t′ ≤ αt′ – �t′ < rd . From this it follows that we
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can never have M (
) = � for any 
 with |
| ≤ |�d | + d ; if M (
) = � for the first
time at stage t′ + 1 > t, then we would have �t′+1 – �t′ ≥ |
| = rd , which as we just
argued cannot happen. 


We can now use the claims to complete the verification. By Claim 4, α = lims αs
is indeed random, and by Claim 1 α ≤ � and so α ∈ [0, 1]. So the function f must
output the index of a machine M with �(M ) = α. By Claim 6, each requirement
is satisfied and so, for every d, there is � such that KM (�) > KQ(�) + d . Thus M is
not optimal, a contradiction. This completes the proof of the theorem. 


2.2. Almost uniform constructions of optimal machines. We just established that
there is no uniform procedure to turn a left-c.e. Martin-Löf random α ∈ [0, 1] into a
universal machine M such that ΩM = α. However, algorithmic randomness offers a
notion of ‘almost uniformity’, known as layerwise computability, see [13]: Let (Uk)
be a fixed effectively optimal Martin-Löf test, i.e., a Martin-Löf test such that for
any other Martin-Löf test (Vk), there exists a constant c such that Vk+c ⊆ Uk for all
k, and this constant c can be uniformly computed in an index of the Martin-Löf test
(Vk). Note that an effectively optimal Martin-Löf test is in particular universal, i.e.,
x is Martin-Löf random if and only if x /∈ Ud for some d. A function F from [0, 1]
(or more generally, from a computable metric space) to some represented space X is
layerwise computable if it is defined on every Martin-Löf random x and moreover
there is a partial computable f from [0, 1] × N to X wheref(x, d ) = F (x) whenever
x /∈ Ud .

Here we are in a different setting as we are dealing with indices of reals instead of
reals, but by extension we could say that a partial function F : N → X is layerwise
computable on left-c.e. reals if F (e) is defined for every index e of a random left-
c.e. real, and if there is a partial computable function f : N× N → X such that
f(e, d ) = F (e) whenever the left-c.e. real αe of index e does not belong to Ud (note
that the definition remains the same if f is required to be total). Even with this
weaker notion of uniformity, uniform construction of optimal machines from their
halting probabilities remains impossible.

Theorem 2.1. There does not exist a layerwise computable mapping F from indices
for random left-c.e. reals αe ∈ [0, 1] to optimal machines such that ΩMF (e)

= αe .

Proof. This is in fact a consequence of a stronger result: there is no ∅′-partial
computable function F such that F (e) is defined whenever αe is Martin-Löf random
and ΩMF (e)

= αe . Since a ∅′-partial computable function can be represented by
a total computable function f(., .) such that for every e on which F is defined,
limt f(e, t) = F (e), we see that a layerwise computable function on left-c.e. reals is
a particular case of ∅′-partial computable function.

Let now F be a ∅′-partial computable function and f a total computable such that
limt f(e, t) = F (e) whenever F (e) is defined.

The idea is to run the same construction as in Theorem 1.2, but instead of playing
against the machine of index f(e), we play against the machine of index f(e, s0),
with s0 = 0. If at some point we find a s1 > s0 such thatf(e, s1) �= f(e, s0), we restart
the entire construction, this time playing against the machine of indexf(e, s1), until
we find s2 > s1 such that f(e, s2) �= f(e, s1), then restart, etc. Of course when we
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restart the construction, we cannot undo the increases we have already made on α.
This problem is easily overcome as follows. First observe that the strategy presented
in the proof of Theorem 1.2, is robust: instead of starting atα = 0, and staying in the
interval [0, 1] throughout the construction, for any rational interval [a, b] ⊆ [0, 1],
we could have started the construction with α0 = a and stayed within [a, b] by –
for example – targeting the random real a + (b – a)� instead of � . Now, let � be a
random left-c.e. real in [0, 1] with computable lower approximation �0 < �1 < ··· .
We play against the machine of index f(e, si) by applying the strategy of Theorem
1.2 with the added constraint thatαmust stay in the interval [�i , �i+1]. If we then find
a si+1 such that f(e, si+1) �= f(e, si), we then move to the next interval [�i+1, �i+2]
and apply the strategy to diagonalize against the machine of index f(e, si+1) while
keeping α in this interval, etc.

There are two cases:

• Either f(e, t) eventually stabilizes to a value f(e, sk), in which case we get to
fully implement the diagonalization against the machine of index f(e, sk) =
F (e), which ensures that αe �= ΩMF (e)

or thatMF (e) is not optimal.
• Or f(e, t) does not stabilize, in which case we will infinitely often move α from

the interval [�i , �i+1] to [�i+1, �i+2], which means that the limit value of α = αe
will be �, hence αe is random, while F (e) is undefined since f(e, t) does not
converge.

In either case, we have shown what we wanted. 

Finally, we can consider a yet weaker type of non-uniformity. In the definition

of layerwise computability on left-c.e. reals, we asked that for αe /∈ Ud , the machine
of index f(e, d ) has halting probability αe and f(e, d ) = f(e, d ′) if αe /∈ Ud ∪ Ud ′ .
Here we could try to remove this last condition by allowing f(e, d ) and f(e, d ′)
to be codes for different machines (but both with halting probabilities αe). In this
setting, we do get a positive result.

Theorem 2.2. There exists a partial computable function f(., .) such that if αe /∈
Ud , αe ∈ [0, 1], then f(e, d ) is defined and ΩMf(e,d )

= αe .

Proof. This follows from work of Calude et al. [7] and of Kučera and Slaman
[14]. Let Ω be the halting probability of an optimal machine. Kučera and Slaman
showed how from the index of a left-c.e. real α ∈ [0, 1] one can build a Martin-Löf
test (Vk) such that if α /∈ (Vk) then one can, uniformly in k, produce approximations
α1 < α2 < ··· of α and Ω1 < Ω2 < ··· of Ω such that (αs+1 – αs) > 2–k(Ωs+1 –
Ωs) (see [11, Theorem 9.2.3]). Then, by [7], one can use such approximations to
uniformly build a uniform machine with halting probability α, as long as α ∈
(2–k, 1 – 2–k) (see [11, Theorem 9.2.2])

Thus, given an index for α, if (Vk) is the Martin-Löf test built as in [14], we can
build the test V ′

k = Vk+2 ∪ (0, 2–k–2) ∪ (1 – 2–k–2, 1) (whose index can uniformly be
computed from that of (Vk)). Now, if α /∈ Ud , then we can compute a constant c
such that α /∈ V ′

d+c , and apply the above argument with k = c + d + 2. 


2.3. Uniform constructions of semi-measures. Another way to define Omega
numbers, which is equivalent if one is not concerned about uniformity issues, is
via left-c.e. semi-measures (see [11, Section 3.9]).
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Definition 2.3. A semi-measure is a function m : N → R+ such that
∑
i m(i) ≤

1. It is left-c.e. if the set {(i, q) | i ∈ N, q ∈ Q, m(i) > q} is c.e., or equivalently, if m
is the limit of a non-decreasing sequence (ms) of uniformly computable functions
such that

∑
s ms(i) ≤ 1 for all s.

There exist universal left-c.e. semi-measures, i.e., left-c.e. semi-measures m such
that for any other left-c.e. semi-measure �, there is a c > 0 such thatm(i) > c · �(i)
for all i. The Levin coding theorem (see [11, Theorem 3.9.4]) asserts that a left-c.e.
semi-measure m is universal if and only if there are positive constants c1, c2 such
that c1 · 2–K(i) < m(i) < c2 · 2–K(i) for all i. An important result from Calude et al.
[7] is that a left-c.e. real α is an Omega number if and only if it is the sum

∑
i m(i)

for some universal left-c.e. semi-measure m. Interestingly, with this representation
of Omega numbers, uniform constructions are possible.

Theorem 2.4. There is a total computable function f such that if e is an index for
a random left-c.e. real α ∈ [0, 1], then f(e) is defined and is an index for a universal
left-c.e. semi-measure mf(e) with sum α.

Proof. Let � be a fixed universal semi-measure and � ≤ 1 its sum. Suppose we
are given (the index of) a left-c.e. real α. We build our m by building uniformly, for
each k > 0, a left-c.e. semi-measure mk of halting probability α · 2–k and will take
m =

∑
k>0mk . While doing so, we also build an auxiliary Martin-Löf test (Uk)k>0.

The measure mk is designed as follows. We monitor the semi-measure � and α at
the same time and run the following algorithm

1. Let s0 be the stage at which we entered step 1. Wait for the least stage s ≥ s0
such that some value�(i) with i ≤ s has increased since the last i-stage. If there
is more than one such i at stage s, let i be the one whose most recent i-stage
is least. Let x be the amount by which �(i) has increased since the previous
i-stage, and say that s is an i-stage. Move to step 2.

2. Put (αs , αs + 2–kx) into Uk . Move to step 3.
3. Increase mk(i) by 2–k(αs – αs0 ). At further stages t ≥ s , when we see an

increase αt+1 > αt , we increase mk(i) by 2–k(αt+1 – αt). Moreover, if we now
have αt+1 > αs + 2–kx, we go back to step 1, otherwise we stay in this step 3.

By construction we do have
∑
i mk(i) = 2–kα. Still by construction, the measure

of Uk is bounded by � · 2–k ≤ 2–k , so it is indeed a Martin-Löf test. Thus, if α
is indeed random, there is a j such that α /∈ Uj . Looking at the above algorithm,
α /∈ Uj means that for this j, we enter step 1 of the algorithm infinitely often and
thus whenever some �(i) is increased by x at step 1, this is met by a sum of increases
of mj(i) by strictly more than 2–jx during step 3. Thus, mj > 2–j�, which makes
mj a universal semi-measure, and thus m > mj is universal. 


An interesting corollary is that one cannot uniformly turn a universal left-c.e.
semi-measure m into a prefix-free machine whose halting probability is

∑
i m(i).

Indeed, if we could, then we could uniformly turn a random left-c.e. α ∈ [0, 1] into
a prefix-free machine of halting probability α by first applying the above theorem
to get a universal left-c.e. semi-measure m of sum α, and then we could turn m into
a machine M of sum α. This would contradict Theorem 1.2.
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To summarize, for arbitrary (not necessarily random) left-c.e. reals, we can make
all of the transformations uniformly:

left-c.e. real
left-c.e. semi-

measure

prefix-free machine

For random left-c.e. reals, and optimal prefix-free machines, we can only make
the following transformations uniformly:

random left-
c.e. real

universal left-c.e.
semi-measure

optimal prefix-
free machine

§3. Differences of left-c.e. reals.

Theorem 1.4. There is no partial computable function f such that if e is an index
for a non-computable left-c.e. real α, then f(e) is defined and is an index for a left-c.e.
real � such that α – � is neither left-c.e. nor right-c.e.

Proof. Using the recursion theorem, define a left-c.e. real α while watching the
left-c.e. real � produced from α by a function f. We will also define a right-c.e. real �.
Let 
i be an enumeration of the right-c.e. reals with right-c.e. approximations (
is).
We will ensure that α �= 
i for any i, so that α is non-computable, and that either
α – � = � or for all sufficiently large stages, α grows more than � (and so α – � is
left-c.e.).

Each stage of the construction will be in one of infinitely many possible states:
wait and follow(i) for some i. In wait, α will be held to the same value and we will
begin decreasing the right-c.e. real � closer to α – � ; if there are infinitely many wait
stages, then in fact we will have � = α – � . At follow(i) stages, α will increase as
much as � , and possibly more, in an attempt to have 
i < α. Because α will be
increasing as much as and possibly more than � , if from some point on all stages
are follow(i) stages, then α – � will be left-c.e. We will only enter follow(i) when we
have a reasonable chance of making 
i < α, i.e., when 
i is not too much greater
than α, and we will only exit follow(i) when we have succeeded in making 
i < α.
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Since 
i is right-c.e. and α is left-c.e., this can never be injured. It is possible that we
will never succeed in making 
i < α (because in fact 
i > α) but in this case we will
still ensure that α is not computable and make α – � left-c.e. We just have to make
sure that we never increase α – � above �.

Note that technically when defining αs we cannot wait for �s to converge. But
we can do this by essentially the following argument. First, fix a non-computable
left-c.e. real � and let αs = �s until the uniform procedure provides us with a � and
�0 converges at some stage s0. Then we can restart the construction, considering the
construction to begin with α0 = �s0 . We can also in a uniform way replace the given
approximation to � (which might not even be total or left-c.e.) by a different one
which is guaranteed to be left-c.e. and which converges in a known amount of time,
and is equal to � in the case that � is in fact left-c.e.

Construction.

Stage s = 0. Begin with α0 = �s0 , �0 = 1 + α0 – �0. Say that stage 1 will be a wait
stage.

Stage s + 1. We will have determined in stage s whether stage s + 1 is a wait or
follow stage.

wait: Let αs+1 = αs and

�s+1 = min
(
�s , αs+1 – �s+1 +

1
2s

)
.

Check whether, for some i ≤ s , 
is+1 ≥ αs+1 and 
is+1 – αs+1 <
1
2i

. If we find such
an i, let i be the least such. The next stage is a follow(i) stage. If there is no such i,
the next stage is a wait stage.

follow(i): In all cases, let �s+1 = �s . Then:

(1) Check whether

αs + �s+1 – �s > 
is+1.

If so, set

αs+1 = 
is+1 + � ≤ αs + �s+1 – �s ,

where � < 1
2i

. The next stage is a wait stage.
(2) Otherwise, check whether for some j,

0 ≤ 
js – αs <
1

2j+2

[
�s – (αs – �s)

]
.

If we find such a j, choose the least such j, and let � > 0 be such that


js + � – αs <
1

2j+2

[
�s – (αs – �s)

]
.

Let

αs+1 = max(
js + �, αs + �s+1 – �s).

If j = i , the next stage is a wait stage. Otherwise, the next stage is a follow(i)
stage.
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(3) Finally, in any other case, let

αs+1 = αs + �s+1 – �s .

The next stage is a follow(i) stage.

End construction.
The verification will consist of five claims followed by a short argument.

Claim 1. α = supαs comes to a limit.

Proof. In wait stages, we do not increase α. If we enter follow(i), then we can
increase α by at most 2

2i
before we exit follow(i). Thus

α ≤
∑
i∈�

2
2i
<∞. 


Claim 2. Suppose that, from some stage t on, every stage is a follow(i) stage.
Then:

(1) for all s ≥ t, αs+1 – αs ≥ �s+1 – �s ,
(2) α – � is left-c.e., and
(3) for all s ≥ t,

�s – (αs – �s) ≥
1
2

[
�t – (αt – �t)

]
.

Proof. (1) follows from the fact that we either set the next stage to be a wait
stage, or we have αs+1 ≥ αs + �s+1 – �s . (2) follows easily from (1).

For (3), since �s = �t for all s ≥ t, whenever we define

αs+1 = αs + �s+1 – �s

we maintain

�s+1 – (αs+1 – �s+1) = �s – (αs – �s).

The other possible case is when we find j such that

0 ≤ 
js – αs <
1

2j+2

[
�s – (αs – �s)

]
.

and define

αs+1 = 
js + �.

Note that in this case we permanently have 
j – α < 0 so we can never do this again
for the same j. We have

�s+1 – (αs+1 – �s+1) = �s – 
js – � + �s+1

≥ �s – αs + �s –
1

2j+2

[
�s – (αs – �s)

]

=
2j+2 – 1

2j+2

[
�s – (αs – �s)

]
.

https://doi.org/10.1017/jsl.2021.58 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.58


1628 LAURENT BIENVENU ET AL.

Thus, for all stages s ≥ t,

�s – (αs – �s) ≥
∏
j∈�

2j+2 – 1
2j+2

[
�t – (αt – �t)

]

≥ 1
2

[
�t – (αt – �t)

]
. 


Claim 3. For all stages s, �s > αs – �s .

Proof. We argue by induction. This is true for s = 0.
If stage s + 1 is a wait stage, then there are two possible values for �s+1: �s or

αs+1 – �s+1 + 1
2s . It is clear that the second is strictly greater than αs+1 – �s+1. We

also have, since αs+1 = αs and �s+1 ≥ �s , that �s > αs – �s ≥ αs+1 – �s+1.
If stage s + 1 is a follow stage, then �s+1 = �s . There are two options for αs+1.

First, we might set αs+1 ≤ αs + �s+1 – �s so that αs+1 – �s+1 ≤ αs – �s and �s+1 >
αs+1 – �s+1 follows from the induction hypothesis �s > αs – �s . Second, we might
set

αs+1 = 
js + �,

where


js + � – αs <
1

2j+2

[
�s – (αs – �s)

]
.

Then

αs+1 – �s+1 ≤ 
js + � – �s

< αs – �s +
1

2j+2

[
�s – (αs – �s)

]

≤ 1
2j+2 �s +

2j+2 – 1
2j+2

[
αs – �s

]

< �s = �s+1.

This completes the proof. 

Claim 4. α is non-computable.

Proof. If α was computable, then it would be equal to a right-c.e. real 
i . For
all stages s, α ≤ 
is . Let t be a stage such that 
it – αt < 1

2i
. Increasing t, we may

assume that there is j ≤ i such that we are in follow(j) from stage t on. Increasing
t further, we can assume that for each i ′ < i , if 
i < α, then we have seen this by
stage t. Consider the inequality


is – αs <
1

2i+2

[
�s – (αs – �s)

]
.

By (3) of Claim 2, the right-hand-side has a lower bound, and this lower bound is
strictly positive by Claim 3. Since 
i = α, there is a stage s ≥ t where this inequality
holds. Then by choice of t, i is the least value satisfying this inequality and we set
αs+1 > 


i
s . 


Claim 5. If there are infinitely many wait stages, then � = α – � .
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Proof. Using Claim 3, for each wait stage s, we have

αs – �s ≤ �s ≤ αs – �s +
1

2s–1 .

Thus � = α – � . 


We are now ready to complete the proof. It follows from Claim 1 that α is a
left-c.e. real that comes to a limit, and by Claim 4, α is a non-computable. If there
are infinitely many wait stages, then by Claim 5 � = α – � is right-c.e. The other
option is that there is j such that every stage from some point on is a follow(j) stage.
In this case, by (2) of Claim 2, α – � is left-c.e. 


We now turn to Theorem 1.6 which says that one can uniformly construct, from
an optimal (respectively universal) machine U, an optimal (respectively universal)
machine V such that ΩU – ΩV is neither left-c.e. nor right-c.e. We first prove this for
optimal machines, and then obtain the result for universal machines as a corollary.

Theorem 3.1. Theorem 1.5 is uniform, in the sense that there is a total computable
function f such that if U =Me is an optimal machine, then V =Mf(e) is optimal and
ΩU – ΩV is neither left-c.e. nor right-c.e.

Proof. Let �, � be two Solovay-incomparable left-c.e. reals. As explained in [3],
if α is random, then � = α + � – � is left-c.e. and random, and α – � is neither
left-c.e. nor right-c.e. Our goal is to make this idea effective.

Let us first express � as the sum
∑
n 2–h(n) where h is a computable function. In

what follows, when we write h(�) for a string �, we mean h(n) where n is the integer
associated to � via a fixed computable bijection. Furthermore, let Q be a machine
such that �(dom(Q)) = �.

We build a machine V from a machine U as follows. First, we wait for U to issue a
descriptionU (�0) = �0. When this happens, V issues a descriptionV (�00) = �0 and
countably many descriptions by setting V (�01p) = Q(p) for every p ∈ dom(Q).

Now, for every string � �= �0 in parallel, we enumerate all descriptions U (�) = �.
As long as the enumerated descriptions are such that |�| ≥ h(�), V copies these
descriptions. If at some point we find a description U (�) = � with |�| ≤ h(�) – 1,
we then issue descriptions V (�0) = �, and V (�′) = � for every �′ of length h(�)
which extends �1, except for �′ = �1h(�)–|�|, for which we leave V (�′) undefined.
After having done that, V copies all further U-descriptions of �, regardless of the
length of these descriptions.

By construction, V is prefix-free, because any U-descriptionU (�) = � is replaced
in V by a set of descriptions V (�′) = �′ where the �′ form a prefix-free set of
extensions of �. Moreover, V is optimal because by construction, whenever a
description U (�) = � is enumerated, a V -description of � of length at most |�| + 1
is issued. Let us now evaluate ΩU – ΩV . The very first description U (�0) = �0 of
U gives rise to descriptions in V of total measure 2–c–1 + 2–c–1�(dom(Q)), where
c = |�0|. Thus this part of the construction contributes to ΩU – ΩV by an amount
2–c – 2–c–1 – 2–c–1�(dom(Q)) = 2–c–1 – 2–c–1�.

Now, for other strings � �= �0, there are two cases. Either a description U (�) = �
with |�| < h(�) is found (which is equivalent to saying that KU (�) < h(�)), or no
such description is found. Let A be the set of � for which such a description is
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found. For � /∈ A, all U-descriptions of � are copied identically in V. For � ∈ A, all
U-descriptions of � are copied except one description U (�) = � (thus of measure
2–|�|) which is mimicked in V by a set of descriptions of measure 2–|�| – 2–h(�).

Putting it all together:

ΩU – ΩV = 2–c–1 – 2–c–1� +
∑
�∈A

2–h(�).

To finish the proof, we appeal to the theory of Solovay functions. When h is
a computable positive function, the sum

∑
n 2–h(n) is not random if and only if

h(n) – K(n) → ∞ [4, 5]. This is the case here as � =
∑
n 2–h(n) is Solovay-incomplete

hence not random. Suppose that the machine U is indeed an optimal machine. Then
KU = K +O(1), and thus we have h(n) – KU (n) → ∞. In particular, for almost
all n, h(n) > KU (n). This shows that the set A above is cofinite and therefore that∑
�∈A 2–h(�) = � – q for some (dyadic) rational q. Plugging this in the above equality,

we get

ΩU – ΩV = 2–c–1 – 2–c–1� + � – q.

Since � and � are Solovay-incomparable, this shows that ΩU – ΩV is neither left-c.e.
nor right-c.e. 


Corollary 3.2. There is a total computable function g such that if U =Me is a
universal machine, thenW =Mg(e) is universal and ΩU – ΩW is neither left-c.e. nor
right-c.e.

Proof. GivenU =Me , constructV =Mf(e) as in the previous theorem. Define
a machine W =Mg(e) by setting W (0�) = U (0�) and W (1�) = V (1�). Then
ΩW = 1

2 ΩU + 1
2 ΩV , and so ΩU – ΩW = 1

2 (ΩU – ΩV ). Thus if U is universal, then
so is W, and ΩU – ΩW is neither left-c.e. nor right-c.e. 
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